(完整word版)矩形菱形正方形练习题及答案
中考数学总复习《矩形、菱形、正方形》专项测试卷含答案
中考数学总复习《矩形、菱形、正方形》专项测试卷含答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.在四边形ABCD中,AD∥BC,AB=CD.下列说法能使四边形ABCD为矩形的是( )A.AB∥CDB.AD=BCC.∠A=∠BD.∠A=∠D2.如图所示,在矩形ABCD中,AB>AD,AC与BD相交于点O,下列说法正确的是( )A.点O为矩形ABCD的对称中心B.点O为线段AB的对称中心C.直线BD为矩形ABCD的对称轴D.直线AC为线段BD的对称轴3.如图,菱形ABCD中,连接AC,BD,若∠1=20°,则∠2的度数为( )A.20°B.60°C.70°D.80°4.(2024·成都)如图,在矩形ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是( )A.AB=ADB.AC⊥BDC.AC=BDD.∠ACB=∠ACD5.如图,在菱形ABCD中,AB=1,∠DAB=60°,则AC的长为( )A.12B.1C.√32D.√36.(2024·上海)在菱形ABCD中,∠ABC=66°,则∠BAC=°.7.(2024·龙东)如图,在菱形ABCD中,对角线AC,BD相交于点O,请添加一个条件,使得菱形ABCD为正方形.8.(2024·遂宁)康康在学习了矩形定义及判定定理1后,继续探究其他判定定理.(1)实践与操作①任意作两条相交的直线,交点记为O;②以点O为圆心,适当长为半径画弧,在两条直线上分别截取相等的四条线段OA,OB,OC,OD;③顺次连接所得的四点得到四边形ABCD.于是可以直接判定四边形ABCD是平行四边形,则该判定定理是:.(2)猜想与证明通过和同伴交流,他们一致认为四边形ABCD是矩形,于是猜想得到了矩形的另外一种判定方法:对角线相等的平行四边形是矩形.并写出了以下已知、求证,请你完成证明过程.已知:如图,四边形ABCD是平行四边形,AC=BD.求证:四边形ABCD是矩形.B层·能力提升9.(2024·泸州)如图,在边长为6的正方形ABCD中,点E,F分别是边AB,BC上的动点,且满足AE=BF,AF与DE交于点O,点M是DF的中点,G是边AB上的点,AG=2GB,则OM+1FG的最小值是( )2A.4B.5C.8D.1010.(2024·贵州)如图,在菱形ABCD中,点E,F分别是BC,CD的中点,连接AE,AF.若sin∠EAF=4,AE=5,则AB的长为.511.(2024·天津)如图,正方形ABCD的边长为3√2,对角线AC,BD相交于点O,点E 在CA的延长线上,OE=5,连接DE.(1)线段AE的长为;(2)若F为DE的中点,则线段AF的长为.C层·挑战冲A+12.(2024·济宁)综合与实践某校数学课外活动小组用一张矩形纸片(如图1,矩形ABCD中,AB>AD且AB足够长)进行探究活动.【动手操作】如图2,第一步,沿点A所在直线折叠,使点D落在AB上的点E处,折痕为AF,连接EF,把纸片展平.第二步,把四边形AEFD折叠,使点A与点E重合,点D与点F重合,折痕为GH,再把纸片展平.第三步,连接GF.【探究发现】根据以上操作,甲、乙两同学分别写出了一个结论.甲同学的结论:四边形AEFD是正方形.乙同学的结论:tan∠AFG=1.3(1)请分别判断甲、乙两同学的结论是否正确.若正确,写出证明过程;若不正确,请说明理由.【继续探究】在上面操作的基础上,丙同学继续操作.如图3,第四步,沿点G所在直线折叠,使点F落在AB上的点M处,折痕为GP,连接PM,把纸片展平.第五步,连接FM交GP于点N.根据以上操作,丁同学写出了一个正确结论:FN·AM=GN·AD.(2)请证明这个结论.参考答案A层·基础过关1.在四边形ABCD中,AD∥BC,AB=CD.下列说法能使四边形ABCD为矩形的是(C)A.AB∥CDB.AD=BCC.∠A=∠BD.∠A=∠D2.如图所示,在矩形ABCD中,AB>AD,AC与BD相交于点O,下列说法正确的是(A)A.点O为矩形ABCD的对称中心B.点O为线段AB的对称中心C.直线BD为矩形ABCD的对称轴D.直线AC为线段BD的对称轴3.如图,菱形ABCD中,连接AC,BD,若∠1=20°,则∠2的度数为(C)A.20°B.60°C.70°D.80°4.(2024·成都)如图,在矩形ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是(C)A.AB=ADB.AC⊥BDC.AC=BDD.∠ACB=∠ACD5.如图,在菱形ABCD中,AB=1,∠DAB=60°,则AC的长为(D)A.12B.1C.√32D.√36.(2024·上海)在菱形ABCD中,∠ABC=66°,则∠BAC=57°.7.(2024·龙东)如图,在菱形ABCD中,对角线AC,BD相交于点O,请添加一个条件AC=BD(答案不唯一),使得菱形ABCD为正方形.8.(2024·遂宁)康康在学习了矩形定义及判定定理1后,继续探究其他判定定理.(1)实践与操作①任意作两条相交的直线,交点记为O;②以点O为圆心,适当长为半径画弧,在两条直线上分别截取相等的四条线段OA,OB,OC,OD;③顺次连接所得的四点得到四边形ABCD.于是可以直接判定四边形ABCD是平行四边形,则该判定定理是:.【解析】(1)∵OA=OC,OB=OD∴四边形ABCD的对角线互相平分∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形).答案:对角线互相平分的四边形是平行四边形(2)猜想与证明通过和同伴交流,他们一致认为四边形ABCD是矩形,于是猜想得到了矩形的另外一种判定方法:对角线相等的平行四边形是矩形.并写出了以下已知、求证,请你完成证明过程.已知:如图,四边形ABCD是平行四边形,AC=BD.求证:四边形ABCD是矩形.【解析】(2)∵四边形ABCD 是平行四边形 ∴AD =BC∴在△BAD 和△ABC 中,{AB =BAAD =BC BD =AC∴△BAD ≌△ABC (SSS) ∴∠BAD =∠ABC ∵AD ∥BC∴∠BAD +∠ABC =180° ∴∠BAD =∠ABC =90°∴四边形ABCD 是矩形(有一个角是直角的平行四边形是矩形).B 层·能力提升9.(2024·泸州)如图,在边长为6的正方形ABCD 中,点E ,F 分别是边AB ,BC 上的动点,且满足AE =BF ,AF 与DE 交于点O ,点M 是DF 的中点,G 是边AB 上的点,AG =2GB ,则OM +12FG 的最小值是(B)A .4B .5C .8D .1010.(2024·贵州)如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若sin ∠EAF =45,AE =5,则AB 的长为2√653.11.(2024·天津)如图,正方形ABCD的边长为3√2,对角线AC,BD相交于点O,点E 在CA的延长线上,OE=5,连接DE.(1)线段AE的长为2;.(2)若F为DE的中点,则线段AF的长为√102C层·挑战冲A+12.(2024·济宁)综合与实践某校数学课外活动小组用一张矩形纸片(如图1,矩形ABCD中,AB>AD且AB足够长)进行探究活动.【动手操作】如图2,第一步,沿点A所在直线折叠,使点D落在AB上的点E处,折痕为AF,连接EF,把纸片展平.第二步,把四边形AEFD折叠,使点A与点E重合,点D与点F重合,折痕为GH,再把纸片展平.第三步,连接GF.【探究发现】根据以上操作,甲、乙两同学分别写出了一个结论.甲同学的结论:四边形AEFD是正方形.乙同学的结论:tan∠AFG=1.3(1)请分别判断甲、乙两同学的结论是否正确.若正确,写出证明过程;若不正确,请说明理由.【继续探究】在上面操作的基础上,丙同学继续操作.如图3,第四步,沿点G所在直线折叠,使点F落在AB上的点M处,折痕为GP,连接PM,把纸片展平.第五步,连接FM交GP于点N.根据以上操作,丁同学写出了一个正确结论:FN·AM=GN·AD.(2)请证明这个结论.【解析】(1)甲同学和乙同学的结论都正确,证明如下∵四边形ABCD是矩形∴∠D=∠BAD=90°∵折叠,∴∠D=∠AEF=90°=∠DAE,AD=AE,∴四边形AEFD是正方形;故甲同学的结论正确.过点G作GK⊥AF于点K设AE=2x,则AG=EG=x ∵四边形AEFD是正方形∴∠EAF=45°∴AF=2√2x,AK=KG=√22AG=√22x∴KF=AF-AK=3√22x∴tan∠AFG=KGKF =1 3 ;故乙同学的结论也正确.(2)方法一:过点G作GQ⊥PM,交PM的延长线于点Q∵折叠∴FP=PM,FG=GM,GH=GQ,∠FPG=∠MPG,PH=PQ∵AB∥CD,∴∠FPG=∠PGM∴∠PGM=∠MPG∴PM=GM∴PF=GM=PM=FG∴四边形FGMP是菱形∴∠FNG=90°∵∠GQP=90°=∠FNG,∠FGN=∠GPQ∴△GFN∽△PGQ∴FNGQ =GN PQ∴FN·PQ=GN·GQ∵AM=AG+GM=HF+FP=PH∴AM=PQ∵GQ=GH=AD∴FN·AM=GN·AD.方法二:连接DM,证△ADM∽△NFG也可.。
初中数学 矩形、菱形与正方形测试题含答案
矩形、菱形与正方形测试题一、选择题1.能判定四边形ABCD为平行四边形的题设是().(A)AB∥CD,AD=BC; (B)∠A=∠B,∠C=∠D;(C)AB=CD,AD=BC; (D)AB=AD,CB=CD2.在给定的条件中,能画出平行四边形的是().(A)以60cm为一条对角线,20cm、34cm为两条邻边;(B)以6cm、10cm为对角线,8cm为一边;(C)以20cm、36cm为对角线,22cm为一边;(D)以6cm为一条对角线,3cm、10cm为两条邻边3.正方形具有而菱形不一定具有的性质是()(A)对角线互相平分; (B)对角线相等;(C)对角线平分一组对角; (D)对角线互相垂直4.在下列说法中不正确的是()(A)两条对角线互相垂直的矩形是正方形;(B)两条对角线相等的菱形是正方形;(C)两条对角线垂直且相等的平行四边形是正方形;(D)两条对角线垂直且相等的四边形是正方形5.下列说法不正确的是()(A)对角线相等且互相平分的四边形是矩形;(B)对角线互相垂直平分的四边形是菱形;(C)一组对边平行且不等的四边形是梯形;(D)一边上的两角相等的梯形是等腰梯形6.不能判定四边形ABCD为平行四边形的题设是()(A)AB=CD,AD=BC (B)AB//CD(C)AB=CD,AD∥BC (D)AB∥CD,AD∥BC7.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的题设是()(A)AO=CO,BO=DO; (B)AO=CO=BO=DO;(C)AO=CO,BO=DO,AC⊥BD; (D)AO=BO=CO=DO,AC⊥BD8.下列说法不正确的是()(A)只有一组对边平行的四边形是梯形;(B)只有一组对边相等的梯形是等腰梯形;(C)等腰梯形的对角线相等且互相平分;(D)在直角梯形中有且只有两个角是直角9.如图1,在□ABCD中,MN分别是AB、CD的中点,BD分别交AN、CM于点P、Q,在结论:①DP=PQ=QB ②AP=CQ ③CQ=2MQ ④S △ADP=14S ABCD中,正确的个数为().(A)1 (B)2 (C)3 (D)4(1) (2) (3)10.如图2,在梯形ABCD中,AD∥CB,AD=2,BC=8,AC=6,BD=8,则梯形ABCD的面积为().(A)24 (B)20 (C)16 (D)12二、填空题11.在□ABCD中,AC与BD交于O,则其中共有_____对全等的三角形.12.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm,则其对角线长为_______,矩形的面积为________.13.一个菱形的两条对角线长分别为6cm,8cm,这个菱形的边长为_______,•面积S=______.14.如果一个四边形的四个角的比是3:5:5:7,则这个四边形是_____形.15.如图3,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是________.16.如图4,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_______.(4) (5) (6)17.在长为1.6m,宽为1.2m的矩形铅板上,剪切如图5所示的直角梯形零件(•尺寸单位为mm),则这块铅板最多能剪出______个这样的零件.18.如图6,ABCD中,过对角线交点O,引一直线交BC于E,交AD于F,若AB=2.4cm,BC=4cm,OE=1.1cm,则四边形CDFE周长为________.19.已知等腰梯形的一个锐角等于60•°,•它两底分别为15cm,•49cm,•则腰长为_______.20.已知等腰梯形ABCD中AD∥BC,BD平分∠ABC,BD•⊥DC,•且梯形ABCD•的周长为30cm,则AD=_____.三、计算题21.如图,已知等腰梯形ABCD中,AD∥BC,对角线AC⊥BD,AD=3cm,BC=7cm,•DE•⊥BC 于E,试求DE的长.四、证明题22.如图,已知四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA边上的中点,求证:四边形EFGH是菱形.23.已知如图,梯形ABCD中,AD∥BC,AM=MB,DN=NC.求证:MN∥BC,MN=12(BC+AD).答案:1.(C) 2.(C) 3.(B) 4.(D) 5.(D)6.(C) 7.(D) 8.(C) 9.(C) 10.(A)11.4 12.40cm 4003cm213.5cm 24cm2 14.直角梯形15.15 16.15° •17.12 18.8.6cm 19.34cm20.如图,作AE⊥BC于E,DF⊥BC于F,∴AD=EF,设BE=x.则AB=2x,DC=2x,FC=x,∴BD平分∠ABC,∴∠DBC=30°.∴DC=12BC,∴BC=4x.∴EF=2x=AD.又∵AB+BC+CD+AD=30,∴4x+6x=30,x=3,∴AD=6(cm).21.过D点作DF∥AC,交BC的延长线于点F,则四边形ACFD为平行四边形,•所以AC=DF,AD=CF.因为四边形ABCD为等腰梯形,所以AC=BD,所以BD=DF,又已知AC⊥BD,DF∥AC,•所以BD⊥DF,则△BDF为等腰直角三角形.又因为DF⊥BC,所以DE=12BF=12(BC+CF)=12(BC+AD)=12(7+3)=5(cm).22.证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF=12AC,HG=12AC,FG=12BD,EH=12BD.∴EF=HG=12AC,FG=EH=12BD.又∵AC=BD,∴EF=HG=FG=EH.∴四边形EFGH是菱形.23.证明:如图,连接AN并延长,交BC的延长线于点E.∵DN=NC,∠1=∠2,∠D=∠3,∴△ADN≌△ECN,∴AN=EN,AD=EC.又AM=MB,∴MN是△ABE的中位线.∴MN∥BC,MN=12BE(三角形中位线定理)∵BE=BC+CE=BC+AD,∴MN=12(BC+AD).。
(完整版)矩形练习题及答案
矩形课后练习1、矩形具有而平行四边形不具有的性质是()A.内角和为360°B.对角线相等C.对角相等D.相邻两角互补2、平行四边形、矩形、菱形、正方形都具有的性质()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直3、下列关于矩形的说法中正确的是()A.矩形的对角线互相垂直且平分B.矩形的对角线相等且互相平分C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形下列说法正确的有()①两条对角线相等的四边形是矩形;②有一组对边相等,一组对角是直角的四边形是矩形;③一个角为直角,两条对角线相等的四边形是矩形;④四个角都相等的四边形是矩形;⑤对角线相等且垂直的四边形是矩形;⑥有一个角是直角的平行四边形是矩形.A.1个B.2个C.3个D.4个4、如图,在矩形ABCD中,AE⊥BD,垂足为E,∠DAE:∠BAE=1:2,试求∠CAE的度数.5、如图,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,试求∠COE的度数.6、Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM 的最小值为.7、如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2,E是AB边的中点,F是AC边的中点,D是BC边上一动点,则△EFD的周长最小值是.8、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.9、(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.10、如图,以△ABC的各边向同侧作正△ABD,正△BCF,正△ACE.(1)求证:四边形AEFD是平行四边形;(2)当∠BAC=______时,四边形AEFD是矩形;(3)当∠BAC=______时,以A、E、F、D为顶点的四边形不存在.11、如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.(1)求证:△BOC≌△EOD;(2)当∠A=12∠EOC时,连接BD、CE,求证:四边形BCED为矩形.12、已知四边形ABCD中,AB=CD,BC=DA,对角线AC、BD交于点O.M是四边形ABCD外的一点,AM⊥MC,BM⊥MD.试问:四边形ABCD是什么四边形,并证明你的结论.13、如图,△ABC中,AB=AC,D是BC中点,F是AC中点,AN是△ABC的外角∠MAC的角平分线,延长DF交AN于点E.(1)判断四边形ABDE的形状,并说明理由;(2)问:线段CE与线段AD有什么关系?请说明你的理由.14、已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.15、如图,矩形纸片ABCD的宽AD=5,现将矩形纸片ABCD沿QG折叠,使点C落到点R的位置,点P是QG上的一点,PE⊥QR于E,PF⊥AB于F,求PE+PF.16、如图,已知,E是矩形ABCD边AD上一点,且BE=ED,P是对角线BD上任一点,PF⊥BE,PG⊥AD,垂足分别为F、G,你知道PF+PG与AB有什么关系吗?并证明你的结论.矩形课后练习参考答案题一: B .详解:A .内角和为360°矩形与平行四边形都具有,故此选项错误;B .对角线相等只有矩形具有,而平行四边形不具有,故此选项正确;C .对角相等矩形与平行四边形都具有,故此选项错误;D .相邻两角互补矩形与平行四边形都具有,故此选项错误.故选B . 题二: B .详解:因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.故选B .题三: B .详解:A .矩形的对角线互相平分,且相等,但不一定互相垂直,本选项错误;B .矩形的对角线相等且互相平分,本选项正确;C .对角线相等的四边形不一定为矩形,例如等腰梯形对角线相等,但不是矩形,本选项错误;D .对角线互相平分的四边形为平行四边形,不一定为矩形,本选项错误.故选B .题四: C .详解:两条对角线相等且相互平分的四边形为矩形,故①③⑤错;有一个角为直角的平行四边形为矩形,故②④⑥正确.故选C . 题五: 30°.详解:∵∠DAE :∠BAE =1:2,∠DAB =90°,∴∠DAE =30°,∠BAE =60°,∴∠DBA =90°-∠BAE =90°-60°=30°,∵OA =OB ,∴∠OAB =∠OBA =30°,∴∠CAE =∠BAE -∠OAB =60°-30°=30°.题六: 75°.详解:∵四边形ABCD 是矩形,DE 平分∠ADC ,∴∠CDE =∠CED = 45°,∴EC =DC ,又∵∠BDE =15°,∴∠CDO =60°,又∵矩形的对角线互相平分且相等,∴OD =OC ,∴△OCD 是等边三角形,∴∠DCO =60°,∠OCB =90°-∠DCO =30°,∵DE 平分∠ADC ,∠ECD =90°,∠CDE =∠CED = 45°,∴CD =CE =CO ,∴∠COE =∠CEO ;∴∠COE =(180°-30°)÷2=75°.题七: 65.详解:由题意知,四边形AFPE 是矩形,∵点M 是矩形对角线EF 的中点,则延长AM 应过点P ,∴当AP 为Rt △ABC 的斜边上的高时,即AP ⊥BC 时,AM 有最小值,此时AM =12AP ,由勾股定理知BC =22AB AC +=5,∵S △ABC =12AB •AC =12BC •AP ,∴AP =345⨯=125,∴AM =12AP =65. 题八: 1+13.详解:作点F 关于BC 的对称点G ,连接EG ,交BC 于D 点,D 点即为所求,∵E 是AB 边的中点,F 是AC 边的中点,∴EF 为△ABC 的中位线,∵BC =2,∴EF =12BC =12×2=1;∵EF 为△ABC 的中位线,∴EF ∥BC ,∴∠EFG =∠C =90°,又∵∠ABC =60°,BC =2,FG =AC =23,EG =22EF FG +=13,∴DE +FE +DF =EG +EF =1+13.题九: 见详解.详解:(1)BD =CD .理由:∵AF ∥BC ,∴∠AFE =∠DCE ,∵E 是AD 的中点, ∴AE =DE ,在△AEF 和△DEC 中,∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AEF ≌△DEC (AAS),∴AF =CD ,∵AF =BD ,∴BD =CD ;(2)当△ABC 满足:AB =AC 时,四边形AFBD 是矩形.理由:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形,∵AB =AC ,BD =CD ,∴∠ADB =90°,∴平行四边形AFBD 是矩形. 题十: 见详解.详解:(1)∵△BCF 和△ACE 是等边三角形,∴AC =CE ,BC =CF ,∠ECA =∠BCF =60°,∴∠ECA -∠FCA =∠BCF -∠FCA ,即∠ACB =∠ECF ,∵在△ACB 和△ECF 中,AC =CE ,∠ACB =∠ECF ,BC =CF ,∴△ACB ≌△ECF (SAS),∴EF =AB ,∵三角形ABD 是等边三角形,∴AB =AD ,∴EF =AD =AB ,同理FD =AE =AC ,即EF =AD ,DF =AE ,∴四边形AEFD 是平行四边形;(2)当∠BAC =150°时,平行四边形AEFD 是矩形,理由:∵△ADB 和△ACE 是等边三角形,∴∠DAB =∠EAC =60°,∵∠BAC =150°,∴∠DAE =360°-60°-60°-150°=90°,∵由(1)知:四边形AEFD 是平行四边形,∴平行四边形AEFD 是矩形.(3)当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在,理由如下:∵∠DAB =∠EAC =60°,∠BAC =60°,∴∠DAE =60°+60°+60°=180°,∴D 、A 、E 三点共线,即边DA 、AE 在一条直线上,∴当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在.题十一: 见详解.详解:(1)∵在平行四边形ABCD 中,AD =BC ,AD ∥BC ,∴∠EDO =∠BCO ,∠DEO =∠CBO ,∵DE =AD ,∴DE =BC , 在△BOC 和△EOD 中,∠OBC =∠OED ,BC =DE ,∠OCB =∠ODE ,∴△BOC ≌△EOD (ASA);(2)∵DE =BC ,DE ∥BC ,∴四边形BCED 是平行四边形, 在平行四边形ABCD 中,AB ∥DC ,∴∠A =∠ODE ,∵∠A =12∠EOC ,∴∠ODE =12∠EOC , ∵∠ODE +∠OED =∠EOC ,∴∠ODE =∠OED ,∴OE =OD ,∵平行四边形BCED 中,CD =2OD ,B E =2OE ,∴CD =BE ,∴平行四边形BCED 为矩形.题十二:见详解.详解:矩形.理由:连接OM,∵AB=CD,BC=DA,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AM⊥MC,BM⊥MD,∴∠AMC=∠BMD=90°,∴OM=12BD,OM=12AC,∴BD=AC,∴四边形ABCD是矩形.题十三:见详解.详解:(1)四边形ABDE是平行四边形,理由:∵AB=AC,D是BC中点,F是AC中点,∴DF∥AB,∵AB=AC,D是BC 中点,∴∠BAD=∠CAD,AD⊥DC,∵AN是△ABC的外角∠MAC的角平分线,∴∠MAE=∠CAE,∴∠NAD=90°,∴AE∥BD,∴四边形ABDE是平行四边形;(2)CE∥AD,CE=AD;理由:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=12∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵AB=AC,点D为BC中点,∴AD⊥BC,∵CE⊥AN,∴AD∥CE,∴四边形ADCE为平行四边形,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形,∴CE∥AD,CE=AD.题十四:见详解.详解:(1)∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD,∵点E、F分别是AB、CD的中点,∴AE=12 AB,CF=12CD.∴AE=CF,在△AED与△CBF中,AD=CB,∠4=∠C,AE=CF,∴△ADE≌△CBF(SAS),(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AG∥BD,∴四边形AGBD是平行四边形,∵四边形BEDF是菱形,∴DE=BE,∵AE=BE,∴AE=BE=DE,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,即∠ADB=90°,∴四边形AGBD是矩形.题十五:5.详解:把折叠的图展开,如图所示:EF=AD,∵AD=5,∴EF=5,∴PF+PE=5.题十六:PF+PG =AB.详解:PF+PG=AB.理由如下:连接PE,则S△BEP+S△DEP=S△BED,即12BE•PF+12DE•PG =12DE•AB.又∵BE=DE,∴12DE•PF+12DE•PG=12DE•AB,即12DE(PF+PG)=12DE•AB,∴PF+PG =AB.。
(完整版)矩形、菱形与正方形-专题训练(含答案)
矩形、菱形与正方形专题训练(含答案)班级________姓名________成绩________一、选择题(每小题3分,共30分)1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )A.12 B.24 C.12 3 D.16 3第1题图第2题图第3题图第4题图2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( ) A.14 B.15 C.16 D.173.如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则C′D的长为( ) A.1 B.2 C.3 D.44.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是( )A.矩形B.菱形C.正方形D.梯形5.由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是( )A.平行四边形B.矩形C.菱形D.正方形6.如图,▱ABCD的周长为16 cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为( )A.4 cm B.6 cm C.8 cm D.10 cm第6题图第9题图第10题图7.菱形的周长为8 cm,高为1 cm,则菱形两邻角度数比为( )A.3∶1 B.4∶1 C.5∶1 D.6∶18.用两块完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形,一定能拼成的图形是( )A.①④⑤B.②⑤⑥C.①②③D.①②⑤9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( )A.16 B.17 C.18 D.1910.如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD 的面积为64,△CEF的面积为50,则△CBE的面积为( )A.20 B.24 C.25 D.26二、填空题(每小题3分,共24分)11.如图所示,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为点E,连结CP,则∠CPB=____度.第11题图第12题图第14题图第15题图12.如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1分别是四边形ABCD 各边中点,如果AC=8,BD=10,则四边形A1B1C1D1的面积为___.13.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20 cm,则其对角线长为____________-_,矩形的面积为_______________.14.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是____cm2.15.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连结DE和BF,分别取DE,BF的中点M,N,连结AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为____________.,第16题图第17题第18题图16.如图,▱ABCD的对角线相交于点O,请你添加一个条件______________,使▱ABCD是矩形.17.如图,正方形ABCD中,对角线AC,BD交于点O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G,F,AC=10,则EG+EF=____.18.如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为_______________________________.三、解答题(共66分)19.(6分)如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC且EF=EC,DE =4 cm,矩形ABCD的周长为32 cm,求AE的长.20.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连结BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.21.(8分)如图所示,矩形ABCD中,AE⊥BD于点E,∠DAE∶∠BAE=3∶1,求∠BAE和∠EAO 的度数.22.(10分)如图,已知菱形ABCD中,AB=AC,E,F分别是BC,AD的中点,连结AE,CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形ABCD的面积.23.(12分)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF,求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.24.(10分)在四边形ABCD中,AB=CD,M,N,P,Q分别是AD,BC,BD,AC的中点,求证:MN与PQ互相垂直平分.参考答案一、选择题(每小题3分,共30分)1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( D )A.12 B.24 C.12 D.16第1题图第2题图第3题图第4题图2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( C ) A.14 B.15 C.16 D.173.如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则C′D的长为( B ) A.1 B.2 C.3 D.44.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是( A )A.矩形B.菱形C.正方形D.梯形5.由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是( B )A.平行四边形B.矩形C.菱形D.正方形6.如图,▱ABCD的周长为16 cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为( C )A.4 cm B.6 cm C.8 cm D.10 cm第6题图第9题图第10题图7.菱形的周长为8 cm,高为1 cm,则菱形两邻角度数比为( C )A.3∶1 B.4∶1 C.5∶1 D.6∶18.用两块完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形,一定能拼成的图形是( D )A.①④⑤B.②⑤⑥C.①②③D.①②⑤9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( B )A.16 B.17 C.18 D.1910.如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD 的面积为64,△CEF的面积为50,则△CBE的面积为( B )A.20 B.24 C.25 D.26二、填空题(每小题3分,共24分)11.如图所示,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为点E,连结CP,则∠CPB=__72__度.第11题图第12题图第14题图第15题图12.如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1分别是四边形ABCD 各边中点,如果AC=8,BD=10,则四边形A1B1C1D1的面积为__20__.13.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20 cm,则其对角线长为__40_cm__,矩形的面积为__400_cm2__.14.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是__16__cm2.15.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连结DE和BF,分别取DE,BF的中点M,N,连结AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为__2__.,第16题图第17题第18题图16.如图,▱ABCD的对角线相交于点O,请你添加一个条件__AO=BO(答案不唯一)__,使▱ABCD 是矩形.17.如图,正方形ABCD中,对角线AC,BD交于点O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G,F,AC=10,则EG+EF=__5__.18.如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为__(8,4),(3,4)或(2,4)__.三、解答题(共66分)19.(6分)如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC且EF=EC,DE =4 cm,矩形ABCD的周长为32 cm,求AE的长.解:∵∠AFE +∠AEF =∠AEF +∠CED =90°,∴∠AFE =∠DEC .又∵∠A =∠D =90°,EF =EC ,∴△AEF ≌△DCE ,∴AE =CD .设AE =x ,则CD =x ,∴AD +CD =21×32,即x +4+x =16,∴x =6.即AE =6 cm20.(8分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相交于点O ,与BC 相交于点N ,连结BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB =4,AD =8,求MD 的长.解:(1)∵MN 是BD 的垂直平分线,∴BO =DO ,∠BON =∠DOM =90°.∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠BNO =∠DMO ,∴△BON ≌△DOM (AAS ),∴OM =ON .∵OB =OD ,∴四边形BMDN 是平行四边形.∵MN ⊥BD ,∴▱BMDN 是菱形(2)设MD =x ,则MB =x ,MA =8-x ,在Rt △ABM 中,∵BM 2=AM 2+AB 2,∴x 2=(8-x )2+42,解得x =5.∴MD 的长为521.(8分)如图所示,矩形ABCD 中,AE ⊥BD 于点E ,∠DAE ∶∠BAE =3∶1,求∠BAE 和∠EAO 的度数.解:提示:由∠DAE ∶∠BAE =3∶1,求出∠BAE =22.5°,而∠ABD =90°-∠BAE =90°-22.5°=67.5°,∵∠BAO =∠ABD =67.5°,∴∠EAO =∠BAO -∠BAE =67.5°-22.5°=45°22.(10分)如图,已知菱形ABCD 中,AB =AC ,E ,F 分别是BC ,AD 的中点,连结AE ,CF .(1)证明:四边形AECF 是矩形;(2)若AB =8,求菱形ABCD 的面积.解:(1)∵四边形ABCD 是菱形,∴AB =BC ,又∵AB =AC ,∴△ABC 是等边三角形.∵E 是BC 的中点,∴AE ⊥BC (等边三角形三线合一),∠AEC =90°.同理,CF ⊥AD .∵E ,F 分别是BC ,AD 的中点,∴AF =21AD ,EC =21BC .∵四边形ABCD 是菱形,∴AD 綊BC ,∴AF 綊EC ,∴四边形AECF 是平行四边形(一组对边平行且相等的四边形是平行四边形).又∵∠AEC =90°,∴四边形AECF 是矩形(有一个角是直角的平行四边形是矩形)(2)在Rt △ABE 中,∵AE ==4,∴S 菱形ABCD =8×4=3223.(12分)如图,已知四边形ABCD 是平行四边形,DE ⊥AB ,DF ⊥BC ,垂足分别是点E ,F ,并且DE =DF ,求证:(1)△ADE ≌△CDF ;(2)四边形ABCD 是菱形.解:证明:(1)∵四边形ABCD 是平行四边形,∴∠A =∠C ,又∵DE =DF ,DE ⊥AB ,DF ⊥BC ,∴∠DEA =∠DFC =90°,∴△ADE ≌△CDF (AAS ) (2)由(1)知AD =DC ,又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形24.(10分)在四边形ABCD 中,AB =CD ,M ,N ,P ,Q 分别是AD ,BC ,BD ,AC 的中点,求证:MN 与PQ 互相垂直平分.解:证明:连结MP ,NQ ,PN ,MQ ,∵PM 綊21AB ,同理NQ 綊21AB ,∴PM 綊NQ ,∴四边形MPNQ 为平行四边形,又∵PN 綊21CD ,而CD =AB ,∴PN =PM ,∴四边形MPNQ 为菱形,∴MN 与PQ 互相垂直平分。
中考数学专题训练:矩形、菱形、正方形(附参考答案)
中考数学专题训练:矩形、菱形、正方形(附参考答案)1.下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形2.如图,D ,E ,F 分别是△ABC 各边的中点,则以下说法错误的是( )A .△BDE 和△DCF 的面积相等B .四边形AEDF 是平行四边形C .若AB =BC ,则四边形AEDF 是菱形D .若∠A =90°,则四边形AEDF 是矩形3.如图,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,CE ,DF 交于点G ,连接AG .下列结论:①CE =DF ;②CE ⊥DF ;③∠AGE =∠CDF .其中正确的结论是( )A .①②B .①③C .②③D .①②③4.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 为BC 的中点,连接EO 并延长交AD 于点F ,∠ABC =60°,BC =2AB .下列结论:①AB ⊥AC ;②AD =4OE ;③四边形AECF 是菱形;④S △BOE =14S △ABC .其中正确结论的个数是( )A .4B .3C .2D .15.如图,在矩形ABCD中,AB=6 cm,BC=9 cm,点E,F分别在边AB,BC上,AE=2 cm,BD,EF交于点G.若G是EF的中点,则BG的长为______cm.6.如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC的中点,则EF的长为_____.7.已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE=BH;(2)如图2,若AE=AB,连接CF,在不添加任何辅助线情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.8.如图,在菱形ABCD中,E,F,G,H分别是AB,BC,CD,AD上的点,且BE =BF=CG=AH.若菱形的面积等于24,BD=8,则EF+GH=_____.9.如图,在矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.10.(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC 到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.参考答案1.A 2.C 3.A 4.D5.√13 6.5 7.(1)证明略 (2)略8.6解析:如图,连接AC ,交BD 于点O ,∵四边形ABCD 是菱形,BD =8,∴AB =BC =AD =CD ,AC ⊥BD ,AO =OC =12AC ,BO =OD =12BD =4. ∵S 菱形ABCD =12AC ·BD =24,∴AC =6,∴AO =3,∴AB =√AO 2+BO 2=5=AD .∵BE =BF =CG =AH ,∴AE =CF =DH =DG ,∴BE AE =BF CF ,∴EF ∥AC .同理可得GH ∥AC ,设BE =BF =CG =AH =a ,则有DH =5-a ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴BE AB =EF AC ,即a 5=EF 6,∴EF =65a ,同理可得DH DA =GH CA ,即5−a 5=GH 6,∴GH =6-65a ,∴EF +GH =6.9.(1)证明略(2)与△OBF相似的三角形有△ECF,△BAF,理由略(3)DE=3+√1910.(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°.∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF.(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°.∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF.∵CH=DE,∴CF=CH.∵点H在BC的延长线上,∴∠DCH=∠DCF=90°.又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H.∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H.(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG. ∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11.∵CF+CG=FG,∴CF=FG-CG=11-8=3,即CF的长为3.。
中考数学精选汇编矩形菱形与正方形---13道题目(含答案)
01如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以证明.如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以证明.答案:(1)由图可知,∠DAG,∠AFB,∠CDE与∠AED相等;(2)选择∠DAG=∠AED,证明如下:∵正方形ABCD,∴∠DAB=∠B=90°,AD=AB,∵AF=DE,在△DAE与△ABF中,,∴△DAE≌△ABF(SAS),∴∠ADE=∠BAF,∵∠DAG+∠BAF=90°,∠GDA+∠AED=90°,∴∠DAG=∠AED.02如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【考点】矩形的性质;全等三角形的判定与性质;菱形的判定.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,OB=OD,由平行线的性质得出∠FBH=∠ED G,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS即可得出结论;(2)先证明四边形EGFH是平行四边形,再由等腰三角形的性质得出EF⊥GH,即可得出四边形EGFH是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,OB=OD,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∵EG∥FH,∴∠OHF=∠OGE,∴∠BHF=∠DGE,在△BFH和△DEG中,,∴BFH≌△DEG(AAS);(2)解:四边形EGFH是菱形;理由如下:连接DF,如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.03如图将边长为8cm的正方形纸片ABCD折叠,使点B恰好落在AD边的中点F处,折痕EG 分别交AB、CD于点E、G,FN与DC交于点M,连接BF交EG于点P.独立思考:(1)AE=_______cm,△FDM的周长为_____cm(2)猜想EG与BF之间的位置关系与数量关系,并证明你的结论.拓展延伸:如图2,若点F不是AD的中点,且不与点A、D重合:①△FDM的周长是否发生变化,并证明你的结论.②判断(2)中的结论是否仍然成立,若不成立请直接写出新的结论(不需证明).如图将边长为8cm 的正方形纸片ABCD 折叠,使点B 恰好落在AD 边的中点F 处,折痕EG 分别交AB 、CD 于点E 、G ,FN 与DC 交于点M ,连接BF 交EG 于点P.独立思考:(1)AE=_______cm ,△FDM 的周长为_____cm (2)猜想EG 与BF 之间的位置关系与数量关系,并证明你的结论.拓展延伸:如图2,若点F 不是AD 的中点,且不与点A 、D 重合:①△FDM 的周长是否发生变化,并证明你的结论.②判断(2)中的结论是否仍然成立,若不成立请直接写出新的结论(不需证明). 答案:(1)3, 16(2)EG ⊥BF, EG=BF则∠EGH+∠GEB=90°由折叠知,点B 、F 关于直线GE 所在直线对称∴∠FBE=∠EGH∵ABCD 是正方形∴AB=BC ∠C=∠ABC=90°四边形GHBC 是矩形,∴GH=BC=AB ∴△AFB 全等△HEG ∴BF=EG(3)①△FDM 的周长不发生变化 由折叠知∠EFM=∠ABC=90°∴∠DFM+∠AFE=90°∵四边形ABCD 为正方形,∠A=∠D=90°∴∠DFM+∠DMF=90°∴∠AFE=∠DMF ∴△AEF ∽△DFM ∴=FMD AEF FD AE的周长的周长V V 设AF 为x ,FD=8-x ∴-23 222(8)x AE AE +=-26416x AE -= ∴ 88x x AE AE AE FMD -=++-的周长 △ FMD 的周长=222(8)(8)16(64)16166416x x x x x +--==-- ∴△FMD 的周长不变 ②(2)中结论成立04在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.【考点】矩形的判定;全等三角形的判定与性质.【分析】(1)根据平行线得出∠CED=∠BFD,根据AAS推出两三角形全等即可;(2)根据全等得出DE=DF,根据BD=DC推出四边形是平行四边形,求出∠BEC=90°,根据矩形的判定推出即可.【解答】(1)证明:∵CE∥BF,∴∠CED=∠BFD,∵D是BC边的中点,∴BD=DC,在△BDF和△CDE中,∴△BDF≌△CDE(AAS);(2)四边形BFCE是矩形,证明:∵△BDF≌△CDE,∴DE=DF,∵BD=DC,∴四边形BFCE是平行四边形,∵BD=CD,DE=BC,∴BD=DC=DE,∴∠BEC=90°,∴平行四边形BFCE是矩形.【点评】本题考查了平行线性质,全等三角形的性质和判定,矩形的判定,平行四边形的判定的应用,注意:有一个角是直角的平行四边形是矩形.05在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.【考点】菱形的判定与性质.【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)由∠BEF是120°,可得∠EBC为60°,即可得△BEC是等边三角形,求得BE=BC=CE=6,再过点E作EG⊥BC于点G,求的高EG的长,即可求得答案.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=EF,∴四边形BCFE是菱形;(2)解:∵∠BEF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6,过点E作EG⊥BC于点G,∴EG=BE•sin60°=6×=3,=BC•EG=6×3=18.∴S菱形BCFE【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.注意证得△BEC是等边三角形是关键.06如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.【考点】垂径定理;勾股定理;菱形的判定.【分析】(1)证明△ABD≌△ACD,得到∠BAD=∠CAD,根据等腰三角形的性质即可证明;(2)菱形,证明△BFE≌△CDE,得到BF=DC,可知四边形BFCD是平行四边形,易证BD=CD,可证明结论;(3)设DE=x,则根据CE2=DE•AE列方程求出DE,再用勾股定理求出CD.【解答】(1)证明:∵AD是直径,∴∠ABD=∠A CD=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD,∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:∵AD是直径,AB=AC,∴AD⊥BC,BE=CE,∵CF∥BD,∴∠FCE=∠DBE,在△BED和△CEF中,∴△BED≌△CEF,∴CF=BD,∴四边形BFCD是平行四边形,∵∠BAD=∠CAD,∴BD=CD,∴四边形BFCD是菱形;(3)解:∵AD是直径,AD⊥BC,BE=CE,∴CE2=DE•AE,设DE=x,∵BC=8,AD=10,∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD===2.【点评】本题主要考查了圆的有关性质:垂径定理、圆周角定理,三角形全等的判定与性质,菱形的判定与性质,勾股定理,三角形相似的判定与性质,熟悉圆的有关性质是解决问题的关键..07如图,将矩形ABCD 绕点A 顺时针旋转,得到矩形'''AB C D ,点C 的对应点'C 恰好落在CB 的延长线上,边AB 交边''C D 于点E . (1)求证:'BC BC =.(2)若2AB =,1BC =,求AE 的长.ED 'C 'B'DC BAAB CD B'C 'D 'E(第12题)如图,将矩形ABCD 绕点A 顺时针旋转,得到矩形'''AB C D ,点C 的对应点'C 恰好落在CB的延长线上,边AB 交边''C D 于点E . (1)求证:'BC BC =.(2)若2AB =,1BC =,求AE 的长.答案:解:(1)连结AC 、'AC ,如图.∵四边形ABCD 为矩形,∴∠ABC =90°,即'AB CC ⊥.由旋转,得'AC AC = , ∴'BC BC =. (2)∵四边形ABCD 为矩形,∴,'90AD BC D ABC =∠=∠=︒. ∵'BC BC =,∴''BC AD =. 由旋转,得'AD AD = , ∴''BC AD =. ∵''AED C BE ∠=∠, ∴'AD E ∆≌'C BE ∆. ∴'BE D E =.设AE x =,则'2D E x =-. 在Rt 'AD E ∆中,'90D ∠=︒, 由勾股定理,得22(2)1x x --=.解得54x =. ∴54AE =.AB CD B'C 'D 'E(第12题)E D 'C 'B'DCBA08如图1,四边形ABCD是正方形,点E是边BC上的点,过点E作EF⊥AE,过点F作FG⊥BC交BC的延长线于点G..(1)求证:∠BAE=∠FEG.(2)同学们很快做出了解答,之后李老师将题目修改成:如图2,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线于点F,求证:AE=EF.(3)如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.如图1,四边形ABCD是正方形,点E是边BC上的点,过点E作EF⊥AE,过点F作FG⊥BC 交BC的延长线于点G..(1)求证:∠BAE=∠FEG.(2)同学们很快做出了解答,之后李老师将题目修改成:如图2,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线于点F,求证:AE=EF.(3)如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.【解答】解:(1)∵∠AEF=90°,∴∠AEB+∠FEG=90°,又∵直角△ABE中,∠BAE+∠AEB=90°,∴∠BAE=∠FEG;(2)作AB的中点M,连接ME.∵正方形ABCD中,AB=BC,又∵AM=MB=AB,BE=CE=BC,∴MB=BE,∴△ABE是等腰直角三角形,∴∠BME=45°,∴∠AME=135°,又∵∠ECF=180°﹣∠FCG=180°﹣45°=135°.∴∠AME=∠ECF,∴在△AME和△ECF中,,∴△AME≌△ECF,∴AE=EF;(3)在AB上取一点M,使AM=EC,连接ME.∴BM=BE,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°∴∠AME=∠ECF∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°∴∠BAE=∠CEF∴在△AME和△ECF中,,∴△AME≌△ECF(ASA),∴AE=EF.09如图,在□ABCD 中,E 、F 分别是边AB 、CD 的中点,BG ∥AC 交DA 的延长线于点G . (1)求证:△ADF ≌△CBE ;(2)若四边形AGBC 是矩形,判断四边形AECF 是什么特殊的四边形?并证明你的结论.GFCEABD如图,在□ABCD 中,E 、F 分别是边AB 、CD 的中点,BG ∥AC 交DA 的延长线于点G . (1)求证:△ADF ≌△CBE ;(2)若四边形AGBC 是矩形,判断四边形AECF 是什么特殊的四边形?并证明你的结论.GFCEABD答案:(1)证明:∵□ABCD ,∴AD =CB ,∠D =∠ABC ,AB =CD , 又∵E 、F 分别是边AB 、CD 的中点,∴DF =BE ,∴△ADF ∽≌△CBE ;(2)四边形AECF 为菱形;∵矩形AGBC ,∴∠ACB =90°,又∵E 为AB 中点, (3)∴CE =21AB =AE ,同理AF =FC ,∴AF =FC =CE =EA ,∴四边形AECF 为菱形.10如图,矩形ABCD中,AD=5,AB=3,在BC边上取一点E,使BE=4,连结AE,沿AE 剪下△ABE,将它平移至△DCF的位置,拼成四边形AEFD.(1)求证:四边形AEFD是菱形;(2)求四边形AEFD的两条对角线的长.如图,矩形ABCD中,AD=5,AB=3,在BC边上取一点E,使BE=4,连结AE,沿AE剪下△ABE,将它平移至△DCF的位置,拼成四边形AEFD.(1)求证:四边形AEFD是菱形;(2)求四边形AEFD的两条对角线的长.答案:(1)证明:∵△ABE平移至△DCF的位置.∴△ABE≌△DCF.∴BE=CF∵四边形ABCD为矩形.∴AD∥BC,AD=BC,∠B=90°.∴EF=EC+CF=EC+BE=BC=AD.∴四边形AEFD为平行四边形.在Rt△ABE中,根据勾股定理得:AE=2222+=+=AB BE345∵AD=5,∴AD=AE.∴四边形AEFD为菱形.(2)连结DE、AF.求出DE=10.求出AF=310.11如图,在正方形ABCD 中,AB=5,P 是BC 边上任意一点,E 是BC 延长 线上一点,连接AP ,作PF ⊥AP ,使PF =PA ,连接CF ,AF ,AF 交CD 边于点G ,连接PG .(1)求证:∠GCF =∠FCE ;(2)判断线段PG ,PB 与DG 之间的数量关系,并证明你的结论; (3)若BP =2,在直线AB 上是否存在一点M ,使四 边形DMPF 是平行四边形,若存在,求出BM 的 长度,若不存在,说明理由.A B CDEFGP A B CDEF GP HKM如图,在正方形ABCD 中,AB=5,P 是BC 边上任意一点,E 是BC 延长 线上一点,连接AP ,作PF ⊥AP ,使PF =PA ,连接CF ,AF ,AF 交CD 边于点G ,连接PG .(1)求证:∠GCF =∠FCE ;(2)判断线段PG ,PB 与DG 之间的数量关系,并证明你的结论; (3)若BP =2,在直线AB 上是否存在一点M ,使四 边形DMPF 是平行四边形,若存在,求出BM 的 长度,若不存在,说明理由.答案:(1)证明:过点F 作FH ⊥BE 于点H ,∵四边形ABCD 是正方形, ∴∠ABC =∠PHF =∠DCB =90º,AB =BC , ∴∠BAP +∠APB =90º∵AP ⊥PF, ∴∠APB +∠FPH =90º ∴∠FPH =∠BAP又∵AP =PF ∴△BAP ≌△HPF ∴PH =AB ,BP =FH ∴PH =BC∴BP +PC =PC +CH ∴CH =BP =FH 而∠FHC =90º. ∴∠FCH =CFH =45º ∴∠DCF =90º-45º=45º ∴∠GCF =∠FCE(2)PG =PB +DG 证明:延长PB 至K ,使BK=DG ,∵四边形ABCD 是正方形 ∴AB=AD, ∠ABK =ADG=90º ∴△ABK ≌△ADG ∴AK=AG, ∠KAB =∠GAD, 而∠APF=90 º,AP=PF ∴∠PAF =∠PFA =45 º ∴∠BAP +∠KAB =∠KAP =45 º=∠PAF ∴△KAP ≌△GAP ∴KP=PG,∴KB +BP=DG +BP =PG 即,PG =PB +DG ; (3)存在.如图,在直线AB 上取一点M ,使四边形DMPF 是平行四边形, 则MD ∥PF ,且MD =FP ,又∵PF=AP ,∴MD=AP ∵四边形ABCD 是正方形,∴AB=AD ,∠ABP=∠DAM∴△ABP ≌△DAM ∴AM =BP=2, ∴BM =AB -AM=5-2=3. ∴当BM=3,BM+AM=AB 时,四边形DMPF 是平行四边形.AB CDEFGPAB CDEFGP HKM12如图,△OBD中,OD=BD,△OBD绕点O逆时针旋转一定角度后得到△OAC,此时B,D,C三点正好在一条直线上,且点D是BC的中点.(1)求∠COD度数;(2)求证:四边形ODAC是菱形.如图,△OBD中,OD=BD,△OBD绕点O逆时针旋转一定角度后得到△OAC,此时B,D,C三点正好在一条直线上,且点D是BC的中点.(1)求∠COD度数;(2)求证:四边形ODAC是菱形.【考点】旋转的性质;菱形的判定.【分析】(1)如图,根据题意证明△OBC为直角三角形,结合OC=,求出∠B即可解决问题.(2)首先证明AC∥OD,结合AC=OD,判断四边形ADOC为平行四边形,根据菱形的定义即可解决问题.【解答】解:(1)如图,由题意得:OC=OD=BD;∵点D是BC的中点,∴CD=BD,OD=BC,∴△OBC为直角三角形,而OC=,∴∠B=30°,∠OCD=90°﹣30°=60°,;∵OD=CD,∴∠COD=∠OCD=60°.(2)∵OD=BD,∴∠DOB=∠B=30°,由旋转变换的性质知:∠COA=∠CAO=∠B=30°,∴∠AOD=90°﹣2×30°=30°,∴∠CAO=∠AOD=30°,∴AC∥OD,而AC=OD,∴四边形ADOC为平行四边形,而OC=OD,∴四边形ODAC是菱形.【点评】该题主要考查了旋转变换的性质、直角三角形的判定、菱形的判定等几何知识点及其应用问题;解题的关键是牢固掌握旋转变换的性质、直角三角形的判定、菱形的判定等几何知识点,并能灵活运用.13如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是∠BAD的平分线,交边DC 的延长线于点F.(1)证明:CE=CF;(2)若∠B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是∠BAD的平分线,交边DC的延长线于点F.(1)证明:CE=CF;(2)若∠B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)解:(1)证明:如图(1),∵AE是∠BAD的平分线,∴∠BAF=∠DAF,在平行四边形ABCD中,∵AB∥DF,AD∥BC,∴∠BAF=∠F,∠DAF=∠CEF,∴∠F=∠CEF,∴CE=CF;(2)解:四边形ABFC是矩形,理由:如图(2),∵∠ABC=60°,AD∥BC,∴∠BAD=120°,∵∠BAF=∠DAF,∴∠BAF=60°,则△ABE是等边三角形,可得AB=BE=AE,∠BEA=∠CEF=∠AFC=60°,∵BC=2AB,∴AE=BE=EC,∴△ABC是直角三角形,∠BAC=90°,在△ABE和△FCE中∵ABE FCE BE ECBEA CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△FCE(ASA),∴AB=FC,又∵AB∥FC,∴四边形ABFC是平行四边形,再由∠BAC=90°,故四边形ABFC是矩形.。
矩形菱形正方形练习题
矩形菱形正方形练习题一、填空题1、在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为.2、在矩形中,如果AB=2,BC=1.,那么AC= .3、如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,那么四边形BCFE的面积等于.4、如图,甲,乙,丙,丁四个长方形拼成正方形EFGH,中间阴影为正方形,已知,甲、乙、丙、丁四个长方形面积的和是32cm²,四边形ABCD的面积是20cm².问甲、乙、丙、丁四个长方形周长的总和是______.5、如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是.6、如图,在矩形ABCD中,点F为边CD上一点,沿AF折叠,点D恰好落在BC边上的E点处,若AB=3,BC=5,则的值为.7、如图4,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB、CD上滑动,当CM=时,△AED与以M、N、C为顶点的三角形相似。
8、矩形中,,,边绕旋转使得点落在射线上处,那么的度数为.9、已知正方形ABCD中,点E在边DC上,DE=2,EC=1 (如图所示),把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为.10、如图4,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上时,弧BC 的长度等于(结果保留).11、在矩形中,如果AB=2,BC=1,BE⊥AC,AE= .12、如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为正方形,应添加的条件是.13、如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB= .14、如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_______.15、如图,以O为顶点的两条抛物线分别经过正方形的四个顶点A、B、C、D,则阴影部分的面积为______二、选择题16、对角线互相平分且相等的四边形是().菱形;.矩形;.正方形;.等腰梯形.17、若一个菱形的一条边长为4cm,则这个菱形的周长为()(A)20cm (B)18cm (C)16cm (D)12cm18、如图,将边长为12cm的正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN.若CE的长为8cm,则MN的长为A.12cm B.12.5cm C. cm D.13.5cm19、若一个菱形的一条边长为4cm,则这个菱形的周长为()(A)20cm (B)18cm (C)16cm (D)12cm20、如图,顺次连结四边形ABCD各中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB∥DC B.AB=DC C.AC⊥BD D.AC=BD21、已知四边形ABCD是平行四边形,下列结论中不正确的有()①当AB=BC时,它是菱形②当AC⊥BD时,它是菱形③当∠ABC=90时,它是矩形④当AC=BD 时,它是正方形 A.1组 B.2组 C.3组 D.4组22、下列命题中,真命题是()A.矩形的对角线相互垂直B.顺次连结四边形各边中点所得到的四边形是矩形 C.等边三角形既是轴对称图形又是中心对称图形 D.对角线互相垂直平分的四边形是菱形23、如图,矩形ABCD中,AB=3,BC=5,过对角线交点O作OE⊥AC交AD于E,则AE的长是().A.1.6 B.2.5 C.3 D.3.424、如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是().25、如图,在正方形纸片ABCD中,E,F分别是AD、BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有().A.1个B.2个C.3个D.4个26、已知四边形中,,如果添加一个条件,即可判定该四边形是正方形,那么所添加的这个条件可以是().(A);(B);(C);(D).27、菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为( )A.2 B.2C.4 D.428、已知四边形中,,如果添加一个条件,即可判定该四边形是正方形,那么所添加的这个条件可以是().(A);(B);(C);(D).29、在下列命题中,真命题是()(A)两条对角线相等的四边形是矩形(B)两条对角线互相垂直的四边形是菱形(C)两条对角线互相平分的四边形是平行四边形(D)两条对角线互相垂直且相等的四边形是正方形30、如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为( ) A.2 B.2C.4 D.431、如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是(). A.2+ B.2+2C.12 D.1832、在下列命题中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形 C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形33、如图,在菱形ABCD中,点E、 F分别是AB、AC的中点,如果EF=3,那么菱形ABCD的周长是()A. 24B. 18C. 12D. 634、正方形、正方形和正方形的位置如图所示,点在线段上,正方形的边长为4,则的面积为()A.10B.12C.14D.1635、如图,四边形的对角线互相平分,要使它成为矩形,那么需要添加的条件是( )A. B. C. D.36、下列四边形:①正方形、②矩形、③菱形,对角线一定相等的是A.①②③ B.①② C.①③ D.②③37、如图,在菱形ABCD中,DE⊥AB,,AE=3,则tan∠DBE的值是()A.B.2 C.D.38、一个正方形的面积等于10,则它的边长a满足A. 3<a<4B. 5<a<6C.7<a<8D. 9<a<1039、如图,矩形ABCD的对角线AC⊥OF,边CD在OE上,∠BAC=70°,则∠EOF等于()A. 10°B. 20°C. 30°D. 70°40、如图,在正方形ABCD中,AB=3㎝.动点M自A点出发沿AB方向以每秒1㎝的速度运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3㎝的速度运动,到达B点时运动同时停止.设△AMN的面积为y(㎝2),运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是41、如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形三、简答题42、如图,在正方形中,为对角线上一点,联结、,延长交于点.(1)求证:;(2)当时,求证:.43、已知,正方形ABCD中,∠MAN=45°, ∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由.如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)44、矩形纸片中,,现将这张纸片按下列图示方式折叠,是折痕.(1)如图1,P,Q 分别为,的中点,点的对应点在上,求和的长;(2)如图2,,点的对应点在上,求的长;(3)如图3,,点的对应点在上.①直接写出的长(用含的代数式表示);②当越来越大时,的长越来越接近于▲.45、已知:如图,菱形中,分别是上的点,且CE=CF.求证:.46、如图,⊙O 的直径AB =8,C 为圆周上一点,AC =4,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点 E . (1) 求∠AEC 的度数; (2)求证:四边形OBEC 是菱形.47、在正方形ABCD 中,O 是AD 的中点,点P 从A 点出发沿A →B →C →D 的路线匀速运动,移动到点D 时停止。
(完整版)矩形菱形与正方形测试题及答案
第19章 矩形、菱形与正方形测试题一、选择题(每小题3分,共30分)1、关于四边形ABCD ①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC 和BD 相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有( )。
(A ) 1个 (B )2个 (C )3个 (D )4个2、若顺次连结四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必定是( )A 、菱形B 、对角线相互垂直的四边形C 、正方形D 、对角线相等的四边形 3、如图1,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A.S 1 > S 2B.S 1 = S 2C.S 1<S 2D.S 1、S 2 的大小关系不确定 4、矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则这个矩形的面积为( )A.3cm 2B. 4cm 2C. 12cm 2D. 4cm 2或12cm 2 5、如图2,菱形花坛 ABCD 的边长为 6m ,∠B =60°,其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长(粗线部分)为( ) A.123m B.20m C.22m D.24m6、如图3,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则折痕EF 的长是( ) A .3B .23C .5D .257、如图4,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地. 根据图中数据,计算耕地的面积为( )A .600m 2B .551m 2C .550 m 2D .500m 28、如图5,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是 ( )A.3∶4B.5∶8C.9∶16D.1∶29、如图6,矩形ABCD 中,DE ⊥AC 于E ,且∠ADE :∠EDC=3:2,则∠BDE 的度数为 ( )A 、36oB 、9oC 、27oD 、18o图41m1m30m 20mFEDCBA图3图2图110、如图7,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3走2走到正方形O 3KJP 的中心O 4,一共走了31 2 m ,则长方形花坛ABCD 的周长是( )A.36 mB.48mC.96 mD.60 m二、填空题(每小题3分,共30分)11,如图8, 若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于___.12,如图9,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1 S 2(填“>”或“<”或“=”).13,如图10,四边形ABCD 是正方形,P 在CD 上,△ADP 旋转后能够与△ABP ′重合,若AB =3,DP =1,则PP ′=___.14,已知菱形有一个锐角为60°,一条对角线长为6cm ,则其面积为___cm 2. 15,如图11,在梯形ABCD 中,已知AB ∥CD ,点E 为BC 的中点, 设△DEA 的面积为S 1,梯形ABCD 的面积为S 2,则S 1与S 2的关系为___.16,如图12,四边形ABCD 的两条对角线AC 、BD 互相垂直,A 1B 1C 1D 1四边形ABCD 的中点四边形.如果AC =8,BD =10,那么四边形A 1B 1C 1D 1的面积为___.17,如图13,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,AB CD 图5图7图12 A 1 B 1C 1D 1 D AB C D A B C E F 图13 D CB A 图8 图10图9 KN M Q C B图11 E D C BA 图6点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为___.18,将一张长方形的纸对折,如图14所示,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕,如果对折n 次,可以得到 条折痕.19、如图15,已知AB ∥DC ,AE ⊥DC ,AE =12,BD =15,AC =20, 则梯形ABCD 的面积为___.20、在直线l 上依次摆放着七个正方形(如图16所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=___.三、解答题21、(8分)如图17,把一张长方形ABCD 的纸片沿EF 折叠后,ED 与BC 的交点为G ,点D 、C 分别落在D ′、C ′的位置上,若∠EFG=55°,求∠AEG 和∠EGB 的度数。
第22讲矩形、菱形、正方形(含答案)
第二节 矩形、菱形、正方形厂S.对ft 践相等J」&四个内角顽。
忑#辿平狞I2对边相聲1 一|3•对角相輛1 T4jOl 线月一相平芬1—I®对角线互相垂直1 —19•对角线平分各内角【例题经典】 会用“阶梯型”思路判定特殊平行四边形例 1.(2005年黄冈市)如图,在 Rt △ ABC 中, / ACB=90 , / BAC=60 , DE?垂直平分BC,垂足为D,交AB 于点E ,又点F 在DE 的延长线 上,且AF=CE 求证:四边形 ACEF 为菱形.【分析】欲证四边形 ACEF 为菱形,可先证四边形 ACEF 为平行 四边形,然后再证 U ACEF 为菱形,当然,也可证四条边相等,直 接证四边形为菱形.矩形、菱形的综合应用例2 . (2006年青岛市)如图, 在U ABCD 中, E 、F 分别为边 AB CD 的中点,BD 是对角线,AG// DB 交CB 的延长线于G (1)求证:△ ADE^A CBF ;【回顾与思考】 平行四边呦1»1,肃线垂直且相尊'3 D(2 )若四边形BEDF 是菱形,则四边形 AGBD 是什么特殊四边形?并证明你的结论. 【解析】(1 )•••四边形ABCD 是平行四边形 •••/ 1=/ C, AD=CB AB=CD• •点E 、F 分别是AB CD 的中点,1 1 ••• AE=——AB, CF=——CD22••• AE=CF•••△ ADE^A CBF(2 )当四边形BEDF 是菱形时,四边形 AGBD 是矩形. •••四边形ABCD 是平行四边形, ••• AD// BC. • AG// BD,•••四边形AGBD 是平行四边形. •••四边形BEDF 是菱形, ••• DE=BE •/ AE=BE••• AE=BE=DE•••/ 1=/ 2,/ 3=/ 4 .• / 1+/ 2+/ 3+/ 4=180°, ••• 2 / 2+2/ 3=180° .•••/ 2+/ 3=90° . 即/ ADB=90 , •••四边形AGBD 是矩形.会解决与特殊平行四边形有关的动手操作问题 例3. (2005年吉林省)如图,在矩形纸片ABCD 中, AB=3%/3 , 落在AB 边上的点P 处,点D 落在点Q 处,AD 与PQ 相交于点 (1 )求BE 、QF 的长.(2)求四边形PEFH 的面积.【分析】折叠型试题是近年中考试题的热点,要想解好此类题,考生必须有想像力, 抓住折叠的角与边不发生变化,必要时需要考生剪一个四边形实际折叠一下帮助理解.【考点精练】 一、基础训练1如图1,在菱形 ABCD 中,已知AB=10, AC=16那么菱形 ABCD 勺面积为 ________________ . 2. (2006年黄冈市)如图2,将边长为8cm 的正方形ABCD 勺四边沿直线L 向右滚动(不滑 动),当正方形滚动两周时,正方形的顶点 A 所经过的路线的长是 __________ cmBC=6, H,/ 沿EF 折叠后,点CBPE=30.M) GO D...1S C (£>) 5 C(3)3 .用两个全等的直角三角形拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形;一定可以拼成的是_______________ (只填序号). 4•如图3,点E、F是菱形ABCD勺边BC CD上的点,请你添加一个条件(?不得另外添加辅助线和字母),使AE=AF你添加的条件是___________________ .5. (2006年烟台市)如图4,先将一矩形ABCD置于直角坐标系中,使点A与坐标系的原点重合,边AB AD分别落在x轴、y轴上(如图①所示),?再将此矩形在坐标平面内按逆时针方向绕原点旋转30。
2024学年八年级数学经典好题专项(矩形、菱形、正方形)练习(附答案)
2024学年八年级数学经典好题专项(矩形、菱形、正方形)练习一、选择题1、菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形2、如图,菱形ABCD 中,∠D =150°,则∠1=( )A .30°B .25°C .20°D .15°(2题) (3题) (4题)3、如图,在▱ABCD 中,AB =BC ,下列结论错误的是( )A .四边形ABCD 是菱形B .AB =ADC .AO =OC ,BO =OD D .∠BAD =∠ABC4、如图所示,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A .2 3B .3 3C .4 3D .35、如图,菱形ABCD 中,AB=15,∠ADC=120°,则B、D 两点之间的距离为( )A.15 B.3215 C.7.5 D.315(5题) (7题) (8题) (9题)6、菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是( )A.8cm 和cm B.4cm 和cm C.8cm 和cm D.4cm 和cm7、如图,菱形ABCD 的对角线AC ,BD 的长分别为6 cm ,8 cm ,则这个菱形的周长为( )A .5 cmB .10 cmC .14 cmD .20 cm8、如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点F ,垂足为点E ,连接DF ,则∠CDF 等于( )A .50°B .60°C .70°D .80°9、如图.剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC C.AB=CD ,AD=BC D.∠DAB+∠BCD=180º10、如图,在平面直角坐标系中,四边形OABC 为菱形,O(0,0),A(4,0),∠AOC =60°,则对角线交点E 的坐标为( )A .(2, 3 )B .( 3 ,2)C .( 3 ,3)D .(3, 3 )(10题) (11题) (12题) (13题)二、填空题11、如图,在△ABC 中,点D ,E ,F 分别在边BC ,AB ,CA 上,且DE ∥CA ,DF ∥BA.小聪认为如果AD平分∠BAC ,那么四边形AEDF 是菱形,小聪的说法 .(填“正确”或“不正确”)12、在菱形ABCD 中,对角线AC 、BD 相交于点O ,若∠ABC =140°,则∠BAD =________°,∠ABD =________°,∠BCA =________°;13、如图,菱形ABCD 的边长为2 cm ,E 是BC 的中点,且AE ⊥BC ,则菱形ABCD 的面积为_____.14、如图,P 是菱形ABCD 的对角线AC 上一点,PE ⊥AD 于点E ,且PE =3 cm ,则点P 到AB 的距离为__ __ cm.(14题) (15题) (17题) (20题)15、如图,在菱形ABCD 中,AB =5,AO =3,点E 在BC 的延长线上,∠E =12∠ABC ,DE =16、菱形ABCD 的周长为48cm,∠BAD:∠ABC=1:2,则BD=_____,菱形的面积是______.17、如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,若AC =8 cm ,BD =6 cm ,则该菱形的面积为________cm 2,周长为________cm.18、已知菱形ABCD 的面积为24 cm 2,若对角线AC =6 cm ,则这个菱形的边长为____ cm.19、四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE =3,则CE 的长为_________20、如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边的中点,则MP +PN 的最小值是______.三、解答题21、已知:如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC于点F. 四边形DECF 是菱形吗?为什么?22、如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8 cm,BD=6 cm,DH⊥AB于H.(1)求菱形ABCD的面积;(2)求DH的长.23、如图,在菱形ABCD中,对角线AC与BD相交于点O,BD=12 cm,AC=6 cm.求菱形的周长.24、已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.25、如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.26、已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.参考答案一、选择题1、菱形不具备的性质是( B )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形2、如图,菱形ABCD 中,∠D =150°,则∠1=( D )A .30°B .25°C .20°D .15°3、如图,在▱ABCD 中,AB =BC ,下列结论错误的是( D )A .四边形ABCD 是菱形B .AB =ADC .AO =OC ,BO =OD D .∠BAD =∠ABC4、如图所示,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( B )A .2 3B .3 3C .4 3D .35、如图,菱形ABCD 中,AB=15,∠ADC=120°,则B、D 两点之间的距离为( A )A.15 B.3215 C.7.5 D.3156、菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是(C )A.8cm 和cm B.4cm 和cm C.8cm 和cm D.4cm 和cm7、如图,菱形ABCD 的对角线AC ,BD 的长分别为6 cm ,8 cm ,则这个菱形的周长为(D )A .5 cmB .10 cmC .14 cmD .20 cm8、如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为点E,连接DF,则∠CDF等于( B )A.50° B.60° C.70° D.80°9、如图.剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC C.AB=CD ,AD=BC D.∠DAB+∠BCD=180º解析:∵四边形ABCD是用两张等宽的纸条交叉重叠放在一起而组成的图形,∴AB∥CD,AD∥BC, ∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形).过点A分别作BC,CD边上的高为AE,AF,连接AC,则AE=AF(两纸条相同,纸条宽度相同),∴在平行四边形ABCD中.S△ABC=S△ACD,即BC•AE=CD•AF,∴BC=CD,AB=BC.故B中结论成立;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形),∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A中结论成立;AB=CD,AD=BC(平行四边形的对边相等),故C中结论成立:当四边形ABCD是矩形时,有∠DAB+∠BCD=180º.故D中结论不一定成立,故选D.10、如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为( D )A.(2, 3 ) B.( 3 ,2) C.( 3 ,3) D.(3, 3 )二、填空题11、如图,在△ABC中,点D,E,F分别在边BC,AB,CA上,且DE∥CA,DF∥BA.小聪认为如果AD平分∠BAC,那么四边形AEDF是菱形,小聪的说法正确.(填“正确”或“不正确”)12、在菱形ABCD中,对角线AC、BD相交于点O,若∠ABC=140°,则∠BAD=________°,∠ABD=________°,∠BCA=________°;答案:40,70,2013、如图,菱形ABCD的边长为2 cm,E是BC的中点,且AE⊥BC,则菱形ABCD的面积为__2 3 cm2 ____.14、如图,P是菱形ABCD的对角线AC上一点,PE⊥AD于点E,且PE=3 cm,则点P到AB的距离为__3 __ cm.15、如图,在菱形ABCD中,AB=5,AO=3,点E在BC的延长线上,∠E=12∠ABC,DE=816、菱形ABCD的周长为48cm,∠BAD:∠ABC=1:2,则BD=_____,菱形的面积是______.217、如图,在菱形ABCD中,对角线AC、BD相交于点O,若AC=8 cm,BD=6 cm,则该菱形的面积为________cm2,周长为________cm.答案:24,2018、已知菱形ABCD的面积为24 cm2,若对角线AC=6 cm,则这个菱形的边长为__5 __ cm.19、四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=3,则CE的长为___43或23______20、如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边的中点,则MP+PN的最小值是__1 ____.三、解答题21、已知:如图,在△ABC中,CD平分∠ACB交AB于点D,DE∥AC交BC于点E,DF∥BC交AC于点F. 四边形DECF是菱形吗?为什么?解:四边形DECF是菱形.理由如下:∵DE∥FC,DF∥EC,∴四边形DECF为平行四边形.由AC∥DE,知∠2=∠3. ∵CD平分∠ACB,∴∠1=∠2,∴∠1=∠3,∴DE=EC,∴平行四边形DECF为菱形.22、如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8 cm,BD=6 cm,DH⊥AB于H.(1)求菱形ABCD的面积;(2)求DH的长.解:(1)∵四边形ABCD 是菱形,AC =8 cm ,BD =6 cm ,∴S 菱形ABCD =12ACꞏBD =12×6×8=24(cm 2).(2)∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12=4 cm ,OB =OD =3 cm ,∴在直角三角形AOB 中,AB =OB 2+OA 2=32+42=5 cm ,∴DH =S 菱形ABCD AB =4.8 cm.23、如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,BD =12 cm ,AC =6 cm.求菱形的周长.解:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =12AC ,BO =12 BD.∵AC =6 cm ,BD =12 cm , ∴AO =3 cm ,BO =6 cm.在Rt △ABO 中,由勾股定理,得AB =AO 2+BO 2=32+62=3 5 cm ,∴菱形的周长=4AB=4×3 5 =12 5 cm.24、已知:如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE ∥AC ,AE ∥BD.(1)求证:四边形AODE 是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE 的面积.解答:(1)证明:∵DE ∥AC ,AE ∥BD ,∴四边形AODE 是平行四边形,∵在菱形ABCD 中,AC ⊥BD ,∴ AOD=90 , ∴平行四边形AODE 是是矩形;(2)∵∠BCD=120°,AB ∥CD ,∴∠ABC=180°‐120°=60°,∵AB=BC ,∴△ABC 是等边三角形,∴OA=21×6=3, OD=OB=6×23=33,∴四边形AODE 的面积=OA ∙OD=9325、如图,在菱形ABCD 中,点P 是BC 边上一点,连接AP ,点E ,F 是AP 上的两点,连接DE ,BF ,使得∠AED =∠ABC ,∠ABF =∠BPF .求证:(1)△ABF ≌△DAE ;(2)DE =BF +EF .证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC . ∴∠BP A =∠DAE .∵∠ABC =∠AED ,∴∠BAF =∠ADE .∵∠ABF =∠BPF ,∠BP A =∠DAE ,∴∠ABF =∠DAE .∵AB =DA ,∴△ABF ≌△DAE (ASA).(2)∵△ABF ≌△DAE , ∴BF =AE ,AF =DE .∵AF =AE +EF =BF +EF ,∴DE =BF +EF .26、已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E ,∠1=∠2.(1)若CE =1,求BC 的长;(2)求证:AM =DF +ME.(1)解:∵四边形ABCD 是菱形,∴AB ∥CD ,∴∠1=∠ACD ,∵∠1=∠2,∴∠ACD =∠2,∴MC =MD ,∵ME ⊥CD ,∴CD =2CE , ∵CE =1,∴CD =2,∴BC =CD =2(2)证明:如图,∵F 为边BC 的中点,∴BF =CF =12BC ,∴CF =CE ,在菱形ABCD 中,AC 平分∠BCD ,∴∠ACB =∠ACD ,在△CEM 和△CFM 中,∵⎩⎪⎨⎪⎧CE =CF ,∠ACB =∠ACD ,CM =CM ,∴△CEM ≌△CFM(SAS),∴ME =MF ,延长AB 交DF 的延长线于点G , ∵AB ∥CD ,∴∠G =∠2, ∵∠1=∠2,∴∠1=∠G ,∴AM =MG ,在△CDF 和△BGF 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠FC FB DFC GFB G 2,∴△CDF ≌△BGF(AAS),∴GF =DF , 由图形可知,GM =GF +MF ,∴AM =DF +ME。
第19章矩形、菱形和正方形单元测试2021-2022学年华东师大版数学八年级下册(word 含答案)
第19章矩形、菱形和正方形单元测试一.单选题(共10题;共30分)1.取四边形ABCD的各边中点E、F、G、H,依次连结EFGH得到四边形EFGH,现知四边形EFGH是菱形,则四边形ABCD的对角线( )A. 相等B. 相等且平分C. 垂直D. 垂直且平分2.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的是()A. AO=CO,BO=DOB. AO=CO=BO=DOC. AO=CO,BO=DO,AC⊥BDD. AO=BO=CO=DO,AC⊥BD3.如图,矩形ABCD中,AE⊥BD垂足为E,若∠DAE=3∠BAE,则∠EAC的度数为()A. 67.5°B. 45°C. 22.5°D. 无法确定4.如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A. (,)B. (,)C. (2,﹣2)D. (,﹣)5.如图,在平面直角坐标系中,四边形ABCO是正方形,已知点C的坐标为(,1),则点B的坐标为()A. (﹣1,+1)B. (﹣1,1)C. (1,+1)D. (﹣1,2)6.下列性质中,正方形具有而菱形不一定具有的性质是()A. 四条边相等B. 对角线互相平分C. 对角线相等D. 对角线互相垂直7.菱形具有而矩形不具有的性质是()A. 对角线互相平分B. 四条边都相等C. 对角相等D. 邻角互补8.在平面中,下列说法正确的是().A. 四边相等的四边形是正方形B. 四个角相等的四边形是矩形C. 对角线相等的四边形是菱形D. 对角线互相垂直的四边形是平行四边形9.如图,ABCD、AEFC都是矩形,而且点B在EF上,这两个矩形的面积分别是S1,S2,则S1,S2的关系是()A. S1>S2B. S1<S2C. S1=S2D. 3S1=2S210.如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是()A. 90°B. 80°C. 70°D. 60°二.填空题(共8题;共24分)11.如图,已知AD∥BC,AB∥CD,AB=4,BC=6,EF是AC的垂直平分线,分别交AD、AC于E、F,连结CE,则△CDE的周长是________ .12.如图,由四个直角边分别为5和4的全等直角三角形拼成“赵爽弦图”,其中阴影部分面积为________.13.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为________.14.设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…根据以上规律,第n个正方形的边长a n=________.15.在四边形ABCD中,∠A=∠B=∠C=∠D,则四边形ABCD是________.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B n的坐标是________ .17.(如图所示)两个长宽分别为7cm、3cm的矩形如图叠放在一起,则图中阴影部分的面积是________.18.如图,正方形ABCD的边长为4,延长CB至点M,使BM=2,过点B作BN⊥AM,垂足为N,O是对角线AC,BD的交点,连接ON,则ON的长为________.三.解答题(共6题;共36分)19.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积.20.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE等于多少时,四边形CEDF是矩形;②当AE等于多少时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)21.如图所示,在菱形ABCD中,∠BAD=120°,AB=4.求:(1)对角线AC,BD的长;(2)菱形ABCD的面积.22.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF的值。
八下 平行四边形9.4 矩形、菱形、正方形练习含答案 含答案
一.选择题1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直2.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.43.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)4.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B 落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.5.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°6.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.27.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,∠H=120°,则DN的长为()A.B.C.﹣D.2﹣8.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个9.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD 上,则AP+PQ的最小值为()A.2B.C.2D.310.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9二、填空题17.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.18.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为.19.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF 沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.20.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.21.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=度.22.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.三.解答题:1.如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.2.如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.3.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD 沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.4.已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.5.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA 的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.一.选择题1.(2016•莆田)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分 D.对角线互相垂直【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.2.(2016•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.4【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,=,∵S菱形ABCD∴,∴DH=,故选A.【点评】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱=是解此题的关键.形ABCD3.(2016•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.4.(2016•威海)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.5.(2016•海南)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.【解答】解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°, ∵a ∥b , ∴DE ∥a ∥b ,∴∠4=∠3=30°,∠2=∠5, ∴∠2=90°﹣30°=60°. 故选C .【点评】此题考查了矩形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.6.(2016•宜宾)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.2【分析】首先连接OP ,由矩形的两条边AB 、BC 的长分别为6和8,可求得OA=OD=5,△AOD 的面积,然后由S △AOD =S △AOP +S △DOP =OA•PE +OD•PF 求得答案. 【解答】解:连接OP ,∵矩形的两条边AB 、BC 的长分别为6和8,∴S 矩形ABCD =AB•BC=48,OA=OC ,OB=OD ,AC=BD=10, ∴OA=OD=5,∴S △ACD =S 矩形ABCD =24, ∴S △AOD =S △ACD =12,∵S △AOD =S △AOP +S △DOP =OA•PE +OD•PF=×5×PE +×5×PF=(PE +PF )=12,解得:PE +PF=4.8. 故选:A .【点评】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.7.(2016•资阳)如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G 若AB=,EF=2,∠H=120°,则DN 的长为( )A .B .C .﹣D .2﹣【分析】延长EG 交DC 于P 点,连接GC 、FH ,则△GCP 为直角三角形,证明四边形OGCM 为菱形,则可证CG=OM=CM=OG=,由勾股定理求得GP 的值,再由梯形的中位线定理CM +DN=2GP ,即可得出答案.【解答】解:延长EG 交DC 于P 点,连接GC 、FH ;如图所示: 则CP=DP=CD=,△GCP 为直角三角形,∵四边形EFGH 是菱形,∠EHG=120°, ∴GH=EF=2,∠OHG=60°,EG ⊥FH , ∴OG=GH•sin60°=2×=,由折叠的性质得:CG=OG=,OM=CM ,∠MOG=∠MCG ,∴PG==,∵OG ∥CM ,∴∠MOG +∠OMC=180°,∴∠MCG +∠OMC=180°,∴OM ∥CG ,∴四边形OGCM 为平行四边形,∵OM=CM ,∴四边形OGCM 为菱形,∴CM=OG=,根据题意得:PG 是梯形MCDN 的中位线,∴DN +CM=2PG=,∴DN=﹣; 故选:C .【点评】本题考查了矩形的性质、菱形的性质、翻折变换的性质、勾股定理、梯形中位线定理、三角函数等知识;熟练掌握菱形和矩形的性质,由梯形中位线定理得出结果是解决问题的关键.8.(2016•眉山)如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A .4个B .3个C .2个D .1个【分析】①利用线段垂直平分线的性质的逆定理可得结论;②在△EOB和△CMB中,对应直角边不相等;③可证明∠CDE=∠DFE;④可通过面积转化进行解答.【解答】解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,但BO≠BM,故②错误;③易知△ADE≌△CBF,∠1=∠2=∠3=30°,∴∠ADE=∠CBF=30°,∠BEO=60°,∴∠CDE=60°,∠DFE=∠BEO=60°,∴∠CDE=∠DFE,∴DE=EF,故③正确;④易知△AOE≌△COF,∴S△AOE=S△COF,∵S△COF=2S△CMF,∴S△AOE :S△BCM=2S△CMF:S△BCM=,∵∠FCO=30°,∴FM=,BM=CM,∴=,∴S△AOE :S△BCM=2:3,故④正确;所以其中正确结论的个数为3个;故选B【点评】本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.9.(2016•雅安)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.2 B.C.2 D.3【分析】在Rt△ABE中,利用三角形相似可求得AE、DE的长,设A点关于BD 的对称点A′,连接A′D,可证明△ADA′为等边三角形,当PQ⊥AD时,则PQ最小,所以当A′Q⊥AD时AP+PQ最小,从而可求得AP+PQ的最小值等于DE的长,可得出答案..【解答】解:设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴AE2=BE•DE,即AE2=3x2,∴AE=x,在Rt△ADE中,由勾股定理可得AD2=AE2+DE2,即62=(x)2+(3x)2,解得x=,∴AE=3,DE=3,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=6=AD,AD=A′D=6,∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条线上时,A′P+PQ最小,又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=3,故选D.【点评】本题主要考查轴对称的应用,利用最小值的常规解法确定出A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利用条件证明△A′DA是等边三角形,借助几何图形的性质可以减少复杂的计算.10.(2016•南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.17.(2016•内江)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.【分析】先根据菱形的性质得AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,再在Rt△OBC中利用勾股定理计算出BC=5,然后利用面积法计算OE的长.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OBC中,∵OB=3,OC=4,∴BC==5,∵OE⊥BC,∴OE•BC=OB•OC,∴OE==.故答案为.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了勾股定理和三角形面积公式.18.(2016•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出AD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故答案为:24.【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出AD=6.本题属于基础题,难度不大,解决该题型题目时,根据菱形的性质找出对角线互相垂直,再通过直角三角形的性质找出菱形的一条变成是关键.19.(2016•盐城)如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.【分析】延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,由菱形的性质和已知条件得出∠MFD=30°,设MD=x,则DF=2x,FM=x,得出MG=x+1,由勾股定理得出(x+1)2+(x)2=(2﹣2x)2,解方程得出DF=0.6,AF=1.4,求出AH=AF=0.7,FH=,证明△DCB是等边三角形,得出BG⊥CD,由勾股定理求出BG=,设BE=y,则GE=2﹣y,由勾股定理得出()2+y2=(2﹣y)2,解方程求出y=0.25,得出AE、EH,再由勾股定理求出EF即可.【解答】解:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,如图所示:∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DG=1,∴MG=x+1,∴(x+1)2+(x)2=(2﹣2x)2,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF•sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴()2+y2=(2﹣y)2,解得:y=0.25,∴AE=1.75,∴EH=AE﹣AH=1.75﹣0.7=1.05,∴EF===.故答案为:.【点评】本题考查了菱形的性质、翻折变换的性质、勾股定理、等边三角形的判定与性质等知识;本题综合性强,难度较大,运用勾股定理得出方程是解决问题的关键.20.(2016•哈尔滨)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【分析】首先证明△ABC,△ADC都是等边三角形,再证明FG是菱形的高,根=BC•FG即可解决问题.据2•S△ABC【解答】解:∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,=BC•FG,∴2•S△ABC∴2××(6)2=6•FG,∴FG=3.故答案为3.【点评】本题考查菱形的性质、等边三角形的判定和性质、翻折变换、菱形的面积等知识,记住菱形的面积=底×高=对角线乘积的一半,属于中考常考题型.21.(2016•巴中)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=15度.【分析】连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.【点评】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.22.(2016•包头)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=22.5度.【分析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA==67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.故答案为22.5°.【点评】本题考查矩形的性质、等腰直角三角形的性质等知识,解题的关键是发现△AEO是等腰直角三角形这个突破口,属于中考常考题型.23.(2016•黄冈)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP= 2a.【分析】作FM⊥AD于M,则MF=DC=3a,由矩形的性质得出∠C=∠D=90°.由折叠的性质得出PE=CE=2a=2DE,∠EPF=∠C=90°,求出∠DPE=30°,得出∠MPF=60°,在Rt△MPF中,由三角函数求出FP即可.【解答】解:作FM⊥AD于M,如图所示:则MF=DC=3a,∵四边形ABCD是矩形,∴∠C=∠D=90°.∵DC=3DE=3a,∴CE=2a,由折叠的性质得:PE=CE=2a=2DE,∠EPF=∠C=90°,∴∠DPE=30°,∴∠MPF=180°﹣90°﹣30°=60°,在Rt△MPF中,∵sin∠MPF=,∴FP===2a;故答案为:2a.【点评】本题考查了折叠的性质、矩形的性质、三角函数等知识;熟练掌握折叠和矩形的性质,求出∠DPE=30°是解决问题的关键.1.(2016•安顺)如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,▱ABCD的BC边上的高为2×sin60°=,∴菱形AECF的面积为2.【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.2.(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【分析】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【解答】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【点评】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.3.(2016•荆州)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【分析】当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.【解答】解:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C′∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠C′EF=∠DA′E,∠EFC′=∠C′D′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C′=∠EFC′,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.【点评】本题考查平移、菱形的性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.4.(2016•淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.【分析】由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由SAS证明△ADE ≌△CDF即可.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∵点E、F分别为边CD、AD的中点,∴AD=2DF,CD=2DE,∴DE=DF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS).【点评】此题主要考查了全等三角形的判定、菱形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.5.(2016•苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D 作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.。
(完整版)矩形菱形正方形习题含答案
1. 在一次数学活动课上,张明同学将矩形ABCD 沿直线CE 折叠,顶点B 恰好落在AD 边上F 点处,如图所示,已知8CD =cm ,5BE =cm ,则AD = cm .2.如图,在菱形ABCD 中,60B ∠=o,点E F ,分别从点B D ,出发以同样的速度沿边BC DC ,向点C 运动.给出以下四个结论:①AE AF =②CEF CFE ∠=∠③当点E F ,分别为边BC DC ,的中点时,AEF △是等边三角形④当点E F ,分别为边BC DC ,的中点时,AEF △的面积最大.上述结论中正确的序号有 .(把你认为正确的序号都填上)3如图,四边形ABCD 为正方形,ADE △为等边三角形.AC 为正方形ABCD 的对角线,则EAC ∠= 度. 4.如图,过正方形ABCD 的顶点B 作直线l ,过A C ,作l 的垂线,垂足分别为 E F ,.若1AE =,3CF =,则AB 的长度为 .5如图,正方形ABCD 的边长为4,MN BC ∥分别交AB CD ,于点M N ,,在MN 上任取两点P Q ,,那么图中阴影部分的面积是 .1. 如图,在菱形ABCD 中,对角线AC BD ,相交于点O E ,为AB 的中点,且OE a =,则菱形ABCD 的周长为( ) A .16a B .12a C .8a D .4a 2. 菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( ) A .24 B .20C .10D .53. 如图,在四边形ABCD 中,AD BC ∥,90D ∠=o,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是 .(写出一种情况即可) 4. 如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1=AG ,2=BF ,︒=∠90GEF ,则GF 的长为 .FD A EClD M N DD C FG5.如图,在正方形纸片ABCD 中,对角线AC BD ,交于点O ,折叠正方形纸片 ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折痕DE 分别交AB AC ,于点E G ,,连结GF .下列结论:①112.5AGD ∠=o;② tan 2AED ∠=;③AGD OGD S S =△△;④四边形AEFG 是菱形;⑤2BE OG =.则其中正确结论的序号是 .6. 菱形ABCD 中,AE 垂直平分BC ,垂足为E ,4cm AB =.那么,菱形ABCD 的面积是 ,对角线BD 的长是 .7. 如图,菱形ABCD 中,∠BAD =60º ,M 是AB 的中点,P 是对角线AC 上的一个动点,若PM +PB 的最小值是3,则AB 长为 . 8. 将一正方形按如图方式分成n 个全等矩形,上、下各横排两个,中间竖排若干个,则n 的值为 A .12 B .10 C .8 D .6 9. 如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为( )A .5cmB .8cmC .9cmD .10cm10. 如果菱形的周长是8cm ,高是1cm ,那么这个菱形两邻角的度数比为( ) A .1:2 B .1:4 C .1:5 D .1:611. 如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 等于( ) A.43 B.33C.42D.812.如图,在菱形ABCD 中,对角线AC BD ,分别等于8和6,将BD 沿CB 的方向平移,使D 与A 重合,B 与CB 延长线上的点E 重合,则四边形AECD 的面积等于( )A .36B .48C .72D .96ADEBPB CAD MOD EBF CED AABDE O6如图,点P 是正方形ABCD 的对角线BD 上一点,连结PA 、PC . (1)证明:PAB PCB ∠=∠;(2)在BC 上取一点E ,连结PE ,使得PE PC =,连结AE ,判断PAE △的形状,并说明理由.7如图,在□ABCD 中,EF ∥BD ,分别交BC 、CD 于点P 、Q ,分别交AB 、AD 的延长线于点E 、F .已知BE=BP .求证:(1)∠E=∠F .(2)□ABCD 是菱形.8如图1,在ABC △中,点P 为BC 边中点,直线a 绕顶点A 旋转,若点B P 、在直线a 的异侧,BM ⊥直线a 于点M ,CN ⊥直线a 于点N ,连接.PM PN 、 (1)延长MP 交CN 于点E (如图2),①求证:BPM CPE △≌△;②求证:PM PN =;(2)若直线a 绕点A 旋转到图3的位置时,点B P 、在直线a 的同侧,其它条件不变.此时PM PN =还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变,请直接判断四边形MBCN 的形状及此时PM PN =还成立吗?不必说明理由.D C B A P图1 图2 图39已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.证明:(1)10如图,在正方形ABCD 中,G 是BC 上的任意一点(G 与B C 、两点不重合),E F 、是AG 上的两点(E F 、与A G 、两点都不重合),若AF BF EF =+,12∠=∠,请判断线段DE 与BF 有怎样的位置关系,并证明你的结论.11如图,ABC △中,点O 是边AC 上一个动点,过O 作直线MN BC ∥,设MN 交BCA ∠的平分线于点E ,交BCA ∠的外角平分线于点F .(1)探究:线段OE 与OF 的数量关系并加以证明;(2)当点O 在边AC 上运动时,四边形BCFE 会是菱形吗?若是,请证明,若不是,则说明理由; (3)当点O 运动到何处,且ABC △满足什么条件时,四边形AECF 是正方形?12如图①,四边形ABCD 是正方形, 点G 是BC 上任意一点,DE ⊥AG 于点E ,BF ⊥AG 于点F . (1) 求证:DE -BF = EF .(2) 当点G 为BC 边中点时, 试探究线段EF 与GF 之间的数量关系, 并说明理由.(3) 若点G 为CB 延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE 、BF 、EF 之间A D BEFOCM2 ABCDEFG 1A F N D CB M E O(图)的数量关系(不需要证明).13如图,将矩形纸片ABCD 沿其对角线AC 折叠,使点B 落到点B '的位置,AB '与CD 交于点E . (1)试找出一个与AED △全等的三角形,并加以证明; (2)若83AB DE P ==,,为线段AC 上任意一点,PG AE ⊥于G ,PH EC ⊥于H .试求PG PH +的值,并说明理由.14已知:如图,菱形ABCD 中,E F ,分别是CB CD ,上的点,且BE DF =. (1)求证:AE AF =.(2)若60B ∠=o,点E F ,分别为BC 和CD 的中点.求证:AEF △为等边三角形.15如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.ABDEF A DEFBG C图①CB GAD图②ABC D PG HE B ′16如图-1,已知P 为正方形ABCD 的对角线AC 上一点(不与A 、C 重合),PE ⊥BC 于点E ,PF ⊥CD 于点F .(1) 求证:BP =DP ;(2) 如图-2,若四边形PECF 绕点C 按逆时针方向旋转,在旋转过程中是否总有BP =DP ?若是,请给予证明;若不是,请用反例加以说明;(3) 试选取正方形ABCD 的两个顶点,分别与四边形PECF 的两个顶点连结,使得到的两条线段在四边形PECF 绕点C 按逆时针方向旋转的过程中长度始终相等,并证明你的结论 .17已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E ,(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.17(1)证明:在△A BC 中, AB =AC ,AD ⊥BC .∴ ∠BAD =∠DAC . 2分∵ AN 是△ABC 外角∠CAM 的平分线, ∴ MAE CAE ∠=∠.∴ ∠DAE =∠DAC +∠CAE =⨯21180°=90°.4分又 ∵ AD ⊥BC ,CE ⊥AN , ∴ ADC CEA ∠=∠=90°, ∴ 四边形ADCE 为矩形.5分(2)说明:①给出正确条件得1分,证明正确得3分.②答案只要正确均应给分.例如,当AD =12BC 时,四边形ADCE 是正方形. 6分图-2图-1 AM NE证明:∵ AB =AC ,AD ⊥BC 于D .∴ DC =12BC .7分 又 AD =12BC ,∴ DC =AD . 8分 由(1)四边形ADCE 为矩形,∴ 矩形ADCE 是正方形. 9分 16⑴ 解法一:在△ABP 与△ADP 中,利用全等可得BP =DP . 2分 解法二:利用正方形的轴对称性,可得BP =DP . 2分 ⑵ 不是总成立 . 3分 当四边形PECF 绕点C 按逆时针方向旋转,点P 旋转到BC 边上时,DP >DC >BP ,此时BP =DP 不成立. 5分说明:未用举反例的方法说理的不得分. ⑶ 连接BE 、DF ,则BE 与DF 始终相等. 6分 在图8-1中,可证四边形PECF 为正方形, 7分 在△BEC 与△DFC 中,可证△BEC ≌△DFC . 从而有 BE =DF . 8分15(1)①BG DE BG DE =⊥, 2分 ②BG DE BG DE =⊥,仍然成立 1分在图(2)中证明如下∵四边形ABCD 、四边形ABCD 都是正方形 ∴ BC CD =,CG CE =, 90BCD ECG ∠=∠=o∴BCG DCE ∠=∠1分 ∴BCG DCE △≌△ (SAS )1分∴BG DE = CBG CDE ∠=∠又∵BHC DHO ∠=∠ 90CBG BHC ∠+∠=o∴90CDE DHO ∠+∠=o∴90DOH ∠=o∴BG DE ⊥14证明:(1)∵四边形ABCD 是菱形, ∴AB =AD ,B D ∠=∠, 又∵BE =DF∴ABE △≌ADF △ ∴AE =AF (2)连接AC∵AB =BC ,60B ∠=︒ ∴ABC ∆是等边三角形, E 是BC 的中点∴AE ⊥BC , ∴906030BAE ︒∠=︒-=︒,同理30DAF ∠=︒ ∵120BAD ∠=︒∴60EAF BAD BAE DAF ∠=∠-∠-∠=︒又∵AE =AF∴AEF △是等边三角形. 13解:(1)AED CEB '△≌△证明:Q 四边形ABCD 为矩形,90B C BC AD B B D ''∴==∠=∠=∠=,°, 又B EC DEA '∠=∠Q , ∴AED CEB '△≌△.(2)由已知得:EAC CAB ∠=∠且CAB ECA ∠=∠ EAC ECA ∴∠=∠ 835AE EC ∴==-=在ADE △中,4AD = 延长HP 交AB 于M 则PM AB ⊥ PG PM ∴=4PG PH PM PH HM AD ∴+=+===12(1) 证明:∵ 四边形ABCD 是正方形, BF ⊥AG , DE ⊥AG ∴ DA =AB ,∠BAF + ∠DAE = ∠DAE + ∠ADE = 90° ∴ ∠BAF = ∠ADE ∴ △ABF ≌ △DAE ∴ BF = AE , AF = DE ∴ DE -BF = AF -AE = EFA DE F BG C图①(2)EF = 2FG 理由如下:∵ AB ⊥BC , BF ⊥AG , AB =2 BG ∴ △AFB ∽△BFG ∽△ABG∴2===FGBFBF AF BF AB ∴ AF = 2BF , BF = 2 FG由(1)知,AE = BF ,∴ EF = BF = 2 FG(3) 如图 DE + BF = EF------------------------------------------------ 11解:(1)OE OF =. 其证明如下:∵CE 是ACB ∠的平分线,12∴∠=∠.∵MN BC ∥,∴13∠=∠. ∴23∠=∠. ∴OE OC =. 同理可证OC OF =. ∴OE OF =. 3分(2)四边形BCFE 不可能是菱形,若BCFE 为菱形,则BF EC ⊥,而由(1)可知FC EC ⊥,在平面内过同一点F 不可能有两条直线同垂直于一条直线. 3分(3)当点O 运动到AC 中点时,OE OF =,OA OC =,则四边形AECF 为Y,要使AECF 为正方形,必须使EF AC ⊥.∵EF BC ∥,∴AC BC ⊥,∴ABC △是以ACB ∠为直角的直角三角形, ∴当点O 为AC 中点且ABC △是以ACB ∠为直角的直角三角形时, 四边形AECF 是正方形.------------------------------------------------10根据题目条件可判断.DE BF ∥证明如下:∵四边形ABCD 为正方形,∴ 290AB AD BAF ∠+∠==,°. ∵,AF AE EF =+又,AF BF EF =+ ∴AE BF =,∵12,∠=∠∴().ABF DAE SAS △≌△5分∴AFB DEA ∠=∠,BAF ADE ∠=∠.∴290ADE ∠+∠=°.∴90AED BFA ∠=∠=°. ∴.DE BF ∥9分------------------------------------------------ 9证明:(1)∵四边形ABCD 是正方形,∴AB =AD ,∠B = ∠D = 90°. ∵AE = AF ,AF N D CB M EO (图) 1 2 54 3 6∴Rt Rt ABE ADF △≌△. ∴BE =DF .4分(2)四边形AEMF 是菱形.∵四边形ABCD 是正方形, ∴∠BCA = ∠DCA = 45°,BC = DC . ∵BE =DF ,∴BC -BE = DC -DF . 即CE CF =. ∴OE OF =. ∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形.8分------------------------------------------------ 8(1)证明:①如图2.BM Q ⊥直线a 于点M ,CN ⊥直线a 于点N ,90BMN CNM ∴∠=∠=°.BM CN ∴∥.MBP ECP ∴∠=∠.又P Q 为BC 边中点, .BP CP ∴=又BPM CPE ∠=∠Q , BPM CPE ∴△≌△ 3分②BPM CPE Q △≌△12PM PE PM ME ∴=∴=∴在Rt MNE △中,12PN ME =PM PN ∴=5分 (2)成立.如图3.6分证明:延长MP 与NC 的延长线相交于点E .BM Q ⊥直线a 于点M ,CN ⊥直线a 于点N , 90180BMN CNM BMN CNM ∴∠=∠=∴∠+∠=°.°.BM CN MBP ECP ∴∴∠=∠∥..7分又P Q 为BC 中点,BP CP ∴=. 又Q BPM CPE ∠=∠,BPM CPE ∴△≌△. 12PM PE PM ME ∴=∴=..则在Rt MNE △中,12PN ME =.∴PM PN =.10分 (3)四边形MBCN 是矩形. 11分 PM PN =成立.12分AD BE FOC-----------------------------------------------7证明:(1)在□ABCD 中,BC AD ∥ ∴1F ∠=∠ ∵BE BP = ∴1E ∠=∠ ∴E F ∠=∠ (2)∵BD EF ∥ ∴23E F ∠=∠∠=∠, ∵E F ∠=∠ ∴23∠=∠ ∴AB AD = ∴□ABCD 是菱形6(1)∵在正方形ABCD 中,BD 是对角线, ∴AB CB ABD CBD =∠=∠,. 又∵BP BP =, ∴ABP CBP △≌△.∴PA PC PAB PCB =∠=∠,. ··········································································································· 3分 (2)如图,PAE △是等腰直角三角形,理由如下: ···································································· 4分 ∵PE PC =, ∴PEC PCB ∠=∠. 又∵PAB PCB ∠=∠, ∴PAB PEC ∠=∠.∵E 是BC 上一点,180PEB PEC ∠+∠=o, ∴180PAB PEB ∠+∠=o.DCEBAPADFQ CPEB 1 2 3图2 图3∵在四边形ABEP 中,36090PAB ABC PEB APE ABC ∠+∠+∠+∠=∠=o o,, ∴90APE ∠=o. ∵PA PC PE PC ==,, ∴PA PE =.∴PAE △是等腰直角三角形. ·································································· 7分(其他方法酌情给分)1.102. ①②③3. 1054.5. 81. 2. B 3. 90A ∠=o或AD BC =或AB CD ∥ 4. 3 5. ①④⑤ 6. 27. 8. C 9. D 10. C 11. A 12. A。
北京市通州区2019届中考《矩形、菱形和正方形》专题练习含答案
北京市通州区普通中学2019届初三数学中考复习 矩形、菱形和正方形 专项复习练习1.下列判断错误的是( D )A .两组对边分别相等的四边形是平行四边形B .四个内角都相等的四边形是矩形C .四条边都相等的四边形是菱形D .两条对角线垂直且平分的四边形是正方形2.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( A ) A.245 B.125C .5D .43.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,CE ∥BD ,DE ∥AC ,AD =23,DE =2,则四边形OCED 的面积( A )A .2 3B .4C .4 3D .84.如图,矩形ABCD 中,AD =2,AB =3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( D )A. 5B.136 C .1 D.565.如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( D )A.95B.125C.165D.1856.在▱ABCD 中,AB =10,BC =14,E ,F 分别为边BC ,AD 上的点,若四边形AECF 为正方形,则AE 的长为( D )A .7B .4或10C .5或9D .6或87.如图,在正方形ABCD 中,E ,F 分别是边BC ,CD 上的点,∠EAF =45°,△ECF 的周长为4,则正方形ABCD 的边长为( A )A .2B .3C .4D .58.如图,正方形ABCD 中,点E ,F 分别在BC ,CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF ;②∠DAF=15°;③AC 垂直平分EF ;④BE+DF =EF ;⑤S △CEF =2S △ABE ,其中正确结论有( C ) A .2个 B .3个 C .4个 D .5个9.如图,正方形ABCD 的边长为22,对角线AC ,BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM⊥BE于点M ,交BD 于点F ,则FM 的长为__55__.10.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 为AD 的中点,若OE =3,则菱形ABCD 的周长为__24__.11.如图,在矩形ABCD 中,点E ,F 分别在边CD ,BC 上,且DC =3DE =3a.将矩形沿直线EF 折叠,使点C 恰好落在AD 边上的点P 处,则FP =__23a__.12.如图是一张长方形纸片ABCD ,已知AB =8,AD =7,E 为AB 上一点,AE =5,现要剪下一张等腰三角形纸片(△AEP),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是__52或45或5__.13.如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,0则AM 的长等于__33或233cm.14.如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 1的两边在坐标轴上,以它的对角线OB 1为边作正方形OB 1B 2C 2,再以正方形OB 1B 2C 2的对角线OB 2为边作正方形OB 2B 3C 3,以此类推…,则正方形OB 2019B 2019C 2019的顶点B 2019的坐标是__(21008,0)__.15.如图,AC 为矩形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处.(1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.解:(1)由折叠知AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AN=CM,可证△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形(2)∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8-x,CM=10-6=4,在Rt△CEM中,(8-x)2+42=x2,解得x=5,∴四边形AECF的面积为EC·AB=5×6=3016.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.解:(1)∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD,可证△PBC≌△PDC(SAS),∴PB=PD,∵PE=PB,∴PE=PD(2)∠PED=45°.证明:∵四边形ABCD是正方形,∴∠BCD=90°,∵△PBC≌△PDC,∴∠PBC=∠PDC,∵PE=PB,∴∠PBC=∠PEB,∴∠PDC=∠PEB,∵∠PEB+∠PEC=180°,∴∠PDC+∠PEC=180°,在四边形PECD中,∠EPD=360°-(∠PDC+∠PEC)-∠BCD=360°-180°-90°=90°,又∵PE=PD,∴△PDE是等腰直角三角形,∴∠PED=45°17.如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=2,求BC的长;(2)求证:ME=AM-DF.解:(1)∵四边形ABCD是菱形,∴CB=CD,AB∥CD,∴∠1=∠ACD.∵∠1=∠2,∴∠2=∠ACD,∴MC=MD.∵ME⊥CD,∴CD=2CE=4,∴BC=CD=4(2)延长DF,AB交于G,∵四边形ABCD是菱形,∴∠BCA=∠DCA.∵BC=2CF,CD=2CE,∴CE=CF.可证△CEM≌△CFM(SAS),∴ME=MF.∵AB∥CD,∴∠2=∠G,∠GBF=∠BCD,∵F为边BC的中点,∴CF=BF,可证△CDF≌△BGF(AAS),∴DF=GF.∵∠1=∠2,∠G=∠2,∴∠1=∠G,∴AM=GM=MF+GF=DF+ME,即ME=AM-DF18.如图①,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是___FG=CE___,位置关系是 __FG∥CE__;(2)如图②,若点E,F分别是边CB,BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图③,若点E,F分别是边BC,AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.解:(2)过点G作GH⊥CB的延长线于点H,∵EG⊥DE,∴∠GEH+∠DEC=90°,∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE,可证△HGE≌△CED(AAS),∴GH=CE,HE=CD,∵CE=BF,∴GH=BF,∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE,∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB∴BH=EC,∴FG=EC(3)成立.∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°,可证△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE,∵EG=DE,∴CF=EG,∵DE⊥EG,∴∠DEC+∠CEG=90°,∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF是平行四边形,∴FG∥CE,FG=CE2019-2020学年数学中考模拟试卷一、选择题1.关于x的方程(m﹣2)x214=0有实数根,则m的取值范围()A.m≤52且m≠2B.m>52C.m≤52D.m≤3且m≠22.在四张质地、大小相同的卡片上,分别画有如图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为()A.1 B.34C.12D.143.用弹簧秤将一长方体铁块悬于没有盛水的水槽中,再向水槽匀速注入水,直至铁块完全浸没在水中(如图),则能反映弹簧秤的读数y(单位:N)与水面高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.4.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或 x>45.下列运算正确的是()A .2m 2+m 2=3m 4B .(mn 2)2=mn 4C .2m•4m 2=8m 2D .m 5÷m 3=m 26.如图,▱ABCD 中,∠B =70°,BC =6,以AD 为直径的⊙O 交CD 于点E ,则DE 的长为( )A .13π B .23π C .76π D .43π 7.如图,将ABC 绕点A 逆时针旋转110,得到ADE ,若点D 在线段BC 的延长线上,则ADE ∠的大小为( )A .55B .50C .45D .358.若a b <,则下列结论不一定成立的是( ) A .11a b -<-B .22a b <C .33a b ->- D .22a b <9.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为( ) A .26×105B .2.6×102C .2.6×106D .260×10410.如图,△ABC 中,∠ACB=90°,∠B=30°,AC=1,过点C 作CD 1⊥AB 于D 1,过D 1作D 1 D 2⊥BC 于D 2,过D 2作D 2 D 3⊥AB 于D 3,这样继续作下去,……,线段D n D n+1能等于(n 为正整数)( )A .32n⎛⎫⎪⎝⎭B .132n +⎛⎫⎪⎝⎭C.n⎝⎭D.1n +⎝⎭11.如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y=kx-2与线段AB 有交点,则K 的值不可能是( )A.-5 B.-2 C.3 D.512.在平面直角坐标系中,点A的坐标是(2,1),将点A绕原点O旋转180°得到点A′,则点A′的坐标是()A.(-1,-2)B.(1,-2)C.(-2,-1)D.(2,-1)二、填空题13.如图,正方形ABCD中,点E、F分别在线BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD相交于点M、N.下列说法中:①BE+DF=EF;②点A到线段EF的距离一定等于正方形的边长;③若tan∠BAE=12,则tan∠DAF=13;④若BE=2,DF=3,则S△AEF=18.其中结论正确的是__(将正确的序号写在横线上)14.分解因式(a-b)(a-9b)+4ab的结果是____.15.4与9的比例中项是_____.16.从分别标有数-3,-2,-1,0,1,2,3的七张卡片中,随机抽取一张,所抽卡片上数的绝对值小于2的概率是_________.17.某中学组织的“红旗大赛”,60名选手的成绩统计如右图,已知成绩在94.5分以上的选手中,男生和女生各占一半,学校从中随机确定2名参加“红歌大赛”,则恰好选到一名男生和一名女生的概率为__________.18.如图,在矩形ABCD中,E是AD的中点,连接AC、BE,AC与BE交于点F,则△ABF的面积和四边形CDEF的面积的比值是____.三、解答题19.如图所示,△ABC中,点D是AB上一点,且AD=CD,以CD为直径的⊙O交BC于点E,交AC于点F,且点F是半圆CD的中点.(1)求证:AB与⊙O相切.(2)若tanB=2,AB=6,求CE的长度.20.用A4纸在某眷印社复印文件,复印页数不超过20时,每页收费1元;复印页数超过20时,超过部分每页收费降为0.4元,在某图书馆复印同样的文件,不论复印多少页,每页收费0.8元,当复印的张数超过20页时,请问答以下问题.(1)复印张数为多少页时,某眷印社与某图书馆的收费相同?(2)如何选择更省钱?21.如图,是由边长为1的小正方形构成的网格,点A,B是格点,根据要求,选择格点,画出符合要求的图形.(1)在图1、图2中分别找出符合要求的1个格点C,并画出相应的格点三角形,使得∠ACB=45°.(2)在图3中画出符合要求的1个格点D,并画出相应的格点三角形使得tan∠ADB=12,并求出△ABD的面积.22.图①、图②均为3×3的正方形网格,每个小正方形的边长都为1,请在图①、图②中各画一个顶点在格点的三角形.要求:(1)所画的三角形为钝角三角形;(2倍;(3)图①、图②中所画的三角形不全等.23.某市开展“美丽家乡,创卫同行”活动,某校倡议学生利用双休日参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值是;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数.24.在方程3523ax byax by-=⎧⎨+=⎩中,如果121xy⎧=⎪⎨⎪=-⎩的值.25.有一块含30°角的直角三角板OMN,其中∠MON=90°,∠NMO=30°,ON=,将这块直角三角板按如图所示位置摆放.等边△ABC的顶点B与点O重合,BC边落在OM上,点A恰好落在斜边MN上,将等边△ABC从图1的位置沿OM方向以每秒1个单位长度的速度平移,边AB,AC分别与斜边MN交于点E,F(如图2所示),设△ABC平移的时间为t(s)(0<t<6).(1)等边△ABC的边长为;(2)在运动过程中,当时,MN垂直平分AB;(3)当0<t<6时,求直角三角板OMN与等边△ABC重叠部分的面积S与时间t之间的函数关系式.【参考答案】***一、选择题二、填空题13.①②③.14.(a-3b)2 15.±616.3 717.2 318.2 5三、解答题19.(1)见解析;(2)CE=5.【解析】【分析】(1)连接DF,由CD为⊙O的直径,得到∠CFD=90°,求得∠A=∠ACD=45°,于是得到结论;(2)根据已知条件得到CD=2BD,求得BD=2,CD=4,得到BC=,根据切割线定理即可得到结论.【详解】(1)连接DF,∵CD为⊙O的直径,∴∠CFD=90°,∵点F是半圆CD的中点,∴CF=DF,∴∠ACD=45°,∵AD=CD,∴∠A=∠ACD=45°,∴∠ADC=90°,∴AB与⊙O相切;(2)∵CD⊥AB,tanB=2,∴CD=2BD,∵AD=CD,∴AB=3BD,∵AB=6,∴BD=2,CD=4,∴BC=∵BD 与⊙O 相切, ∴BD 2=BE•BC,∴BE 2= ,∴CE =BC ﹣BE =5.【点睛】本题考查了切线的判定和性质,圆周角定理,等腰直角三角形的性质和判定,切割线定理,正确的作出辅助线是解题的关键.20.(1)复印张数为30页时,某眷印社与某图书馆的收费相同;(2)当复印张数大于0小于30页时,选某图书馆;当复印张数为30页时,两店一样;当复印张数大于30页时,选某眷印社. 【解析】 【分析】(1)复印张数超过20页时,某眷印社收费为:20+0.4(x-20),某图书馆收费为:0.8x',两者相等列方程求解.(2)求某眷印社收费大于某图书馆的x 值,再比较说明. 【详解】解:(1)设复印张数为x 页,(x >20),列方程得: 20+0.4(x ﹣20)=0.8x 解得:x =30答:复印张数为30页时,某眷印社与某图书馆的收费相同. (2)20+0.4(x ﹣20)>0.8x 解得:x <30答:当复印张数大于0小于30页时,选某图书馆;当复印张数为30页时,两店一样;当复印张数大于30页时,选某眷印社. 【点睛】本题考查了一元一次方程和一元一次不等式的应用,是一次方程和不等式综合运用的常考题型,找出其中的数量关系列出方程与不等式是解答本题的关键. 21.(1)见解析;(2)画图见解析,在,面积为10. 【解析】 【分析】(1)利用数形结合的思想构造等腰直角三角形即可.(2)利用数形结合的思想解决问题即可. 【详解】(1)如图1,2中,点C 即为所求.(2)如图3中,点D 即为所求,S △ABD =12×BD×AH=12⨯=10.【点睛】本题考查作图-应用与设计,三角形的面积,解直角三角形等知识,解题的关键是熟练掌握基本知识. 22.见解析 【解析】 【分析】利用勾股定理作出符合条件的三角形三边,将原三角形扩大两倍即可 【详解】 解:如图所示;【点睛】此题考查勾股定理和作图-相似变换,解题关键在于掌握作图法则 23.(Ⅰ)100,12;(Ⅱ)平均数是1.32,众数是1.5,中位数是1.5 【解析】 【分析】(Ⅰ)根据条形统计图和扇形统计图,用1h 对应的人数除以对应的百分比即可求解;用0.5h 对应的人数除以总人数即可求解(Ⅱ)利用平均数、众数、中位数的定义分别求解即可 【详解】 (Ⅰ)学生人数=3010030%=;m%=12/100=12%,即m=12; (Ⅱ)观察条形统计图, ∵0.512130 1.5402181.32100x ⨯+⨯+⨯+⨯==,∴这组数据的平均数是1.32.∵在这组样本数据中,1.5出现了40次,出现的次数最多,∴这组数据的众数是1.5.∵将这组样本数据按照有小到大的顺序排列,其中处于中间位置的两个数都是1.5,有1.5 1.51.52+=,∴这组样本数据的中位数是1.5.【点睛】此题主要考查利用统计图表解决简单的实际问题24.3【解析】【分析】把x与y的值代入方程组求出a与b的值,即可确定出所求.【详解】解:把121xy⎧=⎪⎨⎪=-⎩代入3523ax byax by-=⎧⎨+=⎩中得13523a ba b⎧+=⎪⎨⎪-=⎩,解得41, ab=⎧⎨=⎩3.==【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.25.(1)3;(2)3;(3)22(03)84(36)822tSt+<⎪=-+<<⎩….【解析】【分析】(1)根据,∠OMN=30°和△ABC为等边三角形,求证△OAM为直角三角形,然后即可得出答案.(2)易知当点C与M重合时直线MN平分线段AB,此时OB=3,由此即可解决问题;(3)分两种情形分别求解:当0<t≤3时,作CD⊥FM于D.根据S=S△MEB﹣2S△MDC,计算即可.②当3<t <6时,S=S△MEB.【详解】解:(1)在Rt△MON中,∵∠MON=90°,ON=M=30°∴OM=6,∵△ABC为等边三角形∴∠AOC=60°,∴∠OAM=90°∴OA⊥MN,即△OAM为直角三角形,∴OA=12OM=12×6=3.故答案为3.(2)易知当点C与M重合时直线MN平分线段AB,此时OB=3,所以t=3.故答案为3.(3)易知:OM=6,MN=,S△OMN=12×6=∵∠M=30°,∠MBA=60°,∴∠BEM=90°.①当0<t≤3时,作CD⊥FM于D.∵∠ACB=60°,∠M=30°,∠FCB=∠M+∠CFM,∴∠CFM=∠M=30°,∴CF=CM,∵CD⊥FM,∴DF=DM,∴S△CMF=2S△CDM,∵△MEB∽△MON,∴2MEBMONS BMS MB⎛⎫= ⎪⎝⎭,∴S△MEB2+∵△MDC∽△MON,∴2MDCMONS MCS MN⎛⎫= ⎪⎝⎭,∴S△MDC=2848t-+,∴S=S△MEB﹣2S△MDC=﹣284+.②当3<t<6时,S=S△MEB2综上所述,S=22(03)(36)tt+<<<….【点睛】本题属于几何变换综合题,考查了平移变换,等边三角形的性质和判定,解直角三角形,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2019-2020学年数学中考模拟试卷一、选择题1.如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于( )A.5B.5D.232.下列运算正确的是( ) A.3a +2a =a 5B.a 2·a 3=a 6C.(a +b )(a -b )=a 2-b 2D.(a +b)2=a 2+b 23.已知关于x 的不等式组314(1)x x x m --⎧⎨⎩无解,则m 的取值范围是( )A .m≤3B .m >3C .m <3D .m≥34.下列运算中,结果正确的是( ) A.235a a a +=B.236a a a =C.()236a a = D.623a a a ÷=5.已知在⊙O 中,弦AB 的长为8厘米,圆心O 到AB 的距离为3厘米,则⊙O 的半径是( ) A.3厘米B.4厘米C.5厘米D.8厘米6.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )A.55°B.60°C.65°D.70°7.把不等式组24030x x -≥⎧⎨->⎩的解集表示在数轴上,正确的是( )A .B .C .D .8.如图是将一多边形剪去一个角,则新多边形的内角和( )A .比原多边形少180°B .与原多边形一样C .比原多边形多360°D .比原多边形多180°9.如果3y x =-+,且x y ≠,那么代数式22x y x y y x+--的值为( ) A .3B .3-C .13D .13-10.Rt ABC 中,C 90∠=,若BC 2=,AC 3=,下列各式中正确的是 ( ) A .2sinA 3=B .2cosA 3=C .2tanA 3=D .2cotA 3=11.某公司员工的月工资统计表如下,这个公司员工工资的中位数为( )A .7000B .6000C .5000D .650012.下列选项中,是如图几何体的主视图的是( )A .B .C .D .二、填空题13.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y =﹣13x+4上,设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…依据图形所反映的规律,S 2019=_____.14.如图,在△ABC 中,AB =AC ,D 、E 、F 分别为AB 、BC 、AC 的中点,则下列结论:①△ADF ≌△FEC ;②四边形ADEF 为菱形;③:1:4ADF ABC S S ∆∆=。
中考复习《矩形、菱形、正方形》测试题(含答案)
中考复习《矩形、菱形、正方形》测试题(含答案)一、选择题(每题4分,共24分)1.[2015·泸州]菱形具有而平行四边形不具有的性质是(D) A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直2.[2015·衢州]如图28-1,已知某菱形花坛ABCD的周长是24 m,∠BAD=120°,则花坛对角线AC的长是(B)A.6 3 m B.6 m图28-1 C.3 3 m D.3 m【解析】易知△ABC为等边三角形,所以AC=AB=6 m.3.[2015·益阳]如图28-2,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是(D) A.∠ABC=90°B.AC=BDC.OA=OB D.OA=AD图28-2 图28-34.[2014·福州]如图28-3,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为(C) A.45°B.55°C.60°D.75°【解析】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE 是等边三角形, ∴AE =AD =DE ,∠DAE =60°, ∴AB =AE ,∴∠ABE =∠AEB ,∠BAE =90°+60°=150°, ∴∠ABE =(180°-150°)÷2=15°, 又∵∠BAC =45°, ∴∠BFC =45°+15°=60°.5.[2015·临沂]如图28-4,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连结EB ,EC ,DB .添加一个条件,不能使四边形DBCE 成为矩形的是 (B) A .AB =BEB .BE ⊥DCC .∠ADB =90°D .CE ⊥DE【解析】 因为四边形ABCD 为平行四边形,所以AD 綊BC ,因为DE =AD ,所以DE 綊BC所以四边形EDBC 为平行四边形,A .假若AB =BE ,因为AB =BE ,AD =DE ,BD =BD ,所以△ADB ≌△EDB ,所以∠BDE =90°,所以四边形EDBC 为矩形; B .假若BE ⊥DC ,可得四边形EDBC 为菱形;C .假若∠ADB =90°,所以∠EDB =90°,所以四边形EDBC 为矩形;D .假若CE ⊥DE ,所以∠DEC =90°,所以四边形EDBC 为矩形,故选B. 6.[2015·日照]小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 成为正方形(如图28-5)现有下列四种选法,你图28-4图28-5认为其中错误的是(B)A.①②B.②③C.①③D.②④【解析】此题考查正方形的判定,即在▱ABCD的基础上,需要再同时具备矩形和菱形的特征.①是菱形的特征;②是矩形的特征;③是矩形的特征,④是菱形的特征.而B中都是矩形的特征,故选B.二、填空题(每题4分,共20分)7.[2015·铜仁]已知一个菱形的两条对角线长分别为6 cm和8 cm,则这个菱形的面积为__24__cm2.8.[2014·衡阳]如图28-6,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为__10__.9.[2015·上海]已知E是正方形ABCD的对角线AC上一点,图28-6 AE=AD,过点E作AC的垂线,交边CD于点F,那么∠F AD=__22.5__度.10.[2014·淄博]已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形.你添加的条件是__AB=BC或AC⊥BD等__.11.[2014·资阳]如图28-7,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为__6__.图28-7【解析】如答图,连结BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE=5,∴△BEQ周长的最小值=DE+BE=5+1=6.三、解答题(共20分)12.(10分)[2015·安顺]如图28-8,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于图28-8F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.证明:(1)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形,理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠F AD,∵AE∥DF,∴∠EAD=ADF,∠DAF=∠FDA,∴AF=DF,∴平行四边形AEDF为菱形.13.(10分)[2015·青岛]已知:如图28-9,在△ABC中,AB =AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;图28-9(2)连结DE ,线段DE 与AB 之间有怎样的位置和数量关系?请证明你的结论. 解:(1)证明:∵AB =AC ,AD 是BC 边上的中线, ∴AD ⊥BC ,BD =CD . ∵AE ∥BC ,CE ⊥AE , ∴四边形ADCE 是矩形, ∴AD =CE .在Rt △ABD 与Rt △CAE 中, ⎩⎪⎨⎪⎧AD =CE ,AB =CA ,∴△ABD ≌△CAE (HL );(2)DE ∥AB ,DE =AB .证明如下: 如答图所示,∵四边形ADCE 是矩形, ∴AE =CD =BD ,AE ∥BD , ∴四边形ABDE 是平行四边形, ∴DE ∥AB ,DE =AB .14.(10分)[2014·扬州]如图28-10,已知Rt △ABC ,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°后至△DBE ,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H .(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连结CG ,求证:四边形CBEG 是正方形. 解:(1)DE ⊥FG ,理由如下:由题意得∠A =∠EDB =∠GFE ,∠ABC =∠DBE =90°,第13题答图图28-10∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°,∴∠FHE=90°,即DE⊥FG;(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE.∴四边形CBEG是平行四边形.∵∠ABC=∠GEF=90°,∴四边形CBEG是矩形.∵BC=BE,∴四边形CBEG是正方形.15.(10分)[2015·南京]如图28-11,AB∥CD,点E,F分别在AB,CD上,连结EF,∠AEF,∠CFE的平分线交于点G,∠BEF,∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD交于点P,Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形,请在下列框图中补全他的证明思路.小明的证明思路由AB∥CD,MN∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ.由已知条件__FG平分∠CFE__,MN∥EF,可证NG=NF,故只要证GM=FQ,即证△MEG≌△QFH,易证__GE=FH__,__∠GME =∠FQH__.故只要证∠MGE=∠QFH.易证∠MGE=∠GEF,∠QFH=∠EFH,__∠GEF=∠EFH__,即可得证.图28-11解:(1)证明:∵EH平分∠BEF.∴∠FEH=12∠BEF,∵FH平分∠DFE,∴∠EFH=12∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=12(∠BEF+∠DFE)=12×180°=90°,又∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°,同理可证,∠EGF=90°,∵EG平分∠AEF,∴∠FEG=12∠AEF,∵EH平分∠BEF,∴∠FEH=12∠BEF,∵点A,E,B在同一条直线上.∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=12(∠AEF+∠BEF)=12×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形;(2)本题答案不唯一,下列解法供参考.例如,FG平分∠CFE;GE=FH;∠GME =∠FQH;∠GEF=∠EFH.16.(6分)[2015·资阳]若顺次连结四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是(D) A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形17.(10分)如图28-12,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;…;按此规律继续下去,则四边形A2B2C2D2的周长是__20__;四边形A2 016B2 016C2 016D2 016的周长是__521 005__.图28-12。
人教版九年级数学中考矩形、菱形、正方形专项练习及参考答案
人教版九年级数学中考矩形、菱形、正方形专项练习基础达标一、选择题1.(2018江苏淮安)如图,菱形ABCD 的对角线AC ,BD 的长分别为6和8,则这个菱形的周长是( )A.20B.24C.40D.48,AO=12AC=3,BO=12BD=4,且AO ⊥BO ,则AB=√AA 2+AA 2=5, 故这个菱形的周长L=4AB=20. 故选A.2.(2017四川广安)下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A.4 B.3C.2D.13.(2017四川眉山)如图,EF 过▱ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若▱ABCD 的周长为18,OE=1.5,则四边形EFCD 的周长为( ) A.14 B.13C.12D.104.(2018贵州遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB,PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18PM⊥AD于点M,交BC于点N.则四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,×2×8=8,∴S△DFP=S△PBE=12∴S阴影=8+8=16,故选C.5.(2017山东枣庄)如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=A(x<0)的图象经过顶点B,则k的值为()AA.-12B.-27C.-32D.-366.(2018江苏无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G,H都在边AD上,若AB=3,BC=4,则tan ∠AFE的值()A.等于37B.等于√33C.等于34D.随点E位置的变化而变化EF∥AD,∴∠AFE=∠FAG,△AEH∽△ACD,∴AAAA =AAAA=34.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG=AA AA =3A3A+4A=37.故选A.二、填空题7.(2018湖南株洲)如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P,Q分别为AO,AD的中点,则PQ的长度为..5四边形ABCD是矩形,∴AC=BD=10,BO=DO=12BD,∴OD=12BD=5,∵点P,Q分别是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=2.5.8.(2018广东广州)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是.-5,4)菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD=√AA2-AA2=√52-32=4,∴点C的坐标是(-5,4).9.(2018湖北武汉)以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.150°1,图1∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED-∠AEB-∠CED=30°.如图2,图2∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC-∠ADE=90°-60°=30°,∴∠CED=∠ECD=1(180°-30°)=75°,同理∠BEA=∠ABE=75°,2∴∠BEC=360°-75°×2-60°=150°.三、解答题10.如图,在菱形ABCD 中,对角线AC 与BD 交于点O.过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,则ABCD 的面积是多少?四边形ABCD 是菱形,∴AC ⊥BD , ∴∠COD=90°. ∵CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,又∠COD=90°,∴平行四边形OCED 是矩形.(1)知,平行四边形OCED 是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD 是菱形, ∴AC=2OC=4,BD=2OD=2, ∴菱形ABCD 的面积为12AC ·BD=12×4×2=4. 能力提升一、选择题1.下列说法中,正确的个数为( )①对顶角相等;②两直线平行,同旁内角相等; ③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1B.2C.3D.4对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误; ④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选B .2.(2018山东枣庄)如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A.√24B.14C.13D.√23四边形ABCD 是矩形,∴AD=BC ,AD ∥BC , ∵点E 是边BC 的中点, ∴BE=12BC=12AD , ∴△BEF ∽△DAF , ∴AA AA =AA AA =12, ∴EF=12AF , ∴EF=13AE ,∵点E 是边BC 的中点, ∴由矩形的对称性得:AE=DE , ∴EF=13DE ,设EF=x ,则DE=3x , ∴DF=√AA 2-AA 2=2√2x , ∴tan ∠BDE=AAAA =2√2A =√24.故选A.3.如图,在Rt △ABC 中,∠C=90°,AC=BC=6cm,点P 从点A 出发,沿AB 方向以每秒√2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P'.设Q 点运动的时间为t s,若四边形QPCP'为菱形,则t 的值为( )A.√2B.2C.2√2D.3PP',交BC于N点,过P作PM⊥AC,垂足为M.若运动t s时四边形QPCP'为菱形,则PQ=PC,PN⊥BC,四边形PMCN为矩形,BQ=t,AP=√2t,PM=NC=t,∴QC=2t,∴BC=BQ+QC=t+2t=3t=6cm,∴t=2,故选B.4.(2018河南)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1 cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()图1图2A.√5B.2D.2√5C.52D作DE⊥BC于点E由题图2可知,点F由点A到点D用时为a s,△FBC的面积为a cm2.∴AD=a.DE·AD=a.∴12∴DE=2.当点F从D到B时,用√5s,∴BD=√5.Rt△DBE中,BE=√AA2-AA2=√(√5)2-22=1,∵ABCD是菱形,∴EC=a-1,DC=a.Rt△DEC中,a2=22+(a-1)2,.解得a=52故选C.5.(2017广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题6.(2018山东潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x 轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C'D'的位置,B'C'与CD相交于点M,则点M的坐标为.)-1,√33,连接AM ,∵将边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB'C'D', ∴AD=AB'=1,∠BAB'=30°, ∴∠B'AD=60°,在Rt △ADM 和Rt △AB'M 中,∵{AA =AA ',AA =AA ,∴Rt △ADM ≌Rt △AB'M (HL), ∴∠DAM=∠B'AM=12∠B'AD=30°, ∴DM=AD tan ∠DAM=1×√33=√33, ∴点M 的坐标为(-1,√33).三、解答题 7.如图所示,在△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN ∥BC ,设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1)求证:OE=OF ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.MN ∥BC ,∴∠OEC=∠BCE.又∠OCE=∠BCE ,∴∠OEC=∠OCE ,∴OE=OC.同理可证OF=OC ,∴OE=OF.O 运动到AC 中点时,四边形AECF 是矩形.证明:∵CE ,CF 分别是∠ACB 的内,外角平分线.∴∠OCE+∠OCF=12(∠ACB+∠ACD )=12×180°=90°,即∠ECF=90°,又∵OE=OF ,∴当O 点运动到AC 中点时,OA=OC ,四边形AECF 是矩形.8.(2018贵州遵义)如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON.,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM=√22+42=2√5,由(1)知OM=ON,∴MN=√2OM=2√10.。
矩形菱形正方形练习题及答案
矩形菱形正方形练习题及答案1.矩形ABCD的对角线长为10cm。
则矩形的周长最大为20cm,此时对角线分成的四个小三角形的周长的和为20cm。
2.在矩形ABCD中,AE⊥BD于点E,且∠BAE=30°,BE=1cm。
若直角三角形斜边上的高为5cm,中线为6cm,则DE的长为3cm。
矩形的面积为3cm×10cm=30cm²。
4.在△ABC中,∠ACB=90度,点D、E分别为AC、AB 的中点,点F在BC延长线上,且∠XXX∠A。
则四边形DECF是平行四边形。
5.在△ABC中,∠BAC≠90°,∠ABC=2∠C,AD⊥AC,交BC或CB的延长线于点D。
则DC=2AB。
6.在△ABC中,∠C=90°,AC=BC,AD=BD,PE⊥AC 于点E,PF⊥BC于点F。
则DE=DF。
7.菱形ABCD的两条对角线分别长6和8.点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点。
则PM+PN的最小值为5.8.若菱形的周长为24cm,一个内角为60°。
则菱形的面积为36√3cm²。
9.菱形的周长为40cm,两条对角线长的比是3:4.则两对角线长分别为24cm和16cm。
10.在菱形ABCD中,E是AB的中点,且DE⊥AB,AE=2.则(1)∠ABC的度数为60°;(2)对角线AC、BD的长分别为2√7cm和4√3cm;(3)菱形ABCD的面积为4√3cm²。
11.在△ABC中,AD平分∠BAC,DE∥AC交AB于点E,DF∥AB交AC于点F。
则四边形AEDF是菱形。
12.在边长为a的菱形ABCD中,∠DAB=60度。
点E是异于A、D两点的动点,F是CD上的动点,满足AE+CF=a。
则无论E、F怎样移动,△XXX总是正三角形。
13.在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于E,点F在DE的延长线上,且AF=CE。
(完整版)矩形、菱形与正方形-专题训练(含答案)
矩形、菱形与正方形专题训练(含答案)班级_________ 姓名 __________ 成绩 ___________、选择题(每小题3分,共30分)1.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B 处,若AE = 2, DE = 6, / EFB = 60 ° 则矩形ABCD 的面积是( )A . 12B . 24C . 12 .'3D . 16 .'3第1题图 第2题图 第3题图 第4题图2 . 如图,菱形ABCD 中,/ B = 60 ° AB = 4,则以AC 为边长的正方形 ACEF 的周长为() A . 14 B . 15C . 16D . 173. 如图, 将矩形 ABCD 沿对角线 BD 折叠,使点 C 与点 C 重合.若AB = 2,则CD 的长为() A. 1 B . 2C . 3D . 44. 如图, 在厶ABC 中,AC =BC , 占 八D ,E 分别是边AB , ,AC 的中点. 将厶 ADE 绕点E 旋转180 得厶CFE ,则四边形 ADCF •宀曰疋是 ( )A.矩形 B . 菱形 C . 正方形 D .梯形5•由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是( )6.如图,?ABCD 的周长为16 cm , AC , BD 相交于点 O , 0E 丄AC 交AD 于点 丘,则厶DCE 的周 长为()A •平行四边形B •矩形C •菱形D .正方形A . 4 cmB . 6 cmC .第6题图 第9题图7•菱形的周长为 8 cm ,高为1 cm ,则菱形两邻角度数比为BC10 cmA F DE&用两块完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形,一定能拼成的图形是()A .①④⑤B .②⑤⑥C .①②③D .①②⑤9. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S i, S2,则S i + S2的值为()A . 16B . 17 C. 18 D . 1910. 如图,F为正方形ABCD的边AD上一点,CE丄CF交AB的延长线于点E,若正方形ABCD 的面积为64,A CEF的面积为50,则厶CBE的面积为()A . 20B . 24C . 25D . 26二、填空题(每小题3分,共24分)11. 如图所示,在菱形ABCD中,/ ADC = 72 ° AD的垂直平分线交对角线BD于点P,垂足为点E,连结CP,则/ CPB = _______ 度.1)第11题图第12题图第14题图第15题图12 .如图,四边形ABCD的两条对角线AC, BD互相垂直,A1, B1, C1, D1分别是四边形ABCD 各边中点,如果AC= 8, BD = 10,则四边形A1B1C1D1的面积为—.13 .矩形的对角线相交成的角中,有一个角是60°这个角所对的边长为20 cm,则其对角线长为___________ -_,矩形的面积为__________________ .14 .如图,四边形ABCD是菱形,对角线AC和BD相交于点O, AC = 4 cm, BD = 8 cm,则这个菱形的面积是_____ c m2.AC , BD 交于点 O , E 点在BC 上,EG 丄OB , EF 丄OC ,垂足,使?ABCD 是矩形.17 .如图,正方形 ABCD 中,对角线第18题图15 .如图,矩形 ABCD 中,点E , F 分别是 AB , CD 的中点,连结 DE 和BF ,分别取 DE , BF 的 中点M , N ,连结AM , CN , MN ,若AB = 2 2, BC = 2 '3,则图中阴影部分的面积为,第16题O ,请你添加一个条件16 .如图,分别为点G , F, AC= 10,则EG + EF = ______ .18. 如图,在平面直角坐标系中,矩形OABC的顶点A, C的坐标分别为(10, 0), (0, 4),点D是OA的中点,点P在BC上运动,当△ ODP是腰长为5的等腰三角形时,点P的坐标为三、解答题(共66分)19. (6分)如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF丄EC且EF = EC, DE =4 cm,矩形ABCD的周长为32 cm,求AE的长.20. (8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连结BM , DN.(1)求证:四边形BMDN是菱形;⑵若AB= 4, AD = 8,求MD的长.21 . (8 分)如图所示,矩形ABCD 中,AE丄BD 于点E,/ DAE :/ BAE = 3 : 1,求/ BAE 和/ EAO 的度数.22. (10分)如图,已知菱形 ABCD 中,AB = AC , E , F 分别是BC , AD 的中点,连结 AE , CF. (1)证明:四边形 AECF 是矩形; ⑵若AB = 8,求菱形 ABCD 的面积.参考答案一、选择题(每小题3分,共30分)1.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B 处,若AE = 2, DE = 6, / EFB = 60 ° 则矩形ABCD 的面积是(D ) A . 12B . 24C . 12D . 164 / 9DE 丄AB , DF 丄BC ,垂足分另U 是点 E , F ,并且DE = DF ,求证: (1)△ ADECDF ; (2)四边形 ABCD 是菱形.24. (10分)在四边形 ABCD 中,AB = CD , M , N , P , Q 分别是AD , BC , BD , AC 的中点,求证:MN 与PQ 互相垂直平分.23. (12分)如图,已知四边形 ABCD 是平行四边形,6.如图,?ABCD 的周长为16 cm , AC , BD 相交于点 O , 0E 丄AC 交AD 于点 丘,则厶DCE 的周 长为(C )7.菱形的周长为 8 cm ,高为1 cm ,则菱形两邻角度数比为 (C ) A . 3 : 1B . 4 : 1C . 5 : 1D . 6 : 1&用两块完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等 腰三角形,⑥等边三角形,一定能拼成的图形是 (D )A .①④⑤B .②⑤⑥C .①②③D .①②⑤9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为 S 1, S 2,则S 1 +S 2的值为(B ) A . 16B . 17C . 18D . 19的面积为64,^ CEF 的面积为50,则厶CBE 的面积为(B)2 . 如图,菱形ABCD 中,/ B = 60 ° AB = 4,则以AC 为边长的正方形 ACEF 的周长为(C ) A . 14 B . 15C . 16D . 173. 如图, 将矩形 ABCD 沿对角线 BD 折叠,使点 C 与点 C 重合.若AB = 2,贝U CD 的长为(B ) A . 1 B . 2C . 3D . 44. 如图,在厶ABC 中,AC =BC , 点D , E 分别是边AB , ,AC 的中点. 将厶 ADE 绕点E 旋转180 得厶CFE ,则四边形 ADCF •宀曰(A )定是A.矩形 B . 菱形C .正方形D .梯形A •平行四边形B •矩形C •菱形D .正方形 A . 4 cmB . 6 cmC .第6题图10 .如图, F 为正方形 ABCD 的边AD 上一点, CE 丄CF 交AB 的延长线于点 E ,若正方形 ABCD第4题图第1题图 第2题图 第3题图 5•由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是 (B BC第9题图10 cm二、填空题(每小题3分,共24分)11.如图所示,在菱形 ABCD 中,/ ADC = 72 ° AD 的垂直平分线交对角线 BD 于点P ,垂足为点 E ,连结 CP ,则/ CPB =72 度.第11题图 第12题图 第14题图 第15题图12. 如图,四边形 ABCD 的两条对角线 AC , BD 互相垂直,A 1, B 1, C 1, D 1分别是四边形 ABCD 各边中点,如果 AC = 8, BD = 10,则四边形 A 1B 1C 1D 1的面积为 _20_. 13. 矩形的对角线相交成的角中,有一个角是 _40 cm ,矩形的面积为_400 cm 2 .14. 如图,四边形 ABCD 是菱形,对角线 AC 和BD 相交于点O , AC= 4 cm , BD = 8 cm ,则这个菱形的面积是_16 cm 2.15. 如图,矩形 ABCD 中,点E , F 分别是 AB , CD 的中点,连结 DE 和BF ,分别取 DE , BF 的是矩形. 17.如图,正方形 ABCD 中,对角线 AC , BD 交于点O , E 点在BC 上, EG 丄OB , EF 丄OC ,垂足 分别为点 G , F , AC = 10,则 EG + EF = 5 . 18.如图,在平面直角坐标系中,矩形 OABC 的顶点A , C 的坐标分别为(10, 0), (0, 4),点D 是 OA 的中点,点P 在BC 上运动,当△ ODP 是腰长为5的等腰三角形时,点 P 的坐标为 _(8, 4), (3, 4)或(2, 4)_. 三、解答题(共66分)19. (6分)如图,已知矩形 ABCD 中,E 是AD 上一点,F 是AB 上一点,EF 丄EC 且EF = EC , DE =4 cm ,矩形ABCD 的周长为32 cm ,求AE 的长.B . 24C . 25D . 2660°这个角所对的边长为 20 cm ,则其对角线长为中点M , N ,连结AM , CN , MN ,若,第16题图16.如图, ?ABCD 的对角线相交于点 O ,请你添加一个条件AO = BO (答案不唯一),使?ABCD第17题AB = 2, BC = 2,则图中阴影部分的面积为2解:I/ AFE + / AEF = / AEF + / CED = 90° /•/ AFE = / DEC . 又•••/ A = / D = 90° EF = EC ,•••△ AEF◎△ DCE AE = CD.1设 AE = x ,贝U CD = x , • AD + CD = 2x32,即 x + 4 + x = 16, •- x = 6.即卩 AE = 6 cm⑴求证:四边形 BMDN 是菱形; ⑵若AB = 4, AD = 8,求MD 的长.解:(1) •/ MN 是 BD 的垂直平分线,• BO = DO , / BON =/ DOM = 90° •••四边形 ABCD 是矩形,• AD // BC ,• / BNO = / DMO , • △ BON ◎△ DOM (AAS), • OM = ON.v OB = OD , •四边形 BMDN 是平行四边形.•/ MN 丄BD , • ?BMDN 是菱形(2)设 MD = x ,贝U MB = x , MA = 8-x ,在 Rt △ ABM 中,T BM 2= AM 2+ AB 2, • x 2= (8- x)2 + 42,解得 x = 5.「. MD 的长为 521 . (8 分)如图所示,矩形 ABCD 中,AE 丄 BD 于点 E ,/ DAE :/ BAE = 3 : 1,求/ BAE 和/ EAO 的度数.解:提示:由 / DAE :/ BAE = 3 : 1 ,求出 / BAE = 22.5 ° 而/ABD = 90°— / BAE = 90° — 22.5° = 67.5°•••/ BAO = / ABD = 67.5 ° •••/ EAO = Z BAO — / BAE = 67.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形的习题精选
一、性质
1、下列性中,矩形具有而质平行四边形不一定具有的是()
A、对边相等
B、对角相等
C、对角线相等
D、对边平行
2.在矩形ABCD中,∠AOD=130°,则∠ACB=_ _
3.已知矩形的一条对角线长是8cm,两条对角线的一个交角为60°,则矩形的周长为______
4.矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm,对角线是13cm,那么矩形的周长是____________
5.如图所示,矩形ABCD中,AE⊥BD于E,∠BAE=30°,
BE=1cm,那么DE的长为_____
6、直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积为___
7、已知,在Rt△ABC中,BD为斜边AC上的中线,若∠A=35°,那么∠DBC= 。
8、如图,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD 于F.
求证:BE=CF. A
B E F
O
9.如图,△ABC中,∠ACB=90度,点D、E分别为AC、AB的中点,点F在BC延长线上,且∠CDF=∠A,求证:四边形DECF
是平行四边形;
10.已知:如图,在△ABC中,∠BAC≠90°∠ABC=2∠C,AD⊥AC,交BC或CB的延长线D。
试说明:DC=2AB.
11、在△ABC中,∠C=90O,AC=BC,AD=BD,PE⊥AC于点E,PF ⊥BC于点F。
求证:DE=DF
二、判定
1、下列检查一个门框是否为矩形的方法中正确的是(C )
A.测量两条对角线,是否相等B.测量两条对角线,是否互相平分
C.用曲尺测量门框的三个角,是否都是直角D.用曲尺测量对角线,是否互相垂直
2、平行四边形ABCD,E是CD的中点,△ABE是等边三角形,求证:四边形ABCD是矩形
3、在平行四边形ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC,求证:四边形AFCE是矩形
4、平行四边形ABCD中,对角线AC、BD相交于点O,点P是四边形外一点,且PA⊥PC,PB⊥PD,垂足为P。
求证:四边形ABCD为矩形
5、已知:如图,平行四边形ABCD的四个内角的平分线分别相交于E、F、
G、H,求证:四边形EFGH为矩形.
6、如图,△ABC中,点O是AC上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,(1)
明你的结论。
菱形的习题精选
一、性质
1.小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件<A=<B ,使得四边形ABCD是菱形。
小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为下列说法正确的是(A )A、小明、小亮都正确B、小明正确,小亮错误C、小明错误,小亮正确D、小明、小亮都错误
2.下面性质中菱形有而矩形没有的是(A )
(A)邻角互补(B)内角和为360°(C)对角线相等(D)对角线互相垂直
3.如图,已知四边形ABCD是平行四边形,下列结论不正确的是(D )A. 当AB=BC时,它是菱形; B. 当AC⊥BD时,它是菱形;C. 当∠ABC=90°时,它是矩形; D. 当AC=BD时,它是菱形。
4.已知菱形两条对角线的长分别为5cm和8cm,则这
个菱形的面积是__40____cm.
5.若菱形的周长为24 cm,一个内角为60°,则菱形的面积为__32____ cm2。
6 .已知:菱形的周长为40cm,两条对角线长的比是3:4。
求两对角线
7、已知菱形的面积等于80cm2,高等于8cm,则菱形的周长为.
8、如图,P为菱形ABCD的对角线上一点,PE⊥AB
于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距
离是_____ cm
13、如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是_______.
9.已知菱形ABCD中,对角线AC和BD相交于点O,∠BAD=120°,求∠ABD的度数。
A D
O
B C
10、已知如图,菱形ABCD中,E是AB的中点,且DE⊥AB,AE=2。
求(1)∠ABC的度数;(2)对角线AC、BD的长;
(3)菱形ABCD的面积。
11、已知:如图,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC 于F.
求证:四边形AEDF是菱形;
12、如图,边长为a的菱形ABCD中,∠DAB=60度,E是异于A、D两点的动点,F是CD上的动点,满足AE+CF=a。
证明:不论E、F怎样移动,△BEF总是正三角形。
二、判定
1、□ABCD的对角线AC与BD相交于点O,
(1)若AB=AD,则□ABCD是形;(2)若AC=BD,则□ABCD 是形;
(3)若∠ABC是直角,则□ABCD是形;(4)若∠BAO=∠DAO,则□ABCD是形。
2、下列条件中,不能判定四边形ABCD为菱形的是().
A、AC⊥BD ,AC与BD互相平分B、AB=BC=CD=DA
C、AB=BC,AD=CD,且AC⊥BD D、AB=CD,AD=BC,AC⊥BD
3、如图,Rt△ABC中,∠ACB=900,∠BAC=600,DE垂直平分BC,垂足为D,交AB于E,又点F在DE的延长线上,且AF=CE,求证:四边形ACEF是菱形。
4、如图,在已知平行四边形ABCD中,AE平分∠BAD,与BC相交于点E,EF//AB,与AD相交于点F.求证:四边形ABEF是菱形.
5、如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,四边形AEFG是菱形吗?
6、如图,已知在□ABCD中,AD=2AB,E、F在
直线AB上,且AE=AB=BF,说明CE⊥DF.
正方形练习题
1._____________的矩形叫做正方形。
2.正方形具有_________、
___________、____________的一切性质。
3.如图,四边形ABCD是正方形,两条对角线相交于点O,OA=2,
则∠AOB=_____,∠OAB=_____,BD =______,AB=______.
A B
C D
O
4.第三题图中等腰三角形的个数是( )A.4个 B.5个 C.6个 D.8个
5.判断。
(1)正方形一定是矩形。
( )(2)正方形一定是菱形。
( )
(3)菱形一定是正方形。
( )(4)矩形一定是正方形。
( )(5)正方形、矩形、菱形都是平行四边形。
( )
自主学习
1.在下列性质中,平行四边形具有的是__________,矩形具有的是_________,菱形具有的是__________,正方形具有的是____________。
1.四边都相等;
2.对角线互相平分;
3.对角线相等;
4.对角线互相垂直;
5.四个角都是直角;
6.每条对角线平分一组对角;
7.对边相等且平行;
8.有两条对称轴。
2.正方形两条对角线的和为8cm ,它的面积为____________.
3.在正方形ABCD 中,E 在BC 上,BE=2,CE=1,P 在BD 上,则PE 和PC 的长度之和最小可达到_____________
4.如图,点E 、F 在正方形ABCD 的边BC 、CD 上,BE=CF.
(1)AE 与BF 相等吗?为什么?(2)AE 与BF 是否垂直?说明你的理由。
A
B
C
D
E
F G
5.如图,正方形ABCD 中对角线AC 、BD 相交于O ,E 为AC 上一点,AG ⊥EB 交EB 于G ,AG 交BD 于F 。
(1) 说明OE=OF 的道理;
(2) 在(1)中,若E 为AC 延长线上,AG ⊥EB 交EB 的延长
线于G ,AG 、BD 的延长线交于F ,其他条件不变,如图2,则结论:“OE=OF ”还成立吗?请说明理由。
A B
C D
O
E F G
A
B
C
D
O E F
G
6.如图,在正方形ABCD 中,取AD 、CD 边的中点E 、F ,连接CE 、BF 交于点G ,连接AG 。
试判断AG 与AB 是否相等,并说明道理。
A
B C
D E G
F。