交流阻抗法的概念

交流阻抗法的概念
交流阻抗法的概念

交流阻抗法的概念

拼音:jiaoliuzukangfa

英文名称:Ac impedance method

说明:一种利用小幅度交流电压或电流对电极扰动,进行电化学测试的方法。从获得的交流阻抗数据,可以根据电极的摸拟等效电路,计算相应的电极反应参数。若将不同频率交流阻抗的虚数部分对其实数部分作图,可得虚、实阻抗(分别对应于电极的电容和电阻)随频率变化的曲线,称为电化学阻抗谱(electrochemical impedance spectrum;EIS)或交流阻抗复数平面图。该法在电化学中的应用已较普遍。

交流阻抗法的特点

1.可以研究修饰电极表面的性质

2.用小幅度交流信号扰动电解池,观察体系在稳态时对扰动跟随的情况

3.可以明显的看出修饰电极表面的电子传递速率与裸电极表面的电子传递速率的区别。

电化学阻抗谱(EIS) 优于其它暂态技术的一个特点是, 只需对处于稳态的体系施加一个无限小的正弦波扰动, 这对于研究电极上的薄膜, 如修饰电极和电化学沉积膜的现场研究十分重要, 因为这种测量不会导致膜结构发生大的变化。此外, E IS 的应用频率范围广(10^-2~ 10^5 Hz) , 可同时测量电极过程的动力学参数和传质参数, 并通过详细的理论模型或经验的等效电路, 即用理想元件(如电阻和电容等) 来表示体系的法拉第过程、空间电荷以及电子和离子的传导过程, 说明非均态物质的微观性质分布, 因此, E IS 现已成为研究电化学体系和腐蚀体系的一种有效的方法。

导电高分子的EIS的一般特征

对于导电高分子膜的修饰电极, 其EIS 特征类似于多孔电极或氧化还原电极的EIS 的行为,典型的复平面阻抗图的特征为: (1) 在高频区有一个由界面电荷转移过程产生的圆心在实轴下的半圆, 可用电阻和电容的并联结合来表示。当w →∞, 半圆与实轴的交点为R s+ R f, 其中R s 和R f 分别表示溶液和膜的未补偿欧姆电阻;

(2) 中间频率区为电活性物种在膜中的有限扩散引起的W ar-burg 型阻抗, 其斜率小于45°;

(3) 低频区对应于高分子内电荷的饱和所引起的纯电容阻抗。

交流阻抗法的应用

电导率测量有直流法和交流法两种,直流法可以测量样品的总电阻即体电阻和晶界电阻之和,而交流法可以将体电阻和晶界电阻对总电阻的贡献分开,故而自七十年代以来在固体电解质(快离子导体)的研究中,交流阻抗谱技术得到了广泛的应用。交流阻抗谱分析对于确定材料的基本电化学参量,了解材料的结构特点和离子输运机制,都具有重要的应用意义。

交流阻抗法发展历史和研究进展

目录 引言 (1) 交流阻抗技术的发展历史 (1) 基本原理 (1) 电极系统的交流阻抗 (3) 交流阻抗技术的应用 (4) 需要注意的问题 (5) 发展和应用前景 (5)

引言 交流阻抗法是电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段,其应用范围已经超出电化学领域,越来越广泛。目前应用交流阻抗技术较多的如电化学领域中研究电极过程、金属腐蚀机理和耐蚀性能、缓蚀剂性能评价等;生物领域中研究生物膜的性能等;物理学领域研究电子元器件、导电材料的性能等;材料科学中研究材料的力学性能以及材料表面改性后的性能评价等。 交流阻抗技术的发展历史 交流阻抗法系指小幅度正弦波交流阻抗法,是控制电极电流(或电位)按正弦波规律随时间变化,同时测量相应的电极电位(或电流)随时问的变化,或者直接测量电极的交流阻抗,进而计算各种电极参数。 随着电化学理论的不断完善与发展,电化学方法也得到了相应的发展。在电化学测量中做出了重要贡献的是Stern 和他的同事。他们在1957年提出了线性极化的重要概念,虽然线性极化技术有着一定的局限性,但在实验室和现场快速测定腐蚀速度时还是一种简单可行的方法。腐蚀工作者在随后的十余年中又做了许多工作,完善和发展了极化电阻技术。电子技术的迅速发展促进了电化学测试仪器的发展,现代电子技术的应用和用于暂态测量测试仪器的出现,一些快速测量方法和暂态响应分析方法也得到了发展,最典型的例子就是交流阻抗技术的发展。最初测量电化学电阻采用交流电桥和李沙育方法等,这些方法既费时间又较繁琐,干扰影响也大。随着电子技术的发展,锁相技术和相关技术的仪器(如频率响应分析仪、锁相放大器等)被用于交流阻抗测试,它们的灵敏度高,测试方便,而且容易应用扫频信号实现频域阻抗图的自动测量。后来可以利用时频变换技术从暂态响应曲线得到电极系统的阻抗频谱,从而实现了在线测量,追踪电极表面状态的变化。最近一种利用震动探针电极测量局部电极阻抗的技术也得到开发。计算机技术引入电化学领域,可以由计算机对电化学交流阻抗测量进行控制,自动完成数据采集和数据分析。 基本原理 交流阻抗方法是用小幅度交流信号扰动电解池,并观察体系在稳态时对扰动的跟随的情况,同时测量电极的交流阻抗,进而计算电极的电化学参数。由于电极过程可以用电阻R 和电容C 组成的电化学等效电路来表示,因此交流阻抗技术实质上是研究RC 电路在交流电作用下的特点和规律。 一个正弦交流电压可表示成: 式中,E 0为交流电压的幅值;t 为时间;ω为正弦波角频率。角频率为 根据欧拉公式,上式也可写为指数表示式: t j e E E ω?=0 在将一个正弦波的交流电压E 加到一个纯电阻上时,根据欧姆定律,流过电阻的电流为 t E t E ωsin )(0=f πω2=

阻抗概念

阻抗[编辑] 维基百科,自由的百科全书 相量图能够展示复阻抗。 阻抗(electrical impedance)就是电路中电阻、电感、电容对交流电的阻碍作用的统称。阻抗衡量流动于电路的交流电所遇到的阻碍。阻抗将电阻的概念加以延伸至交流电路领域,不仅描述电压与电流的相对振幅,也描述其相对相位。当通过电路的电流就是直流电时,电阻与阻抗相等,电阻可以视为相位为零的阻抗。 阻抗通常以符号标记。阻抗就是复数,可以以相量或来表示;其中,就是阻抗的大小,就是阻抗的相位。这种表式法称为“相量表示法”。 具体而言,阻抗定义为电压与电流的频域比率[1]。阻抗的大小就是电压振幅与电流振幅的绝对值比率,阻抗的相位就是电压与电流的相位差。采用国际单位制,阻抗的单位就是欧姆(Ω),与电阻的单位相同。阻抗的倒数就是导纳,即电流与电压的频域比率。导纳的单位就是西门子(单位)(旧单位就是姆欧)。 英文术语“impedance”就是由物理学者奥利弗·赫维赛德于1886年发表论文《电工》给出[2][3]。于1893年,电机工程师亚瑟·肯乃利(Arthur Kennelly)最先以复数表示阻抗[4]。 复阻抗[编辑] 阻抗就是复数,可以与术语“复阻抗”替换使用。阻抗通常以相量来表示,这种表示法称为“相量表示法”。相量有三种等价形式: 1. 直角形式:、 2. 极形式:、 3. 指数形式: ;

其中,电阻就是阻抗的实部,电抗就是阻抗的虚部,就是阻抗的大小,就是虚数单位,就是阻抗的相位。 从直角形式转换到指数形式可以使用方程 、 。 从指数形式转换到直角形式可以使用方程 、 。 极形式适用于实际工程标示,而直角形式比较适用于几个阻抗相加或相减的案例,指数形式则比较适用于几个阻抗相乘或相除的案例。在作电路分析时,例如在计算两个阻抗并联的总阻抗时,可能会需要作几次形式转换。这种形式转换必需要依照复数转换定则。 欧姆定律[编辑] 连接于电路的交流电源会给出电压于负载的两端,并且驱动电 流于电路。 主条目:欧姆定律 借着欧姆定律,可以了解阻抗的内涵[5]: 。 阻抗大小的作用恰巧就像电阻,设定电流 ,就可计算出阻抗两端的 电压降。相位因子则就是电流滞后于电压的相位差 (在时域,电流信 号会比电压信号慢秒;其中, 就是单位为秒的周期)。

PCB阻抗值因素与计算方法

PCB阻抗设计及计算简介

特性阻抗的定义 ?何谓特性阻抗(Characteristic Impedance ,Z0) ?电子设备传输信号线中,其高频信号在传输线中传播时所遇到的阻力称之为特性阻抗;包括阻抗、容抗、感抗等,已不再只是简单直流电的“欧姆电阻”。 ?阻抗在显示电子电路,元件和元件材料的特色上是最重要的参数.阻抗(Z)一般定义为:一装置或电路在提供某特定频率的交流电(AC)时所遭遇的总阻力. ?简单的说,在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

设计阻抗的目的 ?随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。印刷电路板提供的电路性能必须能够使信号在传输过程中不发生反射现象,信号保持完整,降低传输损耗,起到匹配阻抗的作用,这样才能得到完整、可靠、精确、无干扰、噪音的传输信号。?阻抗匹配在高频设计中是很重要的,阻抗匹配与否关系到信号的质量优劣。而阻抗匹配的目的主要在于传输线上所有高频的微波信号皆能到达负载点,不会有信号反射回源点。

?因此,在有高频信号传输的PCB板中,特性阻抗的控制是尤为重要的。 ?当选定板材类型和完成高频线路或高速数字线路的PCB 设计之后,则特性阻抗值已确定,但是真正要做到预计的特性阻抗或实际控制在预计的特性阻抗值的围,只有通过PCB生产加工过程的管理与控制才能达到。

?从PCB制造的角度来讲,影响阻抗和关键因素主要有: –线宽(w) –线距(s)、 –线厚(t)、 –介质厚度(h) –介质常数(Dk) εr相对电容率(原俗称Dk介质常数),白容生对此有研究和专门诠释。 注:其实阻焊也对阻抗有影响,只是由于阻焊层贴在介质上,导致介电常数增大,将此归于介电常数的影响,阻抗值会相 应减少4%

电路分析基础习题第七章答案

第7章 选择题 1.下列说法中正确的是( D )。 A.同频率正弦量之间的相位差与频率密切相关 B.若电压与电流取关联参考方向,则感性负载的电压相量滞后其电流相量?90 C.容性负载的电抗为正值 D.若某负载的电压相量与其电流相量正交,则该负载可以等效为纯电感或纯电容 2.下列说法中错误的是( B )。 A.两个同频率正弦量的相位差等于它们的初相位之差,是一个与时间无关的常数 B.对一个RL 串联电路来说,其等效复阻抗总是固定的复常数 C.电容元件与电感元件消耗的平均功率总是零,电阻元件消耗的无功功率总是零 D.有功功率和无功功率都满足功率守恒定律,视在功率不满足功率守恒定律 3.已知RC 并联电路的电阻电流6A =R I ,电容电流8A =C I ,则该电路的端电流I 为( D )。 A.2A B.14A C.A 14 D.10A 4.已知RLC 串联电路的电阻电压4V =R U ,电感电压3V =L U ,电容电压6V =C U ,则端电压U 为( C )。 A.13V B. 7V C.5V D.1V 5.已知某电路的电源频率Hz 50=f ,复阻抗Ω?∠=3060Z ,若用RL 串联电路来等效,则电路等效元件的参数为( C )。 A.Ω=96.51R , H 6.0=L B.Ω=30R , H 96.51=L C.Ω=96.51R , H 096.0=L D.Ω=30R , H 6.0=L 6.已知电路如图所示,则下列关系式总成立的是( C )。 A.??+=I C j R U )(ω B.? ?+=I C R U )(ω C.?? ??????+=I C R U ωj 1 D.?? ??????-=I C j R U ω1 选择题5图

交流阻抗怎么测量

交流阻抗怎么测量 交流阻抗法是电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。特别是近年来,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。 (1)交流阻抗:交流阻抗即阻抗,在电子学中,是指电子部件对交流激励信号呈现出的电阻和电抗的复合特性;在电化学中,是指电极系统对所施加的交流激励信号呈现出的电阻和电抗的复合特性。阻抗模的单位为欧姆,阻抗辐角(相角)的单位为弧度或度。 (2)交流阻抗谱:在测量阻抗的过程中,如果不断地改变交流激励信号的频率,则可测得随频率而变化的一系列阻抗数据。这种随频率而变的阻抗数据的集合被称为阻抗频率谱或阻抗谱。阻抗谱是频率的复函数,可用幅频特性和相频特性的组合来表示;也可在复平面上以频率为参变量将阻抗的实部和虚部展示出来。测量频率范围越宽,所能获得的阻抗谱信息越完整。RST5200电化学工作站的频率范围为:0.00001Hz~1MHz,可以很好地完成阻抗谱的测量。 (3)电化学阻抗谱:电化学阻抗谱是一种电化学测试方法,采用的技术是小信号交流稳态测量法。对于电化学电极体系中的溶液电阻、双电层电容以及法拉第电阻等参量,用电化学阻抗谱方法可以很精确地测定;而用电流阶跃、电位阶跃等暂态方法测定,则精度要低一些。另外,像扩散传质过程等需要用较长时间才能测定的特性,用暂态法是无法实现的,而这却是电化学阻抗谱的长项。 (4)电化学阻抗谱测量的特殊性:就测量原理而言,在电化学中测量电极体系的阻抗谱与在电子学中测量电子部件的阻抗谱并没有本质区别。通常,我们希望获得电极体系处于某一状态时的电化学阻抗谱。而维持电极体系的状态,须使电极电位保持不变。通常认为,电极电位变化50mV以上将会破坏现有的状态。因此,在电化学阻抗谱测量中,必须注意两个关键点,即:偏置电位和正弦交流信号幅度。 (5)正弦交流信号的幅度:为了避免对电化学电极体系产生大的影响以及希望其具有较好的线性响应,正弦交流信号的幅度通常可设在2~20mV之间。 (6)自动去偏:在电化学阻抗谱测量过程中,由于偏置电位不一定等于开路电位以及少量的非线性作用,在工作电极电流中还会含有直流成分。去除这个直流成分(偏流),可扩大交流信号的动态范围、提高信噪比。RST5200电化学工作站,可在测量过程中动态地调整去偏电流,使获得的阻抗谱数据更精准。另外,在软件界面的状态栏中,可实时显示工作电极的极化电流,供操作者参考。 以上为交流阻抗的相关说明,下面我们就实验设置过程中遇到的专业名词

阻抗概念

阻抗[编辑] 维基百科,自由的百科全书 相量图能够展示复阻抗。 阻抗(electrical impedance)是电路中电阻、电感、电容对交流电的阻碍作用的统称。阻抗衡量流动于电路的交流电所遇到的阻碍。阻抗将电阻的概念加以延伸至交流电路领域,不仅描述电压与电流的相对振幅,也描述其相对相位。当通过电路的电流是直流电时,电阻与阻抗相等,电阻可以视为相位为零的阻抗。 阻抗通常以符号标记。阻抗是复数,可以以相量或来表示;其中,是阻 抗的大小,是阻抗的相位。这种表式法称为“相量表示法”。 具体而言,阻抗定义为电压与电流的频域比率[1]。阻抗的大小是电压振幅与电流振幅的绝对值 比率,阻抗的相位是电压与电流的相位差。采用国际单位制,阻抗的单位是欧姆(Ω),与电阻的单位相同。阻抗的倒数是导纳,即电流与电压的频域比率。导纳的单位是西门子(单位)(旧单位是姆欧)。 英文术语“impedance”是由物理学者奥利弗·赫维赛德于1886年发表论文《电工》给出[2][3]。于1893年,电机工程师亚瑟·肯乃利(Arthur Kennelly)最先以复数表示阻抗[4]。 复阻抗[编辑] 阻抗是复数,可以与术语“复阻抗”替换使用。阻抗通常以相量来表示,这种表示法称为“相量表示法”。相量有三种等价形式: 1. 直角形式:、 2. 极形式:、 3. 指数形式:;

其中,电阻是阻抗的实部,电抗是阻抗的虚部,是阻抗的大小,是虚数单位,是阻抗的相位。 从直角形式转换到指数形式可以使用方程 、 。 从指数形式转换到直角形式可以使用方程 、 。 极形式适用于实际工程标示,而直角形式比较适用于几个阻抗相加或相减的案例,指数形式则比较适用于几个阻抗相乘或相除的案例。在作电路分析时,例如在计算两个阻抗并联的总阻抗时,可能会需要作几次形式转换。这种形式转换必需要依照复数转换定则。 欧姆定律[编辑] 连接于电路的交流电源会给出电压于负载的两端,并且驱动电 流于电路。 主条目:欧姆定律 借着欧姆定律,可以了解阻抗的内涵[5]: 。 阻抗大小的作用恰巧就像电阻,设定电流,就可计算出阻抗两端 的电压降。相位因子则是电流滞后于电压的相位差(在时域,电流 信号会比电压信号慢秒;其中,是单位为秒的周期)。

交流阻抗的原理与应用

交流阻抗的原理及应用-测聚苯胺修饰电极的电化学 性能 一、实验目的 (1)掌握交流阻抗法(EIS)的实验原理及方法。 (2)了解Nyquist图和Bode图的意义。 (3)学会用Zsimpwin软件对实验数据进行拟合。 二、实验原理 交流阻抗法(alternating current impedance,AC impedance)阻抗测量原本是电学中研究线性电路网络频率响应特性的一种方法,引用到研究电极过程,成为电化学研究中的一种实验方法。控制通过电化学系统的电流或电势在小振幅的条件下随时间按正弦规律变化,同时测量相应的系统电势或电流随时间的变化,此时电极系统的频响函数就是电化学阻抗。通过阻抗可以分析电化学系统的反应机理、计算系统的相关参数。交流阻抗法是一种以小振幅的正弦波电位(或电流)为扰动信号,益加在外加直流电压上,并作用于电解池,通过测童系统在较宽频率范围的阻抗谱,获得研究体系相关动力学信息及电极界面结构信息的电化学测量方法。对于一个电解池系统,当在电极两端施加一定电压时,阴阳极会构成一个回路,在这个回路中,电子和离子的传递受到一定的阻力的作用,包括:溶液的阻力,电极的阻力。而这些阻力正好可以用电阻R进行表征。再者,在电极和溶液界面上,两相中的剩余电荷会引起静电相互作用,以及电极表面与溶液中的各种粒子(溶剂分子、溶剂化了的离子和分子等)的相互作用。 复数阻抗的测量是以复数形式给出电极在一系列频率下的阻抗,不仅能给出阻抗的绝对值,还可给出相位角,可为研究电极提供较丰富的信息。 对于一个纯粹电化学控制的电极体系,可等效成如图2一1所示的电路。

图2一1测试电池的等效电路 图2一1中,R e 为溶液电阻,C P 为电极/溶液的双电层电容,R P 为电极电阻。此等效电 路的总阻抗为: 2 p 2p 22 22p 2p 2e 1jw -1R C R C R C RP R Z P P ωω+++= 其中,实部是 2 p 2p 2p e 1R C R R Z ω++ =, 虚部是 2p 2 p 2p 2p , ,R C 2ω1R j ωωZ -+= 对于每一个w 值,都有相应的Z ’与Z ’’,在复数阻抗平面内表示为一个点连接各w 的阻抗点,得到一条曲线,成为复数阻抗曲线,如图2一2所示。 当w→∞时,半圆与Z ’轴的交点即为电解质溶液的电阻Re ;当W→0时,半圆与Z , 轴的交点即为Re 十Rp 。一般情况下,电解质溶液的电阻Re ,可忽略,因此,根据半圆与Z ’轴的交点即可求得电极体系的电阻Rp ;当w=w xax 为半圆最高点的角频率)时,据公式q 可求得电极/溶液的双电层电容Cp 。

电阻电抗和阻抗

电阻、电抗和阻抗 电阻、电抗和阻抗的定义 电阻——欧姆定律定义的参数:电压与电流之比,单位欧姆。 电抗——交流电流通过电感或者电容压降时,电压与电流之比,虚数表示,单位欧姆。 阻抗——电阻与电抗的复合参数,用复数表示,实部为电阻,虚部为电抗,单位欧姆。 电阻 在直流电中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值几近于零的物质。 电抗 在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗(用X表示),意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式。 感抗(XL)

电流变化越大,即电路频率越大,感抗越大;当频率变为0,即成为直流电时,感抗也变为0。感抗会引起电流与电压之间的相位差。感抗可由下面公式计算而来: XL = ωL = 2×π×f× L XL 就是感抗,单位为欧姆Ω ω 是角频率,单位为弧度/每秒rad/s f 是频率,单位为赫兹Hz L是电感,单位为亨利H 1、当交流电通过电感线圈的电路时,电路中产生自感电动势,阻碍电流的改变,形成了感抗,自感系数越大则自感电动势也越大,感抗也就越大。如果交流电频率大则电流的变化率也大,那么自感电动势也必然大,所以感抗也随交流电的频率增大而增大。交流电中的感抗和交流电的频率、电感线圈的自感系数成正比。在实际应用中,电感是起着“阻交、通直”的作用,因而在交流电路中常应用感抗的特性来旁通低频及直流电,阻止高频交流电。 2、在纯电感电路中,电感线圈两端的交流电压(u)和自感电动势(εL)之间的关系是u=-εL,而εL =-Ldi/dt,所以u=Ldi/dt。正弦交流电作周期性变化,线圈内自感电动势也在不断变化,当正弦交流电的电流为零时,电流变化率最大,所以电压最大。当电流为最大值时,电流变化率最小,所以电压为零。由此得出电感两端的电压位相超前电流位相π/2。在纯电感电路中,电流和电压的频率是相同的,电感元件的阻抗就是感抗(XL=ωL=2πfL),它和ω、L都成正比,当ω=0时则XL =0,所以电感起“通直流、阻交流”或者“通低频,阻高频”的作用。 3、在纯电感电路中,感抗不消耗电能,因为在任何一个电流由零增加到最大值的1/4周期的过程中,电路中的电流在线圈附近将产生磁场,电能转换为磁场能储藏在磁场里,但在下一个1/4周期内,电流由大变小,则磁场随着逐渐减

阻抗匹配概念

阻抗匹配概念 阻抗匹配概念 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配 阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便. 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超

阻抗定义

阻抗定义 在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。阻抗的单位是欧。在直流电中,物体对电流阻碍的作用叫做电阻。但是在交流电的领域中电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。 输入阻抗定义: 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。 因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题。 输出阻抗 输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的。

阻抗概念知识讲解

阻抗概念

阻抗[编辑] 维基百科,自由的百科全书 https://www.360docs.net/doc/3815995177.html,/wiki/%E9%98%BB%E6%8A%97 - mw- navigationhttps://www.360docs.net/doc/3815995177.html,/wiki/%E9%98%BB%E6%8A%97 - p-search 相量图能够展示复阻抗。 阻抗(electrical impedance)是电路中电阻、电感、电容对交流电的阻碍作用的统称。阻抗衡量流动于电路的交流电所遇到的阻碍。阻抗将电阻的概念加以延伸至交流电路领域,不仅描述电压与电流的相对振幅,也描述其相对相位。当通过电路的电流是直流电时,电阻与阻抗相等,电阻可以视为相位为零的阻抗。 阻抗通常以符号标记。阻抗是复数,可以以相量或来表示;其中,是阻抗的大小,是阻抗的相位。这种表式法称为“相量表示法”。 具体而言,阻抗定义为电压与电流的频域比率[1]。阻抗的大小是电压振幅与电流振幅的绝对值比率,阻抗的相位是电压与电流的相位差。采用国际单位制,阻抗的单位是欧姆(Ω),与电阻的单位相同。阻抗的倒数是导纳,即电流与电压的频域比率。导纳的单位是西门子 (单位)(旧单位是姆欧)。 英文术语“impedance”是由物理学者奥利弗·赫维赛德于1886年发表论文《电工》给出[2][3]。于1893年,电机工程师亚瑟·肯乃利(Arthur Kennelly)最先以复数表示阻抗[4]。 复阻抗[编辑] 阻抗是复数,可以与术语“复阻抗”替换使用。阻抗通常以相量来表示,这种表示法称为“相量表示法”。相量有三种等价形式: 1. 直角形式:、 2. 极形式:、

交流阻抗谱方法的方法和原理

什么是交流阻抗谱方法(频响分析法),交流阻抗谱方法的方法和原理 交流阻抗谱(也称频响分析法,frequencyresponseanalysis)是研究地球物质电学性质的一种方法。经过 几十年的发展,交流阻抗谱已经在材料研究、表面处理、器件研究、生命科学和地球科学的研究中得到不同程度的应用。 交流阻抗谱在地球科学中的应用相对较晚,直到20世纪80年代,该方法才被应用于水饱和地壳岩的研究中,而将该方法应用于干燥地幔岩电性研究的是Arizon州立大学的Tyburczy 和Roberts,他们在一个大气压下研究了橄榄石单晶样品、橄榄石多晶样品以及天然纯橄榄岩的电导率,并且分析了不同阻抗弧形成的原因。 此后,Huebner和Dillenburg等人在1~2GPa下用交流阻抗谱研究了单斜辉石电学性质,结果发现,随压 力的升高颗粒边界电阻在显著的降低。Xu等利用交流阻抗谱在超过15GPa条件下对橄榄石高压相的电导率进行了研究。 在国内,该方法已经在地球深部物质的电性研究中有了一定程度的应用,也取得了一些成果。在本文中,作者根据自己和其他学者的研究,介绍了交流阻抗谱的方法、原理以及该方法在地球深部物质电学性质研究中的一些应用。 交流阻抗谱方法是一种以小振幅的正弦波电位为扰动信号的电测量方法。由于以小振幅的电信号对体系进 行扰动,一方面可避免对体系产生大的影响,另一方面也使得扰动与体系的响应之间近似呈线形关系,这就使得测量结果的数学处理变得单。 同时它又是一种频率域的测量方法,通过在很宽的频率范围内测量阻抗来研究电极系统,因而得到比其他常 规的电化学方法更多的动力学信息及电极界面结构的信息。 如果对系统施加一个正弦波电信号作为扰动信号,则相应地系统产生一个与扰动信号相同频率的响应信号。 为时间。 如果对体系施加如式(1)的正弦信号,则体系产生如式(2)的响应信号

电阻&阻抗定义

阻抗 阻抗(impedance) 在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。阻抗的单位是欧。在直流电中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值几近于零的物质。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。 电阻 定义:导体对电流的阻碍作用就叫导体的电阻。 电阻(Resistor)是所有电子电路中使用最多的元件。电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。电阻在电路中通常起分压分流的作用,对信号来说,交流与直流信号都可以通过电阻。 电阻都有一定的阻值,它代表这个电阻对电流流动阻挡力的大小。电阻的单位是欧姆,用符号“Ω”表示。欧姆是这样定义的:当在一个电阻器的两端加上1伏特的电压时,如果在这个电阻器中有1安培的电流通过,则这个电阻器的阻值为1欧姆。出了欧姆外,电阻的单位还有千欧(KΩ,兆欧(MΩ)等。 电阻器的电气性能指标通常有标称阻值,误差与额定功率等。 它与其它元件一起构成一些功能电路,如RC电路等。

阻抗匹配定义

阻抗匹配定义 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。史密夫图表上。电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 1. 改变阻抗力 把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 2. 调整传输线 由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配。 阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为 100欧姆,只是取个整而已,为了匹配方便。 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 第 1 页

交流阻抗法的概念

交流阻抗法的概念 拼音:jiaoliuzukangfa 英文名称:Ac impedance method 说明:一种利用小幅度交流电压或电流对电极扰动,进行电化学测试的方法。从获得的交流阻抗数据,可以根据电极的摸拟等效电路,计算相应的电极反应参数。若将不同频率交流阻抗的虚数部分对其实数部分作图,可得虚、实阻抗(分别对应于电极的电容和电阻)随频率变化的曲线,称为电化学阻抗谱(electrochemical impedance spectrum;EIS)或交流阻抗复数平面图。该法在电化学中的应用已较普遍。 交流阻抗法的特点 1.可以研究修饰电极表面的性质 2.用小幅度交流信号扰动电解池,观察体系在稳态时对扰动跟随的情况 3.可以明显的看出修饰电极表面的电子传递速率与裸电极表面的电子传递速率的区别。 电化学阻抗谱(EIS) 优于其它暂态技术的一个特点是, 只需对处于稳态的体系施加一个无限小的正弦波扰动, 这对于研究电极上的薄膜, 如修饰电极和电化学沉积膜的现场研究十分重要, 因为这种测量不会导致膜结构发生大的变化。此外, E IS 的应用频率范围广(10^-2~ 10^5 Hz) , 可同时测量电极过程的动力学参数和传质参数, 并通过详细的理论模型或经验的等效电路, 即用理想元件(如电阻和电容等) 来表示体系的法拉第过程、空间电荷以及电子和离子的传导过程, 说明非均态物质的微观性质分布, 因此, E IS 现已成为研究电化学体系和腐蚀体系的一种有效的方法。 导电高分子的EIS的一般特征 对于导电高分子膜的修饰电极, 其EIS 特征类似于多孔电极或氧化还原电极的EIS 的行为,典型的复平面阻抗图的特征为: (1) 在高频区有一个由界面电荷转移过程产生的圆心在实轴下的半圆, 可用电阻和电容的并联结合来表示。当w →∞, 半圆与实轴的交点为R s+ R f, 其中R s 和R f 分别表示溶液和膜的未补偿欧姆电阻; (2) 中间频率区为电活性物种在膜中的有限扩散引起的W ar-burg 型阻抗, 其斜率小于45°; (3) 低频区对应于高分子内电荷的饱和所引起的纯电容阻抗。 交流阻抗法的应用

第八章 交流阻抗法

一、 概述 二、电化学极化下的交流阻抗 三、存在浓差极化的交流阻抗 四、各种电极的阻抗与复平面 五、交流阻抗数据测量及实验注意事项 六、电化学阻抗谱的数据处理与解析 七、 交流阻抗的应用
电化学测量技术
1

一、概述
1、交流阻抗测量法含义 交流阻抗法(alternating current impedance, AC impedance)是指控制通过电化学系统的电流 (或电势)为小幅度正弦交流信号,同时测量相 应的系统电势(或电流)随时间的变化,或者直 接测量系统的交流阻抗(或导纳),进而分析电 化学系统的反应机理、计算系统的相关参数。
电化学测量技术
2

交流阻抗法包括两类技术 电化学阻抗谱:(electrochemical impedance spectroscopy, EIS) 是在某一直流极化条件下,特别是在平衡 电势条件下,研究电化学系统的交流阻抗随频 率的变化关系。 交流伏安法:(AC voltammetry) 是在某一选定的频率下,研究交流电流的 振幅和相位随直流极化电势的变化关系。
电化学测量技术
3

2、阻抗与导纳
一个未知内部结构的物理系统就像一个黑箱,其内部结构 是未知的。 从黑箱的输入端施加一个激励信号(扰动信号),在其输 出端得到一个响应信号。 激励信号 或扰动信号 物理系统 (电化学系统) 响应信号
一个系统的传输函数是由系统的内部结构所决定的。 通过对传输函数的研究,可以研究物理系统的性质,获得 关于这个系统内部结构的有用信息。
电化学测量技术
4

阻抗

阻抗设计 附件三1. 阻抗定义及分类: 1.1阻抗(Zo): 对流经其中已知频率之交流电流,所产生的总阻力称为阻抗(Zo),对印刷电路板而言,是指在高频讯号之下,某一线路层( signal layer)对其最接近的相关层(reference plane)总合之阻抗. 1.2特性阻抗: 在传输讯号线中,高频讯号或电磁波传播时所遭遇的阻力称之为特性阻抗 1.3差动阻抗: 由两根差动信号线组成的控制阻抗的一种复杂结构,驱动端输入的信号为极性相反的两个信号波形,分别由两根差动线传送,在接收端这两个差动信号相减,这种方式主要用于高速数模电路中以获得更好的信号完整性及抗噪声干扰 1.4 Coplanar阻抗: 当阻抗线距导体的距离小于等于最近对应层的距离时即为Coplanar阻抗. 1.5介质常数(Dielectric Constant),又称透电率(Permittivity): 指介质材料的电容ε,与相同条件下以真空为介质之电容εo,两者之比值(ε/εo). 即. Εr=ε/εo. 1.6介质: 原指电容器两极板之间的绝缘材料而言,现已泛指任何两导体之间的绝缘物质,如各种树脂与配合的棉纸以及玻纤布. 1.7 影响阻抗之要素相对于阻抗变化之关系(其中一个参数变化, 假设其余条件不变) 1.7.1 阻抗线宽:阻抗线宽与阻抗成反比, 线宽越细, 阻抗越高, 线宽越粗,阻抗越低. 1.7.2 介质厚度:介质厚度与阻抗成正比, 介质越厚则阻抗越高, 介质越薄则阻抗越低. 1.7.3 介电常数:介电常数与阻抗成反比, 介电常数越高,阻抗越低,介电常数越低,阻抗越高. 1.7.4 防焊厚度:防焊厚度与阻抗成反比.在一定厚度范围内,防焊厚度越厚,阻抗越低,防焊厚 度越薄,阻抗越高. 1.7.5 铜箔厚度:铜箔厚度与阻抗成反比, 铜厚越厚,阻抗越低,铜厚越薄, 阻抗越高. 1.7.6 差动阻抗:间距与阻抗成正比.间距越大,阻抗越大. 其余影响因素则与特性阻抗相同. 1.7.7 Coplanar阻抗:阻抗线距导体的间距与阻抗成正比,间距越大,阻抗越大.其它影响因素 则与特性阻抗相同. 2. 作业内容: 2.1 客户数据确认 2.1.1. 确认客户有无阻抗要求,有无阻抗类型及迭构要求,是否为厂内打样的第一个版本,若 不是确认阻抗.迭构等是否与前版相同. 2.1.2. 如有阻抗及迭构要求且为厂内打样的第一个版本则需模拟确认阻抗能否达到规格中

阻抗定义原因表现及应对

阻抗 阻抗(Resistance):是指咨询者在心理咨询过程中,以公开或者隐蔽的方式否定咨询师的分析,拖延、对抗咨询师的要求,从而影响咨询的进展,甚至使咨询难以进行的一种现象。表现 阻抗的表现形式,可以是语言形式或非语言形式,也可以表现为个体对于某种心理咨询要求的回避与抵制,或个体对心理咨询师或其他人的某种敌对或依赖,或流露于个体的特定认知、情感方式,以及对心理咨询师的态度等。 讲话程度上的阻抗 包括沉默、寡语和赘言。以沉默最为突出。 沉默可表现为个体拒绝回答咨询师提出的问题,或长时间的停顿。它是个体对于心理咨询最积极的、最主动的抵抗。需要注意将阻抗性沉默与反省性的沉默区分开来。 少言寡语通常以短语、简句及口头禅(嗯、噢、啊)等形式加以表现。 赘言表现为滔滔不绝地讲话,潜在动机可能是减少咨询师讲话的机会,回避某些核心问题,转移其注意力等。目的在于回避那些求助者不愿接触的现实问题,以免除由此而产生的焦虑与其他痛苦体验。 讲话内容上的阻抗 常见形式有理论交谈、情绪发泄、谈论小事和假提问题等。 理论交谈是求助者进行自我保护的有效手段之一。例如不停地谈论心理治疗方法。 情绪发泄可表现为大哭大闹、泪流不止,或不自然地大笑。 谈论小事是最轻微的也是最不易发现的阻抗表现。 假提问题一般涉及心理咨询的目的、方法、理论基础及咨询师的私人情况等。 讲话方式上的阻抗 常见的有心理外归因、健忘、顺从、控制话题和最终暴露等。 心理外归因严重阻碍了个体的自我反省,是自我中心主义的表现。 健忘有很大的任意性,例如二战中纳粹集中营的戚者往往不愿意提起往事或对细节表 现出记忆模糊。 顺从具有隐蔽特点,常使人不易发觉对方潜在的阻抗作用。 控制话题除回避自己不愿谈论的内容外还可强化求助者在心理咨询过程中的自尊与地位。 最终暴露要和犹豫性的最终暴露区别,不能简单地将最终暴露都视作阻抗的表现。咨询关系上的阻抗 最突出的表现有不认真履行心理咨询的安排、诱惑咨询师以及请客、送礼等。

9第九章 有压管流和孔口、管嘴出流讲解学习

9第九章有压管流和孔口、管嘴出流

第九章 有压管流和孔口、管嘴出流 9-1 水自水库经短管引入水池中,然后又经另一短管流入大气,如图所示。已知l 1=25m ,d 1=75mm ,l 2=150m ,d 2=50mm ,水头H =8m ,管道沿程阻力系数λ=0.03,管道进口的局部阻力系数均为0.5,出口的局部阻力系数为1.0,阀门的局部阻力系数为 3.0,试求流量Q 和水面高差h 。 解:(1)由伯努利方程可得 H =21222w w h h g v ++=g v 222+(0.03)15.0075.025++g v 221+(0.0335.005 .0150++)g v 222 =11.5g v 221+94.5g v 22 2 2v =1v 221)(d d =1v 2)50 75 (=2.251v H =(11.5+94.5×2 25.2)g v 221=489.91g v 22 1 1v = 91.4892H g ?= 29.88 m/s 489.91 ??=0.566m/s 2v =2.25?0.566 m/s =1.274 m/s Q =1v 1A =0.566? 2(0.075)4 π m 3/s =2.5?310-m 3/s (2)由短管淹没出流公式(9-6)可得: h =11.5g v 221=11.52 0.56629.8 ??m=0.188m 9-2虹吸滤池的进水虹吸管如图所示。管长l 1=2.0m 、l 2=3.0m ,管径 d =0.3m ,沿程阻力系数λ=0.025,进口局部阻力系数ζ1=0.6,弯头局部阻力系数ζ2=1.4,出口局部阻力系数ζ3=1.0。若通过流量Q =0.2m 3/s ,求水头H =? 解:由短管淹没出流公式(9-6)可得:0w ≈=H H h 2 0.24π0.3 Q v A ?==? m/s =2.829m/s

相关文档
最新文档