反三角函数
反三角函数
反三角函数是一种基本初等函数。
它并不能狭义的理解为三角函数的反函数,是个多值函数。
它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x的角。
三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。
欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数,而不是。
为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。
反三角函数反正弦函数x=sin y在[-π/2,π/2]上的反函数,叫做反正弦函数。
记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。
定义域[-1,1] ,值域[-π/2,π/2]。
反三角函数反余弦函数绿的为y=arccos(x) 红的为y=arcsin(x)x=cos y在[0,π]上的反函数,叫做反余弦函数。
记作arccosx,表示一个余弦值为x 的角,该角的范围在[0,π]区间内。
定义域[-1,1] ,值域[0,π]。
反三角函数反正切函数x=tan y在(-π/2,π/2)上的反函数,叫做反正切函数。
记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。
定义域R,值域(-π/2,π/2)。
反三角函数反余切函数x=cot y在(0,π)上的反函数,叫做反余切函数。
记作arccotx绿的为y=arccot(x) 红的为y=arctan(x) ,表示一个余切值为x的角,该角的范围在(0,π)区间内。
反三角函数的定义
反三角函数的定义三角函数是数学中的重要分支,其在几何、物理、工程等领域中都有广泛应用。
但是在实际问题中,我们常常需要求出某个三角函数的反函数,以便解决一些实际问题。
这就引出了反三角函数的概念。
反三角函数,简单地说就是将三角函数的值作为自变量,求出它所对应的角度的函数。
反三角函数有三种:反正弦函数、反余弦函数和反正切函数,它们分别记作arcsin、arccos和arctan。
反正弦函数arcsin x,定义域为[-1,1],值域为[-π/2,π/2],满足sin(arcsin x)=x。
反余弦函数arccos x,定义域为[-1,1],值域为[0,π],满足cos(arccos x)=x。
反正切函数arctan x,定义域为R,值域为(-π/2,π/2),满足tan(arctan x)=x。
反三角函数的定义有以下几个特点:1. 只有在定义域内,才存在反三角函数。
2. 反三角函数的值域是一个有限区间,与三角函数的值域不同。
3. 反三角函数的图像是对应三角函数图像的一段。
4. 反三角函数是单调递增的,因为三角函数在定义域内是单调递增或递减的。
反三角函数的求解方法:1. 反正弦函数的求解方法:如果sin x=y,则arcsin y=x。
2. 反余弦函数的求解方法:如果cos x=y,则arccos y=x。
3. 反正切函数的求解方法:如果tan x=y,则arctan y=x。
需要注意的是,在求解反三角函数时,要考虑到函数的定义域和值域,以及函数的单调性和周期性等特点。
反三角函数在实际问题中的应用:1. 在几何中,反三角函数可以用于求解三角形的角度和边长等问题。
2. 在物理中,反三角函数可以用于求解物体的运动轨迹和速度等问题。
3. 在工程中,反三角函数可以用于求解建筑物的倾斜角度和弯曲程度等问题。
总之,反三角函数是数学中的重要概念,其在各个领域中都有广泛应用。
掌握反三角函数的定义和求解方法,可以帮助我们更好地解决实际问题,提高我们的数学水平。
常用反三角函数公式表
常用反三角函数公式表在数学的广阔天地中,反三角函数是一个重要的概念,它们在解决各种数学问题时经常被用到。
为了更好地理解和运用反三角函数,我们有必要熟悉一些常用的反三角函数公式。
首先,让我们来了解一下什么是反三角函数。
反三角函数是三角函数的反函数,简单来说,如果给定一个三角函数的值,反三角函数可以帮助我们求出对应的角度。
常见的反三角函数有反正弦函数(arcsin)、反余弦函数(arccos)、反正切函数(arctan)等。
一、反正弦函数公式1、 arcsin(x) = arcsinx这个公式表明,反正弦函数是一个奇函数,即其图像关于原点对称。
2、 arcsin(sinx) = x (π/2 ≤ x ≤ π/2)这是反正弦函数的基本定义,意味着在其定义域内,对正弦函数的值求反正弦,就可以得到原来的角度。
3、 sin(arcsinx) = x (-1 ≤ x ≤ 1)这是反正弦函数与正弦函数的相互转换关系。
二、反余弦函数公式1、 arccos(x) =π arccosx与反正弦函数类似,反余弦函数也是一个非奇非偶函数。
2、 arccos(cosx) = x (0 ≤ x≤ π)3、 cos(arccosx) = x (-1 ≤ x ≤ 1)三、反正切函数公式1、 arctan(x) = arctanx反正切函数是一个奇函数。
2、 arctan(tanx) = x (π/2 < x <π/2)3、 tan(arctanx) = x (x 为任意实数)四、反余切函数公式1、 arccot(x) =π arccotx2、 arccot(cotx) = x (0 < x <π)3、 cot(arccotx) = x (x 为任意实数)五、其他常用公式1、 arcsinx + arccosx =π/2 (-1 ≤ x ≤ 1)这个公式表明,在定义域内,反正弦函数和反余弦函数的值之和为常数π/2。
2、 arctanx + arccotx =π/2 (x 为任意实数)反正切函数和反余切函数的值之和也为常数π/2。
反三角函数公式大全
反三角函数公式大全反三角函数,顾名思义就是与三角函数相反的函数,它们是一组用来求解三角形的边长和角度的函数。
在数学中,反三角函数有着非常重要的作用,它们是三角函数的逆运算,可以帮助我们解决很多与三角函数相关的问题。
本文将为大家详细介绍反三角函数的公式,希望能够帮助大家更好地理解和运用这些重要的数学工具。
一、反三角函数的定义。
反三角函数是指正弦、余弦、正切三角函数的反函数,分别记作sin-1(x)、cos-1(x)、tan-1(x),其中x是一个实数。
反三角函数的定义域是[-1,1],值域是[-π/2,π/2],它们的图像是关于y=x对称的。
二、反三角函数的公式。
1. 反正弦函数的公式。
反正弦函数的公式可以表示为,y=sin-1(x),其中x∈[-1,1],y∈[-π/2,π/2]。
反正弦函数的图像是一条在[-1,1]区间上的曲线,它是一条增函数,且在x=0处有一个拐点。
2. 反余弦函数的公式。
反余弦函数的公式可以表示为,y=cos-1(x),其中x∈[-1,1],y∈[0,π]。
反余弦函数的图像是一条在[-1,1]区间上的曲线,它是一条减函数,且在x=0处有一个拐点。
3. 反正切函数的公式。
反正切函数的公式可以表示为,y=tan-1(x),其中x∈R,y∈(-π/2,π/2)。
反正切函数的图像是一条在整个实数轴上的曲线,它是一个奇函数,且在x=0处有一个渐近线。
三、反三角函数的性质。
1. 反三角函数的定义域和值域。
反正弦函数的定义域是[-1,1],值域是[-π/2,π/2];反余弦函数的定义域是[-1,1],值域是[0,π];反正切函数的定义域是整个实数轴,值域是(-π/2,π/2)。
2. 反三角函数的导数。
反正弦函数的导数是1/√(1-x^2),反余弦函数的导数是-1/√(1-x^2),反正切函数的导数是1/(1+x^2)。
3. 反三角函数的反函数关系。
正弦函数与反正弦函数、余弦函数与反余弦函数、正切函数与反正切函数之间存在着反函数的关系,它们互为反函数。
三角函数的反函数及其性质
三角函数的反函数及其性质三角函数是数学中重要的一类函数,它们在解决几何形状、列表周期性数据以及模拟波动等问题中具有广泛的应用。
然而,当我们需要解决一些与三角函数相反的问题时,就需要引入三角函数的反函数。
本文将介绍三角函数的反函数及其性质。
一、反三角函数的定义为了解决三角函数的反问题,我们引入了反三角函数。
反三角函数是一种将三角函数的值作为输入并得到相应角度的函数。
常用的反三角函数有反正弦函数、反余弦函数和反正切函数,分别记作sin^-1(x)、cos^-1(x)和tan^-1(x)。
二、反三角函数的性质1. 定义域和值域:- 反正弦函数的定义域是[-1, 1],值域是[-π/2, π/2]。
- 反余弦函数的定义域是[-1, 1],值域是[0, π]。
- 反正切函数的定义域是(-∞, ∞),值域是(-π/2, π/2)。
2. 关系性质:- sin(sin^-1(x)) = x,其中x在定义域内。
- cos(cos^-1(x)) = x,其中x在定义域内。
- tan(tan^-1(x)) = x,其中x在定义域内。
3. 逆关系性质:- sin^-1(sin(x)) = x,其中x在[-π/2, π/2]内。
- cos^-1(cos(x)) = x,其中x在[0, π]内。
- tan^-1(tan(x)) = x,其中x在(-π/2, π/2)内。
4. 奇偶性:- 反正弦函数和反正切函数是奇函数,即sin^-1(-x) = -sin^-1(x),tan^-1(-x) = -tan^-1(x)。
- 反余弦函数是偶函数,即cos^-1(-x) = cos^-1(x)。
5. 导数性质:- 反正弦函数的导数是1/√(1-x^2)。
- 反余弦函数的导数是-1/√(1-x^2)。
- 反正切函数的导数是1/(1+x^2)。
三、反三角函数的应用反三角函数在解决几何和物理问题中有着广泛的应用。
以下是一些常见的应用场景:1. 角度计算:- 当已知三角函数的值时,可以使用反三角函数计算相应的角度。
反三角函数公式大全
反三角函数公式大全三角函数的反函数,是多值函数。
它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x,反正割Arcsec x=1/cosx,反余割Arccsc x=1/sinx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。
为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。
反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。
其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]y=arccos(x),定义域[-1,1] ,值域[0,π]y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)sinarcsin(x)=x,定义域[-1,1],值域【-π/2,π/2】反三角函数公式:arcsin(-x)=-arcsinxarccos(-x)=∏-arccosxarctan(-x)=-arctanxarccot(-x)=∏-arccotxarcsinx+arccosx=∏/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x当x∈〔0,∏〕,arccos(cosx)=xx∈(—∏/2,∏/2),arctan(tanx)=xx∈(0,∏),arccot(cotx)=xx〉0,arctanx=arctan1/x,arccotx类似若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)。
反三角函数公式
反三角函数公式反三角函数,也叫做反三角关系,是指与三角函数相对应的函数关系。
正弦函数、余弦函数和正切函数等都有对应的反函数,即反正弦函数、反余弦函数和反正切函数等。
下面以这三个反函数为例进行详细介绍,并给出它们的公式和性质。
一、反正弦函数(arcsin函数):反正弦函数的定义域是[-1,1],值域是[-π/2,π/2]。
它的主要性质有:1.反正弦函数的导数是1/√(1-x²)2.反正弦函数在定义域内是增函数,在值域内是连续函数3. 反正弦函数的反函数是正弦函数,即sin(arcsin x) = x4. 反正弦函数关于y轴对称,即arcsin(-x) = -arcsin(x)反正弦函数的公式为:y = arcsin(x)二、反余弦函数(arccos函数):反余弦函数的定义域是[-1,1],值域是[0,π]。
它的主要性质有:1.反余弦函数的导数是-1/√(1-x²)2.反余弦函数在定义域内是减函数,在值域内是连续函数3. 反余弦函数的反函数是余弦函数,即cos(arccos x) = x4. 反余弦函数关于y轴对称,即arccos(-x) = π - arccos(x)反余弦函数的公式为:y = arccos(x)三、反正切函数(arctan函数):反正切函数的定义域是整个实数集,值域是(-π/2,π/2)。
它的主要性质有:1.反正切函数的导数是1/(1+x²)2. 反正切函数是奇函数,即arctan(-x) = -arctan(x)3. 反正切函数的反函数是正切函数,即tan(arctan x) = x反正切函数的公式为:y = arctan(x)以上就是反三角函数的完整介绍和公式。
需要注意的是,由于三角函数具有周期性,反三角函数的定义域和值域都是在一个特定的周期内,常见的是一个周期内的正值部分。
另外,反三角函数在数学和物理中有广泛的应用,在解三角方程、几何问题、电路分析等方面都有重要的意义。
常用反三角函数公式表
常用反三角函数公式表在数学的广阔领域中,反三角函数是一个重要的概念,它们在解决各种数学问题和实际应用中发挥着关键作用。
反三角函数包括反正弦函数(arcsin)、反余弦函数(arccos)、反正切函数(arctan)等。
下面,我们将详细介绍常用的反三角函数公式。
一、反正弦函数(arcsin)公式1、定义域:-1, 12、值域:π/2, π/2反正弦函数的定义为:若 sin y = x ,则 y = arcsin x 。
其主要公式有:1、 sin(arcsin x) = x ,对于-1 ≤ x ≤ 1 。
2、 arcsin(x) = arcsin x ,这表明反正弦函数是一个奇函数。
二、反余弦函数(arccos)公式1、定义域:-1, 12、值域:0, π反余弦函数的定义为:若 cos y = x ,则 y = arccos x 。
主要公式包括:1、 cos(arccos x) = x ,当-1 ≤ x ≤ 1 。
2、 arccos(x) =π arccos x ,这显示了反余弦函数的非奇非偶性。
三、反正切函数(arctan)公式1、定义域:(∞,+∞)2、值域:(π/2, π/2)反正切函数的定义为:若 tan y = x ,则 y = arctan x 。
重要公式如下:1、 tan(arctan x) = x ,对于任意实数 x 。
2、 arctan(x) = arctan x ,表明反正切函数是一个奇函数。
四、反余切函数(arccot)公式1、定义域:(∞,+∞)2、值域:(0, π)反余切函数的定义为:若 cot y = x ,则 y = arccot x 。
常见公式有:1、 cot(arccot x) = x ,对于任意实数 x 。
2、 arccot(x) =π arccot x ,体现了反余切函数的非奇非偶性。
五、反正割函数(arcsec)公式1、定义域:(∞,-1 ∪ 1, +∞)2、值域:0, π/2) ∪(π/2, π反正割函数的定义为:若 sec y = x ,则 y = arcsec x 。
反三角函数
5。反三角函数: 1 y arcsin x, 2 y arccos x, 3 y arctan x, 4 y arc cot x. 记忆反三角函数图形的方法: 含 “正” 字的值域从 字的值域从
2
2
, 过值域中点 0, 0 点; 含 “余”
0 ,过值域中点 0, 点。 2
(3)当 x
2
, y R 时: tan x y x arctan y;arctan(tan x) x; tan(arctan y) y.
(4)当 0 x , y R 时:
ቤተ መጻሕፍቲ ባይዱ
cot x y x arccot y;arccot(cot x) x;cot(arccot y) y.
编辑本段公式
反三角函数其他公式: cos(arcsinx)=(1-x^2)^0.5 arcsin(-x)=-arcsinx arccos(-x)=π -arccosx arctan(-x)=-arctanx arccot(-x)=π -arccotx arcsinx+arccosx=π /2=arctanx+arccotx sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x arcsin x = x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)„„+(2k+1)!!*x^(2k-1)/(2k!!*(2k+1))+„„ (|x|<1) !!表示双阶乘
最简单的三角方程的解: (1) sin x a x k 1 arcsin a;
反三角函数大全
反三角函数Inverse trigonometric functions第1节反三角函数·概述原创/O客把反正弦函数y=arc sinx,反余弦函数y=arc cosx,反正切函数y=arc tanx,反余切函数y=arc cotx统称为反三角函数。
它们都是三角函数的反函数。
严格地说,准确地说,它们是三角函数在某个单调区间上的反函数。
以反正弦函数为例,其他反三角函数同理可推。
●反正弦的值域先从反正弦函数的原函数正弦函数说起。
正弦函数y=sinx在定义域R上没有反函数。
因为它在定义域R上不单调,是分段单调。
从逆向映射来看,正弦函数y=sinx的每一个函数值y,对应着无数个自变量x的值。
当我们从y=sinx中解出x后,x与y不能构成函数关系,所以不存在反函数。
但是,当我们取正弦函数y=sinx的一个单调区间,如[-π/2,π/2]。
这时,每一个函数值y,对应着唯一的一个自变量x的值。
当我们从y=sinx中解出x后,x与y构成函数关系,所以存在反函数。
记为y=arc sinx。
把原函数y=sinx,x∈[-π/2,π/2]的值域[-1,1],叫做反函数y=arc sinx的定义域。
并把原函数y=sinx,x∈[-π/2,π/2]的定义域[-π/2,π/2],叫做反函数y=arc sinx的值域。
●请参考我的三角函数salonhi.baidu./ok%B0%C9/blog/category/%C8%FD%BD%C7%BA%AF%CA%FDsalon第2节反三角函数·理解与转化原创/O客以反正弦函数为例,其他反三角函数同理可推。
●符号理解初学反三角函数者往往被它那长长的字符串所迷惑,很不习惯。
一方面,arc sinx这七个字母是一个整体,缺一不可。
另一方面,符号arc sinx可以用下面的三句话来理解:①它是一个角。
即一个实数。
arc sinx∈R.②这个角在-π/2到π/2之间(含端点)。
反三角函数的运算法则及公式
反三角函数的运算法则及公式反三角函数的运算法则及公式反三角函数,也称反函数,是指sin、cos、tan三角函数的反函数。
以sin函数为例,其反函数为arcsin函数,可以表示为y=arcsin(x),而x 的范围为-1≤x≤1,y的范围为-π/2≤y≤π/2。
本文将介绍反三角函数的运算法则及公式,希望能够为读者提供一些帮助。
一、反三角函数的基本性质1. 反函数与原函数:反三角函数是三角函数的反函数,即对一定范围内的y值,arcsin(y)所对应的x值是sin(x)。
2. 反函数的定义域和值域:反三角函数的定义域是三角函数在该范围内的值域,反之亦然。
3. 对称性:反三角函数具有对称性,即arcsin(-x)=-arcsin(x)。
4. 反函数的导数:sin、cos、tan的导函数分别是cos、-sin、sec2,那么它们的反函数分别是arcsin、arccos、arctan,在其定义域内计算导数可以得到:(1)arcsin’(y) = 1/√(1-y^2);(2)arccos’(y) = -1/√(1-y^2);(3)arctan’(y) = 1/(1+y^2)。
二、反三角函数的运算法则1. 反三角函数的四则运算:反三角函数的四则运算与正常的函数相同,只需要对反三角函数的定义域进行限制。
2. 反三角函数的复合运算:例如sin(arcsin(x))=x,cos(arccos(x))=x,tan(arctan(x))=x,这是因为反三角函数是三角函数的反函数。
3. 求反三角函数的值:要求反三角函数的值,需要先确定所要求的值的定义域,再根据其所对应的正三角函数的值进行计算。
三、反三角函数的常用公式1. sin(arcsin(x))=x,|x|≤1。
2. cos(arccos(x))=x,|x|≤1。
3. tan(arctan(x))=x,|x|≤π/2。
4. arcsin(x)+arccos(x)=π/2。
反三角函数大全
反三角函数Inverse trigonometric functions第1节反三角函数·概述原创/O客把反正弦函数y=arc sinx,反余弦函数y=arc cosx,反正切函数y=arc tanx,反余切函数y=arc cotx统称为反三角函数。
它们都是三角函数的反函数。
严格地说,准确地说,它们是三角函数在某个单调区间上的反函数。
以反正弦函数为例,其他反三角函数同理可推。
●反正弦的值域先从反正弦函数的原函数正弦函数说起。
正弦函数y=sinx在定义域R上没有反函数。
因为它在定义域R上不单调,是分段单调。
从逆向映射来看,正弦函数y=sinx的每一个函数值y,对应着无数个自变量x的值。
当我们从y=sinx中解出x后,x与y不能构成函数关系,所以不存在反函数。
但是,当我们取正弦函数y=sinx的一个单调区间,如[-π/2,π/2]。
这时,每一个函数值y,对应着唯一的一个自变量x的值。
当我们从y=sinx中解出x后,x与y构成函数关系,所以存在反函数。
记为y=arc sinx。
把原函数y=sinx,x∈[-π/2,π/2]的值域[-1,1],叫做反函数y=arc sinx的定义域。
并把原函数y=sinx,x∈[-π/2,π/2]的定义域[-π/2,π/2],叫做反函数y=arc sinx的值域。
●请参考我的三角函数salonhttp://hi.baidu./ok%B0%C9/blog/category/%C8%FD%BD%C7%BA%AF%CA%FDsal on第2节 反三角函数·理解与转化原创/O 客以反正弦函数为例,其他反三角函数同理可推。
●符号理解初学反三角函数者往往被它那长长的字符串所迷惑,很不习惯。
一方面,arc sinx 这七个字母是一个整体,缺一不可。
另一方面,符号arc sinx 可以用下面的三句话来理解:①它是一个角。
即一个实数。
arc sinx ∈R .②这个角在-π/2到π/2之间(含端点)。
反三角函数
反三角函数知识点总结
千里之行,始于足下。
反三角函数学问点总结反三角函数是三角函数的逆运算,是一组函数,包括反正弦函数(arcsin 或sin^(-1))、反余弦函数(arccos或cos^(-1))、反正切函数(arctan或tan^(-1))等。
1. 反正弦函数(arcsin):- 定义域为[-1, 1],值域为[-π/2, π/2]。
- 表示为y = arcsin(x)或y = sin^(-1)(x)。
- 用于求解一个角的正弦值等于给定的值x,即sin(y) = x。
- 反正弦函数的图像是一个关于直线y = x的对称图像。
2. 反余弦函数(arccos):- 定义域为[-1, 1],值域为[0, π]。
- 表示为y = arccos(x)或y = cos^(-1)(x)。
- 用于求解一个角的余弦值等于给定的值x,即cos(y) = x。
- 反余弦函数的图像是一个关于直线y = π/2的对称图像。
3. 反正切函数(arctan):- 定义域为实数集,值域为[-π/2, π/2]。
- 表示为y = arctan(x)或y = tan^(-1)(x)。
- 用于求解一个角的正切值等于给定的值x,即tan(y) = x。
- 反正切函数的图像是一个关于原点对称的S型曲线。
反三角函数的性质:- 反三角函数是单调递增的。
- 反三角函数的导数可以通过三角函数的导数求得。
- 反三角函数具有周期性,周期为2π。
第1页/共2页锲而不舍,金石可镂。
- 反三角函数在定义域内的值域是唯一确定的。
- 反三角函数有多个解,可以通过在定义域内添加限制条件(如设定主值范围)来确定一个解。
- 反三角函数的值可以通过计算器或数表查找。
应用:- 反三角函数常用于解三角方程、解三角关系、求角度等问题。
- 反三角函数在计算机图形学、信号处理等领域有广泛的应用。
- 反三角函数在数学、物理、工程学等科学领域中常被使用。
在使用反三角函数时需要留意以下几点:- 反三角函数的定义域和值域。
反三角函数公式大全
反三角函数公式大全三角函数的反函数,是多值函数。
它们是反正弦Arcsi n x,反余弦Arc cos x,反正切Arc tan x,反余切Arc cot x,反正割Arc sec x=1/cosx,反余割Arc csc x=1/sinx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。
为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。
反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。
其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]y=arccos(x),定义域[-1,1] ,值域[0,π]y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)sinarc sin(x)=x,定义域[-1,1],值域【-π/2,π/2】反三角函数公式:arcsin(-x)=-arcsin xarccos(-x)=∏-arccos xarctan(-x)=-arctan xarccot(-x)=∏-arccot xarcsin x+arccos x=∏/2=arctan x+arccot xsin(arcsin x)=x=cos(arccos x)=tan(arctan x)=cot(arccot x)当x∈〔—∏/2,∏/2〕时,有arcsi n(sinx)=x当x∈〔0,∏〕,arccos(cosx)=xx∈(—∏/2,∏/2),arctan(tanx)=xx∈(0,∏),arccot(cotx)=xx〉0,arctan x=arctan1/x,arccot x类似若(arctan x+arctan y)∈(—∏/2,∏/2),则arcta nx+arctan y=arctan(x+y/1-xy)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反三角函数
Inverse trigonometric functions
第1节反三角函数·概述
原创/O客
把反正弦函数y=arc sinx,反余弦函数y=arc cosx,反正切函数y=arc tanx,反余切函数y=arc cotx统称为反三角函数。
它们都是三角函数的反函数。
严格地说,准确地说,它们是三角函数在某个单调区间上的反函数。
以反正弦函数为例,其他反三角函数同理可推。
●反正弦的值域
先从反正弦函数的原函数正弦函数说起。
正弦函数y=sinx在定义域R上没有反函数。
因为它在定义域R上不单调,是分段单调。
从逆向映射来看,正弦函数y=sinx的每一个函数值y,对应着无数个自变量x的值。
当我们从y=sinx中解出x后,x与y不能构成函数关系,所以不存在反函数。
但是,当我们取正弦函数y=sinx的一个单调区间,如[-π/2,π/2]。
这时,每一个函数值y,对应着唯一的一个自变量x的值。
当我们从y=sinx中解出x后,x与y构成函数关系,所以存在反函数。
记为y=arc sinx。
把原函数y=sinx,x∈[-π/2,π/2]的值域[-1,1],叫做反函数y=arc sinx的定义域。
并把原函数y=sinx,x∈[-π/2,π/2]的定义域[-π/2,π/2],叫做反函数y=arc sinx的值域。
●请参考我的三角函数salon
第2节反三角函数·理解与转化
原创/O客
以反正弦函数为例,其他反三角函数同理可推。
●符号理解
初学反三角函数者往往被它那长长的字符串所迷惑,很不习惯。
一方面,arc sinx这七个字母是一个整体,缺一不可。
另一方面,符号arc sinx可以用下面的三句话来理解:
①它是一个角。
即一个实数。
arc sinx∈R.
②这个角在-π/2到π/2之间(含端点)。
-π/2≤arc sinx≤π/2。
③这个角的正弦值等于x。
sin(arc sinx)=x.
●互化
反三角函数问题往往要转化为三角函数问题,因为后者拥有数十个公式资源,使你解决问题时如虎添翼。
有互化公式(充要条件)如图。
α=arc sinx
x=sinα
|x|≤1 -π
2≤α≤
π
2
●请参考我的三角函数salon
第3节反正弦函数的图象和性质
原创/O客
函数名称反正弦函数
解析式y=arc sinx
图象反正弦曲线(图3)
1.定义域[-1,1]
2.值域[-π/2, π/2]
3.有界性|y|≤π/2
4.最值x=1时,y max=π/2
x=-1时,y min=-π/2
5.单调性增函数
6.奇偶性奇函数.
7.周期性无
8.对称性关于原点对称
9.反函数y=arc sinx,x∈[-π/2, π/2]
10.与反余弦的关系arc sinx+arc cosx=π/2
●请参考我的三角函数salon
原创/O 客
函数名称 反余弦函数 解析式 y=arc cosx 图象 反余弦曲线(如图) 1.定义域 [-1,1] 2.值域 [0, π] 3.有界性 0≤y ≤π 4.最值 x=-1时,y max=π x=1时,y min=0 5.单调性 减函数 6.奇偶性 非奇非偶函数 7.周期性 无
8.对称性 对称中心(0, π/2) 9.反函数 y=cosx, x ∈[0, π]
10.与反正弦的关系 arc sinx+arc cosx=π/2 ●请参考我的三角函数salon
C9/blog/category/%C8%FD%BD%C7%BA%AF%CA%FDsalon
1 O 函数 y=arc cosx 的图象 y
x
y=arc cosx -1 π
π
2
原创/O 客
函数名称 反正切函数 解析式 y=arc tanx 图象 反正切曲线(如图) 1.定义域 R 2.值域 (-π/2, π/2) 3.有界性 |y|<π/2 4.最值 无 5.单调性 增函数 6.奇偶性 奇函数 7.周期性 无
8.对称性 关于原点对称 9.渐近线 y=±π/2 10.反函数 y=tanx, x ∈(-π/2, π/2) 11.与反余切的关系 arc tanx+arc cotx=π/2 ●请参考我的三角函数salon
O 函数 y=arc tanx 的图象 y x
y=arc tanx π2 -π2
原创/O 客
函数名称 反余切函数 解析式 y=arc cotx 图象 反余切曲线(如图) 1.定义域 R 2.值域 (0, π) 3.有界性 0<y<π 4.最值 无 5.单调性 减函数 6.奇偶性 奇函数 7.周期性 无
8.对称性 对称中心(0, π/2) 9.渐近线 y=0,y=π 10.反函数 y=cotx, x ∈(0,, π) 11.与反正切的关系 arc tanx+arc cotx=π/2 ●请参考我的三角函数salon
O 函数 y=arc cotx 的图象 y x
y=arc cotx
π
2 π
第7节用反三角函数表示角
原创/O客
已知某一个角的三角函数值,如何表示这个角?
以反正弦函数为例,其他反三角函数同理可推。
●一个锐角至少有等价的四种表达式
不妨,以直角三角形的锐角为例。
直角三角形ABC中,a=3,b=4,c=5,则
A=arc sin(3/5), A=arc cos(4/5)
A=arc tan(3/4), A=arc cot(4/3)
●已知三角函数值表示角,要特别注意角的范围
例如,已知sinα=1/3,
由正弦函数线(见salon(6))或者正弦曲线(见salon(20)),可得
若α是锐角,则α= arc sin(1/3).
若α∈[0, π],则α= arc sin(1/3) 或α=π-arc sin(1/3).
若α∈[0, 2π),则α= arc sin(1/3) 或α=π-arc sin(1/3)。
若α是第1象限角,则α= 2kπ+arc sin(1/3),k∈Z.
若α∈R,则α=2kπ+arc sin(1/3), 或α=2kπ+π-arc sin(1/3), k∈Z,
可以合并为α=2kπ+(-1)^k *arc sin(1/3), k∈Z
●请参考我的三角函数salon
第8节三角方程
原创/O客
三角函数的自变量中含有未知数,含有这样的三角函数的方程叫三角方程。
●一般地,一个较复杂三角方程的解集往往都是几个最简三角方程的解集的并集。
三角方程都要转化为最简三角方程来解。
最简三角方程的解法是三角方程解法的基础。
●最简三角方程的解集
1.sinx=a (|a|≤1)的解集是
{x|x=kπ+(-1)^k arc sina, k∈Z}
2.cosx=a (|a|≤1)的解集是
{x|x=2kπ±arc cosa, k∈Z}
3. tanx=a的解集是
{x|x=kπ+arc tana, k∈Z}
4. cotx=a的解集是
{x|x=kπ+arc cota, k∈Z}
●以三角方程sinx=a (|a|≤1)为例,说一说记忆和应用。
▲最简三角方程的解集不要死记硬背,要借助函数线和图象记忆,如图。
▲灵活应用。
形如sin(ωx+φ)=a (|a|≤1),则ωx+φ=kπ+(-1)^k arc sina, k∈Z,解出x即可。
●请参考我的三角函数salon
x
O y a
方程sinx=a(0<a<1,x ∈[-π,π])的解
arc sina π-arc sina y= sinx
-π
π
-1
1 1
1 O
方程sinx=a(0<a<1)的解
y
2k π+arc sina
2k +π-arc sina
a
x。