(完整word)复数高考题型归类
(完整word版)高考复数知识点精华总结已打印,推荐文档
复 数1.复数的概念: (1)虚数单位i ;(2)复数的代数形式z=a+bi ,(a, b ∈R); (3)复数的实部、虚部、虚数与纯虚数。
2.复数集整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ⎧⎧⎧⎪⎪⎨=⎨⎪⎩⎪⎪+∈⎨⎩⎪⎧≠⎪≠⎨⎪=⎩⎩3.复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b ≠0时,a+bi 是虚数,其中a=0且b ≠0时称为纯虚数。
应特别注意,a=0仅是复数a+bi 为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。
4.复数的四则运算若两个复数z1=a1+b1i ,z2=a2+b2i , (1)加法:z1+z2=(a1+a2)+(b1+b2)i ; (2)减法:z1-z2=(a1-a2)+(b1-b2)i ; (3)乘法:z1·z2=(a1a2-b1b2)+(a1b2+a2b1)i ;(4)除法:11212211222222()()z a a b b a b a b i z a b ++-=+;(5)四则运算的交换率、结合率;分配率都适合于复数的情况。
(6)特殊复数的运算:① ni (n 为整数)的周期性运算; ②(1±i)2 =±2i ;③ 若ω=-21+23i ,则ω3=1,1+ω+ω2=0.5.共轭复数与复数的模(1)若z=a+bi ,则z a bi =-,z z +为实数,z z -为纯虚数(b ≠0).(2)复数z=a+bi 的模且2||z z z ⋅==a 2+b 2.6.根据两个复数相等的定义,设a, b, c, d ∈R ,两个复数a+bi 和c+di 相等规定为a+bi=c+di a c b d =⎧⇔⎨=⎩. 由这个定义得到a+bi=0⇔00a b =⎧⎨=⎩. 两个复数不能比较大小,只能由定义判断它们相等或不相等。
(完整版)复数高考题型归类
复数高考题型归类解析例1 (2013年高考全国卷文科)J + ?4 =(1 一0 ()・A+- * - y* R _ 1 + 2~^C-1 + -^-£ D. I 十寺i点评本题考査了臭数的运算性遁;⑴(1 士厅 =士血⑵】的立方棍为I •呱叭且常二例2 (2011年高壇全国卷理科)=()・A+i B. -£ C, 7T +i D.^5 -i点评解此题先在分母中提取- i,逛约分再化简,大大优化了解题过程*例』(2013年高考题全国卷)若复数工满足(3 -4》=1 4 + 3:I .则盂的虚鄱为(人A, - 4 B. ■令C+ 4 D.点评此题考査了复数的模和虚部的槪念*例4 (2012年高考全国卷)下面是关于复数= 2 -—f—.的四个命题:-1 4- iR: I zl = 2,环/ = 2i, 的井扼寝数为1 +<;巴注的虚部为-1-其中真命题为(人扎P“P、B+尸’為"只D P」,巴点评求复数乂这类题一般解法是用待定系数袪,设出事=a + bi(a,b E/C)*求例& (2007年高垮湖北卷〉设胃寸为实數’且i 士+rhr 青,则“厂一• 点坪本骊羣点等責复数相等的充要条件的运用.側了(2010年高垮重庆卷)复平面内'星数亠+ (1 +再门‘对应的点位于(>■1 + t乩第一象限第二象隈G第二象限D第四象限点评解答此类題的一股方法是:H)先将更数变形化为a + bi(血上G R)的形式*(2)抿据点所fifiR求解・•.例8(2008年高考广东卷)已知0 < a < 2,复数2的实祁为4虚部为1,则I上I的耽值范围是一-练习:1•如果复数z=1+ai满足条件|z| v 2,那么实数a的取值范围是[ ]A. 2 2,2、2B. (-2,2)C. (-1 , 1)D. .3, 32•在平行四边形OABC中,顶点O, A, C分别表示0,3+ 2i, —2 + 4i.则对角线CA所表示的复数的模为_____ ;例5 (2008年高考全国卷)已知复数A.=3+2T,复数工满足z *矶-3z+知,则复数i 3•已知复数z i= i(1 —i)2, |z|= 1,则Z—z i|的取值范围是 --- ;五、技巧运算型•这类题除用到复数的运算祛则外,还要掌握一 些运算技巧.z 满足|z|2— 2|z| — 3 = 0,则复数z 对应点的练习:1•已知复数 轨迹是( 例10(2012年江苏高考模拟题}已知复数匸A.1个圆B.线段C.2个点D.2个圆Bb 1 — i C. i D,2•如果复数 z 满足 Z + 2i| + |z — 2i| = 4,那么 |z + i + 1的最 小值是( A.1 B. . 2C.2D. ,53•若|z — 2|= |z + 2,贝U |z — 1|的最小值是荒平面内的(hA*第一象限 U 第三象限B-第二象限 D.第四象限点评的交汇此题建复数几何意义与三角順数性质七、轨迹方程型例打 e R 人则丄的对应点府Z的轨迹甘程为—.点评结合两个臭数相薛的条件准芷参数方 程曲参后得轨迹方理「应认真体佥.点评本题是复数与数列的交汇,通过数列考 査复数运算.例12 若出上为锐肃三爲形的两个内角,则复 数 J := (co&B - aiiiA) + i( sinfi - cotk4)对应的点位于复数高考题型归类解析例1 (2013年高考全国卷文科)J +=(1 一 0( )・A + - * - y *R _ 1 + 2~^C-1 + -^-£ D. I 十寺i点评 本题考査了臭数的运算性輕;⑴(1 ±0° =士 ⑵1的立方棍为I •呱叭且常二 例2 (2011年高壇全国卷理科)=( )•A +i B. -£ C, 7T +i D.^3 -i点评解此题先在分母中提取- b 先约分再 化简,大大优化了解题过程”二、基本概念型|例3(2013年高考题全国卷)若复数z 满足(咅 7小 7 4 +3£l t 则卫的虔部为(), 44A. -4B. -y G4 D.于点评 此题考杳了复数的模和虚部的柢念- 例4 (2C12年高考全国卷)下面是关于复数壬 2 =—的四个命题: 二I 和 尸i : I 上 I = 2t P ? :z 3 = 2i, 片注的井扼复数为1 +i; 巴注的虚部为-1- 其中真命题为( 人扎P“P、 B+尸’為"只D P 」,巴例5(2008年高考全国卷)已知复数坯訂+ 2i,复数J 满足:*殆=3工+,则复数i = ______ .点评本题竜点時董复数相等的充奧条件的运用*例7 (2010年画考重庆卷)复平曲内’星数-^― +(1 + An 3对应的点位于(>-)+1乩第一象限 氐第二象隈C 第二象限 IK 第四象限点评 牌答此类題的一般方法是:门)先将复 数变形化为口 +加(血上e /?)的形式;(2)根据点所 在位宜求解.948(2008年高考广东卷)已知0 < a <人复数 I 的实祁为5虚部为1 ■则I 上I 的取值范围是一-练习:1•如果复数z=1+ai 满足条件|z| v 2,那么实数a 的取值 范围是[]A. 2.2,2 .2B. (-2,2)C. (-1 , 1)D. . 3, . 32•在平行四边形 OABC 中,顶点O , A , C 分别表示0,3+ 2i , — 2 + 4i.则对角线CA 所表示的复数的模为 _____ ; 3•已知复数z i = i (1 — i )2, |z|= 1,则|z — z i |的最大值.这类题除用到复数的运算祛则外’还要掌握一 些运算技巧,例!0(2012年江苏岛考複拟题}已知复数工=1 +五*则|辛工+ , +…十为().1 ■ I A, J + i B. 1 - i C i D ・「i例11 数列仏爲中4 =(1 +叽利*点評 求复数乂这类题一般解法是用待定系数 法■设出 a = e H ) f 求 a %6.例& Q007年高考湖北卷[设为实数.且(1 - E N*),则%的值为( )*A. 2B. -2C.2i 1024*点评本题是复数与数列的交汇,通过数列考査复数运算.例12 若/』为锐肃三鶴形的两个内角,则复数 m = ( co&B - sinA ) + i( v>in8 -cotk4 )对应的点位于境平面内的( )-扎第一象限庄第二象限G第三象限 D.第四象限点评此側是集数几何意丈与三角帳数性质的交汇例打^^ = a+i(a e R人则丄的对应点財X的轨迹方■程为—.点评结合两个貝数相等的条件■建立参数方程■消参后得轨迹方程「应认真休会.已知复数z满足|z|2—2|z|— 3 = 0,则复数z对应点的轨迹是()A.1个圆B.线段C.2个点D.2个圆答案A解析由题意可知(|z|— 3)(|z|+ 1) = 0,即|z|= 3 或|z|=— 1.•- |z|> 0, A |z|= 3.•••复数z对应的轨迹是1个圆•小值是()A.1 B. .'2C.2D. '5答案A解析设复数—2i,2i, —(1 + i)在复平面内对应的点分别为Z1, Z2, Z3,因为|z+ 2i|+ |z—2i| = 4,乙Z2= 4,所最小值,Z o Z3= 1.故选A.8.若|z—2|= |z+ 2|,贝U |z—1|的最小值是______ .答案1解析由|z—2|= |z+ 2|,知z对应点的轨迹是到(2,0)与到(一2,0)距离相等的点,即虚轴.|z—1|表示z对应的点与(1,0)的距离.• |z—1|min = 1.12.集合M = {z|z—1|W 1, z€ C}, N= {z|z—1 —i| = |z—2|, z€ C},集合P= M A N.(1) 指出集合P在复平面上所表示的图形;(2) 求集合P中复数模的最大值和最小值.解(1)由|z—1|< 1可知,集合M在复平面内所对应的点集是以点E(1,0)为圆心,以1为半径的圆的内部及边界;由|z—1 —i| = z —2可知,集合N在复平面内所对应点集是以点(1,1)和(2,0)为端点的线段的垂直平分线I,因此集合P是圆面截直线I所得的一条线段AB,如图所示.5.如果复数z满足|z+ 2i| + |z—2i| = 4,那么|z+ i + 11的最以复数z的几何意义为线段Z1Z2,如图所示,问题转因此作Z3Z0丄Z1Z2于Z o,则Z3与Z o的距离即为所求的化为:动点⑵圆的方程为x2+ y2—2x= 0,直线I的方程为y= x— 1.x2+ y2—2x= 0,解得y= x—12 + .2 2 2—、2 2A(—2 ,T),B(_2 ,— T).•••|0A|= ‘2+ . 2, |0B|= 2 — ,, 2.•••点O到直线I的距离为¥,且过o向I作垂线,垂•集合P中复数模的最大值为 2 + \… 2,最小值为专.。
高考复数的知识题型总结归类
高考复数的知识题型总结一、复数的有关概念(1)复数1.定义:形如a+6i (a, 6WR)的数叫做复数,其中i叫做虚数单位,满足f= —1.二i,产三-1, Z,n-3=-i, 小= 1.)2.表示方法:复数通常用字母z表示,即z=a+6i (a, 6CR),叫做复数的代数形式,a叫做复数z的实部,6叫做复数z的虚部.(注意b是虚部而不是bi)(2)复数集1.定义:全体复数所成的集合叫做复数集.2.表示:大写字母C.(3)复数的分类’3正实数L= 0,-- 是实数QT上;实数0复数z=a+例—负实数一纯虚数hi、3n是虚数1&工°为£2”非纯虚数的虚敷复数集、实数集、虚数集、纯虚数集之间的关系(4 )复数相等的充要条件a+ 6i = c+ 力=a=c 且b=da+6i = 0=a=6=0. (a, b, c, d 均为实数)说明:要求复数相等要先将复数化为2=&+历(a, 6£R)的形式,即分离实部和虚部.二、复平面的概念点Z的横坐标是a,纵坐标是6,复数*a+6f(a、6£R)可用点Z(a, 6)表示, 这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴.实轴上的点都表示实数.(1)实轴上的点都表示实数.(2)虚轴上的点都表示纯虚数.(3)原点对应的有序实数对为(0, 0)三、复数的两种几何意义(1)复数z=a+bi (a, Z>GR) -*对应复平而内的点Z (a, b).(2)复数z=a+6i (a, b£R) -*平而向量一OZ复数Z=a+罚(a1亡犬)—寸应点—―->向量无对应四、复数的模复数z=a+6i (a, 6CR)对应的向量为OZ ,则&的模叫做复数z的模,记作;z ,且|z|=^7F 注意:两个虚数是不可以比较大小的,但它们的模表示实数,可以比较大小.五、复数的运算设%=a+6,,z^c+di(a^ b、c、d£R)是任意两个复数,%与Z2 的加法运算律:^+^2= (a^bi) + (c+di) = (a+c) + (b+d) i.%与Z2 的减法运算律:4-纥=(a+6f)-(c+d£) = (a-c) + (Zy^£Z1 与诙的乘法运算律:21.乏二(a^bi) (c^di)-(ac— bd)^(bc^ad) i.cic + bd ^bc- ad .Z,与否的除法运算律:2一生二(/方)・(6人)=1+/2 /+/ (分母要利用平方差实数化)六、共甄复数1.定义:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共枕复数,虚部不等于0的两个共枕复数也叫做共枕虚数.通常记复数Z的共辗复数为5 o例如z=3 + 5i与5=3 — 5i互为共辄复数2.共辗复数的性质(1)实数的共规复数仍然是它本身⑵2区=团:团,(3)两个共规复数对应的点关于实轴对称七、常用结论.⑴"i,(2)(l-i)2=-2i⑶- = -/(5)— = -/ 1 + Z(6)(。
高考数学 真题分类汇编:专题(15)复数(理科)及答案
专题十五 复数1.【20xx 高考新课标2,理2】若a 为实数且(2)(2)4ai a i i +-=-,则a =( )A .1-B .0C .1D .2【答案】B【解析】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B .【考点定位】复数的运算.【名师点睛】本题考查复数的运算,要利用复数相等列方程求解,属于基础题.2.【20xx 高考四川,理2】设i 是虚数单位,则复数32i i-( ) (A )-i (B )-3i (C )i. (D )3i【答案】C【解析】32222i i i i i i i i-=--=-+=,选C. 【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.3.【20xx 高考广东,理2】若复数()32z i i =- ( i 是虚数单位 ),则z =( )A .32i -B .32i +C .23i +D .23i -【答案】D .【解析】因为()3223z i i i =-=+,所以z =23i -,故选D .【考点定位】复数的基本运算,共轭复数的概念.【名师点睛】本题主要考查复数的乘法运算,共轭复数的概念和运算求解能力,属于容易题;复数的乘法运算应该是简单易解,但学生容易忘记和混淆共轭复数的概念,z a bi =+的共轭复数为z a bi =-.4.【20xx 高考新课标1,理1】设复数z 满足11z z+-=i ,则|z|=( )(A )1 (B (C (D )2【答案】A【解析】由11z i z +=-得,11i z i -+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 【考点定位】本题主要考查复数的运算和复数的模等.【名师点睛】本题将方程思想与复数的运算和复数的模结合起来考查,试题设计思路新颖,本题解题思路为利用方程思想和复数的运算法则求出复数z ,再利用复数的模公式求出|z|,本题属于基础题,注意运算的准确性.5.【20xx 高考北京,理1】复数()i 2i -=( )A .12i +B .12i -C .12i -+D .12i --【答案】A考点定位:本题考查复数运算,运用复数的乘法运算方法进行计算,注意21i =-.【名师点睛】本题考查复数的乘法运算,本题属于基础题,数的概念的扩充部分主要知识点有:复数的概念、分类,复数的几何意义、复数的运算,特别是复数的乘法与除法运算,运算时注意21i =-,注意运算的准确性,近几年高考主要考查复数的乘法、除法,求复数的模、复数的虚部、复数在复平面内对应的点的位置等.6.【20xx 高考湖北,理1】 i 为虚数单位,607i 的共轭复数....为( ) A .i B .i - C .1 D .1-【答案】A【解析】i i i i -=⋅=⨯31514607,所以607i 的共轭复数....为i ,选A . 【考点定位】共轭复数.【名师点睛】复数中,i 是虚数单位,24142434111()n n n n i i i i i i i n +++=-==-=-=∈Z ;,,,7.【20xx 高考山东,理2】若复数z 满足1z i i=-,其中i 为虚数为单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+【答案】A 【解析】因为1z i i=-,所以,()11z i i i =-=+ ,所以,1z i =- 故选:A. 【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解. 本题属于基础题,注意运算的准确性.8.【20xx 高考安徽,理1】设i 是虚数单位,则复数21i i-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限【答案】B 【解析】由题意22(1)2211(1)(1)2i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.【考点定位】1.复数的运算;2.复数的几何意义.【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b .9.【20xx 高考重庆,理11】设复数a +bi (a ,b ∈R ),则(a +bi )(a -bi )=________.【答案】3【解析】由a +得=,即223a b +=,所以22()()3a bi a bi a b +-=+=.【考点定位】复数的运算.【名师点晴】复数的考查核心是代数形式的四则运算,即使是概念的考查也需要相应的运算支持.本题首先根据复数模的定义得a +,复数相乘可根据平方差公式求得()()a bi a bi +-22()a bi =-22a b =+,也可根据共轭复数的性质得()()a bi a bi +-22a b =+.10.【20xx 高考天津,理9】i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .【答案】2-【解析】()()()12212i a i a a i -+=++-是纯虚数,所以20a +=,即2a =-.【考点定位】复数相关概念与复数的运算.【名师点睛】本题主要考查复数相关概念与复数的运算.先进行复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.11.【20xx 江苏高考,3】设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.【解析】22|||34|5||5||z i z z =+=⇒=⇒=【考点定位】复数的模【名师点晴】在处理复数相等的问题时,一般将问题中涉及的两个复数均化成一般形式,利用复数相等的充要条件“实部相等,虚部相等”进行求解.本题涉及复数的模,利用复数模的性质求解就比较简便:2211121222||||||||||||.||z z z z z z z z z z ==⋅=,, 12.【20xx 高考湖南,理1】已知()211i i z -=+(i 为虚数单位),则复数z =( ) A.1i + B.1i - C.1i -+ D.1i --【答案】D.【考点定位】复数的计算.【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数的乘法则是按多项式的乘法法则进行处理.13.【20xx 高考上海,理2】若复数z 满足31z z i +=+,其中i 为虚数单位,则z = .【答案】1142i +【解析】设(,)z a bi a b R =+∈,则113()1412142a bi a bi i a b z i ++-=+⇒==⇒=+且 【考点定位】复数相等,共轭复数【名师点睛】研究复数问题一般将其设为(,)z a bi a b R =+∈形式,利用复数相等充要条件:实部与实部,虚部与虚部分别对应相等,将复数相等问题转化为实数问题:解对应方程组问题.复数问题实数化转化过程中,需明确概念,如(,)z a bi a b R =+∈的共轭复数为(,)z a bi a b R =-∈,复数加法为实部与实部,虚部与虚部分别对应相加.【20xx 高考上海,理15】设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B【解析】若1z 、2z 皆是实数,则12z z -一定不是虚数,因此当12z z -是虚数时,则“1z 、2z 中至少有一个数是虚数”成立,即必要性成立;当1z 、2z 中至少有一个数是虚数,12z z -不一定是虚数,如12z z i ==,即充分性不成立,选B.【考点定位】复数概念,充要关系【名师点睛】形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.判断概念必须从其定义出发,不可想当然.。
复数知识点归纳(可编辑修改word版)
精心整理复数【知识梳理】一'复数的基本概念1、虚数单位的性质,叫做虚数单位,并规定:①/可与实数进行四则运算;②这样方程"=-1就有解了,解2、复数的概念(1)定义:形如a + bi(ch heR)的数叫做复数,其中f叫做虚数单位,《叫做,b叫做。
全体复数所成的集合C叫做复数集。
复数通常用字母Z表示,即z = a + hi(a. h^R)对于复数的定义要注意以下几点:® z = a + bi(a, bWR)被称为复数的代数形式,其中加表示b与虚数单位j相乘②复数的实部和虚部都是实数,否则不是代数形式(2)分类:例题:当实数W为何值时,复数伽-5加+ 6) +伽2-3加”是实数?虚数?纯虚数? 二'复数相等也就是说,两个复数相等,充要条件是他们的实部和虚部分别相等注意:只有两个复数全是实数,才可以比较大小,否则无法比较大小例题:已知(x + y-3) + (x-4)/ = 0求x*的值a + hi与c + di共轨o a = cj7 = —d («,b,c、d w R)Z = a + hi的共觇复数记作z = a- hi ,且z •四'复数的几何意义1、复平面的概念建立直角坐标系来表示复数的平面叫做复平面,兀轴叫做实轴,y轴叫做虚轴。
显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。
页脚内容精心整理2、复数的儿何意义复数z = a + hi 与复平面内的点Z(a.h)及平面向量OZ=(a.h) (a.h e R)是一一对应关系(复数的实质 是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量) 相等的向量表示同一个复数 例题:(1)当实数w 为何值时,复平面内表示复数Z = (itr - S/H +15) + (/tr - 5m -14)/的点①位于第三象限;②位于直线y = x 上(2) 复平面内AB = (2,6),已知CD//AB ,求CD 对应的复数 3、复数的模:桥的模,记彳勺b 球"+林,表示点(條仍到原点的距离,卑若Zi=a + hi, % =c + di,则ZI-Z2表示仗上)到(c\d)的距离,即 例题:已知z = 2 + i ,琲z j 申的值 五'复数的运算(1) 运算法则:设 Zi=« + bi,Z2=c+〃i, a, b, c,① Z] ± Z2 = G + 加 + C + 山=(G + c) + (/? + d ) j ② Zi • Z2 = (" + bi) • (c + di) = (ac -hd) + (be + ad )i③ Z] _(a + bi) _ (a + hi){c- di) _ (ac + hd) + (be - ad)i Z2 (c + di) (c + di) - (c -di) (2) 儿何总义:复数加减法可按向量的平行四边形或三角形法则进行•如图给出的平行四边形OZ1ZZ2可以直观地反映出复数加减法的儿何意义,即=+ ,= 六'常用结论(1) i , r =-b F = -i, /■* = 1求厂,只需将《除以4看余数是儿就是j 的儿次 例题:严=(2) (l+/)- = 2/ (!-/)-=-2/ (3) (一]±£沪=1,(]±£O 3=_]2 2 2 2【思考辨析】 判断下面结论是否正确(请在括号中打“ J ”或"X ”)(1) 方程界+x+1=0没有解.()页脚内容⑵复数z=a-^ln(a, bWR)中,虚部为仞.()(3) 复数中有相等复数的概念,因此复数可以比较大小.( (4) 原点是实轴与虚轴的交点.()(5) 复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.(【考点自测】向量<9^的模叫做复数z = G +-E A J(a —c)2+e-d)2yZa1.(2015•安徽)设i是虚数单位,则复数(I-i)(l+2i)等于(A・3 + 3iB•— 1 +3iC・3 + iD•— 1 +i2.(2015•课标全国1 )已知复数Z满足(zT)i=l+i,贝Uz等于(A・一2-iB・一2 + iC・2-iD・2 + i 3•在复平面内,复数6+5i, -2 + 3i对应的点分别为q, B•若C为线段AB的中点,则点C对应的复数是(A・4+8iB・8+2iC・2+4iD・4+i4.已知","SR, i是虚数单位.若a+i=2-bi,则(«+hi)2等于(A・3-4iB・3+4iC・4-3iD・4+3i 5.已知O+2i)=4+3i,则2=【题型分析】题型一复数的概念例1⑴设i是虚数单位•若复数z=a-(aGR)是纯虚数,则"的值为(A. — 3B.— 1C.1D.3(2)己知aSR,复数zi=2+di, Z2=l-2i,若为纯虚数,则复数的虚部为(A・lB・iC・D・0⑶若0=("* +加+1) +伽2 + m_4)i伽SR), Z2 = 3-2i,贝1」"加=1” 是"ZI=Z2” 的(A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分乂不必要条件引申探究1.对本例⑴中的复数Z,若lzl=,求"的值2.在本例⑵中,若为实数,则a二思维升华解决复数概念问题的方法及注意事项精心整理(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只謝e复数化为代数形式,列岀实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为U + bi(u , bSR)的形式,以确定实部和虚部.跟踪训练1 (1)若复数z=Cv2-l)+Cv-l)i为纯虚数,则实数X的值为(A.-IB-0CJD.-1 或I (2)(2014•浙江)已知1是虚数单位,心bSR,则S=b=r是“(“+bi)2=2i”的(A•充分不必要条件B•必要不充分条件C.充分必要条件D•既不充分也不必要条件题型二复数的运算命题点1复数的乘法运算例2 (1)(2015-湖北)i为虚数单位,河7的共辄复数为(A.iB. —iC.lD.— 1 (2)(2015•北京)复数i(2-i)等于(AJ+2iB・l-2iC・一l+2iD・一l-2i命题点2复数的除法运算例3 (1)(2015-湖南)S知= l+i(i为虚数单位),则复数Z等于(A.l+iBJ — iC.— I +iD.— 1 ⑵()6+ =命题点3复数的运算与复数概念的综合间题例4 (1)(2015・天津)i是虚数单位,若复数(l—2i)S+i)是纯虚数,则实数a的值为⑵(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则Z的实部为命题点4复数的综合运算例5 (1)(2014•安徽)设i是虚数单位,表示复数Z的共轨复数•若z=l+i,则+ i•等于(A・一2B・一2iC・2D・2i⑵若复数Z满足(3—4i)z=l4+3ih则Z的虚部为(A.—4B.—C.4D.思维升华复数代数形式运算问题的常见类型及解题策略(1)复数的乘法•复数的乘法类似于多项式的四则运算,可将含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可.⑵复数的除法•除法的关键是分子分母同乘以分母的共馳复数,解题中要注意把i的幕写成最简形式.(3)复数的运算与复数概念的综^题,先?IJ用复数的运算法则化简,F化为a + , bWR)的形式,再结合相关定义解答.⑷复数的运算与复数几何意义的综合题•先利用复数的运算法则化简,一般化为a + ln(a , bSR)的形式,再结合复数的几何意义解答.(5)复数的综合运算.分别运用复数的乘法、除法法则进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.跟踪训练2 (1)(206山东)若复数Z满足=i,其中i为虚数单位,贝"等于(A.I — iB・l +iC・—1 — iD.— 1 +i(2严= __________ .(3)+ 2016= ______题型三复数的几何意义例6 (1)(2014-重庆)实部为一2,虚部为1的复数所对应的点位于复平面的(A•第一象限B•第-•象限C•第三象限D•第四象限⑵△ABC的三个顶点对应的复数分别为ZI, Z2, Z3r若复数Z满足U-zil=lz-Z21=lz-Z3U贝iJz对应的点为△ABC的( )页脚内容A•内心B•垂心C.lfi心D・外心思维升华因为复平面内的点.向量及向量对应的复数是——对应的,要求某个向量对应的复数时, 只要找出所求向a的始点和终点,或者用向量相等直接给岀结论即可.跟踪训练3仃J如图,在复平面内,点A表示复数Z,则图中表示Z的共觇复数的点是(A・AB・BC・CD・D⑵已知z是复数,z+2i、均为实数(i为虚数单位),且复数(z+di)2在复平面内对应的点在第一象限,【思想与方法】解决复数问题的实数化思想典例已知川y为共辄复数,且(x+y)-—3xyi=4—6i,求后y.页脚内容精心整理思维点拨 ⑴」y 为共牠复数,可用复数的基本形式表示岀来; ⑵利用复数相等,将复数问题转化为实数问题. 温馨提醒(1)复数问题要把握一点,即复数问题实数化,这是解决复数问题最基本的思想方法.(2) 本题求解的关键是先把心y 用复数的基本形式表示出来,再用待定系数法求解.这是常用的数学方 法.(3)本题易错原因为想不到利用待定系数法,或不能将复数问题转化为实数方程求解.【方法与技巧】1・复数的代数形式的运算主要有加.减.乘.除及求低次方根•除法实际上是分母实数化的过程. 2•复数z = « +仞@ . bSR )是由它的实部和虚部唯一确定的,两个复数相等的充要条件是复数问题转化为实数问题的主要方法•对”个复数Z = a + bi (“ ,eR ),既要从整体的角度去认识它,把复 数看成一个整体,又要从实部、虚部的角度分解成两部分去认识.3•在复数的几何意义中,加法和减法对应向量的三角形法则,其方向是应注意的问题,平移往街口加法、减法相结合. 【失误与防范】1 •判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义. 2•两个虚数不能比较大小.3•注意复数的虚部是指在卄洌@ , bWR )中的实数»即虚部是一个实数.【巩固练习】1.(2015-福建)若(1+0+(2 — 3i )=«+bi3 beR, i 是虚数单位),则G 方的值分别等于( A.3, —2C3 -3 2•设z=+i,则Izl 等于(A.BCD.2 3.(2015•课标全国][)若"为实数,且(2+"i )(a — 2i ) = -4i,则"等于( A.-IB-0CJD-2 4•若i 为虚数单位,图中复平面内点Z 表示复数Z,则表示复数的点是(A.EB.FC.GD.H5. (2014•江西)是Z 的共觇复数,若z+=2,(Z —)i=2(i 为虚数单位),则z 等于( A.l +iB ・ —1 — iC. — 1 +iD ・l — i6. (2015•江苏)设复数z 满足z2=3+4i(i 是虚数单位),则Z 的模为. 7•若=u+bia b 为实数,i 为虚数单位),贝iJ«+/7= ____________ •&复数(3 + i)加一(2+i)对应的点在第三象限内,则实数山的取值范圉是 9•汁算:(1); (2);⑶+ ; (4).10.复数z 】 = + (10-«2)i, z2=+(加一5)i,若i+z2是实数,求实数《的值.【能力提升】 B ・3,2 D.-L411 •复数Z" Z2满足Z I=/N+(4—/zP)ir Z2=2cos&+0+3sin&)i("h 几&eR),并且Zi=Z2,则x 的取值范^是(12.设和)="+"(“eN)则集合中元素的个数为(AJB.2C.3D.无数个13•已知复数且lz-2l=.则的最大值为_______________________ •14.设《eR,若复数Z= +在复平面内对应的点在直线x+y=0上,则《的值为.15.若1+i是关于X的实系数方程界+应+Q=0的一个复数根,则〃= _________________【巩固练习参考答案】1 A・2・B・3・B・4・D・5・D・6・・7・3・&"】<• 9•解(1)= = - 1 - 3i・ (2) = = = = + i・(3) + = + = + =- 1.(4)=10•解1 +Z2 = + ("2 - 10)1 + + (2a - 5)1= + [(o^ - 10) + (2a - 5)]i =+ (a- + 2a - 15)i.V1 + Z2 是实数,A«- + - 15 = 0 ,解彳專a= - 5 或w = 3.又(0 + 5)(。
复数高考题汇总(K12教育文档)
复数高考题汇总(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(复数高考题汇总(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为复数高考题汇总(word版可编辑修改)的全部内容。
复数高考题汇总一.选择题 1.下列n 的取值中,使n i =1(i 是虚数单位)的是 ( )A.n=2 B 。
n=3 C 。
n=4 D 。
n=52。
设1z i =+(i 是虚数单位),则22z z +=( ) A .1i -- B .1i -+ C .1i - D . 1i +3.在复平面内,复数(12)z i i =+对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4。
复数31i i --等于 ( ) A .i 21+ B 。
12i - C 。
2i + D.2i -5。
i 是虚数单位,若17(,)2i a bi a b R i+=+∈-,则乘积ab 的值是( ) (A)-15 (B )-3 (C )3 (D)156。
若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为 ( )A .1-B .0C .1D .1-或17.复数32322323i i i i+--=-+ ( ) (A)0 (B )2 (C )-2i (D )28。
复数2(12)34i i+-的值是 ( ) A.-1 B.1 C.-i D。
i9.已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( )A .(15), B .(13), C .(1 D .(110。
高考数学真题题型分类解析专题专题02 复数
一、复数的概念
( ) 叫虚数单位,满足 ,当 时, . 1 i
i2 = −1 k ∈ Z
i 4k = 1, i 4 k +1 = i, i 4k + 2 = −1, i 4k +3 = −i
(2)形如 a + bi(a, b∈ R) 的数叫复数,记作 a +bi∈C .
高考数学真题题型分类解析 专题 02 复数
命题解读
考向
高考对复数的考查,重点是复数的运 共轭复数、复数的除法运算
算、概念、复数的模、复数的几何意义 等,难度较低.
复数的乘法运算 复数的几何意义
复数的模
考查统计 2022·新高考Ⅰ卷,2 2023·新高考Ⅰ卷,2 2024 新高考Ⅰ卷,2 2022·新高考Ⅱ卷,2 2023 新高考Ⅱ卷,1 2024·新高考Ⅱ卷,1
综上所述,无论方程的判别式b2 −4ac 的符号如何,韦达定理都成立,于是韦达定理能被推广到复数根的
情况,即实系数一元二次方程ax2 +bx + c = 0( a 、b 、c∈ R 且a ≠ 0 )的两个根与系数满足关系
, x1
+
x2
=
−
b a
x1 x2
=
c a
4 / 11
一、单选题
1.(2024·安徽芜湖·三模)已知复数
=
(1− i)2
−2i
=
= −1− i .
−2i
故选:D
5.(2024·山东德州·三模)已知复数 z 满足: z − i(2 + z) = 0 ,则 z = ( )
. . . . A −1− i B −1+ i C 1+ i D 1− i 【答案】B
历年(2019-2024)全国高考数学真题分类(复数)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(复数)汇编考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .3102.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 .考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1B .0 ∙C .1D .22.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .22.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10iB .2iC .10D .23.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i -B .iC .0D .16.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1-B .1-C .13-D .13-8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2-B .1-C .1D .29.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1C D .22.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .53.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1B .5C .7D .255.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1CD .26.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .27.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= . 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .19.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 . 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ). A .第一象限B .第二象限C .第三象限D .第四象限2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ). A .12i +B .2i -+C .12i -D .2i --5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=参考答案考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .310【答案】D【详细分析】利用复数的除法运算求出z 即可. 【答案详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【名师点评】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 2.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 . 【答案】3【详细分析】根据复数的运算法则,化简即可求得实部的值. 【答案详解】∵复数()()12z i i =+-∴2223z i i i i =-+-=+ ∴复数的实部为3.故答案为:3.【名师点评】本题考查复数的基本概念,是基础题.考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1 B .0 ∙ C .1 D .2【答案】C【详细分析】根据复数的代数运算以及复数相等即可解出.【答案详解】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =. 故选:C.2.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【详细分析】利用复数相等的条件可求,a b .【答案详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=, 故选:B.3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==- B .1,1a b == C .1,1a b =-= D .1,1a b =-=-【答案】A【详细分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【答案详解】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-. 故选:A.4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==- B .1,2a b =-= C .1,2a b == D .1,2a b =-=-【答案】A【详细分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可 【答案详解】12z i =-12i (12i)(1)(22)i z az b a b a b a ++=-+++=+++-由0z az b ++=,结合复数相等的充要条件为实部、虚部对应相等,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩ 故选:A5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .2【详细分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【答案详解】依题意得,z =,故22i 2zz =-=. 故选:D2.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10i B .2i C .10 D .2【答案】A【详细分析】结合共轭复数与复数的基本运算直接求解. 【答案详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A3.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-. 故选:D4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +【答案】B【详细分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可. 【答案详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+. 故选:B.5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i - B .i C .0D .1【答案】A【详细分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出. 【答案详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.6.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1- B .1- C .13-D .13-【答案】C【详细分析】由共轭复数的概念及复数的运算即可得解.【答案详解】1(1113 4.z zz =-=--=+=113z zz ==-- 故选 :C8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2- B .1- C .1 D .2【答案】D【详细分析】利用复数的除法可求z ,从而可求z z +.【答案详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D9.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +【答案】C【详细分析】利用复数的乘法和共轭复数的定义可求得结果.【答案详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C.考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1CD .2【答案】C【详细分析】由复数模的计算公式直接计算即可.【答案详解】若1i z =--,则z ==故选:C.2.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .5【答案】C【详细分析】由题意首先化简232i 2i ++,然后计算其模即可. 【答案详解】由题意可得232i 2i 212i 12i ++=--=-,则232i 2i 12i ++=-=故选:C.3.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1 B .5C .7D .25【答案】B【详细分析】利用复数四则运算,先求出z ,再计算复数的模.【答案详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z ==.故选:B .5.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1C D .2【答案】C【详细分析】先根据2i 1=-将z 化简,再根据复数的模的计算公式即可求出.【答案详解】因为31+2i i 1+2i i 1i z =+=-=+,所以 z ==. 故选:C .【名师点评】本题主要考查复数的模的计算公式的应用,属于容易题.6.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .2【答案】D【详细分析】由题意首先求得22z z -的值,然后计算其模即可.【答案详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.【名师点评】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.7.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= .【答案】【详细分析】方法一:令1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,根据复数的相等可求得2ac bd +=-,代入复数模长的公式中即可得到结果.方法二:设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+, 根据复数的几何意义及复数的模,判定平行四边形12OZ PZ 为菱形,12OZ OZ 2OP ===,进而根据复数的减法的几何意义用几何方法计算12z z -. 【答案详解】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=+,1a cb d ⎧+=⎪∴⎨+=⎪⎩12||=||=2z z ,所以224a b +=,224cd +=, 222222()()2()4a c b d a c b d ac bd ∴+++=+++++=2ac bd ∴+=-12()()z z a c b d i ∴-=-+-===.故答案为:方法二:如图所示,设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+,由已知122OZ OZ OP ====,∴平行四边形12OZ PZ 为菱形,且12,OPZ OPZ 都是正三角形,∴12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-=∴1212z z Z Z -==.【名师点评】方法一:本题考查复数模长的求解,涉及到复数相等的应用;考查学生的数学运算求解能力,是一道中档题.方法二:关键是利用复数及其运算的几何意义,转化为几何问题求解 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .1【答案】C【详细分析】先由复数的除法运算(分母实数化),求得z ,再求z .【答案详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z =,故选C . 【名师点评】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解. 9.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 .【详细分析】先化简复数,再利用复数模的定义求所给复数的模.【答案详解】5(5)(1)231(1)(1)i i i i i i i ---==-=++-. 【名师点评】本题考查了复数模的运算,是基础题. 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .【答案】2【详细分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【答案详解】1|||1|2z i ==+.【名师点评】本题考查了复数模的运算,属于简单题.考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【详细分析】根据复数的乘法结合复数的几何意义详细分析判断.【答案详解】因为()()213i 3i 38i 3i 68i +-=+-=+,则所求复数对应的点为()6,8,位于第一象限.故选:A.2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-.故选:D3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i --在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详细分析】利用复数的除法可化简2i13i --,从而可求对应的点的位置. 【答案详解】()()2i 13i 2i 55i 1i 13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫⎪⎝⎭,该点在第一象限,故选:A.4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ).A .12i +B .2i -+C .12i -D .2i -- 【答案】B【详细分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【答案详解】由题意得12z i =+,2iz i ∴=-.故选:B.【名师点评】本题考查复数几何意义以及复数乘法法则,考查基本详细分析求解能力,属基础题. 5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【详细分析】先求出共轭复数再判断结果.【答案详解】由32,z i =-+得32,z i =--则32,z i =--对应点(‐3,‐2)位于第三象限.故选C .【名师点评】本题考点为共轭复数,为基础题目.6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x += 【答案】C【详细分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【答案详解】,(1),z x yi z i x y i =+-=+-1,z i -==则22(1)1y x +-=.故选C .【名师点评】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.。
高考复数函数压轴题型归类总结
高考复数函数压轴题型归类总结引言复数函数是高考数学中的重要内容之一,常出现在选择题和解析几何题型中。
本文将对高考复数函数的压轴题型进行归类总结,以帮助考生更好地掌握和应对这一题型。
类型一:复数的运算这类题目主要考察考生对复数的基本运算规则的掌握。
常见的题型包括:- 复数的加减法、乘法、除法;- 复数的整式、视作整数的合并化简。
类型二:复数的性质这类题目主要考察考生对复数的性质和特点的理解。
常见的题型包括:- 复数的模、辐角、共轭;- 复数的大小比较;- 复数的幂运算;- 复数方程的解。
类型三:复数与方程这类题目主要考察考生对复数与方程的应用能力。
常见的题型包括:- 根据复数方程的解形式进行方程的求解;- 根据复数方程求解几何问题。
类型四:复数与几何这类题目主要考察考生对复数与几何的联系和应用。
常见的题型包括:- 复数平面上点的位置关系;- 复数表示平面上的变换(平移、旋转、缩放);- 复数表示几何问题(如求面积、角度)。
类型五:综合应用这类题目将复数与其他数学内容结合起来,考察考生的综合应用能力。
常见的题型包括:- 复数与函数的综合应用;- 复数与三角函数的综合应用。
结论对于高考复数函数的压轴题型,考生应通过深入理解复数的基础知识,并结合几何概念和其他数学内容进行综合应用。
在备考过程中,多进行真题练习和模拟考试,总结题型的解题技巧,增强解题能力。
同时,注意对每种题型的巩固和复习,加强对一些常考题型的熟悉程度。
通过系统的复习和多样的练习,考生可以更好地应对高考中的复数函数压轴题型。
高考复数专题及答案doc
一、复数选择题1.设复数1iz i=+,则z 的虚部是( )A .12B .12iC .12-D .12i -2.已知复数1=-iz i,其中i 为虚数单位,则||z =( )A .12B .2C D .23.复数()1z i i =⋅+在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.设复数(,)z a bi a R b R =+∈∈,它在复平面内对应的点位于虚轴的正半轴上,且有1z =,则a b +=( )A .-1B .0C .1D .25.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( )A .5B C .D .5i6.已知i 是虚数单位,复数2z i =-,则()12z i ⋅+的模长为( )A .6BC .5D 7.若复数()()24z i i =--,则z =( ) A .76i --B .76-+iC .76i -D .76i +8.已知i 为虚数单位,复数12i1iz +=-,则复数z 在复平面上的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限9.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④zz,其结果一定是实数的是( ) A .①②B .②④C .②③D .①③10.在复平面内,复数z 对应的点是()1,1-,则1zz =+( ) A .1i -+ B .1i +C .1i --D .1i -11.复数12iz i=+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限12.设21iz i+=-,则z 的虚部为( )A .12B .12-C .32D .32-13.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限14.复数22(1)1i i-+=-( ) A .1+iB .-1+iC .1-iD .-1-i15.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( ) A .第四象限B .第三象限C .第二象限D .第一象限二、多选题16.下面是关于复数21iz =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-17.已知复数122z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .2020122z =-+ 18.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为219.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .20zB .2z z =C .31z =D .1z =20.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z21.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =22.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122-C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为223.下列命题中,正确的是( ) A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数24.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限25.复数21iz i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i + C .z 的实部与虚部之和为2 D .z 在复平面内的对应点位于第一象限 26.给出下列命题,其中是真命题的是( )A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 27.(多选)()()321i i +-+表示( ) A .点()3,2与点()1,1之间的距离 B .点()3,2与点()1,1--之间的距离 C .点()2,1到原点的距离D .坐标为()2,1--的向量的模28.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件 29.已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y == B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.A 【分析】根据复数除法运算整理得到,根据虚部定义可得到结果. 【详解】 ,的虚部为. 故选:. 解析:A 【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果. 【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12.故选:A .2.B 【分析】先利用复数的除法运算将化简,再利用模长公式即可求解. 【详解】 由于, 则.故选:B解析:B 【分析】先利用复数的除法运算将1=-iz i化简,再利用模长公式即可求解. 【详解】 由于()(1i)(1i)111(1i)222i i i i z i i ++====-+--+,则||2z ===. 故选:B3.B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】 因为复数,所以在复数z 复平面上对应的点位于第二象限 故选:B解析:B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限 故选:B4.C 【分析】根据复数的几何意义得. 【详解】∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴, ∴. 故选:C .解析:C 【分析】根据复数的几何意义得,a b . 【详解】∵z 它在复平面内对应的点位于虚轴的正半轴上,∴0a =,又1z =,∴1b =, ∴1a b +=. 故选:C .5.B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】 ,所以, 故选:B解析:B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】(2)21z i i i =+=-,所以|z |=故选:B6.C 【分析】利用复数代数形式的乘除运算化简,再由复数模的公式得答案. 【详解】 , , 所以,, 故选:C.解析:C 【分析】利用复数代数形式的乘除运算化简,再由复数模的公式得答案. 【详解】2z i =-,(12)(2)(12)43z i i i i ∴⋅+=-+=+,所以,5z =, 故选:C.7.D 【分析】由复数乘法运算求得,根据共轭复数定义可求得结果. 【详解】 ,.解析:D 【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果. 【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .8.C 【分析】利用复数的除法法则化简,再求的共轭复数,即可得出结果. 【详解】 因为 , 所以,所以复数在复平面上的对应点位于第三象限, 故选:C.解析:C 【分析】利用复数的除法法则化简z ,再求z 的共轭复数,即可得出结果. 【详解】 因为212(12)(1)11i i i z i i +++==-- 1322i =-+,所以1322z i =--, 所以复数z 在复平面上的对应点13(,)22--位于第三象限, 故选:C.9.D 【分析】设,则,利用复数的运算判断. 【详解】 设,则, 故,, ,. 故选:D.解析:D设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断. 【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abiz a bi a b +-+==-+,22z z a b ⋅=+∈R . 故选:D.10.A 【分析】由得出,再由复数的四则运算求解即可. 【详解】 由题意得,则. 故选:A解析:A 【分析】由()1,1-得出1i z =-+,再由复数的四则运算求解即可. 【详解】由题意得1i z =-+,则1i 1i i 111i 1i i i 1z z -----+==⋅==-++-. 故选:A11.A 【分析】对复数进行分母实数化,根据复数的几何意义可得结果. 【详解】 由,知在复平面内对应的点位于第一象限, 故选:A. 【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题解析:A 【分析】对复数z 进行分母实数化,根据复数的几何意义可得结果. 【详解】 由()()()122112121255i i i z i i i i -===+++-,知在复平面内对应的点21,55⎛⎫⎪⎝⎭位于第一象限,故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题. 12.C【分析】根据复数的除法运算,先化简复数,即可得出结果.【详解】因为,所以其虚部为.故选:C.解析:C【分析】根据复数的除法运算,先化简复数,即可得出结果.【详解】因为()()()()21223113111222i ii iz ii i i++++-====+ --+,所以其虚部为3 2 .故选:C.13.A【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论. 【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.解析:A【分析】利用复数的乘法化简复数z,利用复数的乘法可得出结论.【详解】()()221223243z i i i i i=-+=+-=+,因此,复数z在复平面内对应的点位于第一象限.故选:A.14.C【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解: 故选:C解析:C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+12i i =+-1i =-故选:C15.A 【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果. 【详解】 因为,所以,其在复平面内对应的点为,位于第四象限. 故选:A.解析:A 【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果. 【详解】因为()()()()4202050550512111121111111i i i z i iii i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限. 故选:A.二、多选题16.ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.17.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确; 因为,所以,所以D 正确解析:ACD 【分析】 分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,12z =,所以2z z ≠,所以B 错误;因为3211122z z z ⎛⎫⎛⎫=⋅=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.18.ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距2=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 19.BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】122z =-+, 221313i i=2222z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.20.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 21.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确.故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单. 22.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围 23.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.24.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项. 【详解】依题意1ω==,所以A 选项正确; 2211312442ω⎛⎫=-+=-=- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确; 22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;22111122212ω---====-⎛⎫-+⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,2⎛-⎝⎭,在第三象限,故D选项错误.故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.25.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A不正确;的共轭复数为,则B不正确;的实部与虚部之和为,则C正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z,再逐一分析选项,即得.【详解】由题得,复数22(2)(1)13131(1)(1)122i i i iz ii i i i++++====+--+-,可得||2z==,则A不正确;z的共轭复数为1322i-,则B不正确;z的实部与虚部之和为13222+=,则C正确;z在复平面内的对应点为13(,)22,位于第一象限,则D正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.26.AD【分析】A.根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D. 根据,得到,再用共轭复数的定义判断.【详解】A.根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 27.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模28.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.29.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。
复数高考题分类总汇编
复数高考真题分类汇编题型一 复数的概念及分类1.(2015·卷)i 是虚数单位,若复数))(21(i a i +-是纯虚数,则=a . 2.(2016·卷)复数)3)(21(i i z -+=,i 为虚数单位,则z 的实部是 .3.(2016·卷)设iiz 23+=,其中i 为虚数单位,则其虚部为 . 4.(2017·卷)已知R a ∈,i 为虚数单位,若i ia +-2为实数,则a 的值为 .5.(2017·全国卷)设有下面四个命题::1p 若复数满足R z∈1,则R z ∈;:2p 若复数满足R z ∈2,则R z ∈;:3p 若复数1z 、2z 满足R z z ∈21,则21z z =; :4p 若复数R z ∈,则R z ∈;其中真命题为( ) A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p题型二 与共轭复数、复数相等有关的问题1.(2013·卷)复数满足5)2)(3(=--i z (i 为虚数单位),则z 的共轭复数为( )A .i +2B .i -2C .i +5D .i -52.(2013·卷)设i 是虚数单位,若z i z z 22=+⋅,则=z ( )A .i +1B .i -1C .i +-1D .i --13.(2013·卷)已知复数的共轭复数i z 21+=(i 为虚数单位),则z 在复平面对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2013·卷)在复平面,复数iiz +=12(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2013·卷)如图,在复平面,点A 表示复数,则图中表示的共轭复数的点是_____6.(2013·卷)已知R b a ∈、,i 是虚数单位,若bi i i a =++)1)((,则=+bi a .7.(2014·卷)原命题为“若21,z z 互为共轭复数,则21z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真假真B .假假真C .真真假D .假假假8.(2014·卷)已知R b a ∈、,i 是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a ( )A .i 45-B .i 45+C . i 43-D .i 43+9.(2014·卷)z 是z 的共轭复数.若2=+z z ,2)(=-i z z ,i 为虚数单位,则=z ( )A .i +1B .i --1C .i +-1D . i -110.(2014·卷)设i 是虚数单位,z 表示复数z 的共轭复数.若i z +=1,则=⋅+z i iz ( )A .2-B .i 2-C .2D .i 211.(2014·全国卷)设iiz +=310,则z 的共轭复数为( ) A .i 31+-B .i 31--C .i 31+D .i 31-12.(2014·卷)复数i i z )23(-=的共轭复数为( )A .i 32--B .i 32+-C .i 32-D . i 32+13.(2015·卷)若复数)23(i i z -=(i 是虚数单位),则=z ( )A .i 32-B .i 32+C .i 23+D .i 23-14.(2015·卷)i 为虚数单位,607i 的共轭复数为( )A .iB .i -C .1D .1-15.(2015·全国卷Ⅱ)若a 为实数,且i i a ai 4)2)(2(-=-+,则=a ( )A .1-B .0C . 1D . 216.(2015·卷)若复数满足i iz=-1,其中i 为虚数单位,则=z ( ) A .i -1B .i +1C .i --1D .i +-117.(2016·卷)若复数满足i z z 232-=+,其中i 为虚数单位,则=z ( )A .i 21+B .i 21-C .i 21+-D .i 21--18.(2016·卷)已知R b a ∈、,i 是虚数单位,若a bi i =-+)1)(1(,则ba的值为______.19.(2017·卷)已知R a ∈,i 是虚数单位,若i a z 3+=,4=⋅z z ,则=a ( )A .1或1-B .3或3-C .3-D .320.(2017·卷)已知R b a ∈、,i bi a 43)(2+=+(i 是虚数单位),则=+22b a ______,=ab ________.题型三 复数的模 1.(2013·卷)复数11-=i z 的模为( ) A .21B .22 C .2 D .22.(2013·卷)设2)2(i z -=(i 为虚数单位),则复数z 的模为______. 3.(2013·卷)设21z z 、是复数,则下列命题中的假命题是( )A .若021=-z z ,则21z z =B .若21z z =,则21z z =C .若21z z =,则2211z z z z ⋅=⋅D .若21z z =,则2221z z =4.(2013·卷)已知复数iiz 215+=(i 是虚数单位),则=z _____. 5.(2015·全国卷)设复数z 满足i zz=-+11,则=z ( )A .1B .2C .3D .26.(2015·卷)设复数满足i z 432+=(i 是虚数单位),则z 的模为_____. 7.(2015·卷)设复数bi a +(R b a ∈,)的模为3,则=-+))((bi a bi a ____. 8.(2016·全国卷)设yi x i +=+1)1(,其中y x 、是实数,则=+yi x ( )A .1B .2C .3D .29.(2017·卷)已知复数)21)(1(i i z ++=,曲终i 是虚数单位,则z 的模是______. 10.(2017·全国卷Ⅲ)设复数z 满足i z i 2)1(=+,则=z ( )A .21B .22 C .2 D .2题型四 复数的四则运算1.(2013·全国卷)设复数满足i z i 2)1(=-,则=z ( )A .i +-1B .i --1C .i +1D .i -12.(2013·卷)已知i 是虚数单位,则=-+-)2)(1(i i ( )A .i +-3B .i 31+-C .i 33+-D .i +-13.(2013·卷)若复数满足i z i 42+=⋅,则在复平面,z 对应的点的坐标是( )A .)4,2(B .)4,2(-C .)2,4(-D .)2,4(4.(2014·卷)复数=-+2)11(ii ______. 5.(2014·卷)已知复数2)25(i z -=(i 为虚数单位),则z 的实部为____.6.(2014·卷)复数=+-ii122______. 7.(2014·卷)i 是虚数单位,复数=++ii437( )A .i -1B .i +-1C .i 25312517+D .i 725717+-8.(2014·全国卷)=-+23)1()1(i i ( ) A .i +1 B .i -1 C .i +-1 D .i --19.(2014·卷)设复数满足5)2)(2(=--i i z ,则=z ( )A .i 32+B .i 32-C .i 23+D .i 23-10.(2014·卷)i 为虚数单位,则=+-2)11(ii ( )A .1-B .1C .i -D .i11.(2014·卷)满足i ziz =+(i 是虚数单位)的复数=z ( ) A .i2121+B .i 2121-C .i 2121+-D .i 2121--12.(2014·卷)已知复数满足25)43(=+z i ,则=z ( )A .i 43+-B .i 43--C .i 43+D .i 43-13.(2015·卷)复数=-)2(i i ( )A .i 21+B .i 21-C .i 21+-D .i 21--14.(2015·卷)若集合{}432,,,i i i i A =(i 是虚数单位),{}1,1-=B ,则=B A ( )A .{}1-B .{}1C .{}1,1-D .Ø15.(2015·卷)已知i zi +=-1)1(2(i 为虚数单位),则复数=z ( ) A .i +1 B .i -1 C .i +-1 D .i --116.(2015·卷)设i 是虚数单位,则复数=-ii 23( ) A .i -B .i 3-C .iD .i 317.(2016·全国卷Ⅲ)若i z 21+=,则=-14z z i( ) A .1B .1-C .iD .i -18.(2016·卷)设i 为虚数单位,则6)(i x +的展开式中含4x 的项为( )A .415x -B .415xC .420ix -D .420ix19.(2017全国卷Ⅱ)=++ii13( ) A .i 21+B .i 21-C .i +2D .i -2题型五 复数的几何意义1.(2013·卷)复数)1(i i z +=(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.(2013·卷)已知复数的共轭复数i z 21+=(i 为虚数单位),则z 在复平面对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2013·卷)在复平面,复数iiz +=12(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2013·卷)如图,在复平面,点A 表示复数,则图中表示的共轭复数的点是_____5.(2014·全国卷Ⅱ)设复数21,z z 在复平面的对应点关于虚轴对称,i z +=21,则=21z z ( )A .5-B .5C .i +-4D .i --46.(2014·卷)在复平面表示复数)21(i i -的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.(2015·卷)设i 是虚数单位,则复数ii-12在复平面所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限8.(2016·卷)设R a ∈,若复数))(1(i a i ++在复平面对应的点位于实轴上,则=a ________.9.(2017·卷)若复数))(1(i a i +-在复平面对应的点在第二象限,则实数a 的取值围是( )A .)1,(-∞B .)1,(--∞C .),1(+∞D .),1(+∞-。
高考复数专题及答案doc
一、复数选择题1.设复数1i z i=+,则z 的虚部是( ) A .12 B .12i C .12- D .12i - 2.若20212zi i =+,则z =( ) A .12i -+B .12i --C .12i -D .12i + 3.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限4.))5511--+=( )A .1B .-1C .2D .-2 5.已知i 为虚数单位,若复数()12i z a R a i +=∈+为纯虚数,则z a +=( )A B .3 C .5 D .6.设()2211z i i =+++,则||z =( )A B .1 C .2 D 7.已知复数512z i =+,则z =( )A .1BCD .58.已知复数z 满足202122z i i i+=+-+,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限9.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )A B .2 C .10 D 10.122i i-=+( ) A .1 B .-1C .iD .-i 11.已知i 是虚数单位,2i z i ⋅=+,则复数z 的共轭复数的模是( )A .5BCD .3 12.复数12z i =-(其中i 为虚数单位),则3z i +=( )A .5BC .2 D13.若i 为虚数单位,,a b ∈R ,且2a i b i i +=+,则复数a bi -的模等于( )A B C D14.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( )A .第四象限B .第三象限C .第二象限D .第一象限15.题目文件丢失!二、多选题16.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =17.下面是关于复数21i z =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-18.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()11i i -+B .11i i -+C .11i i +-D .()21i - 19.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为20.设复数z 满足1z i z +=,则下列说法错误的是( ) A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .z =21.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件22.若复数z 满足()1z i i +=,则( ) A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =23.下列关于复数的说法,其中正确的是( )A .复数(),z a bi a b R =+∈是实数的充要条件是0b =B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称24.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥25.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限26.以下为真命题的是( )A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数27.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =28.已知i 为虚数单位,下列说法正确的是( )A .若,x y R ∈,且1x yi i +=+,则1x y ==B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于129.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1 B .4- C .0 D .530.已知i 为虚数单位,下列命题中正确的是( )A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数【参考答案】***试卷处理标记,请不要删除一、复数选择题1.A【分析】根据复数除法运算整理得到,根据虚部定义可得到结果.【详解】,的虚部为.故选:.解析:A【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果.【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12. 故选:A .2.C【分析】根据复数单位的幂的周期性和复数除法的运算法则进行求解即可.【详解】由已知可得,所以.故选:C解析:C【分析】根据复数单位i 的幂的周期性和复数除法的运算法则进行求解即可.【详解】由已知可得202150541222(2)21121i i i i i i z i i i i i i ⨯+++++⋅-======-⋅-,所以12z i =-. 故选:C 3.B【分析】对复数进行化简,再得到在复平面内对应点所在的象限.【详解】,在复平面内对应点为,在第二象限.故选:B.解析:B【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限.【详解】21i z i =-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.4.D【分析】先求和的平方,再求4次方,最后求5次方,即可得结果.【详解】∵,,∴,,∴,,∴,故选:D.解析:D【分析】先求)1-和)1+的平方,再求4次方,最后求5次方,即可得结果. 【详解】∵)211-=--,)2+1=-,∴)()42117-=--=-+,)()42+17=-=--,∴)()51711-=-+-=--,)()51711+=--+=-,∴))55121-+=--, 故选:D.5.A【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得【详解】由复数为纯虚数,则,解得则 ,所以,所以故选:A解析:A【分析】根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a +【详解】()()()()()()2221222121122111i a i a a i a i i a z a i a i a i a a a +-++--++====+++-+++ 由复数()12i z a R a i +=∈+为纯虚数,则222012101a a a a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =- 则z i =- ,所以2z a i +=--,所以z a +=故选:A6.D【分析】利用复数的乘除法运算法则将化简,然后求解.【详解】因为,所以,则.故选:D .【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,解析:D【分析】利用复数的乘除法运算法则将z 化简,然后求解||z .【详解】 因为()()()()2221211211211111i z i i i i i i i i i -=++=+++=-++-=+++-,所以1z i =-,则z =故选:D .【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,需要给分子分母同乘以分母的共轭复数然后化简.7.C【分析】根据模的运算可得选项.【详解】.故选:C.解析:C【分析】根据模的运算可得选项.【详解】512z i ====+ 故选:C.8.C【分析】由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果.【详解】由题可得,,所以复数在复平面内对应的点为,在第三象限,故选:C .解析:C【分析】由已知得到2021(2)(2)i i i z -++-=,然后利用复数的乘法运算法则计算(2)(2)i i -++,利用复数n i 的周期性算出2021i 的值,最后利用复数的几何意义可得结果.【详解】由题可得,2021(2)(2)5i z i i i -+=+-=--,所以复数z 在复平面内对应的点为(5,1)--,在第三象限,故选:C .9.D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为,所以,,所以,故选:D.解析:D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为1z i =+, 所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-==故选:D.10.D【分析】利用复数的除法求解.【详解】.故选:D解析:D【分析】利用复数的除法求解.【详解】()()()()12212222i i i i i i i ---==-++-. 故选:D11.C【分析】首先求出复数的共轭复数,再求模长即可.【详解】据题意,得,所以的共轭复数是,所以.故选:C.解析:C【分析】首先求出复数z 的共轭复数,再求模长即可.【详解】 据题意,得22(2)12121i i i i z i i i ++-+====--,所以z 的共轭复数是12i +,所以z =.故选:C.12.B【分析】首先求出,再根据复数的模的公式计算可得;【详解】解:因为,所以所以.故选:B.解析:B【分析】首先求出3z i +,再根据复数的模的公式计算可得;【详解】解:因为12z i =-,所以31231z i i i i +=-+=+所以3z i +==故选:B . 13.C【分析】首先根据复数相等得到,,再求的模即可.【详解】因为,所以,.所以.故选:C解析:C【分析】首先根据复数相等得到1a =-,2b =,再求a bi -的模即可.【详解】因为()21a i b i i bi +=+=-+,所以1a =-,2b =.所以12a bi i -=--==故选:C 14.A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A. 解析:A【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果. 【详解】因为()()()()4202050550512111121111111i i i z i i i i i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限.故选:A.15.无二、多选题16.AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC 【分析】 根据复数的运算及复数的概念即可求解.【详解】因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC17.ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.18.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 19.ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距2=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 20.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】 由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误; 复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.21.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.22.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)11(1)(1)2i i z i i i i --====-++-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题23.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.24.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 25.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+, 所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.26.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 27.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.28.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确;对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 29.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.30.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。
完整版复数高考题型归类
复数高考题型归类剖析一、基本运算型四、复数的几何意义型二、基本看法型练习:1.若是复数z=1+ai 满足条件 |z| < 2,那么实数 a 的取值范围是[]A. 2 2,2 2B.( -2 ,2)C.( -1 ,1)D.3,32.在平行四边形OABC 中,极点 O,A,C 分别表示 0,3→+ 2i,- 2+ 4i.则对角线 CA所表示的复数的模为;三、复数相等型3.已知复数z1= i(1 - i)2, |z|= 1,则 |z- z1 |的取值范围是;五、技巧运算型六、知识交汇型七、轨迹方程型练习:1.已知复数 z 满足 |z|2- 2|z|-3= 0,则复数z 对应点的轨迹是 ()个圆 B.线段 C.2 个点 D.2 个圆2.若是复数z 满足 |z+2i|+ |z- 2i|= 4,那么 |z+i + 1|的最小值是()B. 2 D.53.若 |z- 2|= |z+ 2|,则 |z- 1|的最小值是.复数高考题型归类剖析一、基本运算型四、复数的几何意义型二、基本看法型三、复数相等型练习:1.若是复数z=1+ai 满足条件 |z| < 2,那么实数 a 的取值范围是 []A. 2 2,22B. ( -2 ,2)C.( -1 ,1)D.3,32.在平行四边形OABC 中,极点 O,A,C 分别表示 0,3+ 2i,- 2+ 4i.则对角线→;CA所表示的复数的模为3.已知复数12, |z|= 1,则 |z-z1z = i(1 -i)|的最大值 .五、技巧运算型六、知识交汇型小值是()B.2D.5答案A剖析设复数- 2i,2i ,- (1+ i) 在复平面内对应的点分别为 Z1,Z2,Z3,因为 |z+ 2i|+ |z- 2i|= 4,Z1Z2= 4,所以复数z 的几何意义为线段Z1 Z2,以下列图,问题转化为:动点Z 在线段 Z1Z2上搬动,求ZZ3的最小值 .因此作 Z3 Z0⊥Z1Z2于 Z0,则 Z3与 Z0的距离即为所求的七、轨迹方程型最小值, Z0Z3= 1.应选 A.8.若 |z- 2|= |z+ 2|,则 |z- 1|的最小值是.答案1剖析由|z- 2|= |z+ 2|,知 z 对应点的轨迹是到(2,0)与到 (- 2,0)距离相等的点,即虚轴 .|z- 1|表示 z 对应的点与 (1,0)的距离 .∴ |z- 1| = 1.min已知复数 z 满足 |z|2- 2|z|- 3= 0,则复数 z 对应点的轨12.会集 M = { z||z- 1|≤ 1, z∈ C} , N= { z||z- 1- i|= |z 迹是 ()- 2|, z∈ C} ,会集 P= M∩ N.A.1 个圆B.线段(1)指出会集 P 在复平面上所表示的图形;C.2 个点D.2 个圆(2)求会集 P 中复数模的最大值和最小值 .答案A解 (1) 由 |z- 1|≤ 1 可知,会集 M 在复平面内所对应的剖析由题意可知 (|z|- 3)(|z|+ 1)= 0,点集是以点 E(1,0)为圆心,以 1 为半径的圆的内部及边即 |z|= 3或 |z|=- 1.界;由 |z- 1- i|= |z-2|可知,会集 N 在复平面内所对∵ |z|≥ 0,∴|z|= 3.应点集是以点 (1,1) 和 (2,0) 为端点的线段的垂直均分线∴复数 z 对应的轨迹是 1 个圆.l,因此会集 P 是圆面截直线 l 所得的一条线段 AB,如图所示 .(2)圆的方程为x2+ y2- 2x= 0,直线 l 的方程为y= x-1.x2+ y2- 2x= 0,解得y= x-12+ 222- 22A(2,2 ),B(2,-2 ).∴ |OA|=2+2, |OB|=2- 2.∵点 O 到直线 l 的距离为22,且过 O 向 l 作垂线,垂BE上,∴2足在线段 2 <2- 2.∴会集 P 中复数模的最大值为2+2,最小值为2 2 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数高考题型归类解析
一、基本运算型
二、基本概念型
三、复数相等型
四、复数的几何意义型
练习:
1.如果复数z=1+ai满足条件|z|<2,那么实数a的取值
范围是[ ]
A.()
22,22
- B.(-2,2) C.(-1,1) D.(3,3
-
2.在平行四边形OABC中,顶点O,A,C分别表示0,3
+2i,-2+4i.则对角线CA
→
所表示的复数的模为;
3.已知复数z1=i(1-i)2,|z|=1|z-z1|的取值范围
是;
五、技巧运算型
六、知识交汇型
七、轨迹方程型练习:
1.已知复数z满足|z|2-2|z|-3=0,则复数z对应点的轨迹是()
A.1个圆
B.线段
C.2个点
D.2个圆
2.如果复数z满足|z+2i|+|z-2i|=4,那么|z+i+1|的最小值是()
A.1
B. 2
C.2
D. 5
3.若|z-2|=|z+2|,则|z-1|的最小值是.
复数高考题型归类解析
一、基本运算型
二、基本概念型
三、复数相等型
四、复数的几何意义型
练习:
1.如果复数z=1+ai满足条件|z|<2,那么实数a的取值
范围是[ ]
A.()
22,22
- B.(-2,2) C.(-1,1) D.()
3,3
-
2.在平行四边形OABC中,顶点O,A,C分别表示0,3
+2i,-2+4i.则对角线CA
→
所表示的复数的模为;
3.已知复数z1=i(1-i)2,|z|=1,则|z-z1|的最大值.
五、技巧运算型
六、知识交汇型
七、轨迹方程型
已知复数z满足|z|2-2|z|-3=0,则复数z对应点的轨迹是()
A.1个圆
B.线段
C.2个点
D.2个圆
答案 A
解析由题意可知(|z|-3)(|z|+1)=0,
即|z|=3或|z|=-1.
∵|z|≥0,∴|z|=3.
∴复数z对应的轨迹是1个圆.
5.如果复数z满足|z+2i|+|z-2i|=4,那么|z+i+1|的最小值是()
A.1
B. 2
C.2
D. 5
答案 A
解析设复数-2i,2i,-(1+i)在复平面内对应的点分别为Z1,Z2,Z3,因为|z+2i|+|z-2i|=4,Z1Z2=4,所以复数z的几何意义为线段Z1Z2,如图所示,问题转化为:动点Z在线段Z1Z2上移动,求ZZ3的最小值.
因此作Z3Z0⊥Z1Z2于Z0,则Z3与Z0的距离即为所求的最小值,Z0Z3=1.故选A.
8.若|z-2|=|z+2|,则|z-1|的最小值是.
答案 1
解析由|z-2|=|z+2|,知z对应点的轨迹是到(2,0)与到(-2,0)距离相等的点,即虚轴.|z-1|表示z对应的点与(1,0)的距离.∴|z-1|min=1.
12.集合M={z||z-1|≤1,z∈C},N={z||z-1-i|=|z -2|,z∈C},集合P=M∩N.
(1)指出集合P在复平面上所表示的图形;
(2)求集合P中复数模的最大值和最小值.
解(1)由|z-1|≤1可知,集合M在复平面内所对应的点集是以点E(1,0)为圆心,以1为半径的圆的内部及边界;由|z-1-i|=|z-2|可知,集合N在复平面内所对应点集是以点(1,1)和(2,0)为端点的线段的垂直平分线l,因此集合P是圆面截直线l所得的一条线段AB,如图所示.
(2)圆的方程为x 2+y 2-2x =0, 直线l 的方程为y =x -1.
解⎩⎪⎨⎪⎧
x 2+y 2-2x =0,y =x -1
得 A (2+22,22),B (2-22,-22).
∴|OA |=
2+2,|OB |=
2- 2.
∵点O 到直线l 的距离为2
2,且过O 向l 作垂线,垂足在线段BE 上,∴
22
<2- 2.
∴集合P 中复数模的最大值为2+2,最小值为
22
.。