稳恒电流的磁场习题详解
大学物理稳恒磁场习题及答案 (1)
衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dI j n dS ⊥=v v,单位是:安培每平方米(A/m 2) 。
2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d Sv的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。
3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。
4、一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。
5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :d B l ⋅⎰v v Ñ=____μ0I __;对环路b :d B l ⋅⎰vv Ñ=___0____; 对环路c :d B l ⋅⎰v v Ñ =__2μ0I __。
6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。
二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B v垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. B. C. D.( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )4、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为A.R 140πμ B. R120πμ C .0 D .R140μ ( C )5、如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。
11稳恒电流和稳恒磁场习题解答讲解
第十一章 稳恒电流和稳恒磁场一 选择题1. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(如图)产生的磁感应强度B 的大小为( )A. l I μπ420B. lIμπ20 C .lIμπ20 D. 0 解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应强度由)cos (cos π4210θθμ-=dIB ,可得 lIl IB BC π82)2πcos 4π(cosπ400μμ=-=,方向垂直纸面向里lI l I B CD π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里合磁感应强度 lIB B B CD BC π420μ=+=所以选(A )2. 如图所示,有两根载有相同电流的无限长直导线,分别通过x 1=1、x 2=3的点,且平行于y 轴,则磁感应强度B 等于零的地方是:( )A. x =2的直线上B. 在x >2的区域C. 在x <1的区域D. 不在x 、y 平面上 解:本题选(A )3. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?( )A. Ⅰ区域B. Ⅱ区域 C .Ⅲ区域D .Ⅳ区域E .最大不止一个解:本题选(B )选择题2图Ⅰ Ⅱ Ⅲ Ⅳ 选择题3图选择题1图4. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知:( )A. ∮L B ·d l =0,且环路上任意一点B =0B. ∮L B ·d l =0,且环路上任意一点B ≠0C. ∮L B ·d l ≠0,且环路上任意一点B ≠0D. ∮L B ·d l ≠0,且环路上任意一点B =常量解:本题选(B )5. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r >R )的磁感应强度为B e ,则有:( )A. B t 、B e 均与r 成正比B. B i 、B e 均与r 成反比C. B i 与r 成反比,B e 与r 成正比D. B i 与r 成正比,B e 与r 成反比解:导体横截面上的电流密度2πR IJ =,以圆柱体轴线为圆心,半径为r的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ=r <R ,I r B e ⋅=⋅0π2μ, rIB e π20μ=所以选(D )6. 有三个质量相同的质点a 、b 、c ,带有等量的正电荷,它们从相同的高度自由下落,在下落过程中带电质点b 、c 分别进入如图所示的匀强电场与匀强磁场中,设它们落到同一水平面的动能分别为E a 、E b 、E c ,则( )A. E a <E b =E cB. E a =E b =E cC. E b >E a =E cD. E b >E c >E a解:由于洛伦兹力不做功,当它们落到同一水平面上时,对a 、c 只有重力做功, 则E a =E c ,在此过程中,对b 不仅有重力做功,电场力也要做正功,所以E b >E a =E c所以选(C )7. 图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是:( )A. OaB. ObC. Oc D . Od解:根据B F ⨯=v q ,从图示位置出发,带负选择题7图c dba B O• B× × × × × × Ea bc 选择题6图 选择题4图电粒子要向下偏转,所以只有Oc 、Od 满足条件,又带电粒子偏转半径Bqm R v=,22k 22qB m E R =∴,质量相同、带电量也相等的粒子,动能大的偏转半径大,所以选Oc 轨迹所以选(C )8. 如图,一矩形样品,放在一均匀磁场中,当样品中的电流I 沿X 轴正向流过时,实验测得样品A 、A '两侧的电势差V A -V A '>0,设此样品的载流子带负电荷,则磁场方向为:( )A . 沿X 轴正方向B .沿X 轴负方向C .沿Z 轴正方向D .沿Z 轴负方向 解:本题选(C )9. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将:( )A. 绕I 2旋转B. 向左运动C. 向右运动D. 向上运动E. 不动 解:圆形电流左半圆和右半圆受到长直电流安培力的方向均向右,所以圆形电流将向右运动所以选(C )二 填空题1. 成直角的无限长直导线,流有电流I =10A ,在直角决定的平面内,距两段导线的距离都是a =20cm 处的磁感应强度B = 。
高中物理稳恒电流试题经典及解析
高中物理稳恒电流试题经典及解析一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v .(a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】(1)(a )电流Q I t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ=柱体体积V Sl =柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总= 设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆又压力Ft p =∆ 由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯ 【解析】 【分析】【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++; 电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm=联立解得46.2510/q C kg m-=⨯3.如图所示,水平轨道与半径为r 的半圆弧形轨道平滑连接于S 点,两者均光滑且绝缘,并安装在固定的竖直绝缘平板上.在平板的上下各有一个块相互正对的水平金属板P 、Q ,两板间的距离为D .半圆轨道的最高点T 、最低点S 、及P 、Q 板右侧边缘点在同一竖直线上.装置左侧有一半径为L 的水平金属圆环,圆环平面区域内有竖直向下、磁感应强度大小为B 的匀强磁场,一个根长度略大于L 的金属棒一个端置于圆环上,另一个端与过圆心1O 的竖直转轴连接,转轴带动金属杆逆时针转动(从上往下看),在圆环边缘和转轴处引出导线分别与P 、Q 连接,图中电阻阻值为R ,不计其它电阻,右侧水平轨道上有一带电量为+q 、质量为12m 的小球1以速度052gr v =,向左运动,与前面静止的、质量也为12m 的不带电小球2发生碰撞,碰后粘合在一起共同向左运动,小球和粘合体均可看作质点,碰撞过程没有电荷损失,设P 、Q 板正对区域间才存在电场.重力加速度为g .(1)计算小球1与小球2碰后粘合体的速度大小v ;(2)若金属杆转动的角速度为ω,计算图中电阻R 消耗的电功率P ;(3)要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,计算金属杆转动的角速度的范围.【答案】(1) 52gr v = (2) 2424B L P Rω= (3) 2mgd qBL ≤ω≤27mgd qBL 【解析】【分析】【详解】(1)两球碰撞过程动量守恒,则0111()222mv m m v =+ 解得52gr v =(2)杆转动的电动势21122BLv BL L BL εωω==⨯= 电阻R 的功率22424B L P R R εω==(3)通过金属杆的转动方向可知:P 、Q 板间的电场方向向上,粘合体受到的电场力方向向上.在半圆轨道最低点的速度恒定,如果金属杆转动角速度过小,粘合体受到的电场力较小,不能达到最高点T ,临界状态是粘合体刚好达到T 点,此时金属杆的角速度ω1为最小,设此时对应的电场强度为E 1,粘合体达到T 点时的速度为v 1.在T 点,由牛顿第二定律得211v mg qE m r-= 从S 到T ,由动能定理得2211112222qE r mg r mv mv ⋅-⋅=- 解得12mg E q= 杆转动的电动势21112BL εω=两板间电场强度11E d ε=联立解得12mgd qBL ω= 如果金属杆转动角速度过大,粘合体受到的电场力较大,粘合体在S 点就可能脱离圆轨道,临界状态是粘合体刚好在S 点不脱落轨道,此时金属杆的角速度ω2为最大,设此时对应的电场强度为E 2.在S 点,由牛顿第二定律得22v qE mg m r-= 杆转动的电动势22212BL εω=两板间电场强度22E d ε=联立解得227mgd qBL ω= 综上所述,要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,金属杆转动的角速度的范围为:227mgd mgd qBL qBL ω≤≤.4.如图所示,固定的水平金属导轨间距L =2 m .处在磁感应强度B =4×l0-2 T 的竖直向上的匀强磁场中,导体棒MN 垂直导轨放置,并始终处于静止状态.已知电源的电动势E =6 V ,内电阻r =0.5 Ω,电阻R =4.5 Ω,其他电阻忽略不计.闭合开关S ,待电流稳定后,试求: (1)导体棒中的电流;(2)导体棒受到的安培力的大小和方向.【答案】(1)1.2 A;(2)0.096 N,方向沿导轨水平向左【解析】【分析】【详解】(1)由闭合电路欧姆定律可得:I=64.50.5EAR r=++=1.2A(2)安培力的大小为:F=BIL=0.04×1.2×2N=0.096N安培力方向为沿导轨水平向左5.如图所示,已知R3=3Ω,理想电压表读数为3v,理想电流表读数为2A,某时刻由于电路中R3发生断路,电流表的读数2.5A,R1上的电压为5v,求:(1)R1大小、R3发生断路前R2上的电压、及R2阻值各是多少?(R3发生断路时R2上没有电流)(2)电源电动势E和内电阻r各是多少?【答案】(1)1V 1Ω(2)10 V ;2Ω【解析】试题分析:(1)R3断开时电表读数分别变为5v和2.5A 可知R1=2欧R3断开前R1上电压U1=R1I=4VU1= U2 + U3所以 U2=1VU2:U3 = R2:R3 =1:3R2=1Ω(2)R3断开前总电流I1=3AE = U1 + I1rR3断开后总电流I2=2.5AE = U 2 + I 2r联解方程E= 10 V r=2Ω考点:闭合电路的欧姆定律【名师点睛】6.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L ,导轨的两端 分别与电源(串有一滑动变阻器 R )、定值电阻、电容器(原来不带电)和开关K 相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B .一质量为m ,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E ,内阻为r ,电容器的电容为C ,定值电阻的阻值为R0,不计导轨的电阻.(1)当K 接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)【答案】(1)EBL r mg -(2)44220220B L s m gR mgR B L +(3)匀加速直线运动 2222mgsCB L m cB L + 【解析】【详解】(1)金属棒ab 在磁场中恰好保持静止,由BIL=mgE I R r=+ 得 EBL R r mg=- (2)由 220B L v mg R = 得 022mgR v B L =由动量定理,得mgt BILt mv -= 其中0BLs qIt R ==得44220220B L s m gR t mgR B L += (3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t ∆∆∆∆=====∆∆∆∆ mg-BIL=ma得22mg a m CB L =+=常数 所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的.v 22-v 2=2as根据能量转化与守恒得 22211()22E mgs mv mv ∆=-- 解得:2222mgsCB L E m cB L ∆=+ 【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.7.如图所示电路中,R 1=6 Ω,R 2=12 Ω,R 3=3 Ω,C =30 μF ,当开关S 断开,电路稳定时,电源总功率为4 W ,当开关S 闭合,电路稳定时,电源总功率为8 W ,求:(1)电源的电动势E 和内电阻r ;(2)在S 断开和闭合时,电容器所带的电荷量各是多少?【答案】(1)8V ,1Ω (2)1.8×10﹣4C ,0 C【解析】【详解】(1)S 断开时有:E=I 1(R 2+R 3)+I 1r…①P 1=EI 1…②S 闭合时有:E=I 2(R 3+1212R R R R +)+I 2r…③ P 2=EI 2…④由①②③④可得:E=8V ;I 1=0.5A ;r=1Ω;I 2=1A(3)S 断开时有:U=I 1R 2得:Q 1=CU=30×10-6×0.5×12C=1.8×10-4CS 闭合,电容器两端的电势差为零,则有:Q 2=08.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求:(1)磁感应强度B 的大小;(2)t =0~3s 时间内通过MN 棒的电荷量;(3)求t =6s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)203Q J 【解析】【分析】t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解.【详解】(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s感应电动势为:E 1=BL v 1根据欧姆定律有:E 1=I (R MN + R PQ )根据P =I 2 R PQ代入数据解得:B =2T(2)当t =6 s 时,设MN 的速度为v 2,则速度为:v 2=at =6 m/s感应电动势为:E 2=BLv 2=12 V根据闭合电路欧姆定律:224MNPQE I A R R ==+ 安培力为:F 安=BI 2L =8 N规定沿斜面向上为正方向,对PQ 进行受力分析可得:F 2+F 安cos 37°=mg sin 37°代入数据得:F 2=-5.2 N(负号说明力的方向沿斜面向下)(3)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m/s =2 m/s因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比, 安培力做功:12023MN PQ BLv W BL x J R R =-⋅⋅=-+安 【点睛】本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.9.为了检查双线电缆CE 、FD 中的一根导线由于绝缘皮损坏而通地的某处,可以使用如图所示电路。
稳恒电流的磁场习题解答
第十四章 稳恒电流的磁场习题解答(仅作参考)14.1 通有电流I 的导线形状如图所示,图中ACDO 是边长为b 的正方形.求圆心O 处的磁感应强度B 。
[解答] 电流在O 点的产生的磁场的方向都是垂直纸面向里的.根据毕-萨定律: 002d d 4I r μπ⨯=l r B , 圆弧上的电流元与到O 点的矢径垂直,在O 点产生的磁场大小为012d d 4I lB aμπ=, 由于 d l = a d φ, 积分得11d L B B =⎰3/200d 4I aπμϕπ=⎰038Ia μ=. OA 和OD 方向的直线在O 点产生的磁场为零.在AC 段,电流元在O 点产生的磁场为022d sin d 4I l B r μθπ=,由于 l = b cot(π - θ) = -b cot θ,所以 d l = b d θ/sin 2θ;又由于 r = b /sin(π - θ) = b /sin θ,可得 02sin d d 4I B bμθθπ=,积分得3/402/2d sin d 4LI B B bππμθθπ==⎰⎰3/400/2(cos )48IIbbππμθππ=-=同理可得CD 段在O 点产生的磁场B 3 = B 2. O 点总磁感应强度为00123384I IB B B B a bμπ=++=+. 14.6 在半径为R = 1.0cm 的无限长半圆柱形导体面中均匀地通有电流I =5.0A ,如图所示.求圆柱轴线上任一点的磁感应强度B = ?[解答] 取导体面的横截面,电流方向垂直纸面向外. 半圆的周长为 C = πR , 电流线密度为 i = I/C = IπR .在半圆上取一线元d l = R d φ代表无限长直导线的截面,电流元为图14.1d I = i d l = I d φ/π,在轴线上产生的磁感应强度为002d d d 22I I B R Rμμϕππ==,方向与径向垂直.d B 的两个分量为 d B x = d B cos φ,d B y = d B sin φ. 积分得002200cos d sin 022x I IB R R ππμμϕϕϕππ===⎰,02sin d 2y IB R πμϕϕπ=⎰00220(cos )2II RRπμμϕππ=-=. 由对称性也可知B x = 0,所以磁感应强度B = B y = 6.4×10-5(T),方向沿着y 正向.14.8 在半径为R 的木球上紧密地绕有细导线,相邻线圈可视为相互平行,盖住半个球面,如图所示.设导线中电流为I ,总匝数为N ,求球心O 处的磁感应强度B = ?[解答]四分之一圆的弧长为 C = πR /2, 单位弧长上线圈匝数为 n = N/C = 2N/πR .在四分之一圆上取一弧元d l = R d θ,线圈匝数为 d N = n d l = nR d θ,环电流大小为 d I = I d N = nIR d θ.环电流的半径为 y = R sin θ,离O 点的距离为 x = R cos θ, 在O 点产生的磁感应强度为 22003d d sin d 22y I nI B R μμθθ== 20sin d NI Rμθθπ=, 方向沿着x 的反方向,积分得O 点的磁感应强度为/2200sin d NI B R πμθθπ=⎰/2000(1cos 2)d 24NI NIR Rπμμθθπ=-=⎰.图14.814.11 有一电介质圆盘,其表面均匀带有电量Q ,半径为a ,可绕盘心且与盘面垂直的轴转动,设角速度为ω.求圆盘中心o 的磁感应强度B 。
(物理)物理稳恒电流专项习题及答案解析及解析
(物理)物理稳恒电流专项习题及答案解析及解析一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T 范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222LR Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件3.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。
《大学物理学》习题解答(第13章 稳恒磁场)(1)
【13.1】如题图所示的几种载流导线,在 O 点的磁感强度各为多少?
(a)
(b) 习题 13-1 图
(c)
【13.1 解】 (a) B 0
I 1 0 I 0 0 ,方向朝里。 4 2R 8R 0 I 。 2R
(b) B
0 I
2R
(c) B
mv eB
2mE k eB
6.71 m 和 轨 迹 可 得 其 向 东 偏 转 距 离 为
x R R 2 y 2 2.98 10 3 m
【13.17 解】利用霍耳元件可以测量磁感强度,设一霍耳元件用金属材料制成,其厚度为 0.15 mm,载流 - 子数密度为 1024m 3,将霍耳元件放入待测磁场中,测得霍耳电压为 42μV,通过电流为 10 mA。求待测磁 场的磁感强度。 【13.17 解】由霍耳电压的公式可得 B
B 4
2 0 I 0 I 。 (cos 45 cos135) 4a a
习题 13-2 图
习题 13-3 图
【13.3】以同样的导线联接成如图所示的立方形,在相对的两顶点 A 及 C 上接一电源。试求立方形中心的 磁感强度 B 等于多少? 【13.3 解】由对称性可知,相对的两条棱在立方体中心产生的磁感强度相等而方向相反,故中心处的磁感 强度为零。 【13.4】如图所示,半径为 R 的半球上密绕有单层线圈,线圈平面彼此平行。设线圈的总匝数为 N,通过 线圈的电流为 I,求球心处 O 的磁感强度。 【13.4 解】在半球上距球心 y 处取一个宽度为 Rdθ 的园环,其对球心的张角为 θ,半径为 r=Rsinθ,包含 的电流为 dI
2rB 0, 2rB 0 NI , 2rB 0,
第7章 稳恒磁场习题解答
第7章 稳恒磁场7-1 如图,一个处在真空中的弓形平面载流线圈acba ,acb 为半径cm 2=R 的圆弧,ab 为圆弧对应的弦,圆心角090aob ∠=,A 40=I ,试求圆心O 点的磁感应强度的大小和方向。
解 由例7-1 线段ba 的磁感应强度 o o 40140(cos45-cos135) =410T4π0.02cos45B μ-=⨯⨯︒方向垂直纸面向外。
由例7-2 圆弧acb 的磁感应强度4002π1402 3.1410T 2π2420.02I μB R μ-==⨯=⨯方向垂直纸面向内。
4120.8610TB B B -=-=⨯方向垂直纸面向外。
7-2 将载流长直导线弯成如图所示的形状,求圆心O 点处磁感应强度。
解 如图,将导线分成1(左侧导线)、2(半圆导线)、3(右侧导线)三部分,设各部分在O 点处产生的磁感应强度分别为1B 、2B 、3B 。
根据叠加原理可知,O 点处磁感应强度321B B B B++=。
01=B024I B Rμ=,方向垂直于纸面向里034πI B Rμ=,方向垂直于纸面向里O 点处磁感应强度大小为习题7-1图0O 23(1π)4πIB B B Rμ=+=+ ,方向垂直于纸面向里。
7-3 一圆形载流导线圆心处的磁感应强度为1B ,若保持导线中的电流强度不变,而将导线变成正方形,此时回路中心处的磁感应强度为2B ,试求21:B B解 设导线长度为l ,为圆环时, 2πl R = 001π2I I B R l μμ==为正方形时,边长为4l,由例7-100024(cos 45cos135)4π8IB lμ=⨯-=⨯212 :πB B =7-4 如图所示,一宽为a 的薄长金属板,均匀地分布电流I ,试求在薄板所在平面、距板的一边为a 的点P 处的磁感应强度。
解 取解用图示电流元,其宽度为d r ,距板下边缘距离为r ,其在P 点处激发的磁感应强度大小为00d d d 2π22π(2)II r B (a r)a r aμμ==--,方向垂直于纸面向外。
大学物理稳恒磁场习题及答案
衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 【1 】一.填空题(每空1分)1.电流密度矢量的界说式为:dIj n dS ⊥=,单位是:安培每平方米(A/m2). 2.真空中有一载有稳恒电流I 的细线圈,则经由过程包抄该线圈的关闭曲面S 的磁通量=0 .若经由过程S 面上某面元d S 的元磁通为d,而线圈中的电流增长为2I 时,经由过程统一面元的元磁通为d ',则d ∶d '=1:2 .3.一曲折的载流导线在统一平面内,外形如图1(O 点是半径为R1和R2的两个半圆弧的配合圆心,电流自无限远来到无限远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=.4.一磁场的磁感强度为k c j b i a B++= (SI),则经由过程一半径为R,启齿向z 轴正偏向的半球壳概况的磁通量的大小为πR2cWb. 5.如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情形下,等于: 对环路a :d B ⋅⎰=____μ0I__;对环路b :d B ⋅⎰=___0____; 对环路c :d B ⋅⎰=__2μ0I__.6.两个带电粒子,以雷同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,活动轨迹半径之比是_____1∶2_____. 二.单项选择题(每小题2分)( B )1.平均磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S,则经由过程S 面的磁通量的大小为( C )2.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中间产生的磁感强度的大小之比B1 / B2为(D )3.如图3所示,电流从a 点分两路经由过程对称的圆环形分路,会合于b 点.若ca.bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 偏向垂直环形分路地点平面且指向纸内B. 偏向垂直环形分路地点平面且指向纸外C .偏向在环形分路地点平面内,且指向aD .为零( D )4.在真空中有一根半径为R 的半圆形细导线流过的电流为I,则圆心处的磁感强度为 A.R 140πμ B. R120πμ C .0D .R 140μ ( C )5.如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴扭转时,在中间O 点产生的磁感强度大小为B1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴扭转时,在O 点产生的磁感强度的大小为B2,则B1与B2间的关系为A. B1= B2B. B1= 2B2C .B1=21B2D .B1= B2 /4O IR 1 R 2图1b⊗ ⊙ cI I c a图2c I db a图3A CqqqqO图4(B )6.有一半径为R 的单匝圆线圈,通以电流I,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中间的磁感强度和线圈的磁矩分离是本来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4.(D) 2倍和1/2. 三.断定题(每小题1分,请在括号里打上√或×)( × )1.电源的电动势是将负电荷从电源的负极经由过程电源内部移到电源正极时,非静电力作的功. ( √ )2.磁通量m SB dS φ=⋅⎰的单位为韦伯.( × )3.电流产生的磁场和磁铁产生的磁场性质是有区此外. ( × )4.电动势用正.负来暗示偏向,它是矢量.( √ )5.磁场是一种特别形态的物资,具有能量.动量和电磁质量等物资的根本属性. ( × )6.知足0m SB dS φ=⋅=⎰的面积上的磁感应强度都为零.四.简答题(每小题5分)1.在统一磁感应线上,各点B 的数值是否都相等?为何不把感化于活动电荷的磁力偏向界说为磁感应强度B的偏向?答:在统一磁感应线上,各点B 数值一般不相等.(2分)因为磁场感化于活动电荷的磁力偏向不但与磁感应强度B 的偏向有关,并且与电荷速度偏向有关,即磁力偏向其实不是独一由磁场决议的,所以不把磁力偏向界说为B 的偏向.(3分)2.写出法拉第电磁感应定律的数学表达式,解释该表达式的物理意义. 答:法拉第电磁感应定律的数学表达式r lS BE dl dS t∂⋅=-⋅∂⎰⎰(2分) 物理意义:(1)感生电场是由变更的磁场激发的;(1分)(2)感生电场r E 与Bt∂∂组成左手螺旋关系;(1分)(3)右侧的积分面积S 为左侧积分路径L 包抄的面积.(1分)五.盘算题(每题10分,写出公式.代入数值.盘算成果.)1.如图5所示,AB.CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R.若通以电流I,求O 点的磁感应强度. 解:如图所示,O 点磁场由AB .C B.CD 三部分电流产生.个中AB 产生01=B(1分)CD 产生RIB 1202μ=,(2分)偏向垂直向里(1分)CD 段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,(2分)偏向⊥向里(1分)∴)6231(203210ππμ+-=++=R I B B B B ,(2分)偏向⊥向里.(1分) 2.如图6所示.半径为R 的平均带电圆盘,面电荷密度为σ.当盘以角速度ω绕个中间轴OO '扭转时,求盘心O 点的B 值.解法一:当带电盘绕O 轴迁移转变时,电荷在活动,因而产生磁场.可将圆盘算作很多齐心圆环的组合,而每一个带电圆环迁移转变时相当图5于一圆电流.以O 为圆心,r 为半径,宽为dr 的圆环,此环上电量rdr ds dq πσσ2⋅==(2分)此环迁移转变时,其等效电流rdr dq dI ωσπω=⋅=2(3分) 此电流在环心O 处产生的磁感应强度大小2200drrdIdB ωσμμ==(2分)其偏向沿轴线,是以全部圆盘在盘心O 处产生的磁感应强度大小是R dr dBB Rωσμωσμ0002121==⎰⎰(3分) 解法二:依据活动电荷的磁场公式304r rv q B ⨯=πμ,(2分)求解,在圆盘上取一半径为r,宽为dr 的圆环,电量rdr dq πσ2=,ωr v =(2分)dr rdr r r dq r dB 22440020σωμπσπωμπωμ=⋅==(3分)偏向垂直于盘面向上,同样RqRdr dB B Rπωμωσμσωμ2220000====⎰⎰(3分) 3.图7所示,在一长直载流导线旁有一长为L 导线ab,其上载电流分离为I1和I2,a 端到直导线距离为d 求当导线ab 与长直导线垂直,求ab 受力.解:取如图8所示坐标系直导线在距其为x 处,产生的磁场xI B πμ210=(2分) 其偏向垂直低面向里,电流之I2dx 受安培力大小为dx xI I Bdx I df πμ22102==(3分) df 偏向垂直向上,且各电流之受力偏向雷同,(2分)故,ab 受力为012012ln22d L LdI I I I d Lf df dx x dμμππ++===⎰⎰(3分) 4.一长直导线通有电流120A I =,旁边放一导线ab,个中通有电流210A I =,且两者共面,如图8所示.求导线ab 所受感化力对O 点的力矩.解:如图9所示,在ab 上取r d ,它受力ab F ⊥d 向上,(2分)大小为rI rI F πμ2d d 102=(2分) F d 对O 点力矩F r M⨯=d (2分)图6I 1I2dL图7Md 偏向垂直纸面向外,大小为r I I F r M d 2d d 210πμ==(2分) ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμm N ⋅(2分)5.两平行长直导线相距d=40cm,每根导线载有I1=I2=20A 如图10所示.求: ⑴两导线地点平面内与该两导线等距的一点A 处的磁感应强度; ⑵经由过程图中斜线所示面积的磁通量.(r1=r3=10cm,l=25cm)解: (1)图中的A 点的磁场122222O O A I I B d d μμππ=+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()512124010O O OI I I I T d d dμμμπππ-=+=+=⨯(4分) (2)在正方形中距中间x 处,取一窄条ds ldx =,则经由过程ds 的磁通量m d B ldx φ=()1222O O I I ldxx d z μμππ⎛⎫=+ ⎪ ⎪-⎝⎭ 122O l I I dx x d x μπ⎛⎫=+ ⎪-⎝⎭(3分)31122d r O m m r l I I d dx x d x μφφπ-⎛⎫==+ ⎪-⎝⎭⎰⎰311213ln ln 2O l d r d r I I r r μπ⎛⎫--=+ ⎪⎝⎭ ()121ln 2O l d n I I r μπ⎛⎫-=+ ⎪⎝⎭6111ln 2.210O l d r I wb r μπ--==⨯(3分) 6.已知磁感应强度B=2.0Wb ·m -2的平均磁场, 偏向沿X 轴正偏向,如图11所示,试求:(1) 经由过程abcd 面的磁通量; (2) 经由过程图中befc 面的磁通量; (3)经由过程图中aefd 面的磁通量. 解:(1)经由过程abcd 面的磁通量mabcd abcd B S φ= 2.00.40.3=⨯⨯ 0.24wb =(4分)(2)经由过程ebfc 面的磁通量,因为B 线擦过此面 故0mbdfc φ=(3分)(3)经由过程aefd 面的磁通量图110.24 maefd mabcd wbφφ==(3分)。
大学物理第二十章题解
第二十章 稳恒电流的磁场20-1.如图所示,将一条无限长载流直导线在某处折成直角,P 点在折线的延长线上,到折线的距离为a .(1)设导线所载电流为I ,求P 点的B r.(2)当20A I =,0.05m a =,求B r .解 (1)根据毕-萨定律,AB 段直导线电流在P 点产生的磁场0B =;BC 段是“半无限长”直导线电流,它在P 点产生的磁场为001224II B a aμμππ==,方向垂直纸面向里.根据叠加原理,P 点的磁感应强度001224II B a aμμππ==方向垂直纸面向里.(2)当20A I =,0.05m a =时75141020410(T)22005B .ππ--⨯⨯=⨯=⨯⨯20-2.如图所示,将一条无限长直导线在某处弯成半径为R 的半圆形,已知导线中的电流为I ,求圆心处的磁感应强度B r.解 根据毕-萨定律,两直线段导线的电流在O 点产生的磁感应强度0B =,半圆环形导线的电流在O 点产生的磁感应强度0122IB Rμ=.由叠加原理,圆心O 处的磁感应强度 04I B Rμ=方向垂直纸面向里.20-3.电流I 若沿图中所示的三种形状的导线流过(图中直线部分伸向无限远), 试求各O 点的磁感应强度B ρ.解 (a )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和14个圆环形导线的电流的磁感应强度的叠加0000111(1)22224224I I I I B R R R R μμμμππππ=++=+ ,方向垂直纸面向外.(b )根据毕-萨定律和叠加原理,O 点的磁感应强度等于下面一条半无限长直线电流的磁感应强度和34个圆环形导线的电流的磁感应强度的叠加000133(1)224242I I I B R R R μμμπππ=+=+ ,方向垂直纸面向里.(c )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和12个圆环形导线的电流的磁感应强度的叠加000111222222I I I B R R R μμμππ=++()024I Rμππ=+ ,方向垂直纸面向里.*20-4.如图所示,电流I 均匀地流过宽为a 2的无限长平面导体薄板.P 点到薄板的垂足O 点正好在板的中线上,设距离x PO =,求证P 点的磁感应强度B ρ的大小为xaa I B arctan 20πμ=解 把薄板等分成无限多条宽为d y 的细长条,每根细长条的电流d d 2II y a=,可视为线电流;无限长载流薄板可看成由无限多条无限长载流直导线构成.y 处的细长条在P 点产生的磁感应强度为d B +r,y -处的细长条在P 点产生的磁感应强度为d B -r,二者叠加为沿Oy 方向的d B r .所以P 点的磁感应强度B ρ沿Oy 方向,B ρ的大小aB θ=⎰0a=⎰0220d 2a Ix y a x y μπ=+⎰001arctan 2aIx y a x x μπ=0arctan 2I a a x μπ=*20-5.如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈盖住半个球面.设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的B ρ.解 在14圆周的圆弧ºab上,单位长度弧长的线圈匝数为 224N NR Rππ=在如图θ处,d θ角对应弧长d l 内通过的电流22d d d NI NII l R θππ== 此电流可视为半径为r 的圆环形电流圈,参见教材p80,此圆环形电流圈在O 处产生的222200033d sin 2d d sin d 22r IR NI NI B R R Rμμθμθθθππ=== 所以总磁感应强度 2002200d sin d 4NI NI B B R Rππμμθθπ===⎰⎰20-6.如图所示,载流长直导线的电流为I ,试求通过与直导线共面的矩形面积CDEF 的磁通量.解 用平行于长直导线的直线把矩形CDEF 分成无限多个无限小的面元,距长直导线r 处的面元的面积为d d S l r =,设矩形CDEF 的方向为垂直纸面向里,则d S Φ=B S ⋅⎰⎰r r 0d 2b a I l r r μπ=⎰b 0d 2a Il r r μπ=⎰0ln 2Il b aμπ=20-7.无限长同轴电缆的横截面如图所示,内导线半径为a ,载正向电流I ,圆筒形外导线的内外半径分别为b 和c ,载反向电流I ,两导线内电流都均匀分布,求磁感应强度的分布.解 考虑毕-萨定律,又因同轴电缆无限长,电流分布具有轴对称性,所以磁感应线在与电缆轴线垂直的平面内,为以轴线为圆心的同心圆;B r沿圆周切向,在到轴线距离r 相同处B r的大小相等,()B B r =.沿磁感应线建立安培环路L (轴线为圆心、半径为r 的圆),沿磁感应线方向积分.在r c >区域,由安培环路定理110d 2()0LB l rB I I πμ⋅==-=⎰rr Ñ可得10B =.在c r b >>区域,由安培环路定理222222002222d 2()L r b c r B l rB I I I c b c b πππμμππ--⋅==-=--⎰r r Ñ 可得2202222I c r B r c bμπ-=-.在b r a >>区域,由安培环路定理 330d 2LB l rB I πμ⋅==⎰r r Ñ可得032IB rμπ=.在a r >区域,由安培环路定理 22440022d 2L r r B l rB I I a a ππμμπ⋅===⎰r r Ñ可得0422IrB aμπ=.20-8.如图所示,厚度为2d 的无限大导体平板,电流密度J 沿z 方向均匀流过导体板,求空间磁感应强度的分布.解 此无限大导体板可视为无限多个无限薄的无限大平板的叠加,参见习题20-4,可知,0y >区域B r 沿Ox 负方向,0y <区域B r沿Ox 正方向.选择如图矩形回路abcda ,ab 与cd 与板面平行、沿Ox 方向,长度为l ,与Oxz 面距离为r .在r d >的板外区域,根据安培环路定理,有0d 22LB l B l dlJ μ⋅==⎰r rÑ外外所以0B dJ μ=外.B 外与到板面的距离无关,说明板外为匀强磁场.在r d <的板内区域,根据安培环路定理,有0d 22L B l B l rlJ μ⋅==⎰r rÑ内内 所以0B rJ μ=内.可表示为0B yJi μ=-r r内(d y d -<<).20-9.矩形截面的螺绕环如图所示,螺绕环导线总匝数为N ,导线内电流强度为I .(1)求螺绕环截面内磁感应强度的分布;(2)证明通过螺绕环截面的磁通量为012ln 2NIh D ΦD μπ=. 解 由于电流分布对过螺绕环中心的对称轴具有轴对称性,所以螺绕环截面内磁感应线在与对称轴垂直的平面内,为以对称轴为圆心的同心圆;B r沿圆周切向,在到轴线距离r 相同处B r的大小相等,()B B r =.在螺绕环截面内,沿磁感应线作安培环路(以r 为半径的圆,2122D Dr <<),由安培环路定理 0d 2LB l rB NI πμ⋅==⎰r r Ñ所以02NIB rμπ=. 通过螺绕环截面的磁通量为1200122d d ln 22D D NI NIh D B S h r r D μμΦππ=⋅==⎰⎰r r20-10.如图所示,半径为5m 的无限长金属圆柱内部挖出一半径为 1.5m r =的无限长圆柱形空腔.两圆柱的轴线平行,轴间距离 2.5m a =.今在此空心导体上通以5A 的电流,电流沿截面均匀分布.求此导体空心部分轴线上任一点的B ρ.解 设空心导体上电流强度为I ,则电流密度22()IJ R r π=-.电流分布可视为由电流密度为J r、半径为R 的实心长圆柱,和填充满挖空区域的、通有反向电流、电流密度为J -r、半径为r 的圆柱的叠加.可用安培环路定理求出半径为R 的实心长圆柱电流在O'处的磁感应强度为2010222212()2()Ia I B a a R r R r μμππππ==-- 其方向与圆柱轴线以及OO'垂直,与电流I 成右手螺旋关系.由反向电流的轴对称分布可知,反向电流在其轴线上的磁感应强度为20B =r. 由叠加原理可得在空心圆柱轴线上的磁感应强度为121B B B B =+=r r r r,770122224105251110(T)2()2(515)Ia.B .R r .μπππ--⨯⨯⨯===⨯--20-11.把一个2.0keV 的正电子射入磁感应强度为0.10T 的均匀磁场内,其速度v ρ与Bρ成o89角,正电子的运动轨迹将是一条螺旋线.求此螺旋线运动的周期T 、螺距h 和半径r .解 周期 311019223149111035710(s)1610010m ..T .qB ..π---⨯⨯⨯===⨯⨯⨯速率为 726510(m v .===⨯ 螺距为 7104cos 8926510cos 893571016510(m)h v T ...--==⨯⨯⨯⨯=⨯oo半径为 317319sin899111026510sin8915110(m)161001mv ..r .qB ..---⨯⨯⨯⨯===⨯⨯⨯o o20-12.速率选择器如图所示,在粒子穿过的区域V 有相互垂直的匀强电场和匀强磁场,两侧有等高的窄缝S .现有一束具有不同速率的电子束A 从左侧缝穿入,以垂直于E r 和B r的方向进入区域V .若300V U =,10cm d =,4310T B -=⨯.试计算能从速率选择器右侧的缝穿出的粒子的速率.带电粒子的带电符号及质量大小是否影响选择器对它们速率的选择?解 能从速率选择器右侧的缝穿出的电子必作直线运动,这些电子在电场E r中的受力为eE -r ,方向竖直向上;在磁场B r 中的受力为ev B -⨯rr ,方向竖直向下;且满足eE evB =所以 E U v B dB ==430001310.-=⨯⨯710(m s )= 由于Ev B=与带电粒子的带电符号及质量大小无关,所以电粒子的带电符号及质量大小不影响选择器对它们速率的选择.20-13.一块半导体样品的体积为c b a ⨯⨯如图所示,0.10cm a =,0.35cm b =,1.0cm c =cm .沿x 轴方向有电流I ,沿z 轴方向加匀强磁场B ρ,已测得 1.0mA I =,1310T B -=⨯,样品两侧的电势差 6.55mV AA U '=.(1)问这半导体是p 型还是n 型,即该半导体的载流子是带正电还是带负电?(2)求载流子浓度n .解 (1)由电流方向、磁场方向和A 侧电势高于A'侧电势可知,此半导体的载流子带负电,属于n 型.(2)AA'IBn U qa=3319310100365510161010....----⨯⨯=⨯⨯⨯⨯20328610m .-=⨯20-14.如图所示,一条长直导线载有电流130A I =,矩形线圈载有电流220A I =,试计算作用在线圈上的合力.已知:0.01m a =,0.08m b =,0.12m l =.解 线圈左侧边导线受力0111222I F B I l I l aμπ==,方向向左. 线圈右侧边导线受力()0122222I F B I l I l a b μπ==+ ,方向向右.线圈上下两边导线所受的磁力大小相等、方向相反.因此线圈所受磁力的合力为()0120121222I I I I F F F l l a a b μμππ=-=-+()0122I I lba ab μπ=+ 741030200120082001(008001).....ππ-⨯⨯⨯⨯⨯=⨯⨯+312810(N).-=⨯方向向左,垂直指向长直导线.20-15.如图所示,无限长直导线通有电流1I ,半径为R 的半圆形导线ABCDE 通有电流2I .长直导线过圆心O 且与半圆形导线共面(但不相交),a DE AB ==. 求:(1)ABCDE 导线中,AB 、¼BCD 、DE 各段所受1I 产生的磁场的作用力的大小和方向,(2)长直导线在圆心O 处元段d l 上所受2I 的磁场力的大小和方向.解 (1)设直线电流1I 产生的磁感应强度为1B r.求AB 段受1I 的作用力时,令y ξ=-,则01212d d 2R a AB R I F I l B I k μξπξ+=⨯=⋅⎰⎰r r r r012ln 2I I R a k aμπ+=⋅rDE 段受到1I 的作用力为01012212d d ()ln 22R a DE R I I I R a F I l B I y k k y aμμππ++=⨯=⋅-=-⋅⎰⎰r r r r r求¼BCD 段受1I 的作用力时,取电流元2d I l 如图,d d l R θ=.由于Oz 方向的分力会相互抵消(参见图),只需计算Oy 方向的分量,则¼21202cos d BCD F B I R j πθθ=-⋅⋅⎰r r 201202cos d 2cos I I R j R πμθθπθ=-⋅⎰r 0122I I j μ=-r(2)半圆形导线电流2I 在圆心O 点处产生的磁场0224I B i Rμ=r r,所以0121212d d d d 4I I l F I l B I B l j j Rμ=⨯=⋅=r r r r r20-16.有一匝数为10匝,长为0.25m ,宽为0.10m 的矩形线圈,放在31.010T B -=⨯的匀强磁场中,通以15A 的电流,求它所受的最大力矩.解 线圈在匀强磁场中所受的最大力偶矩为m T NIBS =31015101002501...-=⨯⨯⨯⨯⨯337510(N m).-=⨯⋅(第二十章题解结束)。
稳恒磁场一章习题解答
稳恒磁场一章习题解答习题9—1 无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示。
正确的图是:[ ]解:根据安培环路定理,容易求得无限长载流空心圆柱导体的内外的磁感应强度分布为rIa b r a r I B 2)(2)(0022220 )()()(b r b r a a r 所以,应该选择答案(B)。
习题9—2 如图,一个电量为+q 、质量为m 的质点,以速度v沿X 轴射入磁感应强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x =0延伸到无限远,如果质点在x =0和y =0处进入磁场,则它将以速度v从磁场中某一点出来,这点坐标是x =0和[ ]。
(A) qBm y v。
(B) qB m y v2 。
(C) qB m y v 2。
(D) qBm y v。
解:依右手螺旋法则,带电质点进入磁场后将在x >0和y >0区间以匀速v 经一个半圆周而从磁场出来,其圆周运动的半径为qBm R vr BO a b (A) (B) B a b r O B r O a b (C) B Or a b(D) 习题9―1图习题9―2图因此,它从磁场出来点的坐标为x =0和qBm y v2 ,故应选择答案(B)。
习题9—3 通有电流I 的无限长直导线弯成如图三种形状,则P ,Q ,O 各点磁感应强度的大小B P ,B Q ,B O 间的关系为[ ]。
(A) O Q P B B B 。
(B) O P Q B B B 。
(C) P O Q B B B 。
(D) P Q O B B B说明:本题得通过计算才能选出正确答案。
对P 点,其磁感应强度的大小 aI B P 20 对Q 点,其磁感应强度的大小 )221(2180cos 45cos 4135cos 0cos 4000a I a I a I B Q对O 点,其磁感应强度的大小 )21(2424000a I a I aIB O 显然有P Q O B B B ,所以选择答案(D)。
大学物理《稳恒电流的磁场》习题答案
第14章 稳恒电流的磁场 参考答案一、选择题1(B),2(A),3(D),4(C),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8).B I R2,沿y 轴正向; (9). ωλB R 3π,在图面中向上; (10). 正,负.三 计算题1. 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μBC 段在D 处的磁感强度)221()]4/([03⋅π=b I B μ1B、2B 、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ2. 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通过垂直于电流方向的每单位长度的电流为K .求球心处的磁感强度大小.解:如图θd d d KR s K I ==2/32220])cos ()sin [(2)sin (d d θθθμR R R I B +=32302d sin R KR θθμ=θθμd sin 2120K =⎰π=020d sin 21θθμK B ⎰π-=00d )2cos 1(41θθμK π=K 041μ3. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.4.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得: )(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S Bd 2Φr r I R Rd 220⎰π=μ2ln 20π=I μ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+I μ5. 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.1 m解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin = 0.34 N ,方向垂直环面向上.电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 由于轴对称,d F 2对整个线圈的合力为零,即02=F . 所以圆环所受合力 34.01==F FN , 方向垂直环面向上.6. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言). 重力矩 αραρs i n s i n 2121gSa a a gS a M +⋅=αρsin 22g Sa =B 2d l磁力矩ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M = 所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρT7. 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.解:长直导线在周围空间产生的磁场分布为 )2/(10r I B π=μ取xOy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin 210R I B π=, 方向垂直纸面向里,式中θ 为场点至圆心的联线与y 轴的夹角.半圆线圈上d l 段线电流所受的力为:l B I B l I F d d d 22=⨯= θθμd sin 2210R R I I π=θsin d d F F y =. 根据对称性知: F y =0d =⎰y F θcos d d F F x = ,⎰π=0x x dF F ππ=2210I I μ2210I I μ=∴半圆线圈受I 1的磁力的大小为: 2210I I F μ=,方向:垂直I 1向右.I 2I 1A DC8. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。
十三章 电流和稳恒磁场习题解
第十三章 电流和稳恒磁场习题13-1 北京正负电子对撞机的储存环是周长为240m 的近似圆形轨道,求当环中电子电流强度为8mA 时,在整个环中有多少电子在运行。
已知电子的速率接近光速。
解:设储存环周长为l ,电子在储存环中运行一周所需时间cl v l t ≈=在这段时间里,通过储存环任一截面的电量即等于整个环中电子的总电量,以Q 表示,则 cl I It Q ==故电子总数为10819-3-104103106.1240108⨯=⨯⨯⨯⨯⨯===ec Il e Q N13-2 一用电阻率为ρ的物质制成的空心半球壳,其内半径为1R ,外半径为2R 。
试计算其两表面之间的电阻。
(此题课本的习题答案错了,答案是用空心球壳计算的结果) 解:)R 1-R 1(222122121πρπρρ====⎰⎰⎰R R R R rdr SdrdR R13-3 大气中由于存在少量的自由电子和正离子而具有微弱的导电性,地表面附近,晴天时大气平均电场强度约为120m V /,大气中的平均电流密度约为212-/104mA ⨯。
问:(1)大气的电阻率是多大?(2)若电离层和地表面之间的电势差为V 5104⨯,大气中的总电阻是多大?(课本习题中平均电流密度值错了,指数少了负号)解: (1)大气电阻率 mj E ⋅Ω⨯=⨯==1312-103104120ρ(2)总电阻Ω=⨯⨯⨯⨯⨯⨯=⨯==1961037.614.3410410442612-52)(ERj U IU R π13-4 如图所示,一内、外半径分别为1R 和2R 的金属圆筒,长度l ,其电阻率ρ ,若筒内外电势差为U ,且筒内缘电势高,圆柱体中径向的电流强度为多少 ? 解: rlr S r R π2d d d ρρ==12ln π2π2d 21R R lrlrR R R ρρ==⎰12lnπ2R R lU RU I ρ==13-5 一铜导线横截面积为42mm ,20s 内有80C 的电量通过该导线的某一横截面,已知铜内自由电子的数密度为-322105.8m ⨯,每个电子的电量为C -19101.6⨯,求电子的平均定向速率。
14 稳恒电流的磁场习题详解
习题三一、选择题1.如图3-1所示,两根长直载流导线垂直纸面放置,电流I 1 =1A ,方向垂直纸面向外;电流I 2 =2A ,方向垂直纸面向内,则P 点的磁感应强度B r的方向与x 轴的夹角为[] (A )30˚; (B )60˚; (C )120˚; (D )210˚。
答案:A解:如图,电流I 1,I 2在P 点产生的磁场大小分别为1212,222I IB B d d ππ==,又由题意知12B B =;再由图中几何关系容易得出,B 与x 轴的夹角为30º。
2.如图3-2所示,一半径为R 的载流圆柱体,电流I 均匀流过截面。
设柱体内(r < R )的磁感应强度为B 1,柱体外(r > R )的磁感应强度为B 2,则 [ ](A )B 1、B 2都与r 成正比; (B )B 1、B 2都与r 成反比;(C )B 1与r 成反比,B 2与r 成正比; (D )B 1与r 成正比,B 2与r 成反比。
答案:D解:无限长均匀载流圆柱体,其内部磁场与截面半径成正比,而外部场等效于电流集中于其轴线上的直线电流磁场,所以外部磁场与半径成反比。
3.关于稳恒电流磁场的磁场强度H v,下列几种说法中正确的是 [ ](A )H v仅与传导电流有关。
(B )若闭合曲线内没有包围传导电流,则曲线上各点的H v必为零。
(C )若闭合曲线上各点H v均为零,则该曲线所包围传导电流的代数和为零。
图3-12I 1I(D )以闭合曲线L为边缘的任意曲面的H v通量均相等。
答案:C解:若闭合曲线上各点H ϖ均为零,则沿着闭合曲线H ϖ环流也为零,根据安培环路定理,则该曲线所包围传导电流的代数和为零。
4.一无限长直圆筒,半径为R ,表面带有一层均匀电荷,面密度为σ,在外力矩的作用下,这圆筒从t=0时刻开始以匀角加速度α绕轴转动,在t 时刻圆筒内离轴为r 处的磁感应强度B r的大小为 [ ](A )0; (B )0R t μσα; (C )0R t r μσα; (D )0rt Rμσα。
大学物理习题答案稳恒电流的磁场
第十章 稳恒电流的磁场1、四条相互平行的无限长直载流导线,电流强度均为I ,如图放置,若正方形每边长为2a ,求正方形中心O 点的磁感应强度的大小和方向。
解:43210B B B B B r r r r r +++=无限长载流直导线产生的磁感应强度 rI2B 0πμ=由图中的矢量分析可得a 2I a 2I22B B 0042πμ=πμ=+a I45cos a2I 2B 0000πμ=⋅πμ= 方向水平向左2、把一根无限长直导线弯成图 (a)、(b) 所示形状,通以电流I ,分别求出O 点的磁感应强度B 的大小和方向。
解:(a )(b )均可看成由两个半无限长载流直导线1、3和圆弧2组成,且磁感应强度在O 点的方向相同 (a )方向垂直纸面向外。
)38(R16I43R 4I R 4I R 4I B 00000π+πμ=π⋅πμ+πμ+πμ=(b )由于O 点在电流1、3的延长线上,所以0B B 31==r r方向垂直纸面向外。
R8I323R I 4B B 0020μ=π⋅πμ==14(a ) I(b )3、真空中有一边长为l 的正三角形导体框架,另有互相平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连 (如图) 。
已知直导线中的电流为I ,求正三角形中心点O 处的磁感应强度B 。
解:三角形高为 l l360sin h .0==4 它在 θθπμ=θ=d sin R 2Isin dB dB 20x θθπμ−=θ−=d cos R2I cos dB dB 20yRI d sin R2I dB B 20200x x πμ=∫θθπμ∫==π0d cos R2I dB B 020y y =∫∫θθπμ−==π)T (1037.6100.10.5104RI B B 522720x P −−−×=××π××π=πμ==∴轴正方向。
大学物理第二十章题解
第二十章 稳恒电流的磁场20-1.如图所示,将一条无限长载流直导线在某处折成直角,P 点在折线的延长线上,到折线的距离为a 。
(1)设导线所载电流为I ,求P 点的B .(2)当20A I =,0.05m a =,求B .解 (1)根据毕—萨定律,AB 段直导线电流在P 点产生的磁场0B =;BC 段是“半无限长"直导线电流,它在P 点产生的磁场为001224II B a aμμππ==,方向垂直纸面向里.根据叠加原理,P 点的磁感应强度001224II B a aμμππ==方向垂直纸面向里.(2)当20A I =,0.05m a =时75141020410(T)22005B .ππ--⨯⨯=⨯=⨯⨯20-2.如图所示,将一条无限长直导线在某处弯成半径为R 的半圆形,已知导线中的电流为I ,求圆心处的磁感应强度B .解 根据毕-萨定律,两直线段导线的电流在O 点产生的磁感应强度0B =,半圆环形导线的电流在O 点产生的磁感应强度0122IB R μ=.由叠加原理,圆心O 处的磁感应强度 04I B Rμ=方向垂直纸面向里.20-3.电流I 若沿图中所示的三种形状的导线流过(图中直线部分伸向无限远), 试求各O 点的磁感应强度B.解 (a )根据毕—萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和14个圆环形导线的电流的磁感应强度的叠加0000111(1)22224224I I I I B R R R R μμμμππππ=++=+ ,方向垂直纸面向外.(b )根据毕-萨定律和叠加原理,O 点的磁感应强度等于下面一条半无限长直线电流的磁感应强度和34个圆环形导线的电流的磁感应强度的叠加000133(1)224242I I I B R R R μμμπππ=+=+ ,方向垂直纸面向里.(c)根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和12个圆环形导线的电流的磁感应强度的叠加000111222222I I IB R R R μμμππ=++()024I Rμππ=+ ,方向垂直纸面向里.*20—4.如图所示,电流I 均匀地流过宽为a 2的无限长平面导体薄板.P 点到薄板的垂足O 点正好在板的中线上,设距离x PO =,求证P 点的磁感应强度B的大小为xa a I B arctan 20πμ=解 把薄板等分成无限多条宽为d y 的细长条,每根细长条的电流d d 2II y a=,可视为线电流;无限长载流薄板可看成由无限多条无限长载流直导线构成.y 处的细长条在P 点产生的磁感应强度为d B +,y -处的细长条在P 点产生的磁感应强度为d B -,二者叠加为沿Oy 方向的d B .所以P 点的磁感应强度B 沿Oy 方向,B的大小0220d 2cos 2a I B x y μθπ=+⎰0222202d 22a I y x a x y x yμπ=⋅⋅++⎰ 0220d 2a Ix y a x y μπ=+⎰001arctan 2aIx y a x x μπ=0arctan 2I a a x μπ=*20—5.如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈盖住半个球面.设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的B.解 在14圆周的圆弧ab 上,单位长度弧长的线圈匝数为224N NR Rππ=在如图θ处,d θ角对应弧长d l 内通过的电流22d d d NI NI I l R θππ==此电流可视为半径为r 的圆环形电流圈,参见教材p80,此圆环形电流圈在O 处产生的222200033d sin 2d d sin d 22r I R NI NI B R R Rμμθμθθθππ=== 所以总磁感应强度 2002200d sin d 4NI NI B B R Rππμμθθπ===⎰⎰20—6.如图所示,载流长直导线的电流为I ,试求通过与直导线共面的矩形面积CDEF 的磁通量.解 用平行于长直导线的直线把矩形CDEF 分成无限多个无限小的面元,距长直导线r 处的面元的面积为d d S l r =,设矩形CDEF 的方向为垂直纸面向里,则d SΦ=B S ⋅⎰⎰0d 2baI l r r μπ=⎰b 0d 2a Il r r μπ=⎰0ln 2Il baμπ=20-7.无限长同轴电缆的横截面如图所示,内导线半径为a ,载正向电流I ,圆筒形外导线的内外半径分别为b 和c ,载反向电流I ,两导线内电流都均匀分布,求磁感应强度的分布.解 考虑毕-萨定律,又因同轴电缆无限长,电流分布具有轴对称性,所以磁感应线在与电缆轴线垂直的平面内,为以轴线为圆心的同心圆;B 沿圆周切向,在到轴线距离r 相同处B 的大小相等,()B B r =.沿磁感应线建立安培环路L (轴线为圆心、半径为r 的圆),沿磁感应线方向积分.在r c >区域,由安培环路定理110d 2()0LB l rB I I πμ⋅==-=⎰可得10B =.在c r b >>区域,由安培环路定理222222002222d 2()L r b c r B l rB I I I c b c b πππμμππ--⋅==-=--⎰可得2202222I c r B r c bμπ-=-.在b r a >>区域,由安培环路定理 330d 2LB l rB I πμ⋅==⎰可得032IB rμπ=.在a r >区域,由安培环路定理 22440022d 2L r r B l rB I I a a ππμμπ⋅===⎰可得0422IrB aμπ=.20—8.如图所示,厚度为2d 的无限大导体平板,电流密度J 沿z 方向均匀流过导体板,求空间磁感应强度的分布.解 此无限大导体板可视为无限多个无限薄的无限大平板的叠加,参见习题20—4,可知,0y >区域B 沿Ox 负方向,0y <区域B 沿Ox 正方向.选择如图矩形回路abcda ,ab 与cd 与板面平行、沿Ox 方向,长度为l ,与Oxz 面距离为r .在r d >的板外区域,根据安培环路定理,有0d 22LB l B l dlJ μ⋅==⎰外外所以0B dJ μ=外.B 外与到板面的距离无关,说明板外为匀强磁场.在r d <的板内区域,根据安培环路定理,有0d 22LB l B l rlJ μ⋅==⎰内内所以0B rJ μ=内.可表示为0B yJi μ=-内(d y d -<<).20—9.矩形截面的螺绕环如图所示,螺绕环导线总匝数为N ,导线内电流强度为I .(1)求螺绕环截面内磁感应强度的分布;(2)证明通过螺绕环截面的磁通量为012ln 2NIh D ΦD μπ=. 解 由于电流分布对过螺绕环中心的对称轴具有轴对称性,所以螺绕环截面内磁感应线在与对称轴垂直的平面内,为以对称轴为圆心的同心圆;B 沿圆周切向,在到轴线距离r 相同处B 的大小相等,()B B r =.在螺绕环截面内,沿磁感应线作安培环路(以r 为半径的圆,2122D Dr <<),由安培环路定理0d 2LB l rB NI πμ⋅==⎰所以02NIB rμπ=. 通过螺绕环截面的磁通量为12200122d d ln 22D D NI NIh D B S h r r D μμΦππ=⋅==⎰⎰20-10.如图所示,半径为5m 的无限长金属圆柱内部挖出一半径为 1.5m r =的无限长圆柱形空腔.两圆柱的轴线平行,轴间距离 2.5m a =.今在此空心导体上通以5A 的电流,电流沿截面均匀分布.求此导体空心部分轴线上任一点的B.解 设空心导体上电流强度为I ,则电流密度22()IJ R r π=-. 电流分布可视为由电流密度为J 、半径为R 的实心长圆柱,和填充满挖空区域的、通有反向电流、电流密度为J -、半径为r 的圆柱的叠加.可用安培环路定理求出半径为R 的实心长圆柱电流在O'处的磁感应强度为2010222212()2()Ia I B a a R r R r μμππππ==--其方向与圆柱轴线以及OO'垂直,与电流I 成右手螺旋关系.由反向电流的轴对称分布可知,反向电流在其轴线上的磁感应强度为20B =. 由叠加原理可得在空心圆柱轴线上的磁感应强度为121B B B B =+=,770122224105251110(T)2()2(515)Ia.B .R r .μπππ--⨯⨯⨯===⨯--20—11.把一个2.0keV 的正电子射入磁感应强度为0.10T 的均匀磁场内,其速度v与B成o 89角,正电子的运动轨迹将是一条螺旋线.求此螺旋线运动的周期T 、螺距h 和半径r .解 周期 311019223149111035710(s)1610010m ..T .qB ..π---⨯⨯⨯===⨯⨯⨯ 速率为 31973122210161026510(m s)91110k E .v .m .--⨯⨯⨯⨯===⨯⨯ 螺距为 7104cos 8926510cos 893571016510(m)h v T ...--==⨯⨯⨯⨯=⨯半径为 317319sin899111026510sin8915110(m)161001mv ..r .qB ..---⨯⨯⨯⨯===⨯⨯⨯20-12.速率选择器如图所示,在粒子穿过的区域V 有相互垂直的匀强电场和匀强磁场,两侧有等高的窄缝S .现有一束具有不同速率的电子束A 从左侧缝穿入,以垂直于E 和B 的方向进入区域V .若300V U =,10cm d =,4310T B -=⨯.试计算能从速率选择器右侧的缝穿出的粒子的速率.带电粒子的带电符号及质量大小是否影响选择器对它们速率的选择?解 能从速率选择器右侧的缝穿出的电子必作直线运动,这些电子在电场E 中的受力为eE -,方向竖直向上;在磁场B 中的受力为ev B -⨯,方向竖直向下;且满足eE evB = 所以 E U v B dB ==430001310.-=⨯⨯710(m s )= 由于Ev B=与带电粒子的带电符号及质量大小无关,所以电粒子的带电符号及质量大小不影响选择器对它们速率的选择.20-13.一块半导体样品的体积为c b a ⨯⨯如图所示,0.10cm a =,0.35cm b =,1.0cm c =cm .沿x 轴方向有电流I,沿z 轴方向加匀强磁场B,已测得 1.0mA I =,1310T B -=⨯,样品两侧的电势差 6.55mV AA U '=.(1)问这半导体是p 型还是n 型,即该半导体的载流子是带正电还是带负电?(2)求载流子浓度n .解 (1)由电流方向、磁场方向和A 侧电势高于A'侧电势可知,此半导体的载流子带负电,属于n 型.(2)AA'IBn U qa=3319310100365510161010....----⨯⨯=⨯⨯⨯⨯20328610m .-=⨯20—14.如图所示,一条长直导线载有电流130A I =,矩形线圈载有电流220A I =,试计算作用在线圈上的合力.已知:0.01m a =,0.08m b =,0.12m l =.解 线圈左侧边导线受力0111222I F B I l I l aμπ==,方向向左. 线圈右侧边导线受力()0122222I F B I l I l a b μπ==+ ,方向向右.线圈上下两边导线所受的磁力大小相等、方向相反.因此线圈所受磁力的合力为()0120121222I I I I F F F l l a a b μμππ=-=-+()0122I I lba ab μπ=+ 741030200120082001(008001).....ππ-⨯⨯⨯⨯⨯=⨯⨯+312810(N).-=⨯方向向左,垂直指向长直导线.20—15.如图所示,无限长直导线通有电流1I ,半径为R 的半圆形导线ABCDE 通有电流2I .长直导线过圆心O 且与半圆形导线共面(但不相交),a DE AB ==。
稳恒电流的磁场(习题答案)
稳恒电流的磁场一、判断题3、设想用一电流元作为检测磁场的工具,若沿某一方向,给定的电流元l d I0放在空间任意一点都不受力,则该空间不存在磁场。
×4、对于横截面为正方形的长螺线管,其内部的磁感应强度仍可用nI 0μ表示。
√5、安培环路定理反映了磁场的有旋性。
×6、对于长度为L 的载流导线来说,可以直接用安培定理求得空间各点的B。
×7、当霍耳系数不同的导体中通以相同的电流,并处在相同的磁场中,导体受到的安培力是相同的。
×8、载流导体静止在磁场中于在磁场运动所受到的安培力是相同的。
√9、安培环路定理Il d B C 0μ=∙⎰中的磁感应强度只是由闭合环路内的电流激发的。
×10、在没有电流的空间区域里,如果磁感应线是一些平行直线,则该空间区域里的磁场一定均匀。
√二、选择题1、把一电流元依次放置在无限长的栽流直导线附近的两点A 和B ,如果A 点和B 点到导线的距离相等,电流元所受到的磁力大小(A )一定相等 (B )一定不相等(C )不一定相等 (D )A 、B 、C 都不正确 C2、半径为R 的圆电流在其环绕的圆内产生的磁场分布是: (A )均匀的 (B )中心处比边缘处强 (C )边缘处比中心处强 (D )距中心1/2处最强。
C3、在均匀磁场中放置两个面积相等而且通有相同电流的线圈,一个是三角形,另一个是矩形,则两者所受到的(A )磁力相等,最大磁力矩相等 (B )磁力不相等,最大磁力矩相等 (C )磁力相等,最大磁力矩不相等 (D )磁力不相等,最大磁力矩不相等 A4、一长方形的通电闭合导线回路,电流强度为I ,其四条边分别为ab 、bc 、cd 、da 如图所示,设4321B B B B 及、、分别是以上各边中电流单独产生的磁场的磁感应强度,下列各式中正确的是:LI()()121101111234000C C C A B dl I B B dl C B B dl D B BB B dl Iμμ⋅=⋅=+⋅=+++⋅=⎰⎰⎰⎰()()()()A5、两个载流回路,电流分别为121I I I 设电流和单独产生的磁场为1B,电流2I 单独产生的磁场为2B ,下列各式中正确的是:(A )()21012C B dl I I μ⋅=+⎰(B )1202C B dl I μ⋅=⎰(C )()()112012C B B dlI I μ+⋅=+⎰(D )()()212012C B B dlI I μ+⋅=+⎰ D 6、半径为R 的均匀导体球壳,内部沿球的直线方向有一载流直导线,电线I 从A 流向B 后,再沿球面返回A 点,如图所示下述说法中正确的是:(A )在AB 线上的磁感应强度0=B(B )球外的磁感应强度0=B(C )只是在AB 线上球内的部分感应强度0=B(D )只是在球心上的感应强度0=BA7、如图所示,在载流螺线管的外面环绕闭合路径一周积分ld B L ∙⎰等于(A )0 (B )nI 0μ(C )20nIμ (D )I 0μD8、一电量为q 的点电荷在均匀磁场中运动,下列说法正确的是 (A )只要速度大小相同,所受的洛伦兹力就相同。
稳恒电流的磁场习题详解
r习题三一、选择题1.如图3-1所示,两根长直载流导线垂直纸面放置,电流I 1 =1A ,方向垂直纸面向外;电流I 2 =2A ,方向垂直纸面向内,则P 点的磁感应强度B 的方向与x 轴的夹角为[ ](A )30˚; (B )60˚; (C )120˚; (D )210˚。
答案:A解:如图,电流I 1,I 2在P 点产生的磁场大小分别为1212,222I IB B d d ππ==,又由题意知12B B =;再由图中几何关系容易得出,B 与x 轴的夹角为30º。
2.如图3-2所示,一半径为R 的载流圆柱体,电流I 均匀流过截面。
设柱体内(r < R )的磁感应强度为B 1,柱体外(r > R )的磁感应强度为B 2,则 [ ](A )B 1、B 2都与r 成正比; (B )B 1、B 2都与r 成反比;(C )B 1与r 成反比,B 2与r 成正比; (D )B 1与r 成正比,B 2与r 成反比。
答案:D解:无限长均匀载流圆柱体,其内部磁场与截面半径成正比,而外部场等效于电流集中于其轴线上的直线电流磁场,所以外部磁场与半径成反比。
3.关于稳恒电流磁场的磁场强度H ,下列几种说法中正确的是 [ ] (A )H 仅与传导电流有关。
(B )若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零。
(C )若闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为零。
(D )以闭合曲线L为边缘的任意曲面的H 通量均相等。
答案:C解:若闭合曲线上各点H 均为零,则沿着闭合曲线H环流也为零,根据安培环路定理,则该曲线所包围传导电流的代数和为零。
4.一无限长直圆筒,半径为R ,表面带有一层均匀电荷,面密度为σ,在外力矩的作用下,这圆筒从t=0时刻开始以匀角加速度α绕轴转动,在t 时刻圆筒内离轴为r 处的磁感应强度B 的大小为 []图2I 1I(A )0; (B )0R t μσα; (C )0R t r μσα; (D )0rt Rμσα。
大学物理_恒定电流、稳恒磁场基本性质习题解答
13 稳恒电流、稳恒磁场习题解答一、选择题1、 沿x 方向的电流产生的磁感应强度:T yI B 67011052.0251042--⨯=⋅⋅⨯==πππμ 方向沿着z 轴正向沿y 方向的电流产生的磁感应强度: T yI B 6702105.24.0251042--⨯=⋅⋅⨯==πππμ 方向沿着z 轴负向T B B B 621105.2-⨯=-= 方向沿着z 轴正向2、1012a I B μ=2020222)145cos 45(cos 2/44a Ia I B πμπμ=︒-︒⋅=由于 21B B = 所以 8:2:21π=a a3、由安培环路定理得:NI l d H l =⋅⎰ 则 r NIH π2= rNI H B πμμ200==2102/2/0ln2212D D h NI dr h rNI s d B D D ⋅⋅=⋅⋅=⋅=⎰⎰πμπμφ4、aev Te t q I π2=== T aevaIB 5200105.1242-⨯===πμμ5、导线1的左端与导线2的右端到o 点的距离不同,则21B B ≠,即021≠+B B由于a、b 两端的电压相等,cb ac ab I I I 22==,所以,03=B ,而0321≠++=B B B B6、ebmv R = B A v v 2= 则B A R R 2= eBm T π2=所以B A T T =7、 由于DIB R V H = 则 IBVD R H =8、略。
二、填空题1、4.0×1010个; 2、单位正电荷沿闭合回路移动一周时,非静电力所作的功;⎰⋅=电源内l d E k ε;由负极指向正极; 3、 Rih πμ20; 4、0; 5、2.197×10-6Wb;6、 22R B π-; 7、7.59×10-2m ; 8、1:11、lnec rnec Tne I ===π2 )(10410个⨯==eclI n2、略3、先把狭缝补全,并假设其电流密度与圆筒的一样,由整个圆筒得对称性得,0=B再假设在狭缝处有一反向电流,其电流密度为i -,则狭缝在管轴线上的RihB πμ20=4、由A 、C 两端的电压相等:221122112211θθI I l I l I R I R I UAC=⇒=⇒==rI rI B πθμμ42110101==rI rI B πθμμ42220202==所以021=-B B5、由对称性得:Wb r r r Il dr l r I s d B r r r612100102.2ln 22222211-+⨯=+⋅=⋅⋅=⋅=⎰⎰πμπμφ6、由于⎰=⋅0s d B,则圆盘的磁通量: 22B R s d B π=圆盘⎰⋅ , 所以任意曲面S 的磁通量为: 22BR s d B S π-⋅⎰=7、m eBmv R 21059.7-⨯==8、rIB πμ20=2ln 220201πμπμφIldr l rIs d B aa=⋅⋅=⋅=⎰⎰2ln 2204202πμπμφIldr l rIs d B aa=⋅⋅=⋅=⎰⎰所以1:1:21=φφ三、计算题1、解:两半无限长载流直导线在O 点产生的磁感应强度为:01=B ;四分之一圆周载流导线在O 点产生的磁感应强度为:RIB 802μ=,方向垂直纸面向外;故:此载流导线在0点产生的磁场为: RIB 802μ=2、解:取坐标轴如图所示,将半球分割成无数薄圆盘片,圆周单位长度的线圈匝数为θπθπd NRd RNdN 22==当线圈通电流I 时,该薄圆盘片上电流在球心O 处产生的磁感应强度大小为dNy x IxdB 232220)(2+=μπθμθπμRNI d Ny x IxdB 20232220cos 2)(2=+=由于每个薄圆盘片上电流在球心O 产生的磁感应强度方向一致,故 ⎰⎰===0204cos πμθπθμRNI d RNI dB B磁感应强度的方向由电流的流向决定,沿y 轴正向或负向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题三一、选择题1.如图3-1所示,两根长直载流导线垂直纸面放置,电流I 1 =1A ,方向垂直纸面向外;电流I 2 =2A ,方向垂直纸面向内,则P 点的磁感应强度B r 的方向与x 轴的夹角为[ ] (A )30˚; (B )60˚; (C )120˚; (D )210˚。
答案:A解:如图,电流I 1,I 2在P 点产生的磁场大小分别为1212,222I IB B d d ππ==,又由题意知12B B =;再由图中几何关系容易得出,B 与x 轴的夹角为30º。
2.如图3-2所示,一半径为R 的载流圆柱体,电流I 均匀流过截面。
设柱体内(r < R )的磁感应强度为B 1,柱体外(r > R )的磁感应强度为B 2,则 [ ](A )B 1、B 2都与r 成正比; (B )B 1、B 2都与r 成反比;(C )B 1与r 成反比,B 2与r 成正比; (D )B 1与r 成正比,B 2与r 成反比。
答案:D解:无限长均匀载流圆柱体,其内部磁场与截面半径成正比,而外部场等效于电流集中于其轴线上的直线电流磁场,所以外部磁场与半径成反比。
3.关于稳恒电流磁场的磁场强度H v,下列几种说法中正确的是 [ ](A )H v仅与传导电流有关。
(B )若闭合曲线内没有包围传导电流,则曲线上各点的H v必为零。
(C )若闭合曲线上各点H v均为零,则该曲线所包围传导电流的代数和为零。
(D )以闭合曲线L为边缘的任意曲面的H v通量均相等。
答案:C解:若闭合曲线上各点H ϖ均为零,则沿着闭合曲线H ϖ环流也为零,根据安培环路定理,则该曲线所包围传导电流的代数和为零。
4.一无限长直圆筒,半径为R ,表面带有一层均匀电荷,面密度为σ,在外力矩的作用下,这圆筒从t=0时刻开始以匀角加速度α绕轴转动,在t 时刻圆筒内离轴为r 处的磁感应强度B r的大小为 [ ]图3-12I 1I(A )0; (B )0R t μσα; (C )0R t r μσα; (D )0rt Rμσα。
答案:B解:圆筒转动时形成电流,单位长度圆筒的电流强度为 ωσπωπσR R I =⋅⋅=22 在t 时刻圆筒转动的角速度为 t ωα=所以,t 时刻单位长度圆筒的电流强度为 I R t σα=则,圆筒转动形成圆电流在内部的磁感应强度为 0B R t μσα=5.能否用安培环路定律,直接求出下列各种截面的长直载流导线各自所产生的磁感应强度B r 。
(1)圆形截面;(2)半圆形截面;(3)正方形截面 [ ] (A )第(1)种可以,第(2)(3)种不行; (B )第(1)(2)种可以,第(3)种不行; (C )第(1)(3)种可以,第(2)种不行; (D )第(1)(2)(3)种都可以。
答案:A解:利用安培环路定理时,必须要求所选环路上磁感应强度具有对称性,B 可作为常数提出积分号外,否则就无法利用该定律来计算B 。
二、填空题1.如图3-3所示,一无限长扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布。
求铜片外与铜片共面、离铜片右边缘为b 处的P 点的磁感应强度B r的大小 。
答案:0ln2I a bb aμπ+。
解:如图所示,建立水平的坐标x 轴,平片电流分割成无限个宽度为dx ,电流强度为Idx a的无限长直线电流,在P 点处的磁感应强度为 ()0 2IdB dx a a b x μπ=+- 所以,平片电流在P 点的磁感应强度为()000ln 22aII a bB dx a a b x a bμμππ+==+-⎰2.在真空中,电流I 由长直导线1沿垂直bc 边方向经a 点流入一电阻均匀分布的正三角形线框,再由b 点沿平行ac 边方向流出,经长直导线2返回电源,如图3-4所示。
三角图3-3P图3-3形框每边长为l ,则在该正三角框中心O 点处磁感应强度的大小B =______________。
答案:πμ43 0IB =。
解:长直线电流1a 在O 点的磁感应强度为0; 长直线电流b 2在O 点的磁感应强度为014I B Obμπ=方向垂直平面向里; 电流ab 边和acb 边的电流强度分别为23I 和13I ;电流ab 边在O 点的磁感应强度为()()002sin 60sin 6046ab I IB d dμππ=︒--︒= 方向垂直平面向里; 电流acb 边在O 点的磁感应强度为()()0c 032sin 60sin 6046a I IB d dμππ=⋅︒--︒= 方向垂直平面向外。
所以,三角形线框在中心O 点的合磁感应强度为0。
则,总电流在O 点的磁感应强度为0 4IB π=,方向垂直平面向里。
3.在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图3-5所示。
在此情形中,线框内的磁通量Φ=______________。
答案:2ln 20πIaμ。
解:如图所示,建立竖直向下的坐标轴OX ,在矩形线框内取平行于长直导线的微元面积dS ,磁通量为d Φ,则00 22I Id B dS dS adx x xμμππΦ=⋅=⋅=⋅r r所以,线框内总的磁通量为200 ln 222b bI Iad adx x μμππΦ=Φ=⋅=⎰⎰4.电子在磁感应强度为 B ϖ的均匀磁场中沿半径为R 的圆周运动,电子运动所形成的等效圆电流I =______________;等效圆电流的磁矩m P =______________。
(已知电子电量的大小为e ,电子的质量为m )。
X 2图3-4答案:meBqI π2 ;m eBqR P m 2 2=。
解:电子在磁感应强度为 B v的均匀磁场中沿半径为R 的圆周运动,电子所受的磁场力为电子做圆周运动的向心力,即Bqv Rmv =2,所以 BqRv m =电子运动所形成的等效圆电流为 22v eBqI e f e Rmππ=⋅=⋅=等效圆电流的磁矩为 2222m eBq eBqR P IS R m mππ==⋅=5.如图3-6所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 ;方向 。
答案:01(1)2IR μ-π;方向垂直纸面向内。
解:圆心O 处的磁场是圆电流在圆心处产生的磁场1B v 与场无限长直线电流的磁场2B v的矢量和。
由图中电流方向可知,圆电流的磁场向内,而直线电流的磁场向外,所以,O 点的总磁感应强度大小为000121(1)222IIIB B B RRR μμμ=-=-=-ππ,方向垂直纸面向内。
三、计算题1.如图3-7所示,载流圆线圈通有电流为I ,求载流圆线圈轴线上某点P 的磁感应强度。
答案: ()232222R IB R x μ=+,方向沿轴线。
解:电流元Idl r 与对应处r v的夹角均为2π,sin 12π=,则24IdldB r μπ=由对称性分析,各dB v的垂直轴线的分量全部抵消,只剩下平行于轴线的分量://sin R dB dB dBrθ== x图3-6所以22//3223/242()RIdlR R IB dB r R x πμμπ===+⎰⎰,方向沿轴线。
2.一个塑料圆盘,半径为R ,电荷q 均匀分布于表面,圆盘绕通过圆心垂直盘面的轴转动,角速度为ω。
求圆盘中心处的磁感应强度。
答案:02qB Rμωπ=,方向沿轴线与电流成右手螺旋关系。
解:如图所示,在圆盘上取半径为r 、宽为dr 的细圆环,环上所带电荷量为2dq rdr σπ= (其中 2qR σπ=) 电流为 2dI fdq f rdr σπ== (其中 2f ωπ=) 在盘心所产生的磁感应强度的大小为dr n rdIdB πσμμ002==每一载流圆环在盘心处的dB 方向相同,故盘心处的合磁感应强度的大小为00002RqB dB f dr f R Rμωμπσμπσπ====⎰⎰ 方向沿轴线与电流成右手螺旋关系。
3.如图3-9所示,真空中一无限长圆柱形铜导体,磁导率为0μ,半径为R ,I 均匀分布,求通过S (阴影区)的磁通量。
答案:00ln 242I IμμππΦ=+。
解:取平行于无限长圆柱形铜导体轴线的面元dr dS 1=, 无限长圆柱形铜导体周围空间磁场强度分布为02022Ir r RR B I r Rrμπμπ⎧<⎪⎪=⎨⎪≥⎪⎩在导体内阴影部分的磁通量为01112024R I I B ds B ds rdr R μμππΦ=⋅===⎰⎰⎰r r 在导体外阴影部分的磁通量为200222ln 222R R I I B ds B ds dr r μμππΦ=⋅===⎰⎰⎰r r图3-8所以,通过S (阴影区)的总磁通量为0012ln 242I IμμππΦ=Φ+Φ=+4.如图3-10所示,一半径R 的非导体球面均匀带电,面密度为,若该球以通过球心的直径为轴用角速度旋转,求球心处的磁感应强度的大小和方向。
答案:023RB μσω=;方向沿轴向上。
解:利用圆形电流在轴线上产生的磁场公式2032r dIdB R μ=如图所示 dI dSf σ=,而 22sin dS rdl R Rd ππθθ==⋅又 sin r R θ=,2f ωπ=,所以 22sin 2dI dSf R d ωσσπθθπ== 2230300sin sin 22R r R d B dB d R πππμμσωσωθθθθ===⎰⎰⎰ []20000002sin cos 22sin cos 233233R R R d B πππμσωμσωμσωθθθθθ⎡⎤=-+=-=⎢⎥⎣⎦⎰。