复杂机电控制第一章资料

合集下载

机电一体化原理及应用第一章机电一体化系统的概论

机电一体化原理及应用第一章机电一体化系统的概论

§4 机电一体化应用及发展前景
在新技术革命的浪潮中,自动化技术已深入到社会的各个方面, 有人称之为"全盘自动化"。 在这些自动化的系统中,主要是由很多种机电一体化产品所构 成。 从我国将要发展的机械工业产品来分析主要由以下产品需要实 现程度不同的机电一体化。 具体地说,典型的机电一体化产品主要包括:大型成套设备;数 控机床;仪器仪表电子化;自动化管理系统;电子化量具量仪; 工业机器人;电子化家用电器;电子化电机传动与调整系统;电 子化电站自动装置与开关板;电子医疗器械;电子化低压电器; 微电脑控制加热炉;电子控制汽车或内燃机;微电脑控制印刷机 械;微电脑控制食品机械或包装机械;微电脑控制办公机械;电 子式照相机;电子控制农业机械;电子控制塑料加工机械;电子 控制电焊机;计算机辅助设计系统(CAD);计算机辅助制造系统 (CAM);计算机集成制造系统(CIM)。
几种描述: 1983年日本振兴协会提出:

机械电子乃是在机械的主功能、动力功能、信息功能和 控制功能上引进微电子技术,并将机械装置与电子装置用相 关软件有机结合而构成系统的总称。

1984年美国机械工程师协会(ASME)的一个专家组在给美国 国家科学基金的报告中提出现代机械系统的定义: 由计算机信息网络协调与控制的,用于完成包括机械系 统、运动和能量流等动力学任务的机械(或机电部件)相互 联系的系统,这实质上就是机电一体化的机械系统。

§2 机电一体化系统的主要组成部分(要素)



机械本体 传感检测部分 执行部分 动力部分 驱动部分 信息处理及控制部分。
一、 机械本体

1、概念 机械本体就是其机械结构部分。 包括机械结构装置和机械传动装置,属于产品的基础部分。

哈工大机电系统智能控制 第一章 概述

哈工大机电系统智能控制 第一章 概述

1.3 智能控制的理论结构
智能控制的理论结构明显地具有多 学科交叉的特点,许多研究人员试图建 立起智能控制这一新学科,他们提出了 一些有关智能控制系统结构的思想。按 照(傅京孙)和Saridis提出的观点,可 以把智能控制看作是人工智能、自动控 制和运筹学三个主要学科相结合的产物。 称之为三元结构。
1.2 智能控制的特点


具有以知识表示的非数学广义模型 和以数学模型表示的混合过程,也往 往是那些含有复杂性、不完全性、 模糊性或不确定性以及不存在已知 算法的非数学过程,并以知识进行 推理,以启发引导求解过程; 智能控制的核心在高层控制,即组 织级;
1.2 智能控制的特点





智能控制器具有非线性特性; 智能控制具有变结构特点; 智能控制器具有总体自寻优特性; 智能控制系统应能满足多样性目标 的高性能要求; 智能控制是一门边缘交叉学科; 智能控制是一个新兴的研究领域.
1.7 智能控制的发展概述
Saridis在学习控制系统研究的基础上,提出 了分级递阶和智能控制结构,整个结构自上而下 分为组织级、协调级和执行级三个层次,其中执 行级是面向设备参数的基础自动化级,在这一级 不存在结构性的不确定性,可以用常规控制理论 的方法设计。协调级实际上是一个离散事件动态 系统,主要运用运筹学的方法研究。组织级涉及 感知环境和追求目标的高层决策等类似于人类智 能的功能,可以借鉴人工智能的方法来研究。因 此,Saridis将傅京孙关于智能控制是人工智能与 自动控制相结合的提法发展为:智能控制是人工智 能、运筹学和控制系统理论三者的结合。
1.1 智能控制的基本概念

定义三: 智能 控制是一类无 需人的干预就 能够自主地驱 动智能机器实 现其目标的自 动控制,也是 用计算机模拟 人类智能的一 个重要领域。

机电一体化技术基础 第一章

机电一体化技术基础 第一章

发 展 高速化、精密化、高效率、高可靠性、智能化、轻量化、 方 微型化 向
绪论
试分析机电一体化系统设计与传统的机电产品设计的区别
机电一体化系统设计方法与用经验公式、图表和手册为设计依据 的传统方法不同,它是以计算机为手段,其设计步骤通常如下:设计 预测一→信号分析一→科学类比一→系统分析设计一→创造设计一→ 选择各种具体的现代设计方法(如相似设计法、模拟设计法、有限元 法、可靠性设计法、动态分析法、优化设计法、模糊设计法等)一→ 机电一体化系统设计质量的综合评价
绪论
1.2 机电一体化系统的基本功能要素
传感检测部分 对运行过程中所需要的系统自身和外界环境各种参数及运行状态进 行检测,并产生相应的反馈控制信息——传感器和专用仪器仪表。 研究对象:传感器及其信号检测装置(即变送器) 作 用:感受器官、反馈环节。 要 求:快速、精确获得信息并在相应的应用环境中具有高可靠性。 执行部分 由机械、电磁、电液等机构组成,根据控制信息和指令完成系统需 求的动作,实现输入能量向机械能的转换。
绪论
1.2 机电一体化系统的基本功能要素
机械本体(基础) 包括机械传动装置和机械结构装置,将系统各部分零件和子系统按 照一定的空间和时间关系安置在一定位置上。实现机电一体化产品的 主功能和构造功能,影响系统的结构、重量、体积、刚性、可靠性等。
动力部分(能源部分) 按照系统控制要求为系统提供能量和动力,应尽可能实现较小的动 力输入获得较大的功能输出。
1.4 现代机电一体化方法
机电一体化产品的开发过程:
绪论
绪论
思考
根据机电一体化技术的发展历史,你认为未来该领 域的发展方向?
绪论
作业:
1、什么是机电一体化? 2、一个典型的机电一体化系统,应包含哪些几个基本要素,它 们之间的组成关系是什么?

机电控制工程基础课后习题答案左健民

机电控制工程基础课后习题答案左健民

机电控制工程基础课后习题答案第一章:引论1.题目问题:简述机电控制工程的基本概念和发展历程。

答案机电控制工程是一个交叉学科,它涉及机械工程、电气工程和控制工程等多个学科的知识与技术。

其基本概念包括机电系统、控制系统和传感器系统。

机电系统由机械设备、电气设备和控制设备组成,用来完成特定的运动任务。

控制系统由传感器、控制器和执行器组成,用来监测和控制机电系统的运行状态。

传感器系统负责采集、测量和传输机电系统的运行数据。

机电控制工程的发展历程可以分为三个阶段。

第一个阶段是机械、电气和控制等学科独立发展的阶段,各自在不同领域取得了一定的成就。

第二个阶段是机械、电气和控制等学科开始相互交叉融合的阶段,机电系统的概念逐渐形成。

第三个阶段是机电控制工程逐渐成为一个独立学科,形成了一整套完整的理论和方法体系。

第二章:电气与电子技术基础2.题目问题:简述直流电路的基本特点和常用电路元件。

答案直流电路是指电流方向恒定的电路。

其基本特点包括以下几个方面:•电流方向不变。

在直流电路中,电荷只能沿着一个方向移动,电流的方向不会发生改变。

•电压稳定。

直流电源提供的电压一般是恒定的,不会发生明显的波动。

•电阻内部不产生能量损耗。

电阻元件在直流电路中,不会消耗电能,只会产生热能。

常用的直流电路元件包括电容器、电感器和电压源。

电容器用来存储电荷,具有储能效果。

电感器则用来存储磁能,具有阻尼和滤波效果。

电压源是直流电路中常用的电源元件,用来提供稳定的电压。

第三章:电路理论与分析3.题目问题:简述电路的戴维南定理和诺顿定理。

答案戴维南定理和诺顿定理是电路分析中常用的方法,用于简化电路的计算和分析。

•戴维南定理:戴维南定理又称为戴维南-诺顿定理,它指出:任意一个由电压源、电流源和电路元件组成的线性电路,可以用一个等效的电流源和等效的内阻表示。

通过计算戴维南等效电流源和内阻,可以将复杂的电路简化为一个更容易分析的等效电路。

•诺顿定理:诺顿定理是戴维南定理的一种特例,它用电压源和等效的电阻来表示电路。

控制工程基础第一章绪论资料

控制工程基础第一章绪论资料

(5)滤波与预测:当系统已定, 输出已知时,识别 输入或输入中的有关信息。
page10
机电工程学院
第一章 绪论
三、控制理论的内容
经典控制理论(19世纪中叶--20世纪50年代)
控制理论 现代控自动”功能的装置自古有之,瓦
制 工
特发明的蒸汽机上的离心调速器是比较自觉
程 基
地运用反馈原理进行设计并取得成功的首例
础 。 麦克斯韦对它的稳定性进行分析,于
1868年发表的论文当属最早的理论工作。
page11
机电工程学院
第一章 绪论
从20世纪20年代到40年代形成了以时
域法,频率法和根轨迹法为支柱的“古典
”控制理论。

60年代以来,随着计算机技术的发展
制 工
和航天等高科技的推动,又产生了基于状
自动控制理论与实践的不断发展,为人们提供
了设计最佳系统的方法,大大提高了生产率,同时
促进了技术的进步。
page 2
机电工程学院
第一章 绪论
第一节 控制论的基本含义
一、 控制的含义
控制(Control):是指由人或用控制装置使受控对
象按照一定目的来动作所进行的操作。
控 制
例:用微型计算机控制热处理炉的炉温使之保持
第一章 绪论
控制的分类
人工控制: 指控制的任务由人来完成。
煤气灶上油煎鸡蛋时的油温控制
控 自行车速度控制 收音机音量调节 汽车驾驶

工 程
自动控制:
指控制的任务用控制装置来完成,


而人不经常直接参与。
电饭煲 空调 抽水马桶 声控光控路灯
电动机转速控制 导弹飞行控制 自动控制系统:一般由控制装置和被控对象组成。

机电传动第01~03章机电传动控制概述(江苏大学)

机电传动第01~03章机电传动控制概述(江苏大学)

根据运动方程式可知,运动系统有两张不同 的运动状态:
1. 稳态(TM=TL时)
Td
Jd0,即d0
dt
dt
为常数,传动系统以恒速运动
2. 动态(TM≠TL时)
TMTL时 , TdJd d t 0,即 d d t 0, 传 动 系 统 加 速 运 动 TMTL时 , TdJd d t 0,即 d d t 0, 传 动 系 统 减 速 运 动
TL
a点: TM -TL =0
当负载由TL突然增加到T‘L时,由 于机械惯性,速度n和电动机的输
出转矩不能突变,此时有TMT‘L<0。由拖动系统的运动方程式 可知:系统要减速,即n要下降。
当n下降到n ‘ 时,系统在新的平
衡点a ‘
稳定运行,
T

-
M
T‘L=0
当负载波动消除( T‘L回到TL )时,同样由于机械惯性,速 度n和电动机的输出转矩不能突变,此时有T‘M- TL>0。由拖 动系统的运动方程式可知:系统要加速,即n要上升。当n上
闭环控制:经典控制理 论、现代控制理论、自 适应控制、模糊控制、 智能控制
计算机控制技术和现场 总线技术
第二章:机电传动的动力学基础
学习要点:
❖ 机电传动系统的运动方程式; ❖ 多轴传动系统中转矩折算的基本原则和
方法; ❖ 了解几种典型生产机械的负载特性; ❖ 了解机电传动系统稳定运行的条件以及
TL Cn
直线型机械特性
十三、 恒功率型机械特性
如在车床加工过程中, 粗加工时,切削量大, 负载阻力大,开低速; 精加工时,切削量小, 负载阻力小,开高速。 但在不同转速下,切 削功率基本不变。即 呈现恒功率型机械特 性。

第一章机电设备维修与故障诊断

第一章机电设备维修与故障诊断
自动化程度高,运行速度快,各部分联系非常紧密,往往有 成千上万个机械零件和电器部件,无论哪一部分出现问题都 是难以避免的,比如机械锈蚀、机械磨损、机械失效、电子 元器件老化、插件接触不良、电流电压波动、温度变化、干 扰、噪声,参数丢失或本身有隐患、灰尘、操作失误等,都 有可能导致数控机床出现故障甚至使整个机床停机,从而造 成整个生产停顿。
1.3 数控机床维修的方法与步骤
例4:替换法
在机床的运行过程中,X轴运行正常,Z轴出现故障,并且报跟踪误 差过大,图a是正常时的接线图,为了判断具体故障原因,进行如图 b对调现在运行系统,(1)如果此时X轴不能正常运行,Z轴能正常 运行可以得出什么结论?(2)如果对调后,Z轴依然有故障,说明 什么?(3)如果判断故障不是出现在数控系统上,进行如图c对调 现在运行系统,此时如果X轴不能正常运行,Z轴能正常运行,可以 得出什么结论?
1.1 数控机床维修与调试的意义
1.1.1 数控机床维修与调试的必要性
数控机床是集光、机、电、气、液、信息处理等为一体的复 杂而庞大的系统,包括数控系统、伺服系统、可编程控制器、 精密机械、模拟、数字、电力电子、电机拖动、液压与气动、 传感器与检测、网络通信等技术。数控机床具有高精度、高 效率、高适应性的特点,适用于多品种、中小批量精密复杂 零件的加工。
(3)专家诊断系统 专家诊断系统又称智能诊断系统。它将专业技术人员、专家
的知识和维修技术人员的经验整理出来,运用推理的方法编 制成计算机故障诊断程序库。专家诊断系统主要包括知识库 和推理机两部分。
上一页 下一页 返回
1.3 数控机床维修的方法与步骤
(4)神经网络诊断
神经网络理论是在现代神经科 学研究成果的基础上发展起来的, 神经网络由许多并行的功能单元 组成,这些单元类似于生物神经 系统的单元,神经网络反映了人 脑功能的若干特性,是一种抽象 的数学模型,神经网络的特点是 信息的分布式存储和并行协同处 理,它有很强的容错性和适应性, 善于联想、综合和推广。

机电传动控制1-3

机电传动控制1-3

[ J ] J M J 2 / j2 J 3 / j3 m j (
2 2 j 1
n
vj
M
)
2
忽略中间传动机构的转动惯量 2 [ J ] J M J L / jL
2.2 转矩、转动惯量和飞轮转矩的折算
3. 飞轮转矩的折算 依据转动惯量与飞轮转矩的关系,得到折 算到电机轴上的总的飞轮转矩为:
串励:励磁绕组与电枢绕组串联
复励:一部分并联,一部分串联
3.3 他励直流电动机的机械特性
电压平衡方程:
U E I a Ra E K e n Ra U n Ia K e K e
I a T /( K t )
直流电动机机械特 性的一般表达式
Ra U n T n0 n 2 K e K e K t
第三章 直流电机的工作原理及特性 本 章 重 点: 掌握直流电机的工作原理; 掌握直流电机的机械特性;
掌握直流电机启动、调速、制动的
方法。
3.1 直流电机的基本结构和工作原理
直 流 电 机
交 流 电 机
3.1 直流电机的基本结构和工作原理
1. 基本结构
定子: 主磁极、换向极、 机座、轴承、电刷
2.4 机电传动系统稳定运行的条件
由机电传动系统的运动方程式:
TM TL GD 2 dn 375 dt
知,系统的运动状态取决于电动机与生产机械双 方.为了使系统运行合理.就要使电动机的机械持 性与生产机械的机械特性尽量相配合。特性配合好 的一个起码要求是系统要能稳定运行。
动画
2.4 机电传动系统稳定运行的条件
2.4 机电传动系统稳定运行的条件
讨论: a点:当TL突然增大到TL’时, 因速度不能突变,电机转 矩仍 为 TM ,此时 ,TM<TL’ n减小,TM增大,直到与TL’ 相等,运行于a’点。 当干扰撤销后,TM’>TL, n 增大,TM’减小,直到与TL 相等,即在a点稳定运行。

机电一体化第一章概论

机电一体化第一章概论
理的功能。 控制功能: 对整个系统进行控制,使系统正常运转以实施
“目的功能”。 构造功能 :使构成系统的子系统及元、部件维持所
定的时间和空间上的相互关系所必需的 功能
机电一体化第一章概论
16
机电一体化系统的五种内部功能
机电一体化第一章概论
17
机电一体化系统(产品)的 内部功能
主功能 动力功能 控制功能 构造功能 计测功能
机电一体化第一章概论
6
第二节 优先发展机电一体化的 领域及其共性关键技术
优先发展的机电一体化领域必须同时具备下述几个 条件:
①短期或中期普遍需要; ②具有显著的经济效益 ; ③具备或经过短期努力能具备必需的物质技术基础; ④社会效益十分显著的领域 。
机电一体化第一章概论
7
机电一体化技术内部联系与外 部影响
2)无源接口。只用无源要素进行变换、调整的接口,称为无源 接口。例如齿轮减速器、进给丝杠、变压器、可变电阻器以及透镜 等。
3)有源接口。含有有源要素、主动进行匹配的接口,称为有源 接口。例如电磁离合器、放大器、光电耦合器、D/A转换器、A/D转 换器以及力矩变换器等。
4)智能接口。含有微处理器,可进行程序编制或可适应性地改 变接口条件的接口,称为智能接口。 例如自动变速装置, 通用 输入/输出LSI(8255等通用I/O)、GP-IB总线、STD总线等。
机电一体化第一章概论
23
根据输入/输出功能可分 成以下四种广义接口:
第一章 概 论
第一节 机电一体化时代与机电一体化技术革命 第二节 优先发展机电一体化的领域及其共性关键技术 第三节 机电一体化系统构成要素及功能构成 第四节 机电一体化系统构成要素之间的连接 第五节 机电一体化系统的评价 第六节 机电一体化系统设计的考虑方法及设计类型 第七节 机电一体化系统的设计流程 第八节 机电一体化工程与系统工程 第九节 机电一体化系统的设计程序、准则与规律 第十节 机电一体化系统的开发工程与现代设计方法

机电传动控制复习题(附答案)

机电传动控制复习题(附答案)

机电传动控制复习题第一章绪论部分一单项选择题:1 机电传动的目的是将电能转换为【A】机械能 B.动能 C.势能 D.液压能二多项选择题 :1 机电传动的发展大体上经历哪几个阶段?【A B C】A.成组拖..B.单电动机拖..C.多电动机拖..D.单组多..E.复合拖动三判断改错题:错误的在括号内画×得2分, 将错误更正为正确的得2分;正确的在括号内画√得4分;1 机电传动的目的是将机械能转换为电能。

【×】更正: 机电传动的目的是将电能转换为机械能。

第二章机电传动系统的动力学基础一单项选择题:1 多轴拖动系统中飞轮转矩可根据以下哪种原则折算到电动机轴上?【B 】A.机械能守. ..B.动能守...C.功率守...D.动量守恒2 恒转矩型机械特性的特点是负载转矩为【A】A.常..B.在一定范围内变..C.随转速增加而正比增..D.实数3 电流电动机的电磁转矩T、负载转矩L T和空载损耗转矩0T之间的关系是【B 】A...B.. .C...D.4 多轴拖动系统中各静态负载转矩可根据静态时以下哪种原则折算到电机轴上?【C 】A.机械能守恒B.动能守恒C.功率守恒D.动量守恒5 根据转矩正方向的约定, 恒转矩型机械特性中, 反抗转矩与转速n的符号关系是【A 】A.恒相同B.恒相反C.取决于电机工作状态D.跟机械特性有关6 单轴机电传动系统为减速运动时, 电机转矩与负载转矩之间的关系是【C 】A...B...C...D..7 恒转矩型机械特性中, 反抗转矩的方向与运动方向的关系是【B 】A.恒相..B.恒相.C.取决于电机工作状..D.跟机械特性有关8 恒功率型机械特性的负载转矩与转速n之间的关系是【B】A.成正..B.成反..C.无..D.抛物线函数关系9 单轴机电传动系统处于静态或稳态时, 电机转矩与负载转矩之间的关系是【A 】A...B.. .C.. .D..10 多轴拖动系统中各转动部分的转动惯量可根据以下哪种原则折算到电动机轴上?【B 】A.机械能守..B.动能守..C.功率守. .D.动量守恒11 随转速n的增加, 直线型机械特性的负载转矩将【D 】A.成抛物线变.B.成正比减..C.不..D.成正比增加二多项选择题 :1 根据负载转矩与运动方向的关系, 可以将恒转矩型的负载转矩分为【A B 】A.反抗转..B.位能转..C.动能转. .D.拖动转..E.制动转矩2 根据机械特性硬度值的不同, 可将电动机机械特性分为【A B C】A.绝对硬特..B.硬特..C.软特..D.绝对软特..E.综合特性三判断改错题: 错误的在括号内画×得2分, 将错误更正为正确的得2分;正确的在括号内画√得4分;1 若单轴传动系统的转动惯量与转速n符号相反, 则表示为制动转矩。

机电第一章 液压传动概述

机电第一章 液压传动概述
15
节流阀 Throttle Valve 换向阀 Directional Valve 限压阀
Pressure Relief Valve
5 7 6 11
14 13
12
16 9 8 10 15
液压泵 Pump 油箱 Tank
3
4 2 11 1 9
11
19
工作台向左移动
18
当手动换向阀15 换向后,液压油进入 液压缸18的右腔,推 动活塞17和工作台19 向左移动。 当节流阀开大时, 进入液压缸18的油液 增多,工作台的移动 速度增大;当节流阀 关小时,工作台的移 动速度减小。
(5)液压传动装置出现故障时不易查找原因。
23
液压传动的应用
★ ★ ★
机床 工程机械
内外圆磨床、平面磨床、仿形车、龙门刨床等 推土机、挖掘机、压路机
起重运输 汽车吊、叉车、港口龙门吊 ★ 矿山机械 凿岩机、提升机、液压支架 ★ 汽车工业 汽车的转向器和减振器、自卸汽车 ★ 轻工机械 打包机、注塑机 ★ 农业机械 拖拉机、联合收割机 建筑机械 ★ 冶金机械 ★ 智能机械
传动介质
Hydraulic Fluids
动力元件
Power Component
控制元件
Control Component
执行元件
Actuator
辅助元件
Accessories
16
液压传动系统的组成 从图1.2可以看出,液压传动是以液体作为工作介质来进 行工作的,一个完整的液压传动系统由以下几部分组成: (l)动力元件:是将原动机所输出的机械能转换成液体 压力能的元件,其作用是向液压系统提供压力油。最常见的 形式是液压泵。(液压系统的心脏) (2)执行元件:把液体压力能转换成机械能以驱动工作 机构的元件,执行元件包括液压缸和液压马达。 (3)控制调节元件:包括压力、方向、流量控制阀,是 对系统中油液压力、流量、方向进行控制和调节的元件。如 换向阀15即属控制元件。 (4)辅助元件:上述三个组成部分以外的其它元件,如: 管道、管接头、油箱、滤油器等为辅助元件。 (5)工作介质: 液压油,作为传递运动和动力的载体。

机电传动考试复习资料总结

机电传动考试复习资料总结

机电传动考试复习资料总结第⼀章概述1.机电传动控制的⽬的与任务1.1 机电系统的组成1)电⽓控制系统2)电⼒拖动或机电传动3)机械运动部件1.2 机电传动控制的任务将电能转换为机械能实现⽣产机械的启动、停⽌以及速度的调节完成各种⽣产⼯艺过程的要求保证⽣产过程的正常进⾏2.机电传动控制的发展2.1电⼒拖动的发展1)成组拖动2)单电机拖动3)多电机拖动2.2机电传动控制系统的发展伴随控制器件的发展⽽发展。

有弱电控制和强电控制第⼆章机电传动系统的运动学基础1.单轴拖动系统的运动⽅程式1.1单轴拖动系统组成电机与⼯作机构的轴直接连接的系统称为单轴拖动系统。

1.2单轴拖动系统的运动⽅程式T M?T L=J ?ωt=GD2375nt1.3利⽤运动⽅程式确定运动系统的运动状态GD2是⼀个整体物理量—飞轮矩1.4转矩、速度的符号转矩正⽅向的确定:设电动机某⼀转动⽅向的转速n为正;电动机转矩TM与n⼀致的⽅向为正向;负载转矩TL与n相反的⽅向为正向。

TM与TL的性质判定:若TM与n符号相同,TM为拖动转矩;若TM与n符号相反,TM为制动转矩;若TL与n符号相同,TL为制动转矩;若TL与n符号相反,TL为拖动转矩。

2.⼏种常见的负载特性同⼀转轴上负载转矩和转速之间的函数关系,称为机电传动系统的负载特性。

恒转矩负载特性:①反抗性恒转矩负载(摩擦转矩)②位能性恒转矩负载(重⼒卷扬机)恒功率负载特性:3.机电系统稳定运⾏的条件和判定⽅法稳定运⾏包含的含义:①系统能以⼀定速度匀速运转;②系统受某种外部⼲扰作⽤(如电压波动、负载转矩波动等)⽽使运⾏速度稍有变化时,应保证在⼲扰消除后系统能恢复到原来的运⾏速度。

机电传动系统稳定运⾏的必要充分条件:(1)电动机的机械特性曲线n=f(TM) 和⽣产机械的特性曲线n=f(TL)有交点(即拖动系统的平衡点);(2)当转速⼤于平衡点所对应的转速时,TMTL ,即若⼲扰使转速下降;当⼲扰消除后应有TM- TL >0。

机电传动控制】第一章 绪论

机电传动控制】第一章 绪论
• 2.陈伯时主编.电力拖8月.
• 3.程宪平主编.机电传动与控制(第二版).武汉: 华中科技大学出版社.2003年9月.
• 4.魏炳贵主编.电力拖动基础.北京:机械工业 出版社.2000年8月.
为了提高效率,由数台或十几台设备组成 的生产自动线,要求统一控制或管理。
诸如此类的要求,都要靠电动机及其控 制系统来实现。
1.2 机电传动控制的发展概况
机电传动及其控制系统总是随着社会生产 的发展而发展的。机电传动控制的发展可从机 电传动和控制系统两方面来讨论。 一、机电传动的发展
成组拖动——一台电动机拖动一根天轴(或 地轴),然后再由天轴(或地轴)通过皮带轮 和皮带分别拖动多台生产机械。
2)课程学习任务 掌握继电器-接触器控制系统的工作原理和
元件选择, 掌握PLC的编程方法与应用, 掌握闭环控制系统的工作原理与性能及其应
用场所. 了解电力拖动的一般知识, 了解最新电气控制技术在生产机械上的应用.
阅读书目:
• 1.齐占庆主编.机床电气控制技术(第三版).北 京:机械工业出版社.2004年6月.
机械制造自动化高级阶段是走向设计、 制造一体化,即利用计算机辅助设计(CAD) 与计算机辅助制造(CAM)形成产品设计和 制造过程的完整系统,对产品构思和设计直 到装配、试验和质量管理这一全过程实现自 动化。
柔性制造系统(FMS) —由数控机床、 工业机器人、自动搬运车等组成的统一由中 心计算机控制的机械加工自动线,它是实现 自动化车间和自动化工厂的重要组成部分。
三、机电传动控制的目的
从广义上讲,机电传动控制的目的就是 要使生产设备、生产线、车间乃至整个工厂 都实现自动化。
从狭义上讲,则指控制电动机驱动生产机 械,实现生产产品数量的增加(效率)、质量 的提高(精度)、生产成本的降低、工人劳动 条件的改善以及能量的合理利用等。

机电控制1

机电控制1

ur (t)
列出uc (t与) u的r (t方) 程关系式。
R
uc (t )
C
(1)根据克希霍夫定律可写出原始方程式: 图2-2
L
di dt

Ri

uc
(t)

ur
(t)
(2.7)
(2)i与输出uc(t)有如下关系:
L
R
di
i
L
uc (t )
dt

Ri

uc (t)

ur
(t)
ur (t)
C
(2.7)
电动机d轴上负载m
a
电磁(2转.1矩6) (牛顿·米)
(惯3)量整(理公后斤得·米:2)
转矩(牛顿·米)
电磁转矩系数
(牛顿·米/安)
JLa
d 2
dt 2
(JRa

fLa )
d
dt
(
fRa
CmKe )
Cmua

La
dM L dt

RaM L
若输出为电动机的转角 ,则按式(2.17)有:
运动部件的质量为M。
阻尼器 (1)根据牛顿第二定律,有弹:簧弹力
f (t)
阻力
k
f
(t)
f1(t)

f2 (t)

M
d2 y dt 2
MM
B
(2)f1(t)和f2(t)为中间变量: (2.1)
yt
f1 (t )

B
dy (t ) dt
(2.2)
f2 (t) ky(Bt为)阻尼比 (2.3)
系统的数学模型:描述系统输入、输出变量以

机电一体化技术-第01章 概论

机电一体化技术-第01章 概论
仿真、现场调试、可靠运行等从理论到实践的 整个过程。由于被控对象种类繁多,所以控制 技术的内容极其丰富,包括高精度定位控制、 速度控制、自适应控制、自诊断、校正、补偿、 示教再现、检索等控制技术
自动控制技术的难点在于自动控制理论的工程化与实用化,这 是由于现实世界中的被控对象往往与理论上的控制模型之间存在较大差 距,使得从控制设计到控制实施往往要经过多次反复调试与修改,才能 获得比较满意的结果。
产品的各功能单元通过接口联接成一个有机的整体。接口包括电气接 口、机械接口、人—机接口。电气接口实现系统间电信号连接;机械 接口则完成机械与机械部分、机械与电气装置部分的连接;人—机接 口提供了人与系统间的交互界面。
第五节 机电一体化系统设计
Mechatronics System Design
机电一体化系统是从简单的机械产品发展而 来,其设计方法、程序与传统的机械产品类似, 一般要经过市场调查、方案设计、详细设计、样 机试制、小批量生产和正常生产几个阶段。
机电一体化产品:
(product of Mechatronics)
是由机械系统(或部件)与电子系统(或部件)及信息处理单元(硬 件和软件)有机结合、而赋予了新功能和新性能的高科技产品。
CNC
位置,速 度反馈
位置,速度 检测单元
电机
数控机床伺服系统组成
机械 部件
第二节 机电一体化发展概况
机电一体化技术的发展 :分为萌芽阶段、快 速发展阶段和智能化阶段三个阶段。
系统总体技术 System overall technology 是一种从整体目标出发,用系统工程的
观点和方法,将系统总体分解成相互有机联系 的若干功能单元,并以功能单元为子系统继续 分解,直至找到可实现的技术方案,然后再把 功能和技术方案组合成方案组进行分析、评价 和优选的综合应用技术。

机电一体化系统设计第一章概论

机电一体化系统设计第一章概论
17
第一章 概 论
第二节 机电一体化系统的基本构成 图1-5 机电一体化系统的评价内容
18
第一章 概 论
第二节 机电一体化系统的基本构成 图1-6工业三大要素与机电一体化三大效果
19
第一章 概 论 第三节 机电一体化产品的分类
到目前为止,机电一体化产品还在不断地发展,很难进行正确地分类。下 面按其用途和功能两个方面进行粗略地分类,就可看到机电一体化产品的概 貌。
其主要参数有:系统误差、外扰、废弃输出、变换效率。
7
第一章 概 论
第二节 机电一体化系统能构成、原理
二 机电一体化系统的功能构成
1、主功能
以物料搬运、加工为主,输入物质(原料、毛坯等)、能量(电能、液能、 气能等)和信息(操作及控制指令等),经过加工处理,主要输出改变了位 置和形态的物质的系统(或产品),称为加工机。例如:各种机床(切削、 锻压、铸造、电加工、焊接设备、高频淬火等)、交通运输机械、食品加工 机械、起重机械、纺织机械、印刷机械、轻工机械等。
20
第一章 概 论 第三节 机电一体化产品的分类
3
第一章 概 论
第一节 机电一体化的基本含义
*重点介绍机电一体化概念
三、德国的精密工程技术的定义
图1-1 精密工程技术的含义
精密工程技术定义为光、机、电一体化的综合技术,并用图1-1 来说明其含义。它包括
机械(含液压、气动及微机械)、电工与电子、光学,二者相互 组合电工与电子机械、光电子技术与光学机械,其核心技术为精 密工程技术。
机电一体化系统要素
控制器(计算机等) 检测传感器 执行元件 动力源 机构
功能
控制(信息存储 处理 传送) 计测(信息收集与变换) 驱动(操作) 提供动力(能量) 构造
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、现代机械装备驱动与传动的发展趋势
(3)工作机构:执行机器规定功能的装置。 例如:直线运动缸、摆动缸、旋转轮、曲柄连 杆滑块机构等。 (4)控制部分:依据对工作机构的动作要求,对传 动系统进行检测、显示、调节的装置。 例如:开关、阀门、继电器、计算机、按钮等 元器件的逻辑组成。
布鲁德尔精密高速冲床
对国民经济和社会影响深远
• 传动与驱动基础件已经严重制约国内大量关键 产业的发展:
– 徐工集团,400亿产值,利润小于2% ,ARJ21,大 于200架才能盈利,数控机床,汽车大量采用国外基 础件; – 航空元件可靠性,航空泵寿命,国内最高3000小 时,A380:40000小时; – 国内飞行器或船舶舵机故障频发,可靠性问题亟待 解决; – 气动能耗,2000亿度电/年,用电量占全国6%,效 率只有5~20%,与空压机和气动元件密切相关; – 高精度对地观测成像、扫描显微镜控制SPM、天文 观测,高精度转台、目标模拟器等对精密传动与驱 动提出更高要求.
Bruderer Machinery (Suzhou) Co., Ltd
BRUDERER 横轴连杆驱动式 高速冲床的传动系统
机械传动与驱动装置主要承担着能量传输与分配,运 动/力的变换与控制功能,是实现能量传输和运动/力控制 目标的主要手段。是推动机电装备向高效、节能、高可靠、 高精度、高速、智能化方向发展过程中不可或缺的关键单 元部件和系统。
性能信息流程涉及材料的初始性能和通过各种加工
过程所产生的材料性能的变化。
在材料加工过程中,由于把形状变化信息加
于材料,最终形状信息就等于材料的初始形
状信息与加工所施加的形状变化信息之和。
工件最终的性能则是初始和加工过程两方面性能变 化综合作用的结果。
形状变化信息是由刀具和工模具(具有一定形状信
本课程预期达到的效果教学效果
教材情况
一、现代机械装备驱动与传动的发展趋势
材料加工的基本要素和流程
三个基本要素:材料、能量和信息
输入材料(i) 输入能量(i) 输入信息(i) 输出材料(o)(产品+废料)
材料加工 过程
输出能量(o)(损失) 输出信息(o)(形状、性能)
信息流程包括形状信息和性能信息
机械传动与驱动对机械学科的影响
机构学与机械动力学 机械传动与驱动 机械的表面/界面科学 复杂机电系统集成பைடு நூலகம்学
“机械系统创新”的四个支撑领域之 一
生机电系统 与仿生机械
高能束与特种能场制造 高精度、数字化制造
微纳机械学与微纳制造 高性能洁净成形制造
• 驱动与传动是机械学科的基础领域之一; • 是科学原理到工程实现的桥梁,也是装备的基础; 机械的制造与运行参数及其精度测量 机电装备 • 直接关系到运载、机器人、机床等机电系统的性能、可靠 性与安全性; 机械结构与系统的安全服役理论 • 对机械学科的发展起着支撑作用。
• 国外
– 挑战者号,密封件失效 – 日本H2 ,舵机故障
在传统机械装备中,电机到工作部件要经过一整套 复杂的转换机构, 包括齿轮、蜗轮副、皮带、丝杠副、联 轴器、离合器等中间机械传动环节。 这些机械传动环节会带来一系列的问题,如造成较大的 转动惯量、弹性变形、反向间隙、运动滞后、摩擦、振 动、噪声及磨损。 这些问题使得机械装备的加工精度、运行可靠性降低; 增加维护、维修的时间和成本;造成机械装备的使用效 率下降,使用费用增加。 所以一直以来,对机械传动环节的传动性能在进行 不断的改进,并且获得了很大的效果,但并没有从根本 上解决问题。
一、现代机械装备驱动与传动的发展趋势
原动机的运动和动力特性越好,则传动
部件越简单!
现代机器的原动机综合性能越来越好!
传动部件趋向于系列化与标准化! 伺服直接驱动与近零传动是发展趋势!
电磁直驱及近零传动系统的内涵 、研究范围
• 特别是随着电机及其驱动技术的发展,人们 自然想到了“直接驱动”的方式,直接驱 动方式就是电机不经过任何传动链直接驱 动负载。 • 其本质就是取消从电机到工作部件之间一 切中间机械传动环节, 由电机直接驱动工作 部件动作, 实现所谓“零传动”。
部形状信息,因而传递介质与加工材料的相对运动
就变得很简单。
车削加工:车刀所包含的形状信息量很少,为了形 成所需形状零件,甚至要求三种相对运动。
一部机器的基本组成
(1)原动机:提供能源的装置。 例如:电动机,内燃机等
(2)传动部件:是一个中间环节,它把原动机 的输出的能量和运动经过转换后提供给工 作机构。 例如:机械、电力、液体、气压等传动方式
1.精密度: A. 设备动静态精度: • 平行度 ≤ 0.030mm • 垂直度 ≤ 0.005mm • 综合间隙 ≤ 0.200mm • 下死点动态控制精度 ±0.005mm B. 冲压料带厚度: 可以到 ≥ 0.015mm C. 冲头尺寸: 可以小到 0.100mm D. 送料步距: ≤ 0.200mm E. 送料精度: ± 0.010mm 2. 高速: ≥ 500 SPM 3. 单台设备产能概念: A.易开盖成品, 大于2400只/分钟,基本盖大于 4000只/分钟 B.连接器, 8000只/分钟 C. 制冷电机铁心, 双列模具12000套/天
复杂机电系统 的人工智能控制技术
机械工程学院
智能控制研究室
赵升吨 教授/博导 2014.9
综上所述,本课程设置的必要性 主要体现在以下几个方面:
(1)传授系统的自动控制知识的需要——古典、 现代、智能
(2)现代复杂机电系统及其控制技术研发 (3)人工智能在机电系统中应用
第一章
绪论
现代机械装备驱动与传动的发展趋势 自动控制的基本原理 自动控制理论发展的三个阶段 机电系统工程的发展方向 讲授内容及教学计划
息量),和加工材料和刀具、工模具之间相对运
动共同产生的。 也就是说形状变化过程为借助能量流程把相 应于信息流程中的形状变化信息施加于材料流程 的过程。
一般来说,刀具或工模具所包含的形状信息量 越少,则它们与加工材料的相对运动对于材料的形
状变化所起的作用越大,反之亦然。
闭式模锻:传递介质(模锻)已包含了所要求的全
相关文档
最新文档