【典型题】数学高考模拟试题及答案

合集下载

高考数学模拟复习试卷试题模拟卷2024

高考数学模拟复习试卷试题模拟卷2024

高考模拟复习试卷试题模拟卷【高频考点解读】1.了解函数y =Asin(ωx +φ)的物理意义;能画出y =Asin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【热点题型】题型一 函数y =Asin(ωx +φ)的图象及变换【例1】 设函数f(x)=sin ωx +3cos ωx(ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f(x)的图象可由y =sin x 的图象经过怎样的变换而得到.【提分秘籍】作函数y =Asin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图法,用“五点法”作y =Asin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =Asin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【举一反三】设函数f(x)=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.题型二利用三角函数图象求其解析式例2、(1)已知函数f(x)=Acos(ωx +φ)的图象如图所示,f ⎝⎛⎭⎫π2=-23,则f(0)=( )A .-23B .-12 C.23 D.12(2)函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为________.【提分秘籍】已知f(x)=Asin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2πT 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.【举一反三】(1)已知函数f(x)=Acos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f(1)的值为( )A .-32B .-62 C.3 D .- 3(2)函数f(x)=Asin(ω+φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝⎛⎭⎫π3的值为______.题型三函数y =Asin(ωx +φ)的性质应用【例3】已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图象,若y =g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.【提分秘籍】解决三角函数图象与性质综合问题的方法:先将y =f(x)化为y =asin x +bcos x 的形式,然后用辅助角公式化为y =Asin(ωx +φ)+b 的形式,再借助y =Asin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【举一反三】已知函数f(x)=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1)求f ⎝⎛⎭⎫π8的值; (2)求函数y =f(x)+f⎝⎛⎭⎫x +π4的最大值及对应的x 的值. 【高考风向标】【高考山东,文4】要得到函数4y sin x =-(3π)的图象,只需要将函数4y sin x =的图象()(A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【高考湖北,文18】某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ35π6sin()A x ωϕ+55-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点最近的对称中心.5A =,32ππωϕ+=,5362ππωϕ+=,1.(·天津卷) 已知函数f(x)=3sin ωx +cos ωx(ω>0),x ∈R.在曲线y =f(x)与直线y =1的交点中,若相邻交点距离的最小值为π3,则f(x)的最小正周期为( )A.π2B.2π3 C .π D .2π2.(·安徽卷) 若将函数f(x)=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π43.(·重庆卷) 将函数f(x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.4.(·北京卷) 函数f(x)=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f(x)的最小正周期及图中x0,y0的值; (2)求f(x)在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值..5.(·福建卷) 已知函数f(x)=2cos x(s in x +cos x).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f(x)的最小正周期及单调递增区间.6.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定7.(·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.8.(·辽宁卷) 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减 D .在区间⎣⎡⎦⎤-π6,π3上单调递增 9.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 10.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③11.(·山东卷) 函数y =32sin 2x +cos2x 的最小正周期为________. sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .12.(·陕西卷) 函数f(x)=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π134.(·浙江卷) 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( ) A .向右平移π12个单位 B .向右平移π4个单位 C .向左平移π12个单位 D .向左平移π4个单位14.(·四川卷) 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度15.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值. 【高考押题】1.函数f(x)=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2B .πC .2πD .4π2.将函数y =cos 2x +1的图象向右平移π4个单位,再向下平移1个单位后得到的函数图象对应的表达式为( )A .y =sin 2xB .y =sin 2x +2C .y =cos 2xD .y =cos ⎝⎛⎭⎫2x -π43.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象 ( ) A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位4.函数f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6 C .4,-π6D .4,π3解析 由图象知f(x)的周期T =2⎝⎛⎭⎫11π12-5π12=π,又T =2πω,ω>0,∴ω=2.由于f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的一个最高点为⎝⎛⎭⎫5π12,2,故有2×5π12+φ=2kπ+π2(k ∈Z),即φ=2kπ-π3,又-π2<φ<π2,∴φ=-π3,选A.答案 A5.将函数y =sin x 的图象向左平移π2个单位,得到函数y =f(x)的图象,则下列说法正确的是( ) A .y =f(x)是奇函数 B .y =f(x)的周期为πC .y =f(x)的图象关于直线x =π2对称 D .y =f(x)的图象关于点⎝⎛⎭⎫-π2,0对称 6.将函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝⎛⎭⎫π6=______.7.已知函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数解析式f(x)=________.8.设函数f(x)=Asin(ωx +φ)(A ,ω,φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________.9.已知函数f(x)=4cos x·sin ⎝⎛⎭⎫x +π6+a 的最大值为2.(1)求a 的值及f(x)的最小正周期; (2)在坐标系上作出f(x)在[0,π]上的图象.10.某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.会从实际情境中抽象出一元二次不等式模型;2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. 【热点题型】题型一 一元二次不等式的解法 例1、求下列不等式的解集: (1)-x2+8x -3>0; (2)ax2-(a +1)x +1<0.解 (1)因为Δ=82-4×(-1)×(-3)=52>0,所以方程-x2+8x -3=0有两个不相等的实根x1=4-13,x2=4+13. 又二次函数y =-x2+8x -3的图象开口向下, 所以原不等式的解集为{x|4-13<x<4+13}.当a =0时,解集为{x|x>1};当0<a<1时,解集为{x|1<x<1a };当a =1时,解集为∅;当a>1时,解集为{x|1a <x<1}.【提分秘籍】含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)对方程的根进行讨论,比较大小,以便写出解集. 【举一反三】(1)若不等式ax2+bx +2>0的解为-12<x<13,则不等式2x2+bx +a<0的解集是________. (2)不等式x -12x +1≤0的解集是________.答案 (1)(-2,3) (2)(-12,1]题型二 一元二次不等式的恒成立问题 例2、设函数f(x)=mx2-mx -1.(1)若对于一切实数x ,f(x)<0恒成立,求m 的取值范围; (2)若对于x ∈[1,3],f(x)<-m +5恒成立,求m 的取值范围. 解 (1)要使mx2-mx -1<0恒成立, 若m =0,显然-1<0;若m≠0,则⎩⎪⎨⎪⎧m<0,Δ=m2+4m<0⇒-4<m<0.所以-4<m≤0.(2)要使f(x)<-m +5在x ∈[1,3]上恒成立,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:方法二 因为x2-x +1=⎝⎛⎭⎫x -122+34>0,又因为m(x2-x +1)-6<0,所以m<6x2-x +1.因为函数y =6x2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m<67即可.所以,m 的取值范围是⎩⎨⎧⎭⎬⎫m|m<67.【提分秘籍】(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【举一反三】(1)若不等式x2-2x +5≥a2-3a 对任意实数x 恒成立,则实数a 的取值范围为( ) A .[-1,4]B .(-∞,-2]∪[5,+∞) C .(-∞,-1]∪[4,+∞) D .[-2,5](2)已知a ∈[-1,1]时不等式x2+(a -4)x +4-2a>0恒成立,则x 的取值范围为( ) A .(-∞,2)∪(3,+∞) B .(-∞,1)∪(2,+∞) C .(-∞,1)∪(3,+∞) D .(1,3)答案 (1)A (2)C解析 (1)x2-2x +5=(x -1)2+4的最小值为4, 所以x2-2x +5≥a2-3a 对任意实数x 恒成立, 只需a2-3a≤4,解得-1≤a≤4.(2)把不等式的左端看成关于a 的一次函数,记f(a)=(x -2)a +(x2-4x +4), 则由f(a)>0对于任意的a ∈[-1,1]恒成立, 易知只需f(-1)=x2-5x +6>0, 且f(1)=x2-3x +2>0即可, 联立方程解得x<1或x>3.题型三 题型三 一元二次不等式的应用例3、某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f(x),并写出定义域; (2)若再要求该商品一天营业额至少为10260元,求x 的取值范围.【提分秘籍】求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型. (3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果. 【举一反三】某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.答案 20 解析 由题意得,3860+500+[500(1+x%)+500(1+x%)2]×2≥7000, 化简得(x%)2+3·x%-0.64≥0,解得x%≥0.2,或x%≤-3.2(舍去).∴x≥20,即x 的最小值为20. 【高考风向标】1.【高考广东,文11】不等式2340x x --+>的解集为.(用区间表示) 【答案】()4,1-【解析】由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-.2.(·全国卷)设集合M ={x|x2-3x -4<0},N ={x|0≤x≤5},则M∩N =() A .(0,4] B .[0,4) C .[-1,0) D .(-1,0] 【答案】B【解析】因为M ={x|x2-3x -4<0}={x|-1<x<4},N ={x|0≤x≤5},所以M∩N ={x|-1<x<4}∩{0≤x≤5}={x|0≤x<4}.3.(·新课标全国卷Ⅱ] 设函数f(x)=3sin πx m ,若存在f(x)的极值点x0满足x20+[f(x0)]2<m2,则m 的取值范围是()A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 【答案】C【解析】函数f(x)的极值点满足πx m =π2+kπ,即x =m ⎝⎛⎭⎫k +12,k ∈Z ,且极值为±3,问题等价于存在k0使之满足不等式m2⎝⎛⎭⎫k0+122+3<m2.因为⎝⎛⎭⎫k +122的最小值为14,所以只要14m2+3<m2成立即可,即m2>4,解得m>2或m<-2,故m 的取值范围是(-∞,-2)∪(2,+∞).4.(·安徽卷)已知一元二次不等式f(x)<0的解集为x<-1或x>12,则f(10x)>0的解集为() A .{x|x<-1或x>-lg 2} B .{x|-1<x<-lg 2} C .{x|x>-lg 2} D .{x|x<-lg 2} 【答案】D【解析】根据已知可得不等式f(x)>0的解是-1<x<12,故-1<10x<12,解得x<-lg 2. 5.(·广东卷)不等式x2+x -2<0的解集为________. 【答案】{x|-2<x<1}【解析】x2+x -2=(x +2)(x -1)<0,解得-2<x<1.故不等式的解集是{x|-2<x<1}.6.(·四川卷)已知f(x)是定义域为R 的偶函数,当x≥0时,f(x)=x2-4x ,那么,不等式f(x +2)<5的解集是________.【答案】(-7,3)7.(高考全国新课标卷Ⅰ)已知函数f(x)=⎩⎪⎨⎪⎧-x2+2x ,x≤0,ln x +1,x>0.若|f(x)|≥ax ,则a 的取值范围是()A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]解析:当x≤0时,f(x)=-x2+2x =-(x -1)2+1≤0,所以|f(x)|≥ax 化简为x2-2x≥ax ,即x2≥(a +2)x ,因为x≤0,所以a +2≥x 恒成立,所以a≥-2;当x>0时,f(x)=ln(x +1)>0,所以|f(x)|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a≤0,综上,当-2≤a≤0时,不等式|f(x)|≥ax 恒成立,选择D.【答案】D 【高考押题】1.函数f(x)=1-xx +2的定义域为( ) A .[-2,1]B .(-2,1]C .[-2,1)D .(-∞,-2]∪[1,+∞) 答案 B 解析1-x x +2≥0⇔x -1x +2≤0 ⇔⎩⎪⎨⎪⎧x -1x +2≤0,x +2≠0⇔⎩⎪⎨⎪⎧-2≤x≤1,x≠-2⇔-2<x≤1. 2.设函数f(x)=⎩⎪⎨⎪⎧x2-4x +6,x≥0,x +6,x<0,则不等式f(x)>f(1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3) 答案 A解析 由题意得⎩⎪⎨⎪⎧ x≥0,x2-4x +6>3或⎩⎪⎨⎪⎧x<0,x +6>3,解得-3<x<1或x>3.3.设a>0,不等式-c<ax +b<c 的解集是{x|-2<x<1},则a ∶b ∶c 等于( ) A .1∶2∶3B .2∶1∶3 C .3∶1∶2D .3∶2∶1 答案 B解析 ∵-c<ax +b<c ,又a>0, ∴-b +c a <x<c -ba .∵不等式的解集为{x|-2<x<1}, ∴⎩⎪⎨⎪⎧ -b +c a =-2,c -b a =1,∴⎩⎨⎧b =a2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a2=2∶1∶3.4.若不等式mx2+2mx -4<2x2+4x 对任意x 都成立,则实数m 的取值范围是( )A .(-2,2]B .(-2,2)C .(-∞,-2)∪[2,+∞)D .(-∞,2] 答案 A5.若集合A ={x|ax2-ax +1<0}=∅,则实数a 的值的集合是( ) A .{a|0<a<4}B .{a|0≤a<4} C .{a|0<a≤4}D .{a|0≤a≤4} 答案 D解析 由题意知a =0时,满足条件.a≠0时,由⎩⎪⎨⎪⎧a>0,Δ=a2-4a≤0得0<a≤4,所以0≤a≤4.6.已知一元二次不等式f(x)<0的解集为⎩⎨⎧⎭⎬⎫x|x<-1或x>12,则f(10x)>0的解集为________.答案 {x|x<-lg2}解析 由已知条件0<10x<12,解得x<lg 12=-lg2.7.若0<a<1,则不等式(a -x)(x -1a )>0的解集是________________. 答案 {x|a<x<1a }解析 原不等式即(x -a)(x -1a )<0, 由0<a<1得a<1a ,∴a<x<1a .8.已知f(x)是定义在R 上的奇函数.当x>0时,f(x)=x2-4x ,则不等式f(x)>x 的解集用区间表示为________________.答案 (-5,0)∪(5,+∞)解析 由已知得f(0)=0,当x<0时,f(x)=-f(-x)=-x2-4x ,因此f(x)=⎩⎪⎨⎪⎧x2-4x ,x≥0,-x2-4x ,x<0.不等式f(x)>x 等价于⎩⎪⎨⎪⎧ x≥0,x2-4x>x ,或⎩⎪⎨⎪⎧x<0,-x2-4x>x.解得:x>5,或-5<x<0.9.已知f(x)=-3x2+a(6-a)x +6. (1)解关于a 的不等式f(1)>0;(2)若不等式f(x)>b 的解集为(-1,3),求实数a 、b 的值.10.某农贸公司按每担200元收购某农产品,并每100元纳税10元(又称征锐率为10个百分点),计划可收购a 万担,政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x(x≠0)个百分点,预测收购量可增加2x 个百分点.(1)写出降税后税收y(万元)与x 的函数关系式;(2)要使此项税收在税率调节后不少于原计划税收的83.2%,试确定x 的取值范围. 解 (1)降低税率后的税率为(10-x)%, 农产品的收购量为a(1+2x%)万担, 收购总金额为200a(1+2x%)万元. 依题意得y =200a(1+2x%)(10-x)% =150a(100+2x)(10-x)(0<x<10). (2)原计划税收为200a·10%=20a(万元). 依题意得150a(100+2x)(10-x)≥20a×83.2%, 化简得x2+40x -84≤0,解得-42≤x≤2.又∵0<x<10,∴0<x≤2.即x的取值范围为(0,2].高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。

A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。

所以A∩B={x|x=6k,k∈Z},故选B。

2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。

根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。

故选A。

3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。

又因为S6-S3=24,得到a4+a5+a6=24。

由等差数列的性质,a3+a6=a4+a5。

将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。

解方程组a1+a3=12和a4+a5=16,得到a4=8。

故选B。

二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。

再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。

5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。

【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。

三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。

2024年高考数学几何历年真题模拟试题及答案

2024年高考数学几何历年真题模拟试题及答案

2024年高考数学几何历年真题模拟试题及答案01. 题目:已知矩形ABCD中,AB = 8,BC = 10,点E为BC的中点,则线段AE的长度为多少?解析与答案:由题可知,矩形ABCD中,AB = 8,BC = 10,点E为BC的中点,我们需要求解线段AE的长度。

由于E是BC的中点,根据中点定理,可以得到线段AE的长度等于线段BE的长度。

根据勾股定理可知,BE² = AB² + AE²由于AB = 8,BE = 5(BC的一半),所以可以得到5² = 8² + AE²25 = 64 + AE²AE² = 25 - 64AE² = -39根据题目要求,线段AE的长度,即AE的值应为正数,因此可知此题无解。

02. 题目:已知直角三角形ABC,其中∠B = 90°,AB = 3,BC = 4,求∠C的正弦值。

解析与答案:由题可知,直角三角形ABC中,∠B = 90°,AB = 3,BC = 4,我们需要求解∠C的正弦值。

正弦函数表示为sinθ,其中θ为角度。

我们已知直角三角形中对于∠C来说,sinC = 对边/斜边。

根据题目所给的边长,可以知道∠C的对边为AB,斜边为BC。

因此,sinC = AB/BC。

代入已知值,即sinC = 3/4。

所以,∠C的正弦值为3/4。

03. 题目:已知平行四边形PQRS中,对角线PR的长度为12,且∠PSQ = 45°,求平行四边形的面积。

解析与答案:由题可知,平行四边形PQRS中,对角线PR的长度为12,且∠PSQ = 45°,我们需要求解平行四边形的面积。

平行四边形的面积可以通过底边长乘以高得到。

由于平行四边形PQRS中,对角线PR将其分成两个全等的直角三角形,我们可以先计算出其中的一个直角三角形的面积,然后再乘以2。

根据题目所给的信息,我们可以求出直角三角形SPR和SQR的底边长和高。

高三数学模拟试题及答案

高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。

A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。

A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。

A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。

A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。

A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。

A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。

A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。

A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。

A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。

)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。

2024年高考数学模拟试题含答案(一)

2024年高考数学模拟试题含答案(一)

2024年高考数学模拟试题含答案(一)一、选择题(每题5分,共40分)1. 若函数f(x) = 2x - 1在区间(0,2)上是增函数,则实数a的取值范围是()A. a > 0B. a ≥ 1C. a ≤ 1D. a < 0【答案】C【解析】由题意知,f'(x) = 2 > 0,所以函数在区间(0,2)上是增函数。

又因为f(0) = -1,f(2) = 3,所以f(x)在区间(0,2)上的取值范围是(-1,3)。

要使得f(x)在区间(0,2)上是增函数,只需保证a ≤ 1。

2. 已知函数g(x) = x² - 2x + 1,则下列结论正确的是()A. 函数g(x)在区间(-∞,1)上是增函数B. 函数g(x)在区间(1,+∞)上是减函数C. 函数g(x)的对称轴为x = 1D. 函数g(x)的顶点坐标为(1,0)【答案】D【解析】函数g(x) = x² - 2x + 1 = (x - 1)²,所以函数的顶点坐标为(1,0),对称轴为x = 1。

根据二次函数的性质,当x > 1时,函数g(x)递增;当x < 1时,函数g(x)递减。

3. 已知数列{an}的前n项和为Sn,且满足Sn =2an - 1,则数列{an}的通项公式是()A. an = 2^n - 1B. an = 2^nC. an = 2^n + 1D. an = 2^(n-1)【答案】D【解析】由Sn = 2an - 1,得an = (Sn + 1) / 2。

当n = 1时,a1 = (S1 + 1) / 2 = 1。

当n ≥ 2时,an = (Sn + 1) / 2 = (2an - 1 + 1) / 2 = 2an-1。

所以数列{an}是首项为1,公比为2的等比数列,通项公式为an = 2^(n-1)。

4. 已知函数h(x) = |x - 2| - |x + 1|,则函数h(x)的图像是()A. 两条直线B. 两条射线C. 一个三角形D. 一个抛物线【答案】B【解析】函数h(x) = |x - 2| - |x + 1|表示数轴上点x到点2的距离减去点x到点-1的距离。

高考数学模拟试题与解析(数列)-普通用卷

高考数学模拟试题与解析(数列)-普通用卷

数学强化训练(数列)1. 等比数列{a n }中,a 4,a 8是关于x 的方程x 2+10x +4=0的两个实根,则a 2a 6a 10=( )A. 8B. −8C. 4D. 8或−82. 已知等差数列{a n }{b n }的前n 项和分别为S n ,T n (n ∈N ∗)若S nT n=2n−1n+1则实数a 12b 6( ) A. 154B. 158C. 237D. 33. 定义数列{a n }的“项的倒数的n 倍和数”为T n =1a 1+2a 2+⋯+na n(n ∈N ∗),已知T n =n 22(n ∈N *),则数列{a n }是 ( )A. 单调递减的B. 单调递增的C. 先增后减的D. 先减后增的4. 已知数列{a n }中,a 1=2,a n =-1an−1(n ≥2),则a 2010等于 ( )A. −12B. 12C. 2D. −25. 数列{a n }满足a n +a n +1=(-1)n •n ,则数列{a n }的前20项的和为 ( )A. −100B. 100C. −110D. 110 6. 等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A. 1+log 35B. 2+log 35C. 12D. 10 7. 设数列{a n }的前n 项和为S n ,若S n =2a n -2n +1(n ∈N +),则数列{a n }的通项公式为______. 8. 在数列{a n }中,若a 1=1,a n+1=2a n +3(n ∈N ∗),则数列的通项公式是______ . 9. 已知数列{a n }满足a n +2-2a n +1+a n =0,且a 4=π2,若函数f (x )=sin2x +2cos 2x2,记y n =f(a n ),则数列{y n }的前7项和为______.10. 已知数列{a n }的通项公式为a n =n +λn ,若{a n }为递增数列,则实数λ的取值 范围是________.11. 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1的值为______.12. 已知数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公差为1的等差数列,则数列{a n }的通项公式a n =______.13. 已知数列{a n }的前n 项和为S n ,且S n =a n +n 2−1(n ∈N ∗). (Ⅰ)求数列{a n }的通项公式(Ⅱ)定义x =[x ]+<x >,其中[x ]为实数x 的整数部分,<x >为x 的小数部分, 且0≤<x ><1,记c n =<a n a n+1S n>,求数列{c n }的前n 项和T n .14.设数列{a n}满足:a1=1,a n+1=2a n+1.(1)证明:数列{a n}为等比数列,并求出数列{a n}的通项公式;(2)求数列{n•(a n+1)}的前n项和T n.15.已知n为正整数,数列{a n}满足a n>0,4(n+1)a n2-na n+12=0设数列{b n}满足b n=a n2t n}为等比数列;(2)若数列{b n}是等差数列,求实数t的值:(1)求证:数列{n√n(3)若数列{b n}是等差数列,前n项和为S n,对任意的n∈N*,均存在m∈N*,使得8a12S n-a14n2=16b m成立,求满足条件的所有整数a1的值.答案和解析1.【答案】B解:根据题意,等比数列{a n}中,有a4a8=a2a10=(a6)2,a4,a8是关于x的方程x2+10x+4=0的两个实根,则a4a8=4,a4+a8=-10,则a4<0,a8<0,则有a6=a4q2<0,即a6=-2,a2a6a10=(a6)3=-8;2.【答案】A解:由题意可设,,,(k≠0).则a12=S12-S11=288k-12k-242k+11k=45k.b6=T6-T5=36k+6k-25k-5k=12k.∴实数=.3.【答案】A解:当n=1时,,解得a1=2.当n≥2时,,所以,综上有,所以a1>a2>a3>…,即数列{a n}是单调递减的.(或用).4.【答案】A解:数列{a n}中,a1=2,a n=-(n≥2),则a2=-=-,a3=-=2,a4=-=-,a5=-=2,…,则数列{a n}为最小正周期为4的数列,则a2010=a4×502+2=a2=-,5.【答案】A解:∵数列{a n}满足,∴a2k-1+a2k=-(2k-1).则数列{a n}的前20项的和=-(1+3+……+19)=-=-100.6.【答案】D解:∵等比数列{a n}的各项均为正数,且a5a6+a4a7=18,∴a5a6=a4a7=9,∴log3a1+log3a2+…+log3a10=log3(a1×a2×…×a10)=log3(a5a6)5==10.7.【答案】a n=(n+1)•2n解:∵S n=2a n-2n+1(n∈N+),∴n=1时,a1=2a1-4,解得a1=4;n≥2时,a n=S n-S n-1=2a n-2n+1-,化为:a n-2a n=2n,∴=1,∴数列是等差数列,公差为1,首项为2.∴=2+(n-1)=n+1,∴a n=(n+1)•2n.8.【答案】a n=2n+1-3解:∵a n+1=2a n+3,两边同时加上3,得a n+1+3=2a n+6=2(a n+3)∴=2数列{a n+3}是一个等比数列,首项a1+3=4,公比为2故数列{a n+3}的通项公式是a n+3=4•2n-1=2n+1,∴a n=2n+1-3,9.【答案】7解:根据题意数列{a n}满足a n+2-2a n+1+a n=0则数列{a n}是等差数列,又由a4=,则a1+a7=a2+a6=a3+a5=2a4=π,函数f(x)=sin2x+2cos2=sin2x+cosx+1,f(a1)+f(a7)=sin2a1+cosa1+1+sin2a7+cosa7+1=sin2a1+cosa1+1+sin2(π-a1)+cos(π-a1)+1=2,同理可得:f(a2)+f(a6)=f(a3)+f(a5)=2,f(a4)=sinπ+cos+1=1,则数列{y n}的前7项和f(a1)+f(a2)+f(a3)+f(a4)+f(a5)+f(a6)+f(a7)=7;10.【答案】(-∞,2)解:∵数列{a n}的通项公式为a n=n+(n=1,2,3,…),数列{a n}是递增数列,∴a n+1-a n=(n+1)-n+=>0恒成立所以=∴当n=1时,有最小值2,即实数λ的取值范围是(-∞,2).11.【答案】-1解:由题意可得,a n=a1+(n-1)(-1)=a1+1-n,S n==2,再根据若S1,S2,S4成等比数列,可得=S1•S4,即=a1•(4a1-6),解得a1=-12.【答案】1n(n+1)解:因为a1,a2-a1,a3-a2,…,a n-a n-1,…是首项为1、2公差为1的等差数列,所以当n≥2时a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=n+,又因为a1=1满足上式,所以,13.解:(Ⅰ)∵S n=a n+n2−1(n∈N∗),当n ≥2时,a n =S n −S n−1=a n +n 2−1−[a n−1+(n −1)2−1], 整理得:a n -1=2n -1,∴a n =2n +1; (Ⅱ)由(Ⅰ)知,S n =n 2+2n , ∴a n a n+1S n=(2n+1)(2n+3)n 2+2n =4n 2+8n+3n 2+2n=4+3n 2+2n .∴当n =1时,c 1=<4+1>=0,当n ≥2时,有0<3n 2+2n <1.∴c n =3n 2+2n =32(1n −1n+2)(n ≥2). ∴T n =c 1+c 2+…+c n=0+32(12−14+13−15+14−16+⋯+1n−1−1n+1+1n −1n+2) =32(12+13−1n+1−1n+2)=5n 2+3n−84n 2+12n+8.验证n =1成立,∴T n =5n 2+3n−84n 2+12n+8. 14.(1)证明:a 1=1,a n +1=2a n +1.可得:a n +1+1=2(a n +1).∴数列{a n +1}是等比数列,公比为2,首项为2.∴a n +1=2n ,可得a n =2n -1.(2)解:n •(a n +1)=n •2n .数列{n •(a n +1)}的前n 项和T n =2+2×22+3×23+…+n •2n , ∴2T n =22+2×23+…+(n -1)•2n +n •2n +1, ∴-T n =2+22+…+2n -n •2n +1=2(2n −1)2−1-n •2n +1=(1-n )•2n +1-2,故T n =(n -1)•2n +1+2.15.(1)证明:数列{a n }满足a n >0,4(n +1)a n 2-na n +12=0,∴2√n +1a n =√n a n +1,即n+1√n+1=2n √n ,∴数列{n√n }是以a 1为首项,以2为公比的等比数列.(2)解:由(1)可得:n √n =a 1×2n−1,∴a n 2=n a 12•4n -1.∵b n =a n 2tn,∴b 1=a 12t,b 2=a 22t2,b 3=a 32t3, ∵数列{b n }是等差数列,∴2×a 22t2=a 12t+a 32t3,∴2×2a 12×4t=a 12+3a 12×42t2, 化为:16t =t 2+48,解得t =12或4.(3)解:数列{b n }是等差数列,由(2)可得:t =12或4. ①t =12时,b n =na 12⋅4n−112n=na 124×3n,S n =n(a 1212+na 124×3n)2,∵对任意的n ∈N *,均存在m ∈N *,使得8a 12S n -a 14n 2=16b m 成立,∴8a 12×n(a 1212+na 124×3n )2-a 14n 2=16×ma 124×3m,∴a 12(n3+n 23n −n 2)=4m 3m ,n =1时,化为:-13a 12=4m3m >0,无解,舍去. ②t =4时,b n =na 12⋅4n−14n=na 124,S n =n(a 124+na 124)2,对任意的n ∈N *,均存在m ∈N *,使得8a 12S n -a 14n 2=16b m 成立,∴8a 12×n(a 124+na 124)2-a 14n 2=16×ma 124,∴n a 12=4m ,∴a 1=2√m n.∵a 1为正整数,∴√m n=12k ,k ∈N *.∴满足条件的所有整数a 1的值为{a 1|a 1=2√mn,n ∈N *,m ∈N *,且√m n=12k ,k ∈N *}.。

2023年高考数学模拟考试卷及答案解析(理科)

2023年高考数学模拟考试卷及答案解析(理科)

2023年高考数学模拟考试卷及答案解析(理科)第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为()A .1B .1-C .15D .15-【答案】D【分析】根据复数的运算法则求出复数43i 55z -+=,则得到答案.【详解】(1i)(2i 1)(2i 1)z z +=-+-(2i)2i 1z -=-,2i 1(2i 1)(2i)43i 43i 2i 5555z --+-+====-+-,故实部与虚部的和为431555-+=-,故选:D.2.已知()f x =A ,集合{12}B x ax =∈<<R ∣,若B A ⊆,则实数a 的取值范围是()A .[2,1]-B .[1,1]-C .(,2][1,)-∞-+∞ D .(,1][1,)∞∞--⋃+【答案】B【分析】先根据二次不等式求出集合A ,再分类讨论集合B ,根据集合间包含关系即可求解.【详解】()f x =A ,所以210x -≥,所以1x ≥或1x ≤-,①当0a =时,{102}B x x =∈<<=∅R∣,满足B A ⊆,所以0a =符合题意;②当0a >时,12{}B x x a a=∈<<R∣,所以若B A ⊆,则有11a≥或21a≤-,所以01a <≤或2a ≤-(舍)③当0<a 时,21{}B x x aa=∈<<R ∣,所以若B A ⊆,则有11a≤-或21a≥(舍),10a -≤<,综上所述,[1,1]a ∈-,故选:B.3.在研究急刹车的停车距离问题时,通常假定停车距离等于反应距离(1d ,单位:m )与制动距离(2d ,单位:m )之和.如图为某实验所测得的数据,其中“KPH”表示刹车时汽车的初速度v (单位:km/h ).根据实验数据可以推测,下面四组函数中最适合描述1d ,2d 与v 的函数关系的是()A .1d v α=,2d =B .1d v α=,22d v β=C .1d =,2d v β=D .1d =,22d vβ=【答案】B【分析】设()()1d v f v =,()()2d v g v =,根据图象得到函数图象上的点,作出散点图,即可得到答案.【详解】设()()1d v f v =,()()2d v g v =.由图象知,()()1d v f v =过点()40,8.5,()50,10.3,()60,12.5,()70,14.6,()80,16.7,()90,18.7,()100,20.8,()110,22.9,()120,25,()130,27.1,()140,29.2,()150,31.3,()160,33.3,()170,35.4,()180,37.5.作出散点图,如图1.由图1可得,1d 与v 呈现线性关系,可选择用1d v α=.()()2d v g v =过点()40,8.5,()50,16.2,()60,23.2,()70,31.4,()80,36,()90,52,()100,64.6,()110,78.1,()120,93,()()140,123,()150,144.1,()160,164.3,()170,183.6,()180,208.作出散点图,如图2.由图2可得,2d 与v 呈现非线性关系,比较之下,可选择用22d v β=.故选:B.4.已知函数()ln ,0,e ,0,x xx f x x x x ⎧>⎪=⎨⎪≤⎩则函数()1y f x =-的图象大致是()A .B.C .D .【答案】B【分析】分段求出函数()1y f x =-的解析式,利用导数判断其单调性,根据单调性可得答案.【详解】当10x ->,即1x <时,ln(1)(1)1x y f x x-=-=-,221(1)ln(1)1ln(1)1(1)(1)x x x x y x x -⋅-+--+--'==--,令0'>y ,得1e x <-,令0'<y ,得1e 1x -<<,所以函数()1y f x =-在(,1e)-∞-上为增函数,在(1e,1)-上为减函数,由此得A 和C 和D 不正确;当10x -≤,即1x ≥时,1(1)(1)e x y f x x -=-=-,()11(1)e (1)e x x y x x --'''=-+-11e (1)e x x x --=---=1e (2)xx ---,令0'>y ,得2x >,令0'<y ,得12x ≤<,所以函数()1y f x =-在(2,)+∞上为增函数,在[1,2)上为减函数,由此得B 正确;故选:B5.若函数()f x 存在一个极大值()1f x 与一个极小值()2f x 满足()()21f x f x >,则()f x 至少有()个单调区间.A .3B .4C .5D .6【答案】B【分析】根据单调性与极值之间的关系分析判断.【详解】若函数()f x 存在一个极大值()1f x 与一个极小值()2f x ,则()f x 至少有3个单调区间,若()f x 有3个单调区间,不妨设()f x 的定义域为(),a b ,若12a x x b <<<,其中a 可以为-∞,b 可以为+∞,则()f x 在()()12,,,a x x b 上单调递增,在()12,x x 上单调递减,(若()f x 定义域为(),a b 内不连续不影响总体单调性),故()()21f x f x <,不合题意,若21a x x b <<<,则()f x 在()()21,,,a x x b 上单调递减,在()21,x x 上单调递增,有()()21f x f x <,不合题意;若()f x 有4个单调区间,例如()1f x x x =+的定义域为{}|0x x ≠,则()221x f x x-'=,令()0f x ¢>,解得1x >或1x <-,则()f x 在()(),1,1,-∞-+∞上单调递增,在()()1,0,0,1-上单调递减,故函数()f x 存在一个极大值()12f -=-与一个极小值()12f =,且()()11f f -<,满足题意,此时()f x 有4个单调区间,综上所述:()f x 至少有4个单调区间.故选:B.6.已知实数x 、y 满足10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,则918222y x z x y --=+--的最小值为()A .132B .372C .12D .2【答案】A【分析】由约束条件作出可行域,求出22y t x -=-的范围,再由91821922y x z t x y t --=+=+--结合函数的单调性求得答案.【详解】解:令22y t x -=-,则91821922y x z t x y t --=+=+--,由10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩作出可行域如图,则()()()2,12,1,0,1A B C ---,设点()(),2,2P x y D ,,其中P 在可行域内,2=2PD y t k x -∴-=,由图可知当P 在C 点时,直线PD 斜率最小,min 121=022CD t k -==-∴当P 在B 点时,直线PD 斜率不存在,∴1,2t ⎡⎫∈+∞⎪⎢⎣⎭∵19z t t =+在1,2t ⎡⎫∈+∞⎪⎢⎣⎭上为增函数,∴当12t =时min 132z =.故选:A .7.在正方体1111ABCD A B C D -中,点P 在正方形11BCC B 内,且不在棱上,则()A .在正方形11DCC D 内一定存在一点Q ,使得PQ AC ∥B .在正方形11DCCD 内一定存在一点Q ,使得PQ AC⊥C .在正方形11DCC D 内一定存在一点Q ,使得平面1PQC ∥平面ABC D .在正方形11DCC D 内一定存在一点Q ,使得AC ⊥平面1PQC 【答案】B【分析】对于A ,通过作辅助线,利用平行的性质,推出矛盾,可判断A;对于B ,找到特殊点,说明在正方形11DCC D 内一定存在一点Q ,使得PQ AC ⊥,判断B;利用面面平行的性质推出矛盾,判断C;利用线面垂直的性质定理推出矛盾,判断D.【详解】A 、假设在正方形11DCC D 内一定存在一点Q ,使得PQ AC ∥,作,PE BC QF CD ⊥⊥,垂足分别为,E F ,连接,E F ,则PEFQ 为矩形,且EF 与AC 相交,故PQ EF ∥,由于PQ AC ∥,则AC EF ∥,这与,AC EF 相交矛盾,故A 错误;B 、假设P 为正方形11BCC B 的中心,Q 为正方形11DCC D 的中心,作,PH BC QG CD ⊥⊥,垂足分别为,H G ,连接,H G ,则PHGQ 为矩形,则PQ HG ∥,且,H G 为,BC CD 的中点,连接,GH BD ,则GH BD ∥,因为AC BD ⊥,所以GH AC ⊥,即PQ AC ⊥,故B 正确;C 、在正方形11DCC D 内一定存在一点Q ,使得平面1PQC ∥平面ABC ,由于平面ABC ⋂平面11DCC D CD =,平面1PQC 平面111DCC D C Q =,故1CD C Q ∥,而11C D CD ∥,则Q 在11C D 上,这与题意矛盾,C 错误;D 、假设在正方形11DCC D 内一定存在一点Q ,使得AC ⊥平面1PQC ,1C Q ⊂平面1PQC ,则1AC C Q ⊥,又1CC ⊥平面,ABCD AC Ì平面ABCD ,故1C C AC ⊥,而11111,C C C Q C C C C Q =⊂ ,平面11DCC D ,故AC ⊥平面11DCC D ,由于AD ⊥平面11DCC D ,故,C D 重合,与题意不符,故D 错误,故选∶B8.对于平面上点P 和曲线C ,任取C 上一点Q ,若线段PQ 的长度存在最小值,则称该值为点P 到曲线C 的距离,记作(,)d P C .若曲线C 是边长为6的等边三角形,则点集{(,)1}D Pd P C =≤∣所表示的图形的面积为()A .36B .36-C .362π-D .36π-【答案】D【分析】根据题意画出到曲线C 的距离为1的边界,即可得到点集的区域,即可求解.【详解】根据题意作出点集(){}|1D P d P C =≤,的区域如图阴影所示,其中四边形ADEC ,ABKM ,BCFG 为矩形且边长分别为1,6,圆都是以1为半径的,过点I 作IN AC ⊥于N ,连接A I ,则1NI =,30NAI ∠= ,所以AN =则HIJ 是以6-为边长的等边三角形,矩形ABKM 的面积1166S =⨯=,2π3DAM ∠=,扇形ADM 的面积为212ππ1233S =⨯⨯=,21sin 602ABC S AB =⨯⋅ 21622=⨯⨯,21sin 602HIJ S HI =⨯⋅ (21622=⨯-18=-,所以()1233ABC HIJ S S S S S =++- ()π363183=⨯+⨯+--36π=-.故选:D.9.一个宿舍的6名同学被邀请参加一个节目,要求必须有人去,但去几个人自行决定.其中甲和乙两名同学要么都去,要么都不去,则该宿舍同学的去法共有()A .15种B .28种C .31种D .63种【答案】C【分析】满足条件的去法可分为两类,第一类甲乙都去,第二类甲乙都不去,再进一步通过分类加法原理求出各类的方法数,将两类方法数相加即可.【详解】若甲和乙两名同学都去,则去的人数可能是2人,3人,4人,5人,6人,所以满足条件的去法数为0123444444C +C C +C C 16++=种;若甲和乙两名同学都不去,则去的人数可能是1人,2人,3人,4人,则满足条件去法有12344444C C +C C 15++=种;故该宿舍同学的去法共有16+15=31种.故选:C.10.已知椭圆C 的焦点为12(0,1),(0,1)F F -,过2F 的直线与C 交于P ,Q 两点,若22143,||5PF F Q PQ QF ==,则椭圆C 的标准方程为()A .2255123x y +=B .2212y x +=C .22123x y +=D .22145x y +=【答案】B【分析】由已知可设22,3F Q m PF m ==可求出所有线段用m 表示,在12PF F △中由余弦定理得1290F PF ︒∠=从而可求.【详解】如图,由已知可设22,3F Q m PF m ==,又因为114||55PQ QF QF m =∴=根据椭圆的定义212,62,3QF QF a m a a m +=∴=∴=,12223PF a PF a a a m=-=-==在12PF F △中由余弦定理得222222111116925cos 02243PQ PF QF m m m F PQ PQ PF m m+-+-∠===⋅⋅⋅⋅,所以190F PQ ︒∠=22222211229943213PF PF F F m m m a m b ∴+=⇒+=∴===⇒=故椭圆方程为:2212y x +=故选:B11.已知函数()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,对于任意的)3,1a ⎡∈-⎣,方程()()0f x a x m =<≤恰有一个实数根,则m 的取值范围为()A .7π3π,124⎛⎤⎥⎝⎦B .π5π,26⎡⎫⎪⎢⎣⎭C .π5π,26⎛⎤⎥⎝⎦D .7π3π,124⎡⎫⎪⎢⎣⎭【答案】D【分析】将方程的根的问题转化为函数()y f x =的图象与直线y a =有且仅有1个交点,画出图象,数形结合得到不等式组,求出m 的取值范围.【详解】方程()()0f x a x m =<≤恰有一个实数根,等价于函数()y f x =的图象与直线y a =有且仅有1个交点.当0x m <≤得:πππ22666x m ⎛⎤+∈+ ⎥⎝⎦,结合函数()y f x =的图象可知,π4π5π2633m ⎡⎫+∈⎪⎢⎣⎭,解得:7π3π,124m ⎡⎫∈⎪⎢⎣⎭.故选:D12.已知0.40.7e ,eln1.4,0.98a b c ===,则,,a b c 的大小关系是()A .a c b >>B .b a c >>C .b c a >>D .c a b>>【答案】A【分析】构造函数()1=ln ef x x x -,0x >,利用导函数得到其单调性,从而得到ln 1ex x ≤,当且仅当e x =时等号成立,变形后得到22ln2ex x ≤,当x =0.7x =后得到b c <;再构造()1=e x g x x --,利用导函数得到其单调性,得到1e x x -≥,当且仅当1x =时,等号成立,变形后得到21e 2x x ->,当0.5x =时,等号成立,令0.7x =得到a c >,从而得到a cb >>.【详解】构造()1=ln ef x x x -,0x >,则()11=ef x x '-,当0e x <<时,()0f x ¢>,当e x >时,()0f x '<,所以()1=ln ef x x x -在0e x <<上单调递增,在e x >上单调递减,所以()()e =lne 10f x f ≤-=,故ln 1ex x ≤,当且仅当e x =时等号成立,因为20x >,所以222222(2)2ln 2ln ln ln2e e 2e 2e ex x x x x x x x x ≤⇒≤⇒≤⇒≤=,当x =当0.7x =时,220.98ln1.4(0.7)eln1.40.98ee<⨯=⇒<,所以b c <构造()1=e x g x x --,则()1e 1=x g x -'-,当1x >时,()0g x '>,当1x <时,()0g x '<,所以()1=ex g x x --在1x >单调递增,在1x <上单调递减,故()()10g x g ≥=,所以1e x x -≥,当且仅当1x =时,等号成立,故121e e 2x x x x --≥⇒≥,当且仅当0.5x =时,等号成立,令0.7x =,则0.40.4e 1.40.7e 0.98>⇒>,所以a c >,综上:a c b >>,故选:A【点睛】构造函数比较函数值的大小,关键在于观察所给的式子特点,选择合适的函数进行求解.第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.13.设i ,j 是x ,y 轴正方向上的单位向量,23a b i j -=- ,3119a b i j +=+,则向量a,b的夹角为______.【答案】π4【分析】分别求出a ,b 的表达式,利用定义求出a ,b 的夹角即可.【详解】23a b i j -=-①,3119a b i j +=+②,3⨯+①②得714,2a i a i =∴=,2-⨯+②①得72121,33b i j b i j -=--∴=+ ,()22·33666a b i i j i i j ⋅=+=+⋅=2,a b ==cos ,2a b a b a b ⋅∴==⋅π,4a b ∴=14.已知双曲线2222:1(0,0)x y C a b a b -=>>的焦距为2c ,过C 的右焦点F 的直线l 与C 的两条渐近线分别交于,A B 两点,O 为坐标原点,若cos b c AFO =∠且3FB FA =,则C 的渐近线方程为__________.【答案】y =【分析】根据题设条件确定AB OA ⊥,进而可确定OA a FA b ==,,从而在直角△AOB 中,()2tan tan π2bAOB aα∠=-=,结合正切的二倍角公式求解.【详解】因为3FB FA =,画出示意图如图,设AOF α∠=,因为cos b c AFO =∠,则cos b AFO c∠=,所以222sin a AFO c∠=,则sin a AFO c ∠=,所以tan aAFO b ∠=.又tan b a α=,所以π2AFO α∠+=,所以AB OA ⊥,根据sin ,cos OA FA a bAFO AFO c c c c ∠==∠==,所以OA a FA b ==,.又因为3FB FA,所以2AB b =.在直角△AOB 中,()2tan tan π2bAOB aα∠=-=,所以222222tan tan21tan 1bb a b a aααα=-==--,化简得:222b a =,所以b a =则渐近线方程为:y =,故答案为:y =.15.已知数列{}n a 满足首项11a =,123n n na n a a n ++⎧=⎨⎩,为奇数,为偶数,则数列{}n a 的前2n 项的和为_____________.【答案】4344n n ⨯--【分析】当n 为奇数时,由递推关系得()21332n n n a a a ++==+,构造{}3n a +为等比数列,可求出通项,结合12n n a a +=+即可分组求和.【详解】当n 为奇数时,()21332n n n a a a ++==+,即()2333n n a a ++=+,此时{}3n a +为以134a +=为首项,公比为3的等比数列,故()123212413333343333n nn n n n a a a a a a a a ----++++=创创+=+++,即12433n n a -=´-.()()()2123421211332121222n n n n n S a a a a a a a a a a a a ---=++++++=+++++++++ ()()01113212224334334332n n a a a n n--=++++=´-+´-++´-+ ()03132432434413nnn n n 骣-琪=´-+=´--琪琪-桫.故答案为:4344n n ⨯--【点睛】本题解题关键是根据题意找到相邻奇数项或偶数项之间的递推关系,从而求出当n 为奇数或n 为偶数时的通项公式,再通过相邻两项的关系求出前2n 项的和.16.在三角形ABC 中,2BC =,2AB AC =,D 为BC 的中点,则tan ADC ∠的最大值为___________.【答案】43##113【分析】设出AC x =,则2AB x =,由πADB ADC ∠+∠=得到cos cos 0ADB ADC ∠+∠=,结合余弦定理得到22512AD x =-,从而得到cos ADC ∠关系得到223x <<,换元后得到cos ADC ∠,由基本不等式求出最小值,结合()cos f x x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,()tan g x x =在π0,2⎛⎫ ⎪⎝⎭单调递增,可求出tan ADC ∠的最大值.【详解】设AC x =,则2AB x =,因为D 为BC 的中点,2BC =,所以1BD DC ==,由三角形三边关系可知:22x x +>且22x x -<,解得:223x <<,在三角形ABD 中,由余弦定理得:()2212cos 2AD x ADB AD+-∠=,在三角形ACD 中,由余弦定理得:221cos 2AD x ADC AD+-∠=,因为πADB ADC ∠+∠=,所以()2222121cos cos 022AD x AD x ADB ADC ADAD+-+-∠+∠=+=,解得:22512AD x =-,由余弦定理得:225112cos x x ADC -+-∠=223x <<,令2511,929x t ⎛⎫-=∈ ⎪⎝⎭,则3cos 5ADC ∠=,当且仅当1t t=,即1t =时,等号成立,此时25112x -=,解得:x =因为3cos 05ADC ∠≥>,故π0,2ADC ⎛⎫∠∈ ⎪⎝⎭,由于()cos f x x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,()tan g x x =在π0,2⎛⎫ ⎪⎝⎭单调递增,故当cos ADC ∠取得最小值时,tan ADC ∠取得最大值,此时4sin 5ADC ∠=,4tan 3ADC ∠=.故答案为:43.【点睛】三角形中常用结论,()sin sin A B C +=,()cos cos A B C +=-,()tan tan A B C +=-,本题中突破口为由πADB ADC ∠+∠=得到cos cos 0ADB ADC ∠+∠=,结合余弦定理得到22512AD x =-,进而利用基本不等式求最值.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)数列{}n a 满足35a =,点()1,n n P a a +在直线20x y -+=上,设数列{}n b 的前n 项和为n S ,且满足233n n S b =-,*n ∈N .(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在*k ∈N ,使得对任意的*n ∈N ,都有n kn ka ab b ≤.【答案】(1)21n a n =-;3nn b =(2)存在1k =,2,使得对任意的*n ∈N ,都有n k n ka ab b ≤【分析】(1)根据等差数列的定义可得{}n a 为等差数列,由,n n S b 的关系可得{}n b 为等比数列,进而可求其通项,(2)根据数列的单调性求解最值即可求解.【详解】(1)点()1,n n P a a +在直线20x y -+=上,所以12n n a a +-=又35a =,∴11a =,则数列{}n a 是首项为1,公差为2的等差数列.∴21n a n =-又当1n =时,11233S b =-得13b =,当2n ≥,由233n n S b =-①,得11233n n S b --=-②由①-②整理得:13n n b b -=,∵130b =≠,∴10n b -≠∴13nn b b -=,∴数列{}n b 是首项为3,公比为3的等比数列,故3nn b =(2)设213nn n na n cb -==,由111121212163443333+++++-+-+--=-==n n n n n n n n n n nc c当1n =时,12c c =,当2n ≥时,1n n c c +<,所以当1n =或2时,n c 取得最大值,即nna b 取得最大所以存在1k =,2,使得对任意的*n ∈N ,都有n kn ka ab b≤18.(12分)如图,将等边ABC 绕BC 边旋转90︒到等边DBC △的位置,连接AD.(1)求证:AD BC ⊥;(2)若M 是棱DA 上一点,且两三角形的面积满足2BMD BMA S S = ,求直线BM 与平面ACD 所成角的正弦值.【答案】(1)证明见解析(2)10【分析】(1)取BC 中点为O ,证明BC ⊥平面AOD 即可;(2)建立空间直角坐标系,利用向量法求得直线BM 与平面ACD 所成角的正弦值.【详解】(1)设O 是BC 的中点,连接AO ,DO ,由题知:AB AC =,DB DC =,则BC AO ⊥,BC DO ⊥,又AO DO O ⋂=,,AO DO ⊂平面AOD ,所以BC ⊥平面AOD ,又AD ⊂平面AOD ,所以AD BC ⊥.(2)由题知,OA 、BC 、OD 两两垂直,以O 为原点,,,OA OB OD方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,如图所示,因为2BMD BMA S S = ,所以13AM AD =,设2AB a =,则OA OD ==,则),0,0A,()0,,0B a ,()0,,0C a -,()D,33M ⎛⎫⎪ ⎪⎝⎭.所以),,0CA a =,),0,DA =,,BM a ⎫=-⎪⎪⎝⎭,设平面ACD 的法向量为(),,n x y z =r,则00n CA ay n DA ⎧⋅=+=⎪⎨⋅=-=⎪⎩ ,取1x =,可得()1,n = ,设直线BM 与平面ACD 所成的角为θ,则sin cos ,BM n θ=BM n BM n⋅==⋅所以直线BM 与平面ACD.19.(12分)甲、乙两位选手参加一项射击比赛,每位选手各有n 个射击目标,他们击中每一个目标的概率均为12,且相互独立.甲选手依次对所有n 个目标进行射击,且每击中一个目标可获得1颗星;乙选手按规定的顺序依次对目标进行射击,击中一个目标后可继续对下一个目标进行射击直至有目标未被击中时为止,且每击中一个目标可获得2颗星.(1)当5n =时,分别求甲、乙两位选手各击中3个目标的概率;(2)若累计获得星数多的选手获胜,讨论甲、乙两位选手谁更可能获胜.【答案】(1)516,116;(2)当1,2,3n =时,乙更可能获胜;当4n ≥时,甲更可能获胜.【分析】(1)根据独立重复试验可计算甲击中3个目标的概率,由相互独立事件的概率计算公式可得乙击中3个目标的概率;(2)设X 为甲累计获得的星数,Y 为乙累计获得的星数,分别计算期望,分别讨论1,2,3n =及4n ≥的(),()E X E Y ,得出结论.【详解】(1)当5n =时,甲击中3个目标的概率为33215115C ()()2216P =⨯⨯=,乙击中3个目标,则前3个目标被击中,第4个目标未被击中,其概率为32111()2216P =⨯=.(2)设X 为甲累计获得的星数,则0,1,2,,X n = ,设Y 为乙累计获得的星数,则0,2,4,,2Y n = ,设击中了m 个目标,其中0m n ≤≤,则甲获得星数为m 的概率为C 11()C ()()222m m m n m nnn P X m -===,所以甲累计获得星数为0120C 1C 2C C ()2nn n n nnn E X ⋅+⋅+⋅++⋅= ;记01010C 1C C C (1)C 0C n n n n n n n n n S n n n =⋅+⋅++⋅=⋅+-⋅++⋅ ,所以0112(C C C )2,2n n n n n n n n S n n S n -=+++=⋅=⋅ ,所以12()22n n n nE X -⋅==,乙获得星数为2(01)m m n ≤≤-的概率为1111(2)()222m m P Y m +==⋅=,当m n =时,1(2)2nP Y m ==,所以乙累计获得星数为230242(1)2()22222n n n n E Y -=+++++ ,记230242(1)2222n n n T -=++++ ,则121242(1)20222n n n T --=++++ ,所以12111112(1)122()222222n n n n n n n n T T T ---+=-=+++-=- ,11()22n E Y -=-,当1n =时,1()()12E X E Y =<=,当2n =时,3()1()2E X E Y =<=,当3n =时,37()()24E X E Y =<=,当4n ≥时,()2()E X E Y ≥>所以当1,2,3n =时,乙更可能获胜;当4n ≥时,甲更可能获胜.20.(12分)已知抛物线2y =的焦点与椭圆()2222:10x y a b a bΩ+=>>的右焦点重合,直线1:1x y l a b+=与圆222x y +=相切.(1)求椭圆Ω的方程;(2)设不过原点的直线2l 与椭圆Ω相交于不同的两点A ,B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆Ω相交于点P ,且O 点在以AB 为直径的圆上,记AOM ,BOP △的面积分别为1S ,2S ,求12S S 的取值范围.【答案】(1)22163x y +=(2)⎣⎦【分析】(1)根据条件建立关于,a b 的方程组,即可求解椭圆方程;(2)根据数形结合可知12AOM BOP OMS S S S OP==△△,分直线斜率不存在,或斜率为0,以及斜率不为0,三种情况讨论12S S 的值或范围.【详解】(1)∵抛物线2y =的焦点为),∴c =从而223a b =+①,∵直线1:1x yl a b+=与圆222x y +==②,由①②得:ab ,∴椭圆Ω的方程为:22163x y +=(2)∵M 为线段AB 的中点,∴12AOM BOP OMS S S S OP==△△,(1)当直线2l 的斜率不存在时,2l x ⊥轴,由题意知OA OB ⊥,结合椭圆的对称性,不妨设OA 所在直线的方程为y x =,得22Ax =,从而22Mx =,26P x =,123M P OM x S S OP x ∴===(2)当直线2l 的斜率存在时,设直线()2:0l y kx m m =+≠,()11,A x y ,()22,B x y 由22163y kx mx y =+⎧⎪⎨+=⎪⎩可得:()222214260k x kmx m +++-=,由()()222216421260k m k m ∆=-+->可得:22630k m -+>(*)∴122421km x x k +=-+,21222621m x x k -=+,∵O 点在以AB 为直径的圆上,∴0OA OB ⋅=,即12120x x y y +=,∴()()221212121210x x y y k x x km x x m +=++++=,即()22222264102121m km k km m k k -⎛⎫+⨯+-+= ⎪++⎝⎭,2222,m k ⇒=+(**)满足(*)式.∴线段AB 的中点222,2121kmm M k k ⎛⎫- ⎪++⎝⎭,若0k =时,由(**)可得:22m =,此时123OM S S OP ∴===,若0k ≠时,射线OM 所在的直线方程为12y x k=-,由2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩可得:2221221P k x k =+,12M POM x S S OP x ∴===随着2k 的增大而减小,∵0k ≠,∴20k >,∴1233S S ⎛∈ ⎝⎭综上,1233S S ∈⎣⎦【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21.(12分)已知函数()e xf x ax a=--(1)当1a =时,证明:()0f x ≥.(2)若()f x 有两个零点()1212,x x x x <且22112,e 1x x +⎡⎤∈⎣⎦+,求12x x +的取值范围.【答案】(1)见解析;(2)243ln 22,e 1⎡⎤-⎢⎥-⎣⎦【分析】(1)()e 1x f x x =--,求导得min ()(0)0f x f ==,则()0f x ;(2)由题得11e x ax a =+,22e xax a =+,则21211e1x x x x -+=+,()1212e e 2x x a x x +=++,()2121e e x x a x x -=-,则()()212121121e 2e1x x x x x x x x ---+++=-,从而设21[ln 2,2]t x x =-∈,得到()121e 2e 1t tt x x +++=-,利用导数研究函数()1e ()e 1ttt g t +=-的值域,则得到12x x+的范围.【详解】(1)证明:当1a =时,()e 1x f x x =--,则()e 1x f x '=-.当(,0)x ∈-∞时,()0f x '<,当,()0x ∈+∞时,()0f x '>,所以()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增,则min ()(0)0f x f ==,故()0f x .(2)由题意得1212e e 0x xax a ax a --=--=,则11e x ax a =+,22e xax a =+,从而21211e 1x xx x -+=+,()1212e e 2x x a x x +=++,()2121e e x x a x x -=-,故()()()()12212121212112e e 1e 2e ee1xx x x x x x x x x x x x x ---+-+++==--,因为22112,e 1x x +⎡⎤∈⎣⎦+,所以212e 2,e x x -⎡⎤∈⎣⎦,即[]21ln 2,2x x -∈,设21[ln 2,2]t x x =-∈,则()121e 2e 1t t t x x +++=-.设()1e ()e 1t tt g t +=-,则()22e 2e 1()e1t t tt g t --'=-.设2()e 2e 1t t h t t =--,则()()2e e 1t th t t '=--,由(1)可知()()2e e 10t th t t '=--在R 上恒成立,从而2()e 2e 1t t h t t =--在[ln 2,2]上单调递增,故min ()(ln 2)44ln 210h t h ==-->,即()0g t '>在[]ln 2,2上恒成立,所以()g t 在[ln 2,2]上单调递增,所以()212221e 23ln 2,e 1x x ⎡⎤+⎢⎥++∈-⎢⎥⎣⎦,即12243ln 22e 1,x x ⎡⎤+∈-⎢⎣-⎥⎦,即12x x +的取值范围为243ln 22,e 1⎡⎤-⎢⎥-⎣⎦.【点睛】关键点睛:本题的关键是通过变形用含21x x -的式子表示出122x x ++,即()()212121121e 2e1x x x x x x x x ---+++=-,然后整体换元设21[ln 2,2]t x x =-∈,则得到()121e 2e 1t t t x x +++=-,最后只需求出函数()1e ()e 1tt t g t +=-在[ln 2,2]t ∈上值域即可.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l的参数方程为cos sin x t y t αα⎧=+⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B两点,)M.(1)求曲线C 的直角坐标方程;(2)若2AM MB =,求直线l 的斜率.【答案】(1)2214x y +=(2)2±【分析】(1)根据极坐标与直角坐标直角的转化222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,运算求解;(2)联立直线l 的参数方程和曲线C 的直角坐标方程,根据参数的几何意义结合韦达定理运算求解.【详解】(1)∵()()222222288453cos 2cos 4sin 5cos sin 3cos sin ρθθθθθθθ===-++--,则2222cos 4sin 4ρθρθ+=,∴2244x y +=,即2214x y +=,故曲线C 的直角坐标方程为2214x y +=.(2)将直线l的参数方程为cos sin x t y t αα⎧=+⎪⎨=⎪⎩(t 为参数)代入曲线C 的直角坐标方程为2214x y +=,得)()22cos sin 14t t αα+=,整理得()()222cos 4sin 10t t ααα++-=,设A ,B 两点所对应的参数为12,t t ,则1212221cos 4sin t t t t αα+==-+,∵2AM MB =,则122t t =-,联立1212222cos 4sin t t t t ααα=-⎧⎪⎨+=-⎪+⎩,解得122222cos 4sin cos 4sin t t αααααα⎧=-⎪⎪+⎨⎪=⎪+⎩,将12,t t 代入12221cos 4sin t t αα=-+得2222221cos 4sin cos 4sin cos 4sin αααααααα⎛⎫⎛⎫-=- ⎪⎪ ⎪⎪+++⎝⎭⎝⎭,解得2223tan 4k α==,故直线l的斜率为2±.23.[选修4-5:不等式选讲](10分)设a 、b 、c 为正数,且b c c a a ba b c+++≤≤.证明:(1)a b c ≥≥;(2)()()()2324a b b c c a abc +++≥.【答案】(1)证明见解析(2)证明见解析【分析】(1)由不等式的基本性质可得出111abc≤≤,利用反比例函数在()0,∞+上的单调性可证得结论成立;(2)利用基本不等式可得出a b +≥,2b c +≥3c a +≥等式的基本性质可证得结论成立.【详解】(1)证明:因为a 、b 、c 为正数,由b c c a a ba b c +++≤≤可得a b c a b c a b ca b c++++++≤≤,所以,111a b c≤≤,因为函数1y x =在()0,∞+上为增函数,故a b c ≥≥.(2)证明:由基本不等式可得a b +≥,2b c b b c +=++≥()322c a c a a a +=++≥+≥=由不等式的基本性质可得()()()2171131573362244412232424a b b c c a a b b c a c a b c+++≥=11764122424ab a b c abc ⎛⎫=≥ ⎪⎝⎭,当且仅当a b c ==时,等号成立,故()()()2324a b b c c a abc +++≥.。

2024年上海市高考高三数学模拟试卷试题及答案详解

2024年上海市高考高三数学模拟试卷试题及答案详解

2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。

2023-2024学年上海市高考数学质量检测模拟试题(二模)含答案

2023-2024学年上海市高考数学质量检测模拟试题(二模)含答案

2023-2024学年上海市高考数学模拟试题(二模)一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.若():1,2x α∈,[]:0,2x β∈,则α是β的______条件.【正确答案】充分非必要【分析】判断集合()1,2和[]0,2之间的关系,即可判断出答案.【详解】由于()1,2是[]0,2的真子集,故α是β的充分非必要条件,故充分非必要2.若34(sin (cos )55z i θθ=-+-是纯虚数,则tan θ的值为__________.【正确答案】34-【详解】分析:由纯虚数的概念得305405sin cos θθ⎧-=⎪⎪⎨⎪-≠⎪⎩,结合221sin cos θθ+=可得解.详解:若34sin cos 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是纯虚数,则305405sin cos θθ⎧-=⎪⎪⎨⎪-≠⎪⎩,又由221sin cos θθ+=,可得34sin cos 55θθ==-.所以sin 3tan cos 4θθθ==-.故答案为34-.点睛:本题主要考查了纯虚数的概念及同角三角函数的基本关系,属于基础题.3.已知幂函数f(x)的图象经过点(2,4),则f(x)为______函数.(填奇偶性)【正确答案】偶【分析】根据幂函数的概念设出()f x 的解析式()f x x α=,然后代点求出α,再用函数奇偶性定义判断奇偶性.【详解】因为函数()f x 是幂函数,所以可设()f x x α=,又f(2)=4,即2a=4,解得a=2,∴()2f x x =,∴()()22()f x x x f x -=-==,∴f(x)为偶函数.故答案为偶.本题主要考查了幂函数的基本概念,以及利用定义法判定函数的奇偶性,其中解答中熟记幂函数的基本概念,熟练应用函数奇偶性的定义判定是解答的关键,着重考查了推理与运算能力,属于基础题.4.若双曲线经过点,且渐近线方程是y =±13x ,则双曲线的方程是________.【正确答案】2219x y -=【分析】利用渐近线方程为13y x =±,设双曲线的方程是229x y λ-=,代入点即可求解【详解】根据渐近线方程为13y x =±,设双曲线的方程是229x y λ-=,因为双曲线过点,所以9219λ=-=,所以双曲线的方程为2219x y -=故2219x y -=5.已知命题:“非空集合M 的元素都是集合P 的元素”是假命题,给出下列四个命题:①M 的元素不都是P 的元素;②M 的元素都不是P 的元素;③M 中有P 的元素;④存在x M ∈,使得x P ∉;其中真命题的序号是________(将正确的序号都填上).【正确答案】①④【分析】从命题的否定入手.【详解】命题:“非空集合M 的元素都是集合P 的元素”是假命题,则命题:“非空集合M 的元素不都是集合P 的元素”是真命题,说明集合M 中至少有一个元素不属于集合P ,或者M 中就没有集合P 中的元素,因此②③错误,①④正确.故答案为①④.本题考查真假命题的理解,对一个假命题,可从反面入手,即它的否定为真命题入手,理解起来较方便.6.一个袋中装有5个球,编号为1,2,3,4,5,从中任取3个,用X 表示取出的3个球中最大编号,则()E X =______.【正确答案】4.5【分析】求出X 可能取值和概率,再根据()E X 公式进行计算即可.【详解】从中任取3个球,共有()123,,,()124,,,()125,,,()134,,,()135,,,()145,,,()234,,,()235,,,()245,,,()345,,10中情况,所以X 可能取值为345,,,()1310P X ==,()3410==P X ,()635105===P X ,所以()1339345101052E X =⨯+⨯+⨯=.故答案为.4.57.函数tan()42y x ππ=-的部分图象如图所示,则()OA OB AB +⋅= ____.【正确答案】6【详解】试题分析:由图可知(2,0)A ,(3,1)B ,∴()(5,1)(1,1)6OA OB AB +⋅=⋅=.考点:正切型函数的图象与平面向量的数量积运算.【方法点睛】本题主要考查了正切型函数的图象与平面向量的数量积运算,属于中档题.本题解答的关键观察图象发现,A B 分别是函数tan(42y x ππ=-y 轴右侧的第一个零点和函数值为1的点,即可求得,A B 的坐标,进而求得向量(),OA OB AB +的坐标,根据平面向量数量积的坐标运算即可求得答案.8.如果一个球的外切圆锥的高是这个球半径的3倍,那么圆锥侧面积和球的表面积的比值为______.【正确答案】32【分析】设球的半径为r ,则圆锥的高为3r ,取圆锥的轴截面ABC ,其中A 为圆锥的顶点,设球心为O ,作出图形,分析可知ABC 为等边三角形,求出AB ,利用圆锥的侧面积公式以及球体的表面积公式可求得结果.【详解】设球的半径为r ,则圆锥的高为3r ,取圆锥的轴截面ABC ,其中A 为圆锥的顶点,设球心为O,如下图所示:设圆O 分别切AB 、AC 于点E 、D ,则D 为BC 的中点,由题意可得OD OE r ==,3AD r =,则322AO AD OD r r r OE =-=-==,又因为OE AB ⊥,所以,π6BAD ∠=,同理可得π6CAD ∠=,所以,π3BAC ∠=,又因为AB AC =,故ABC为等边三角形,故πsin 32AD AB ===,所以,圆锥的侧面积为2ππ6πAB BD r ⨯⨯=⨯=,因此,圆锥侧面积和球的表面积的比值为226π34π2r r =.故答案为.329.已知某产品的一类部件由供应商A 和B 提供,占比分别为110和910,供应商A 提供的该部件的良品率为910,供应商B 提供的该部件的良品率为710.若发现某件部件不是良品,那么这个部件来自供应商B 的概率为______(用分数作答)【正确答案】2728【分析】利用全概率公式,条件概率公式求解即可.【详解】设“某件部件不是良品”为事件A ,“这个部件来自供应商B ”为事件B ,()11932810101010100P A =⨯+⨯= ,()93271010100P AB =⨯=,()()()2728P AB P B A P A ∴==.故272810.已知()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭,函数()y f x =,x ∈R 的最小正周期为π,将()y f x =的图像向左平移π02ϕϕ⎛⎫<< ⎪⎝⎭个单位长度,所得图像关于y 轴对称,则ϕ的值是______.【正确答案】π8##1π8【分析】由周期求出ω,即可求出()f x 的解析式,再根据三角函数的变换规则得到平移后的解析式,最后根据对称性得到ϕ的值.【详解】 ()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭,函数()y f x =的最小正周期为2ππT ω==,2ω∴=,π()sin 24f x x ⎛⎫=+ ⎪⎝⎭.将()y f x =的图像向左平移ϕ个单位长度,可得πsin 224y x ϕ⎛⎫=++ ⎪⎝⎭的图像,根据所得图像关于y 轴对称,可得ππ2π42k ϕ+=+,Z k ∈,解得ππ28k ϕ=+,Z k ∈,又π02ϕ<<,则令0k =,可得ϕ的值为π8.故π8.11.如图,椭圆的中心在原点,长轴1AA 在x 轴上.以A 、1A 为焦点的双曲线交椭圆于C 、D 、1D 、1C 四点,且112CD AA =.椭圆的一条弦AC 交双曲线于E ,设AE EC λ=,当2334λ≤≤时,双曲线的离心率的取值范围为______.710e ≤≤【分析】由题意设()()1,0,,0A c A c -,则可设,,,22c c D h C h ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,根据向量的共线求得E 点坐标,代入双曲线的方程22221x y a b-=,结合离心率化简可得2221e e λλ+=-,求出λ的表达式,结合条件可列不等式,即可求得答案.【详解】设()()1,0,,0A c A c -,则设,,,22c c D h C h ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,(其中c 为双曲线的半焦距,h 为C .D 到x 轴的距离),AE EC λ=,则AE EC λ∴= ,即(,)()2,E E E E x c y h x cy λ--+=,()()˙22,1211E E c c c y h x λλλλλλ-+-∴===+++,即E 点坐标为()()2,211c h λλλλ⎛⎫- ⎪ ⎪++⎝⎭,设双曲线的方程为22221x y a b -=,将c a e =代入方程,得222221e x y c b-=①,将(,)2c C h ,E ()()2,211c h λλλλ⎛⎫- ⎪ ⎪++⎝⎭代入①式,整理得2˙2222222()121,(1441e h e h b b λλλλ--=-+=+,消去22h b ,得2221e e λλ+=-,所以22213122e e e λ-==-++,由于2334λ≤≤.所以22331324e ≤-≤+,故2710,710e e ≤≤≤≤710e ≤≤12.将关于x 的方程()2sin 2π1x t +=(t 为实常数,01t <<)在区间[)0,∞+上的解从小到大依次记为12,,,,n x x x ,设数列{}n x 的前n 项和为n T ,若20100πT ≤,则t 的取值范围是______.【正确答案】1150,,626⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦【分析】先根据三角函数的周期性得出12,x x 满足的关系,然后再根据12,x x 的对称性可得结果.【详解】由()2sin 2π1x t +=得()1sin 2π2x t +=,则方程()2sin 2π1x t +=的解即为函数()sin 2πy x t =+图象与直线12y =交点的横坐标,因为函数()sin 2πy x t =+的周期为πT =,所以135,,x x x 是以x 1为首项,π为公差的等差数列,246,,,x x x 是以x 2为首项,π为公差的等差数列,所以201234201210()90π100πT x x x x x x x =+++++=++≤ ,所以12πx x +≤,令π2π=π()2x t k k ++∈Z 得πππ=242k t x +-,因为[)0,x ∈+∞,所以[)2ππ,x t t +∈+∞,由函数()sin 2πy x t =+图象的对称性知,x 1与2x 对应的点关于函数()sin 2πy x t =+图象的某条对称轴对称,因为01t <<,所以当π0π6t <≤,即106t <≤时,可知x 1与2x 对应的点关于直线ππ=42t x -对称,此时满足12πx x +≤成立;当π5ππ66t <≤,即1566t <≤时,可知x 1与2x 对应的点关于直线3ππ=42t x -对称,此时由123πππ2x x t +=-≤得12t ≥,所以1526t ≤≤;当5πππ6t <<,即516t <<时,可知x 1与2x 对应的点关于直线5ππ=42t x -对称,此时不满足12πx x +≤;综上,106t <≤或1526t ≤≤.故答案为.1150,,626⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦思路点睛:涉及同一函数的不同自变量值对应函数值相等问题,可以转化为直线与函数图象交点横坐标问题,结合函数图象性质求解.二、选择题(本大题共有4题,满分18分,第13,14题每题4分,第15,16题每题5分)13.设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【正确答案】A【详解】试题分析:运用两直线平行的充要条件得出l 1与l 2平行时a 的值,而后运用充分必要条件的知识来解决即可.解:∵当a=1时,直线l 1:x+2y ﹣1=0与直线l 2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选A .考点:必要条件、充分条件与充要条件的判断;直线的一般式方程与直线的平行关系.14.已知平面α,β,直线l ,若αβ,l αβ⋂=,则A.垂直于平面β的平面一定平行于平面αB.垂直于直线l 的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l 的平面一定与平面α,β都垂直【正确答案】D【详解】选D.由α⊥β,α∩β=l ,知:垂直于平面β的平面与平面α平行或相交,故A 不正确;垂直于直线l 的直线若在平面β内,则一定垂直于平面α,否则不一定,故B 不正确;垂直于平面β的平面与l 的关系有l ⊂β,l ∥β,l 与β相交,故C 不正确;由平面垂直的判定定理知:垂直于直线l 的平面一定与平面α,β都垂直,故D 正确.15.已知抛物线()220y px p =>上一点()()1,0M m m >到其焦点的距离为5,双曲线2221xy a-=的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值为()A.13B.14C.19D.12【正确答案】A 【分析】由152p+=得抛物线方程,M 在抛物线上求得M 坐标,再根据双曲线一条渐近线与直线AM 平行可得答案.【详解】根据题意,抛物线22(0)y px p =>上一点(1,)(0)M m m >到其焦点的距离为5,则点M 到抛物线的准线2px =-的距离也为5,即152p +=,解得8p =,所以抛物线的方程为216y x =,则216m =,所以4m =,即M 的坐标为14(,),又双曲线2221x y a-=的左顶点(),0A a -,一条渐近线为1y x a =,而41AM k a =+,由双曲线的一条渐近线与直线AM 平行,则有411a a =+,解得13a =.故选:A16.已知函数()y f x =是定义域在R 上的奇函数,且当0x >时,()()()230.02f x x x =--+,则关于()y f x =在R 上零点的说法正确的是()A.有4个零点,其中只有一个零点在()3,2--内B.有4个零点,其中只有一个零点在()3,2--内,两个在()2,3内C.有5个零点,都不在()0,2内D.有5个零点,其中只有一个零点在()0,2内,一个在()3,+∞【正确答案】C【分析】解法一:先研究0x >时,零点的情况,根据()()23y x x =--零点的情况,以及函数图象的平移,即可得出0x >时零点的个数.然后根据奇函数的对称性以及特性,即可得出答案;解法二:求解方程()0f x =,也可以得出0x >时零点的个数.然后根据奇函数的对称性以及特性,即可得出答案.【详解】解法一:根据对称性可以分三种情况研究(1)0x >的情况,()f x 是把抛物线()()23y x x =--与x 轴交点为()()2,0,3,0向上平移了0.02,则与x 轴交点变至()2,3之间了,所以在()2,3之间有两个零点;(2)当0x <时,()()()230.02f x x x =-++-,根据对称性()3,2--之间也有两个零点(3)()f x 是定义在R 上的奇函数,故()00f =,所以有五个零点.解法二:(1)直接解方程()()230.020x x --+=的两根也可以得两根为52x =,都在()2,3之间;(2)当0x <时,()()()230.02f x x x =-++-,根据对称性()3,2--之间也有两个零点(3)()f x 是定义在R 上的奇函数,故()00f =,所以有五个零点.故选:C.方法点睛:先求出0x >时,零点的情况.然后根据奇函数的性质,即可得出答案.三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤17.2020年全面建成小康社会取得伟大历史成就,决战脱贫攻坚取得决定性胜利.某市积极探索区域特色经济,引导商家利用多媒体的优势,对本地特产进行广告宣传,取得了社会效益和经济效益的双丰收,某商家统计了7个月的月广告投入x (单位:万元)与月销量y (单位:万件)的数据如表所示:月广告投入x /万元1234567月销量y /万件28323545495260(1)已知可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明,并求y 关于x 的线性回归方程;(2)根据(1)的结论,预计月广告投入大于多少万元时,月销量能突破70万件.(本题结果均按四舍五入精确到小数点后两位)【正确答案】(1)0.99r =,线性相关程度相当高;75151ˆ147yx =+.(2)当月公告投入大于9.04万元时,月销售量能突破70万件.【分析】(1)利用相关系数的公式求得r 的值,得出相关性相当高,再求得ˆb和ˆa 的值,即可求得回归直线的方程;(2)结合(1)中的回归方程,根据题意列出不等式,即可求解.【小问1详解】解:由表格中的数据,可得1(1234567)47x =⨯++++++=,1(28323545495270)437y =⨯++++++=,77722111()28,()820,()()150i i i i i i x x y y x x y y ===-=-=--=∑∑∑,可相关系数为7()0.99i x x y y r --==∑,所以y 与x 的线性相关程度相当高,从而用线性回归模型能够很好地拟合y 与x 的关系,又由71721()()7514(i i i i x x y y r x x ==--==-∑∑,可得75151ˆˆ434147a y bx =-=-⨯=,所以y 关于x 的线性回归方程为75151ˆ147y x =+.【小问2详解】解:要使得月销售量突破70万件,则7515170147x +>,解得2269.0425x >≈,所以当月公告投入大于9.04万元时,月销售量能突破70万件.18.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,90,ACB PA ∠=⊥平面,1,ABCD PA BC AB F ===是BC 的中点.(1)求证:DA ⊥平面PAC ;(2)试在线段PD 上确定一点G ,使//CG 平面PAF ,并求三棱锥A CDG -的体积.【正确答案】(1)证明见解析;(2)112.【分析】(1)因为四边形ABCD 是平行四边形,所以90ACB DAC ∠=∠= ,所以DA AC ⊥,因为PA ⊥平面ABCD ,则,PA DA ⊥又AC PA A ⋂=,故DA ⊥平面PAC .(2)取PD 的中点为G ,构造平行四边形,可证得//CG 平面PAF .此时,高为PA 的一半,所以体积为1111111332212A CDG G ACD ACD V V S h --∆∴==⋅⋅=⨯⨯⨯⨯=.【小问1详解】因为四边形ABCD 是平行四边形,90,,ACB DAC DA AC PA ∴∠=∠=∴⊥⊥ 平面ABCD ,DA ⊂平面ABCD ,,PA DA ∴⊥又,AC PA A DA =∴⊥ 平面PAC ,【小问2详解】设PD 的中点为G ,连接,AG CG ,在平面PAD 内作GH PA ⊥于点H ,则//GH AD ,且12GH AD =,由已知可得////FC AD GH ,且12FC AD GH ==,连接FH ,则四边形FCGH 为平行四边形,//,GC FH FH ∴⊂ 平面,PAF CG ⊄平面PAF ,//CG ∴平面PAF ,G ∴为PD 的中点时,//CG 平面PAF ,设S 为AD 的中点,连接GS ,则//GS PA ,且11,22GS PA PA ==⊥ 平面ABCD ,GS ∴⊥平面ABCD ,11111··11332212A CDG G ACD ACD V V S GS --∴===⨯⨯⨯⨯= .19.甲、乙两地相距1004千米,汽车从甲地匀速驶向乙地,速度不得超过120千米/小时,已知汽车每小时的运输成本(以1元为单位)由可变部分和固定部分组成:可变部分与速度v (千米/小时)的立方成正比,比例系数为2,固定部分为a 元()0a >.(1)把全部运输成本y 元表示为速度v (千米/小时)的函数,并指出这个函数的定义域;(2)为了使全部运输成本最小,汽车应以多大速度行驶?【正确答案】(1)(]()2100420,120a y v v v ⎛⎫=+∈⎪⎝⎭(2)答案见解析【分析】(1)求出汽车从甲地匀速行驶到乙地所用时间,根据货车每小时的运输成本可变部分和固定部分组成,可求得全程运输成本以及函数的定义域;(2)对210042a y v v ⎛⎫=+ ⎪⎝⎭求导,分两种情况讨论单调性,从而可求得最小成本时对应的速度.【小问1详解】由题意得,每小时运输成本为()32a v +,全程行驶时间为1004v 小时,所以全部运输成本(]()3210042001004(2),12a y v v v a v v ⎛⎫+⎪=∈+ ⎝=⎭;【小问2详解】由(1)知210042a y v v ⎛⎫=+ ⎪⎝⎭,求导得3224100441004a v a y v v v -⎛⎫'=-+=⨯ ⎪⎝⎭,令30,40y v a '=-=,解得v =,120<,即304120a <<⨯时,0v <<,200,1042a y v y v ⎛⎫=+ ⎪⎝<⎭'递减;120v <≤,200,1042a y v y v ⎛⎫=+ ⎪⎝>⎭'递增,此时,当v =,y 有最小值;120≥,即34120a ≥⨯时,0120v <≤,200,1042a y v y v ⎛⎫=+ ⎪⎝<⎭'递减;此时,当120v =,y 有最小值.综上,为了使全部运输成本最小,当304120a <<⨯时,汽车应以v =千米/小时行驶;当34120a ≥⨯时,汽车应以120v =千米/小时行驶.20.已知A B 、是平面内的两个定点,且8AB =,动点M 到A 点的距离是10,线段MB 的垂直平分线l 交MA 于点P ,若以AB 所在直线为x 轴,AB 的中垂线为y 轴建立直角坐标系.(1)试求P 点的轨迹C 的方程;(2)直线()40R mx y m m --=∈与点P 所在曲线C 交于弦EF ,当m 变化时,试求AEF △的面积的最大值.【正确答案】(1)221259x y +=(2)15【分析】(1)根据几何关系将距离转化为10PA PB +=,结合椭圆定义即可求解;(2)先判断直线过定点且斜率不能为0,则三角形的底为定值,即求三角形的高12y y -的最大值,联立直线与椭圆方程,将斜率转化为三角形式,结合三角公式化简,用基本不等式求解即可.【小问1详解】以AB 为x 轴,AB 中垂线为y 轴,则()()4,0,4,0A B -,由题意得,108PA PB PA PM AB +=+==>,所以P 点的轨迹是以,A B 为左右焦点,长轴长为10的椭圆,设椭圆的方程为()222210x y a b a b+=>>,焦距为2c ,所以22221028a c a b c =⎧⎪=⎨⎪=+⎩,解得534a b c =⎧⎪=⎨⎪=⎩,所以P 点的轨迹C 的方程为221259x y +=【小问2详解】由40mx y m --=得()4y m x =-过定点()4,0B ,显然0m ≠,联立()224,1259y m x x y ⎧=-⎪⎨+=⎪⎩得2297225810,Δ0y y m m ⎛⎫++-=> ⎪⎝⎭恒成立.所以12227272925925m m y y m m +=-=-++,212228181925259m y y m m =-=-++,所以12y y -===因为m 为直线斜率,所以令tan ,tan 0,m θθ=≠所以22122290tan 90tan 125tan 925tan 9sin y y θθθθθ-==⋅++2222290sin 190sin 19015.99cos 25sin sin 916sin sin 416sin sin θθθθθθθθθ=⋅=⋅=≤=+++当且仅当916sin ,sin θθ=即3sin ,4θ=时1215,4max y y -=()115815.24AEF max S =⨯⨯=△思路点睛:圆锥曲线的面积最值问题多采用直线与圆锥曲线联立方程组,运用韦达定理结合基本不等式计算的方法,本题为简化计算,还可以采用三角换元,将直线斜率与三角函数巧妙联系从而更快求解。

2024年河北高考数学模拟试卷及答案

2024年河北高考数学模拟试卷及答案

2024年河北高考数学模拟试卷及答案(一)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知抛物线C :212y x = ,则C 的准线方程为 A . 18x =B .1-8x =C .18y =D .1-8y = 2.已知复数121z i=+ ,复数22z i =,则21z z -=A .1BC ..10 3.已知命题:(0,)ln xp x e x ∀∈+∞>,,则 A .p 是假命题,:(-)ln xp x e x ⌝∃∈∞≤,0,B .p 是假命题, :(0+)ln xp x e x ⌝∃∈∞≤,,C .p 是真命题,:(-)ln xp x e x ⌝∃∈∞≤,0,D .p 是真命题,:(0+)ln xp x e x ⌝∃∈∞≤,,4.已知圆台1O O 上下底面圆的半径分别为1,3,母线长为4,则该圆台的侧面积为 A .8πB .16πC .26πD .32π5.下列不等式成立的是A.66log 0.5log 0.7>B. 0.50.60.6log 0.5>C.65log 0.6log 0.5>D. 0.60.50.60.6>6.某校为了解本校高一男生身高和体重的相关关系,在该校高一年级随机抽取了7名男生,测量了他们的身高和体重得下表:由上表制作成如图所示的散点图:由最小二乘法计算得到经验回归直线1l 的方程为11ˆˆˆy b x a =+,其相关系数为1r ;经过残差分析,点(167,90)对应残差过大,把它去掉后,再用剩下的6组数据计算得到经验回归直线2l 的方程为22ˆˆˆy b x a =+,相关系数为2r .则下列选项正确的是 A .121212ˆˆˆˆ,,b b a a r r <>< B .121212ˆˆˆˆ,,b b a a r r <<> C .121212ˆˆˆˆ,,b b a a r r ><> D .121212ˆˆˆˆ,,b b a a r r >>< 7.函数()y f x =的导数()y f x '=仍是x 的函数,通常把导函数()y f x '=的导数叫做函数的二阶导数,记作()y f x ''=,类似地,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数一般地,n-1阶导数的导数叫做 n 阶导数,函数()y f x =的n 阶导数记为()n y fx =(),例如xy e =的n 阶导数()()n xx ee =.若()cos 2xf x xe x =+,则()500f =()A .49492+B .49C .50D .50502-8.已知函数()cos()f x x ωϕ=+的部分图象如下,12y =与其交于A ,B 两点. 若3AB π=,则ω=A .1B .2C .3D .4二、选择题:本题共3小题,每小题6分,共18分。

2023-2024学年上海市高考数学模拟试题(一模)含解析

2023-2024学年上海市高考数学模拟试题(一模)含解析

2023-2024学年上海市高考数学模拟试题(一模)一、填空题(1-4每题4分,5-6每题5分,共26分)1.已知集合{}21,RA y y x x ==-∈,{B x y ==,则A B = ______.【正确答案】⎡-⎣【分析】先求函数21,R y x x =-∈的值域,即可化简集合A,再求函数y =的定义域,即可化简集合B ,最后由集合的交集运算即可得到答案.【详解】因为{}21,R A y y x x ==-∈,所以A 为函数21,R y x x =-∈的值域,因为211y x =-≥-,所以{}1A y y =≥-.因为{B x y ==,所以B为函数y =的定义域,由220x -≥得22x ≤,即x ≤≤,所以{B x x =≤≤,所以{}{1A B y y x x ⎡⋂=≥-⋂≤≤=-⎣.故⎡-⎣2.若复数z 满足32iiz -=(其中i 是虚数单位),则||z =______.【分析】化简复数z ,再求出z ,进而求出||z .【详解】∵32i (32i)i 23i23i i i i 1z --+====--⨯-,∴23i z =-+,∴||z ==3.已知向量()3,6a = ,()3,4b =- ,则a 在b方向上的数量投影为______.【正确答案】3-【分析】根据题意,结合向量的投影公式,即可求解.【详解】因为向量()3,6a =,()3,4b =- ,所以a 在b方向上的数量投影为336415cos ,35a b a a b b⨯+⨯-⋅-====-.故答案为.3-4.若函数2()lg(2)f x ax x a =-+的定义域为R ,则实数a 的取值范围为__________.【正确答案】(1,)+∞【分析】由题意,函数2()lg(2)f x ax x a =-+的定义域为R ,转化为不等式220ax x a -+>在R 上恒成立,利用一元二次函数的性质,即可求解.【详解】由题意,函数2()lg(2)f x ax x a =-+的定义域为R ,即不等式220ax x a -+>在R 上恒成立,当0a =时,不等式等价与20x ->,不符合题意;则满足2)22(40a a ->⎧⎨∆=-<⎩,解得1a >,即实数a 的取值范围是(1,)+∞.本题主要考查了对数函数的性质,以及一元二次函数的图象与性质的应用,其中解答中把函数的定义域为R ,转化为不等式220ax x a -+>在R 上恒成立,利用一元二次函数的性质求解是解答的关键,着重考查了转化思想,以及分析问题和解答问题的能力.5.等差数列{}n a 中,18153120a a a ++=,则9102a a -的值是______.【正确答案】24【分析】先由等差数列的通项公式化简18153120a a a ++=得到1724a d +=,再由等差数列的通项公式把9102a a -化为17a d +即可求出答案.【详解】设等差数列{}n a 的首项为1a ,公差为d ,则()1815111173312014535d a a a a a a a d d ++=++++=+=,所以1724a d +=.所以()()9101112224897d a a a a a d d -=++-=+=.故246.过抛物线24x y =的焦点且倾斜角为3π4的直线被抛物线截得的弦长为______.【正确答案】8【分析】写出直线方程,联立抛物线的方程,运用定义和焦点弦长公式,计算即可得到.【详解】抛物线24x y =的焦点为()0,1F ,准线方程为1y =-,直线l 的倾斜角为3π4,设直线l 与抛物线交于,M N 两点,则直线l 的方程为1y x =-+,代入24x y =得2610y y -+=,则1(M x ,1)y ,2(N x ,2)y ,126y y +=,则1228MN MF NF y y =+=++=,故8二、单项选择题(每题5分,共50分)7.设:x a α>,1:0x xβ->,若α是β的充分条件,则实数a 的取值范围是()A.()0,+∞ B.(],1-∞ C.[)1,+∞ D.(],0-∞【正确答案】C【分析】解分式不等式10x x->得β,由α是β的充分条件等价于β包含α,根据包含关系列不等式求解即可【详解】()1010x x x x->⇔->,解得1x >或0x <,由α是β的充分条件,则有1a ≥.故选:C8.函数()(1f x x =+)A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数【正确答案】C【分析】求出()f x 的定义域不关于原点对称,即可判断()f x 为非奇非偶函数.【详解】函数()(1f x x =+的定义域为101x x -≥+,则()()110111x x x x ⎧+-≥⇒-<≤⎨≠-⎩,由于定义域不关于原点对称,故()f x 为非奇非偶函数.故选:C .9.已知事件A 与事件B 是互斥事件,则()A.)(0P A B ⋂= B.)()()(P A B P A P B ⋂=C.)()(1P A P B =- D.)(1P A B ⋃=【正确答案】D【分析】根据互斥事件、对立事件、必然事件的概念可得答案.【详解】因为事件A 与事件B 是互斥事件,则A B 、不一定是互斥事件,所以()P A B ⋂不一定为0,故选项A 错误;因为事件A 与事件B 是互斥事件,所以A B ⋂=∅,则()0P A B ⋂=,而()()P A P B 不一定为0,故选项B 错误;因为事件A 与事件B 是互斥事件,不一定是对立事件,故选项C 错误;因为事件A 与事件B 是互斥事件,A B ⋃是必然事件,所以()1P A B ⋃=,故选项D 正确.故选:D.10.甲,乙两个小组各10名学生的数学测试成绩如下(单位:分).甲组:76,90,84,86,81,87,86,82,85,83乙组:82,84,85,89,79,80,91,89,79,74现从这20名学生中随机抽取一人,将“抽出的学生为甲组学生”记为事件A ;“抽出的学生的数学测试成绩不低于85分”记为事件B ,则()|P A B 的值是()A.59B.49C.29D.19【正确答案】A【分析】利用条件概率公式求解即可得()P A B到答案.【详解】由题意知,()101202P A ==,()920P B =()P AB 表示20人随机抽取一人,既是甲组又是数学测试成绩不低于85分的概率,()51204P AB ==,根据条件概率的计算公式得()()()1549920P AB P A B P B ===.故选:A11.如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且1MD NB ==,点G 为MC 的中点.则下列结论中不.正确的是()A.MC AN⊥ B.平面//DCM 平面ABN C.直线GB 与AM 是异面直线 D.直线GB 与平面AMD 无公共点【正确答案】D【分析】根据给定条件,证明//AN DG 判断A ;利用线面、面面平行的判定推理判断B ;取DM 中点O ,证得四边形ABGO 是梯形判断CD 作答.【详解】因为MD ⊥平面ABCD ,NB ⊥平面ABCD ,则//MD NB ,取,,AB CD AN 的中点,,F E H ,连接,,,EF EG FH GH ,如图,点G 为MC的中点,则//////EG MD NB FH ,且1122EG MD NB FH ===,于是四边形EFHG 是平行四边形,//,GH EF GH EF =,在正方形ABCD 中,//,EF AD EF AD =,则//,GH AD GH AD =,因此四边形ADGH 为平行四边形,//AN DG ,而1MD CD ==,点G 为MC 的中点,有DG MC ⊥,所以MC AN ⊥,A 正确;因为//MD NB ,MD ⊂平面DCM ,NB ⊄平面DCM ,则//NB 平面DCM ,又//AB CD ,CD ⊂平面DCM ,AB ⊄平面DCM ,则//AB 平面DCM ,而,,NB AB B NB AB =⊂ 平面ABN ,所以平面//DCM 平面ABN ,B 正确;取DM 中点O ,连接,GO AO ,则有11////,22GO CD AB GO CD AB ==,即四边形ABGO 为梯形,因此直线,AO BG 必相交,而AO ⊂平面AMD ,于是直线GB 与平面AMD 有公共点,D 错误;显然点A ∈平面ABGO ,点M ∉平面ABGO ,直线BG ⊂平面ABGO ,点A ∉直线BG ,所以直线GB 与AM 是异面直线,C 正确.故选:D结论点睛:经过平面内一点和外一点的直线,与平面内不经过该点的直线是异面直线.12.数列{}n a 的前n 项和1nn S a =-,*n ∈N ,关于数列{}n a 有以下命题:①{}n a 一定是等比数列,但不可能是等差数列;②{}n a 一定是等差数列,但不可能是等比数列;③{}n a 可能是等比数列,也可能是等差数列;④{}n a 可能既不是等差数列,也不是等比数列;⑤{}n a 可能既是等差数列,又是等比数列;其中正确命题的个数是()A.1B.2C.3D.4【正确答案】B【分析】分0a =,1a =,0a ≠且1a ≠三种情况讨论,由11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出n a ,根据等差、等比数列的通项公式的特征可作出判断.【详解】当0a =时,1n S =-,则111a S ==-,当2n ≥时,10n n n a S S -=-=,即1,10,2n n a n -=⎧=⎨≥⎩,此时,数列{}n a 既不是等差数列,也不是等比数列;当1a =时,0n S =,则110a S ==,当2n ≥时,10n n n a S S -=-=,则()0n a n N *=∈,此时,数列{}n a 为等差数列,但不是等比数列;当0a ≠且1a ≠时,111a S a ==-,当2n ≥时,()()()111111nn n n n n a S S a aa a ---=-=---=-,则()21a a a =-,()()1111n n n n a a a a a a a+--∴==-且()2111a a a a a a -==-,则数列{}n a 是以a 为公比的等比数列.由以上分析知,正确的说法为③④.故选:B.本题考查数列通项n a 与n S 的关系及等差、等比数列的通项公式,准确把握等差、等比数列的通项公式特征是解决问题的关键.13.已知参数方程3342x t ty t ⎧=-⎪⎨=⎪⎩[]1,1t ∈-,则下列曲线方程符合该方程的是()A.B.C.D.【正确答案】B【分析】利用特殊值法即可选出答案.【详解】令20y t ==得1,0,1t =-,将其分别代入334x t t =-得1,0,1x =-,所以该方程所表示的曲线恒过点()()()1,0,0,0,1,0-,显然只有B 项满足.故选:B.14.设函数()sin 6f x x π⎛⎫=- ⎪⎝⎭,若对于任意5,62ππα⎡⎤∈--⎢⎥⎣⎦,在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,则m 的最小值为A.π6B.π2C.7π6D.π【正确答案】B【分析】先求()3[,0]2f α∈-,再由存在唯一确定的β,使得()()3[0,]2f f βα=-∈,得2[,)633m πππ-∈,从而得解.【详解】当5,62ππα⎡⎤∈--⎢⎥⎣⎦时,有2,36ππαπ⎡⎤-∈--⎢⎥⎣⎦,所以()3[,0]2f α∈-.在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,所以存在唯一确定的β,使得()()3[0,]2f f βα=-∈.[]0,,[,]666m m πππββ∈-∈--,所以25[,),[,63326m m πππππ-∈∈.故选B.本题主要考查了三角函数的图像和性质,考查了函数与方程的思想,正确理解两变量的关系是解题的关键,属于中档题.15.若曲线||2y x =+与曲线22:144x y C λ+=恰有两个不同的交点,则实数λ的取值范围是()A.(1,)+∞B.(,1]-∞C.(](),11,-∞-⋃+∞ D.[1,0)(1,)-+∞U 【正确答案】C【分析】先分析出||2y x =+表示起点为()2,0A -的两条斜率分别为1和-1的射线.若曲线22:144x y C λ+=为椭圆,只需点()2,0A -落在椭圆内,列不等式求出λ的范围;若当曲线22:144x y C λ+=为双曲线时,只需把||2y x =+表示的射线与渐近线比较,列不等式求出λ的范围.【详解】如图示:||2y x =+表示起点为()2,0A -的两条斜率分别为1和-1的射线.当曲线22:144x y C λ+=为椭圆时,即0λ>,只需点()2,0A -落在椭圆内,即240144λ+<,解得:1λ>;当曲线22:144x y C λ+=为双曲线时,即0λ<,渐近线方程:y =要使曲线||2y x =+与曲线22:144x y C λ+=恰有两个不同的交点,1≤,解得.1λ≤-所以实数λ的取值范围是(],1(1,)-∞-+∞ 故选:C16.已知定义在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意x R ∈,()(2)f x f x =-;③当[0,1]x ∈时,3()2f x x =;④()(4)g x f x =.若过点(1,0)-的直线l 与函数()g x 的图象在[0,2]x ∈上恰有8个交点,则直线l 斜率k 的取值范围是()A.60,11⎛⎫⎪⎝⎭B.30,5⎛⎫ ⎪⎝⎭C.(0,1)D.330,8⎛⎫ ⎪⎝⎭【正确答案】A【分析】结合①②可知()f x 是周期为2的函数,再结合④可知()g x 是周期为12的函数,结合③作出()g x 在[0,2]上的图像,然后利用数形结合即可求解.【详解】因为函数()f x 的图象关于y 轴对称,所以()f x 为偶函数,即()()f x f x =-,又因为对于任意x R ∈,()(2)f x f x =-,所以()(2)()f x f x f x =-=-,从而()(2)f x f x =+,即()f x 是周期为2的函数,因为()(4)g x f x =,则()g x 图像是()f x 的图像的横坐标缩短为原来的14得到,故()g x 也是偶函数,且周期为11242⨯=,结合当[0,1]x ∈时,3()2f x x =,可作出()g x 在[0,2]的图像以及直线l 的图像,如下图所示:当74x =时,易知3()2g x =,即73(,)42A ,则直线MA 的斜率362711(1)4MAk -==--,过点(1,0)-的直线l 与函数()g x 的图象在[0,2]x ∈上恰有8个交点,则只需6011MA k k <<=,即直线l 斜率k 的取值范围是60,11⎛⎫ ⎪⎝⎭.故选:A.三、解答题(本题满分14分,第1小题满分4分,第2小题满分10分)17.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,椭圆的一个顶点与两个焦点构成的三角形面积为2.(1)求椭圆C 的方程;(2)已知直线()()10y k x k =->与椭圆C 交于A ,B 两点,且与x 轴,y 轴交于M ,N 两点.①若MB AN = ,求k 的值;②若点Q 的坐标为7,04⎛⎫⎪⎝⎭,求证:QA QB ⋅ 为定值.【正确答案】(1)22142x y +=(2)①22k =;②证明见解析【分析】(1)根据椭圆的离心率和三角形的面积即可求出224,2a b ==,则椭圆方程可得;(2)①根据根与系数的关系以及向量的数量积的运算即可求出;②根据根与系数的关系以及向量的数量积的运算即可求出.【小问1详解】22c e a ==,222a c ∴=,代入222a b c =+得b c =.又椭圆的一个顶点与两个焦点构成的三角形的面积为2,即1222b c ⨯=,即2bc =,以上各式联立解得224,2a b ==,则椭圆方程为22142x y +=.【小问2详解】①直线()1y k x =-与x 轴交点为()1,0M ,与y 轴交点为()0,N k -,联立()22241x y y k x ⎧+=⎪⎨=-⎪⎩消去y 得:()222124240k x k x k +-+-=,()()4222164122424160k k k k ∆=-+-=+>设()()1122,,,A x y B x y ,则2122412kx x k+=+()()22111,,,,MB x y AN x k y =-=--- 又212241,12k MB AN x x k =+==+ 由得:解得:2k =±.由0k >得22k =;②证明:由①知2122412k x x k +=+212224,12k x x k-=+)()()2112212127777,,114444QA QB x y x y x x k x x ⎛⎫⎛⎛⎫⎛⎫∴⋅=-⋅-=--+-- ⎪ ⎪⎪⎝⎭⎝⎝⎭⎝⎭ ()()22212127491416k x x k x x k ⎛⎫=++--+++⎪⎝⎭()2222222472449151124121616k k k k k k k -⎛⎫=++--++=- ⎪++⎝⎭,QA QB ∴⋅为定值.方法点睛:求定值问题常见的方法①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(卷二)一、填空题(每题5分,共20分)18.已知圆22:16C x y +=,直线:()(32)0l a b x b a y a -+--=(,a b 不同时为0),当,a b 变化时,圆C 被直线l 截得的弦长的最小值为___________.【正确答案】【分析】由题意知直线l 恒过定点(3,1),当圆心到直线距离取最大值时,此时圆C 被直线l 截得的弦长为最小值,即可求出答案.【详解】把直线:()(32)0l a b x b a y a -+--=化为(21)(3)0a x yb x y --+-+=2103301x y x x y y --==⎧⎧⇒⎨⎨-+==⎩⎩,恒过定点(3,1),当圆C 被直线l 截得的弦长的最小值时,圆心(0,0)到定点(3,1)的距离为,圆心到直线:()(32)0l a b x b a y a -+--=距离,此时直线弦长为最小值=.故答案为.19.若随机变量()3,XB p ,()22,YN σ,若()10.657P X ≥=,()02P Y p <<=,则()4P Y >=______.【正确答案】0.2【分析】解不等式1﹣(1﹣p )3=0.657得到p =0.3,再利用正态分布求解.【详解】解:∵P (X ≥1)=0.657,∴1﹣(1﹣p )3=0.657,即(1﹣p )3=0.343,解得p =0.3,∴P (0<Y <2)=p =0.3,∴P (Y >4)=12(02)2P Y -<<=120.30.22-⨯=.故0.2.20.已知在R 上的减函数()y f x =,若不等式()()2233f x x f y y -≤---成立,函数()1y f x =-的图象关于点()1,0中心对称,则当14x ≤≤时,yx的取值范围是______.【正确答案】12,4⎡⎤-⎢⎥⎣⎦【分析】由对称性得函数()f x 是奇函数,由奇函数的定义及单调性化简不等式为具体的不等式,变形为两个不等式组,在平面直角坐标系中作出这两个不等式组表示的平面区域在直线1x =和4x =之间的部分,yx表示这部分的点到原点连线的斜率,由图可得其取值范围.【详解】∵函数(1)=-y f x 的图象关于点(1,0)中心对称,∴函数()y f x =的图象关于原点对称,即()f x 是奇函数,不等式()()2233f x x f y y -≤---可化为()()2233f x x f y y -≤+,又()f x 是R 上的减函数,∴2233x x y y -≥+,即()(3)0x y x y +--≥030x y x y +≥⎧⎨--≥⎩或030x y x y +≤⎧⎨--≤⎩,作出这两个不等式组表示的平面区域在直线1x =和4x =之间的部分,如图阴影部分(含边界),yx表示阴影部分的点与原点连线的斜率,1x =与4x =分别代入30x y --=,可得(1,2)D -,(4,1)B ,2OD k =-,14OB k =,∴124y x -≤≤.故12,4⎡⎤-⎢⎥⎣⎦.21.设数列{}n a 的前n 项和为n S ,且2n S 是6和n a 的等差中项,若对任意的*n ∈N ,都有[]13,n nS s t S -∈,则t s -的最小值为________.【正确答案】94【分析】先根据和项与通项关系得{}n a 通项公式,再根据等比数列求和公式得n S ,再根据函数单调性得13n nS S -取值范围,即得t s ,取值范围,解得结果.【详解】因为2n S 是6和n a 的等差中项,所以46n n S a =+当2n ≥时,111114643n n n n n n n S a a a a a a ----=+∴=-∴=-当1n =时,11146=2S a a =+∴因此112[1()]13132([1()]132313n n n n n a S ---=⨯-∴==--+当n 为偶数时,3143[1()][,)2332n n S =-∈当n 为奇数时,313[1(](,2]232n n S =+∈因此343(,2][,)232n S ∈U 因为13n n S S -在343(,2][,232U 上单调递增,所以[]113232*********,,4662244n n S s t t s S ⎡⎤-∈⋃⊆∴-≥-=⎢⎥⎣⎦)(,故94本题考查根据和项求通项、等比数列定义、等比数列求和公式、利用函数单调性求值域,考查综合分析求解能力,属较难题.二、单项选择题(每题5分,共10分)22.在正四面体A BCD -中,点P 为BCD ∆所在平面上的动点,若AP 与AB 所成角为定值,0,4πθθ⎛⎫∈ ⎪⎝⎭,则动点P 的轨迹是()A.圆B.椭圆C.双曲线D.抛物线【正确答案】B【分析】把条件转化为AB 与圆锥的轴重合,面BCD 与圆锥的相交轨迹即为点P 的轨迹后即可求解.【详解】以平面截圆锥面,平面位置不同,生成的相交轨迹可以为抛物线、双曲线、椭圆、圆.令AB 与圆锥的轴线重合,如图所示,则圆锥母线与AB 所成角为定值,所以面BCD 与圆锥的相交轨迹即为点P 的轨迹.根据题意,AB 不可能垂直于平面BCD ,即轨迹不可能为圆.面BCD 不可能与圆锥轴线平行,即轨迹不可能是双曲线.可进一步计算AB 与平面BCD 所成角为θ=时,轨迹为抛物线,arctan θ≠时,轨迹为椭圆, 0,4πθ⎛⎫∈ ⎪⎝⎭,所以轨迹为椭圆.故选:B.本题考查了平面截圆锥面所得轨迹问题,考查了转化化归思想,属于难题.23.若P 在曲线22:14x C y +=上,若存在过P 的直线交曲线C 于A 点,交直线:4l x =于B 点,满足||||PA PB =或||||PA AB =,则称P 点为“H 点”,那么下列结论中正确的是()A.曲线C 上所有点都是H 点B.曲线C 上仅有有限多个点是H 点C.曲线C 上所有点都不是H 点D.曲线C 上有无穷多个点(但不是全部)是H 点【正确答案】D【分析】设出22P A x x -≤<≤,利用相似三角形求得P x 和A x 的关系,设出PA 的方程与椭圆方程联立求得A P x x 的表达式,利用判别式大于0求得k 和m 的不等式关系,最后联立①②③求得A x 的范围,进而通过1A x <时,242P A x x =-<-,故此时不存在H 点,进而求得H 点的横坐标取值范围,判断出题设的选项.【详解】解:由题意,P 、A 的位置关系对称,于是不妨设22,(P A x x -≤<≤此时)PA AB =.由相似三角形,244A P x x -=-即:24P A x x =-⋯①设:PA y kx m =+,与椭圆联立方程组,2214y kx mx y =+⎧⎪⎨+=⎪⎩消y 得22212104k x kmx m ⎛⎫+++-= ⎪⎝⎭解得22114A P m x x k -=⋯+②0∆> ,2241k m >-⋯③联立①②③,得2222114A A x x k-<+,而2202114k<<+,即222A A x x -<,即12A x ≤≤,而当1A x <时,242P A x x =-<-,故此时不存在H 点又因为P 的位置可以和A 互换(互换后即)PA PB =,所以H 点的横坐标取值为[2,0][1,2]-⋃.故选:D.本题主要考查了直线与圆锥曲线的关系问题.解题的关键是求得H 点的横坐标取值范围.属于较难题.三、多项选择题(每题6分,共12分)24.“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共截去八个三棱锥,得到的半正多面体的表面积为3,则关于该半正多面体的下列说法中正确的是()A.与AB 所成的角是60°的棱共有8条B.AB 与平面BCD 所成的角为30°C.二面角A BC D --的余弦值为33-D.经过A ,B ,C ,D 四个顶点的球面面积为2π【正确答案】CD【分析】补全该半正多面体得到一正方体.对于A 选项,由正三角形可得60°角,再利用平行关系得结果;B 选项,利用正方体找出线面角为∠ABE=45°;C 选项,先作出二面角的补角∠AFE ,在△AEF 中,求出3cos 3EF AFE AF ∠==即可得结果;D 选项,由半正多面体的对称中心与相应的正方体的对称中心为同一点,构造三角形,求出球的半径,最后求得经过A ,B ,C ,D 四个顶点的球面面积.【详解】补全该半正多面体得到一正方体,设正方体的棱长为a .由题意,该半正多面体是由6个全等的正方形与8个全等的正三角形构成,由半正多面体的表面积为33+,可得223228633422a ⎛⎫⎫⨯⨯+⨯=+ ⎪⎪ ⎪⎪⎝⎭⎝⎭,解得a =1.对于A ,在与AB 相交的6条棱中,与AB 成60°角的棱有4条,这4条棱中,每一条都有3条平行的棱,故与AB 所成的角是60°的棱共有16条,故A 不正确;对于B ,因为AE ⊥平面BCD ,所以AB 与平面BCD 所成角为∠ABE =45°,故B 不正确;对于C ,取BC 中点F ,连接EF ,AF ,则有AF ⊥BC ,EF ⊥BC ,故二面角A -BC -D 的补角为∠AFE .二面角A -BC -D 的余弦值为-cos ∠AFE ,在Rt △AEF 中,1,,24AE EF AE EF ==⊥,∴AF =3cos 3EF AFE AF ∠==,cos 3AFE -∠=-,故C 正确;对于D ,由半正多面体的对称中心与相应的正方体的对称中心为同一点,即为正方体对角线的中点O ,点O 在平面ABE 的投影为投影点O 1,则有1111,22OO AO ==,∴22AO ==,故经过A ,B ,C ,D 四个顶点的球面的半径为面积为2422S ππ⎛⎫== ⎪ ⎪⎝⎭,故D 正确.故选:CD立体几何中补形是一种常用的方法:(1)一个不规则几何体是由规则几何体经过截取得到的,通常可以用补形,还原为规则几何体,如正方体,长方体等;(2)通常可以用来求①体积(距离),②与外接球(内切球)相关的问题.25.在棱长为1的正方体1111ABCD A B C D -中,已知点P 为侧面11BCC B 上的一动点,则下列结论正确的是()A.若点P 总保持1PA BD ⊥,则动点P 的轨迹是一条线段;B.若点P 到点A 的距离为3,则动点P 的轨迹是一段圆弧;C.若P 到直线AD 与直线1CC 的距离相等,则动点P 的轨迹是一段抛物线;D.若P 到直线BC 与直线11C D 的距离比为1:2,则动点P 的轨迹是一段双曲线.【正确答案】ABD【分析】由1BD ⊥平面1AB C 且平面1AB C 平面111BCC B B C =,即可判断A ;根据球的性质及与正方体的截面性质即可判断B ;作PE BC ⊥,EF AD ⊥,连接PF ,作1PQ CC ⊥.建立空间直角坐标系,由PF PQ =即可求得动点P 的轨迹方程,即可判断C ;根据题意,由距离比即可求得轨迹方程,进而判断D.【详解】对于A ,111,BD B C D A AB ⊥⊥,且1AC AB A ⋂=,所以1BD ⊥平面1AB C ,平面1AB C 平面111BCC B B C =,故动点P 的轨迹为线段1BC ,所以A 正确;对于B ,点P 的轨迹为以A 为球心、半径为233的球面与面11BCC B 的交线,即为一段圆弧,所以B 正确;对于C ,作PE BC ⊥,EF AD ⊥,连接PF ;作1PQ CC ⊥.由PF PQ =,在面11BCC B 内,以C 为原点、以直线CB 、CD 、1CC 为x ,y ,z轴建立平面直角坐标系,如下图所示:设(),0,P x z,则x =,化简得221x z -=,P 点轨迹所在曲线是一段双曲线,所以C 错误.对于D ,由题意可知点P 到点1C 的距离与点P 到直线BC 的距离之比为2:1,结合C 中所建立空间直角坐标系,可得121PC PE =,所以21241PC PE =,代入可得()222141x z z +-=,化简可得221314493z x ⎛⎫+ ⎪⎝⎭-=,故点P 的轨迹为双曲线,所以D 正确.综上可知,正确的为ABD.故选:ABD.本题考查了空间几何体中截面的形状判断,空间直角坐标系的综合应用,轨迹方程的求法,属于难题.四、解答题(本题满分18分(本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分)26.对于数列{}n a ,若存在正数k ,使得对任意*,m n ∈N ,m n ≠,都满足||||m n a a k m n -≤-,则称数列{}n a 符合“()L k 条件”.(1)试判断公差为2的等差数列{}n a 是否符合“(2)L 条件”?(2)若首项为1,公比为q 的正项等比数列{}n a 符合“1(2L 条件”.求q 的范围;(3)在(2)的条件下,记数列{}n a 的前n 项和为n S ,证明:存在正数0k ,使得数列{}n S 符合“0()L k 条件”.【正确答案】(1)符合(2)1[,1]2(3)证明见解析【分析】(1)将12(1)n a a n =+-代入||||m n a a k m n -≤-即可得证;(2)由“正项等比数列”分成1q =,1q >,01q <<三类,结合数列单调性进行分析求证;(3)1q =时,n S n =,01k ≥即可成立;当112q ≤<时,设m n <,则等价于证明0(1)()m n q q k q n m ---≤即可.【小问1详解】因为{}n a 是等差数列且公差为2,所以12(1)n a a n =+-,所以对任意m ,*n ∈N ,m n ≠,11|||[2(1)][2(1)]||2()|2m n a a a m a n m n m n -=+--+-=-≤-恒成立,所以数列{}n a 符合“(2)L 条件”.【小问2详解】因为0n a >,所以0q >.若1q =,则1||0||2m n a a m n -=≤-,数列{}n a 符合“1()2L 条件”;若1q >,因为数列{}n a 递增,不妨设m n <,则1()2n m a a n m ≤--,即1122n m a n a m -≤-,(*)设12n n b a n =-,由(*)式中的m ,n 任意性得数列{}n b 不递增,所以11111()(1)022n n n n n b b a a q q -++-=--=--≤,*n ∈N ,则当[2(1)]41log q n ->-时,11(1)02n q q --->,矛盾.若01q <<,则数列{}n a 单调递减,不妨设m n <,则1()2n m a a n m ≤--,即1122m n a m a n +≤+,(**)设12n n c a n =+,由(**)式中的m ,n 任意性得,数列{}n a 不递减,所以11111()(1)022n n n n n c c a a q q +++-=-+=-+≥,*n ∈N .因为01q <<时,11()(1)2n f n q q -=-+单调递增,所以1()(1)(1)02max f n f q ==-+≥,因为01q <<,所以112q ≤<.综上,公比q 的范围为1[,1]2.【小问3详解】由(2)得,11n n q S q-=-,112q ≤<,当1q =时,n S n =,要存在0k 使得0||||n m S S k n m -≤-,只要01k ≥即可.当112q ≤<时,要证数列{}n S 符合“0()L k 条件”,只要证存在00k >,使得011||11n mq q k n m q q---≤---,*n ∈N ,不妨设m n <,则只要证0(1)()m n q q k q n m ---≤,只要证00(1)(1)m m n n q k q q k q ≤+-+-.设0()(1)n n g n q k q =+-,由m ,n 的任意性,只要证00(1)()(1)(1)(1)()0n n g n g n q q k q q k q +-=-+-=--≥,只要证0n k q ≥,*n ∈N ,因为112q ≤<,所以存在0k q ≥,上式对*n ∈N 成立.所以,存在正数0k ,使得数列{}n S 符合“0()L k 条件”.思路点睛:对于数列中的恒成立或存在性问题,通常结合条件进行分类讨论,构造合适的函数模型,借助函数性质进行判断.。

2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案

2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案

2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案一、单选题(20分)请从每题的选项中选择一个最符合题意的答案,并在答题卡上将相应的字母涂黑。

1.若函数f(x)在区间[-1,3]上连续,则其必定是 A. 递减函数 B. 倒U型函数 C. 奇函数 D. 偶函数2.已知三角形ABC,AB=AC,角A=40°,则角B的度数等于 A. 40° B. 70° C. 80° D. 100°3.设a,b都是正数,且logₐ1/3=log₃b/2,则a/b的值等于 A. 1/4 B. 1/3 C. 1/2 D. 24.若a,b>0,且a+b=1,则a²+b²的最小值是 A. 1/2 B.1/√2 C. 1/4 D. 15.若直线y=mx+2与曲线y=4x²-3x-1有两个公共点,则m的取值范围是 A. (-∞,1/8) B. (-∞,0)∪(0,1/8) C. (-∞,1/8]∪[0,+∞) D. (-∞,0)二、多选题(20分)请从每题的选项中选择一个或多个最符合题意的答案,并在答题卡上将相应的字母涂黑。

6.设实数x满足条件|x-3| < 2,下列等式成立的是 A.x > 5 B. x < 1 C. x ≠ 3 D. x > 17.在直角坐标系中,下列函数中具有对称中心为(2,-1)的是 A. y=x-1 B. y=-(x-2)²-1 C. y=√(x²-4x+4) D. y=1/x-38.设集合A={a, a², a³},则以下命题成立的是 A. 若a>1,则a>1/a² B. 若a<0,则a³<0 C. 若a=1, 则A={1} D. 若a=0,则A={0}9.已知函数f(x)=x³+ax²+bx+c,若它与y=x+3有恰有一个交点,并且这个交点横纵坐标都是正数,则以下命题成立的是 A. a+b = -1 B. a+c = -3 C. a+c > 0 D. a+b+c > 010.设集合A={x | x=x²-2x-3, x∈R},B={x | x²+x-6=0,x∈R},则以下命题成立的是A. A⊂B B. A∩B=∅ C. B⊆A D.B∪A=∅三、填空题(20分)请根据题目要求填写空缺,并在答题卡上写出完整的答案。

【新结构】2024届山东省济南市名校考试联盟高三下学期4月高考模拟数学试题+答案解析

【新结构】2024届山东省济南市名校考试联盟高三下学期4月高考模拟数学试题+答案解析

【新结构】2024届山东省济南市名校考试联盟高三下学期4月高考模拟数学试题❖一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知随机变量,则()A.B.C.D.2.已知抛物线的焦点为F ,该抛物线上一点P 到的距离为4,则()A.1B.2C.3D.43.已知集合的元素之和为1,则实数a 所有取值的集合为()A.B.C.D.4.已知函数的定义域为R ,若,,则()A.0B.1C.2D.35.已知圆,,,若圆C 上有且仅有一点P 使,则正实数a 的取值为()A.2或4B.2或3C.4或5D.3或56.设A ,B 是一个随机试验中的两个事件,且,,,则()A.B.C.D.7.已知数列满足,对于任意的且,都有,则()A.B.C.D.8.已知正三棱锥的底面边长为,若半径为1的球与该正三棱锥的各棱均相切,则三棱锥的体积为()A.2B.C.3D.二、多选题:本题共3小题,共15分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.若复数z 满足为虚数单位,则下列说法正确的是()A.B.z 的虚部为C.D.若复数满足,则的最大值为10.如图,在直角三角形ABC中,,,点P是以AC为直径的半圆弧上的动点,若,则()A. B.C.最大值为D.B,O,P三点共线时,11.已知数列满足,记数列的前n项和为,则对任意,下列结论正确的是()A.存在,使B.数列单调递增C. D.三、填空题:本题共3小题,每小题5分,共15分。

12.已知,,则__________.13.现有A,B两组数据,其中A组有4个数据,平均数为2,方差为6,B组有6个数据,平均数为7,方差为若将这两组数据混合成一组,则新的一组数据的方差为__________.14.已知函数,若方程有三个不相等的实数解,则实数a的取值范围为__________.四、解答题:本题共5小题,共60分。

【新】天津市高考数学模拟试题第六套含答案讲解版

【新】天津市高考数学模拟试题第六套含答案讲解版

-5-
17. 已知几何体 A—BCED 的三视图如图所示,其中俯视图 和侧视图都是腰长为 4 的等腰直角三角形, 正视图为直角梯 形. (Ⅰ)求异面直线 DE 与 AB 所成角的余弦值; (Ⅱ)求二面角 A-ED-B 的正弦值; (3)求此几何体的体 积 V 的大小.
-6-
18. 已知函数 g ( x)
-7-
x2 y2 1(a b 0) 的左焦点为 F,上顶点 a2 b2 为 A,过点 A 与 AF 垂直的直线分别交椭圆 C 与 x 轴正半轴
19. 设椭圆 C: 于点 P、Q,且 AP= PQ . ⑴求椭圆 C 的离心率; ⑵若过 A、Q、F 三点的圆恰好与直线 l: x 3 y 3 0 相切,求椭圆 C 的方程.
- 10 -
5 1 15 3
…………… 6
a b 8 0 16 8 由 得交点坐标为( , ), …………10 分 a 3 3 b 2 1 8 8 3 1 …………13 分 ∴所求事件的概率为 P 2 1 3 88 2 17. (本小题满分 13 分) 证明: (1)取 EC 的中点是 F,连结 BF, 则 BF//DE,∴∠FBA 或其补角即为异面直线 DE 与 AB 所成 的角.
mx2 2 x m ≥ 0
等 价 于 m(1 x2 ) ≥ 2 x , 即
m≥
2x , 1 x2

2x 2 2 , ( )max=1,∴ m ≥1 . 1 1 x 1 x x x x
在△BAF 中,AB= 4 2 ,BF=AF= 2 5 .∴ cos ABF ∴异面直线 DE 与 AB 所成的角的余弦值为
10 . 5
10 . ………5 分 5 (2)AC⊥平面 BCE,过 C 作 CG⊥DE 交 DE 于 G,连 AG. 可得 DE⊥平面 ACG,从而 AG⊥DE ∴∠AGC 为二面角 A-ED-B 的平面角.

【压轴卷】数学高考模拟试题附答案

【压轴卷】数学高考模拟试题附答案

又 PQ | OF | c ,| PA | c , PA 为以 OF 为直径的圆的半径, 2
A为圆心| OA | c . 2
P
c 2
,
c 2
,又
P 点在圆
x2
y2
a2 上,
c2
c2
a2 ,即 c2
a2,
44
2
e2
c2 a2
2.
e 2 ,故选 A.
【点睛】
本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,
C. 3 i
D. 3 i
5.将编号为 1,2,3,4,5,6 的六个小球放入编号为 1,2,3,4,5,6 的六个盒子,每个盒子放一
个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法种数是( )
A.40 B.60
C.80 D.100
6.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为 a,再由乙猜甲刚才所想的数
14.函数
f
x
x2 2, x 0
的零点个数是________.
2x 6 lnx, x 0
15.已知圆锥的侧面展开图是一个半径为 2cm ,圆心角为 2 的扇形,则此圆锥的高为 3
________ cm .
a x 1 , x 1
16.已知函数 f (x) (x a)2
,函数 g(x) 2 f (x) ,若函数 y f (x) g(x) x 1
避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重
点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.
10.C
解析:C
【解析】
【分析】
本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大

全国普通高等学校高考数学模拟试卷(理科)及答案

全国普通高等学校高考数学模拟试卷(理科)及答案

全国普通高等学校高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的•1. (5 分)已知集合A={x| - x2+4x> 0},片&|占<3玄丈歼} , C=(x|x=2n, n€81N},贝U(A U B)n C=()A. {2,4}B. {0,2}C. {0,2,4}D. {x|x=2n, n € N}2. (5分)设i是虚数单位,若-- ' ― ,x,y€ R,则复数x+yi的共轭复数2^1是()A. 2 - iB.- 2 - iC. 2+iD.- 2+i3. (5分)已知等差数列{a n}的前n项和是S h,且%+a5+a6+a z=18,贝U下列命题正确的是()A. a5是常数B. S5是常数C. a i0是常数D. Si o是常数4. (5分)七巧板是我们祖先的一项创造,被誉为东方魔板”它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,贝吐匕点取自黑色部分的概率是()BCD2 25. (5分)已知点F为双曲线C: = 一一(a>0,b>0)的右焦点,直线x=aa b与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,贝U双曲线的离心率为()A. "B. I ■:C. I」订D. - % -6. (5分)已知函数f&)二sinx, K E [-冗50]诋(0t i]A . 7 .nJTD.——-74 一(5分)执行如图所示的程序框图,则输出的S的值为()2+ n B. C.盒2*出£产〔筠棗)*>201A.二7B. 「」C.. - 厂D. +-8 (5分)已知函数f仗)二sin 3葢X^\/3C^OS23(3> 0) 的相邻两个零点差的绝对值为二,则函数f (x)的图象(4A . 可由函数(X)=cos4x的图象向左平移个单位而得B. 可由函数(X)=cos4x的图象向右平移C. 可由函数(X)=cos4x的图象向右平移D . 可由函数(X)=cos4x的图象向右平移丄个单位而得24丄个单位而得245兀个单位而得9. (5 分)(羽-3)(1的展开式中剔除常数项后的各项系数和为(A . —73 B.—61 C.—55 D.—6310. (5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是(nanA . 317£~6~B.31兀C.481K D丑価兀. ■:6411. (5分)已知抛物线C: y 2=4x 的焦点为F ,过点F 分别作两条直线l i , I 2,直 线l i 与抛物线C 交于A 、B 两点,直线12与抛物线C 交于D 、E 两点,若l i 与12 的斜率的平方和为1,则|AB|+| DE 的最小值为( )A . 16 B. 20 C. 24 D . 3212. (5分)若函数y=f (x ), x € M ,对于给定的非零实数a ,总存在非零常数T , 使得定义域M 内的任意实数x ,都有af (x ) =f (x+T )恒成立,此时T 为f (x ) 的类周期,函数y=f (x )是M 上的a 级类周期函数.若函数y=f (x )是定义在 区间[0 , + %)内的2级类周期函数,且T=2,当x € [0 , 2 )时,zg ■-2,,1 ©卄比)二戈函数.若? X 1€ [6, 8] , ?X 2€L<Y <2’二、填空题(每题5分,满分20分,将答案填在答题纸上) 13 . ( 5分)已知向量, ^占口),-1),且旦丄1,则1)-=为 ______ .15. (5分)在等比数列{a n }中,a 2?a 3=2a 1,且a 4与2a 7的等差中项为17,设b n =a 2n -1- a 2n , n € N*,则数列{b n }的前2n 项和为 ______ .16.(5分)如图,在直角梯形 ABCD 中,AB 丄BC, AD // BC,一二亍「二,点14. ( 5分)已知x , y 满足约束条件(0, +x ),使g (X 2)- f (X 1)w 0成立,则实数m 的取值范围是( 的最小值E是线段CD上异于点C, D的动点,EF丄AD于点^将厶DEF沿EF折起到△ PEF 的位置,并使PF丄AF,则五棱锥P-ABCEF勺体积的取值范围为________ .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (12分)已知△ ABC的内角A, B, C的对边a, b, c分别满足c=2b=2.2bcosA+acosC+ccosA=Q 又点D 满足■ /(1)求a及角A的大小;18. (12分)在四棱柱ABCD- A i B i C i D i中,底面ABCD是正方形,且匚-:-,/ A1AB=Z A1AD=6C°.(1)求证:BD丄CG;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB所成角的正弦值为I .19. (12分)过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数「(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N (卩,d2),利用该正态分布,求Z落在(14.55, 38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这 4 包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为^=V142. 75^11-95;②若〜N — b 2 ),贝U P (卩―crV Z< p+ o)=0.6826,P (卩―2 o< Z< (J+2 C)=0.9544.0e030 ・-0-025 ・*0.020 - 0.0150.01010 2030 4050各水饺质量指标丄一,且以两焦点为直20. (12分)已知椭圆C: 亏〔呂0)的离心率为径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线I: y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21. (12分)已知函数f (x) =e x- 2 (a- 1) x- b,其中e为自然对数的底数.(1)若函数f (x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g (x) =e x-(a- 1) x2- bx- 1,且g (1) =0,若函数g (x)在区间[0,1]上恰有3个零点,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22. (10分)在平面直角坐标系xOy中,圆C i的参数方程为\ K-_Uacos® ( 0ty=-l+asin9为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为p =2^2^05 ( .(1)求圆C i的极坐标方程和圆C2的直角坐标方程;(2)分别记直线I: ^吕,P€ R与圆C i、圆C2的异于原点的焦点为A,B,若圆C i与圆C2外切,试求实数a的值及线段AB的长.[选修4-5:不等式选讲]23. 已知函数f (x) =|2x+1| .(1)求不等式f (x)< 10-| x-3|的解集;(2)若正数m,n 满足m+2n=mn,求证:f (m) +f (- 2n)》16.2018年全国普通高等学校高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的•1. (5 分)已知集合A={x| - x2+4x> 0}, B二丘|丄<罗<27} , C={x|x=2n, n€31N},贝U(A U B)n C=()A. {2,4}B. {0,2}C. {0,2,4}D. {x|x=2n, n € N}【解答】解:A={x| - x2+4x> 0} ={x| 0< x< 4},駐〔兀I去V3y 27} ={x| 3-4v 3x v 33}={x| - 4<x< 3},oJL则A U B={x| - 4< x<4},C={x| x=2n, n € N},可得(A U B)n C={0, 2, 4},故选C.2. (5分)设i是虚数单位,若' ,x, y€ R,则复数x+yi的共轭复数2-1是()A. 2 - iB.- 2 - iC. 2+iD.- 2+i【解答】解:由一「2-1得x+yi= — -i —-! ■=2+i得x+yi= =2+i,•••复数x+yi的共轭复数是2 -i.3(5分)已知等差数列{a n}的前n项和是S,且a4+a5+a e+a7=18,则下列命题正确的是()A. a5是常数B. S5是常数C. a10是常数D. Si0是常数故选:A.【解答】解:•••等差数列{a n }的前n 项和是S n ,且a 4+a 5+a 6+a 7=18, 二 a 4+a 5+a 6+a 7=2 (a i +a io ) =18, --a i +a io =9, …Sg 二乎(有十^10)=45- 故选:D .4. (5分)七巧板是我们祖先的一项创造,被誉为 东方魔板”它是由五块等腰 直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形) 、- 块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,贝吐匕点取自黑色部分的概率是()【解答】解:设AB=2,则BC=CD=DE=EF=1V B —订,S 平行四边形EFG 阳2S BC =2 X — , •••所求的概率为口 +S 平行四边形EPGH g 正方形AB5 =2x7故选:A .2 25. (5分)已知点F 为双曲线C : 云丄尹1 (a >0, b >0)的右焦点,直线x=a 与双曲线的渐近线在第一象限的交点为 A ,若AF 的中点在双曲线上,贝U 双曲线 的离心率为()16BCDA. . 1B. I ■:C.「'.打D. I 口2 2【解答】解:设双曲线C:青冬二1的右焦点F (c, 双曲线的渐近线方程为y丄x,a由x=a代入渐近线方程可得y=b,则A(a,b),可得AF的中点为(誓,寺b),代入双曲线的方程可得卄J -丄=1,可得4a2- 2ac- c2=0,由e*,可得e2+2e- 4=0,a解得e= !.- 1 (- 1 —汀舍去),故选:D. 0),6. (5分)已知函数f&)二则.A. 2+ nB. JT T-2J Ql-/dK=/ cOSdt= J 1 址齐t芒1 2+',J 2开£(只),xE [-TT , 0]2,址© 1]^rcsinx *兀4+ (- COSX:=(2. 故选:D.7. (5分)执行如图所示的程序框图,则输出的 S 的值为()A ...工7B .C.. -厂 D . m【解答】解:第1次循环后,S=-,不满足退出循环的条件,k=2; 第2次循环后,S= -;,不满足退出循环的条件,k=3; 第3次循环后,S= =2,不满足退出循环的条件,k=4;第n 次循环后,S= ,不满足退出循环的条件,k=n+1 ; 第2018次循环后,S=,3.「儿 不满足退出循环的条件,k=2019第2019次循环后,S==2「|「,满足退出循环的条件, 故输出的S 值为2厂「, 故选:C& (5分)已知函数f (瓷)sin® xug®負7勺(3> 0)的相邻两个 零点差的绝对值为「则函数f (x )的图象()A. 可由函数g (x ) =cos4x 的图象向左平移卑匚个单位而得B. 可由函数g (x ) =cos4x 的图象向右平移2二个单位而得24C. 可由函数g (x ) =cos4x 的图象向右平移丄?个单位而得D. 可由函数g (x ) =cos4x 的图象向右平移一个单位而得O【解答】 解:函数 f (7) =sinseesxVsccs5 工=寺 sin7T=sin (2^)-—)(3>0)的相邻两个零点差的绝对值为才?爲=:,二①=2 f (x ) =sin (4x -中=cos[(2 3X )]=cos (4x普).故把函数g (x ) =cos4x 的图象向右平移竺个单位,可得f (X )的图象,24 故选:B.9・(5分)©-3)(代/的展开式中剔除常数项后的各项系数和为( )A .- 73B .- 61C.- 55D .- 63【解答】解:丄广展开式中所有各项系数和为(2- 3) (1+1) 6=- 64; ⑵-3)(1 丄)社(2x -3) (1忑碍+•••),工工/其展开式中的常数项为-3+12=9,• ••所求展开式中剔除常数项后的各项系数和为 -64 - 9=- 73.故选:A . 6【解答】解:如图,可得该几何体是六棱锥 P -ABCDEF 底面是正六边形,有一 PAF 侧面垂直底面,且P 在底面的投影为AF 中点,过底面中心N 作底面垂线, 过侧面PAF 的外心M 作面PAF 的垂线,两垂线的交点即为球心 0, 设厶PAF 的外接圆半径为r ,/二(2P )牛(寺严,解得r #,•価二0昨茅6 (5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF 是边长为 1的正六边形,点G 为AF 的中点,则该几何体的外接球的表面积是()A .B .312Z8 C.鋁1叽64D.48MAS11. (5分)已知抛物线C: y 2=4x 的焦点为F ,过点F 分别作两条直线11, 12,直 线11与抛物线C 交于A 、B 两点,直线12与抛物线C 交于D 、E 两点,若11与12 的斜率的平方和为1,则|AB|+| DE 的最小值为()A . 16 B. 20 C. 24 D . 32【解答】解:抛物线C: y 2=4x 的焦点F (1, 0),设直线11: y=k i (x- 1),直线 12: y=k 2 (x - 1),由题意可知,贝U 叭Jk 『二1,设 A (X 1 , y 1), B (X 2 , y 2),贝 U X 1+X 2= -------k l 4设 D (X 3 , y 3), E (X 4 , y 4),同理可得:X 3+X 4=2+ ° ,k2由抛物线的性质可得:丨AB | =X 1+x 2+p=4+则该几何体的外接球的半径•••表面积是则该几何体的外接球的表面积是7 V4M+1 FS=4冗 R =°*l 兀.64联立丿y=k] (i-lj,整理得:k 12x 2-( 2k 12+4) x+k 12=0,R= I :. 故选:C.C,| DE | =X 3+X 4+pk l=84 ,当且仅当k®目时,上式“我立• ••• | AB|+| DE 的最小值 24, 故选:C.12. (5分)若函数y=f (x ), x € M ,对于给定的非零实数a ,总存在非零常数T , 使得定义域M 内的任意实数x ,都有af (x )=f (x+T )恒成立,此时T 为f (x ) 的类周期,函数y=f (x )是M 上的a 级类周期函数.若函数y=f (x )是定义在区间[0 , + %)内的2级类周期函数,且T=2,当x € [0 , 2 )时,f(2-Kb 1<X<2(0 , +x),使g (x 2)- f (X 1)w 0成立,贝U 实数m 的取值范围是(【解答】解:根据题意,对于函数f(x ),当x € [0 , 2)时,f k)弓2fCE-s), Kx<2-2,有最大值f (0)二,最小值f (1)2,当1v x v 2时,f (x ) =f (2 -x ),函数f (x )的图象关于直线x=1对称,则此时 有-一v f (x )v又由函数y=f (x )是定义在区间[0, +7 内的2级类周期函数,且T=2; 则在€ [6, 8) 上, f (x ) =23?f (x -6),则有—12<f (x )w 4,则 f (8) =2f (6) =4f (4) =8f (2) =16f (0) =8,则函数f (x )在区间[6 , 8]上的最大值为8,最小值为-12;A .—] B. (a, 13 ] C. 〔a,32 J2」2」D .[普g| AB|+| DE =8+1 k 24(ki 2+k 2Z ) 8P4、412 J一 _ _ •若? xi € [ 6, 8] , ? X 2 €函数 =-21nx分析可得:当O w x < 1时,f (x) --=84 ,对于函数山)二-加4^5切,有g'(x) =-Z +X+1」®之-炉1)3切L x x x分析可得:在(0 , 1)上,g (x)v0,函数g (x)为减函数,在(1 , +x)上,g r (x)>0,函数g (x)为增函数,则函数g (x )在(0, +x )上,由最小值f (1) =_ +m ,2若? x i € [6, 8] , ? X 2 €(0, +x ),使 g (X 2)— f (x i )< 0 成立, ,即一+m < 8, ,即m 的取值范围为(-x,必有 g (x ) min < f (x ) max 故选:B. 解可得m 13 2 、填空题(每题5分,满分20分,将答案填在答题纸上) 13. (5 分)已知向重.I _ d •二二「,,| 丄---,且-一、,则! . I I ]【解答】解:根据题意,向重 丁(2営cgd ),b=(l, -1), 若;丄卞,则 ^?b=2sin a cos a =0 则有 tan a又由 sin 2 a +COS 2 a=1 则有 则 则 |..|-: 2^5sina=^ a" COS Cl - !_ 亍),或 = sin a 二芈^ 5 n _砸 C0S 或(— 5则崙丄)2=3品2- 21?工半 5故答案为: 14. (5分)已知x , y 满足约束条件 的最小值为L_. 【解答】解:由约束条件作出可行域如图,X = — 22n -4,联立fxWQ ,解得A (2, 4), J 23<2,令t=5x -3y ,化为y 专富诗,由图可知,当直线宾耳过A 时, 」 J "J 直线在y 轴上的截距最大,t 有最小值为-2. •••目标函数 玄二彳; 的最小值为2~^-^. 故答案为:丄.15. (5分)在等比数列{a n }中,a 2?a 3=2a i ,且a 4与2a 7的等差中项为17,设b n =a 2n -1- a 2n , n € N*,则数列{b n }的前2n 项和为—亠〕/" _.丄ka【解答】解:等比数列{a n }中,a 2?a 3=2a i ,且a 4与2a 7的等差中项为17, 设首项为a 1,公比为q , 则:整理得:+血]<1 二 34解得: 则: 所以:b n =a 2n -1 — a 2n =屯一」116. (5分)如图,在直角梯形 ABCD 中,AB 丄BC, AD // BC,上-二一二-_,点 E 是线段CD 上异于点C , D 的动点,EF 丄AD 于点^将厶DEF 沿 EF 折起到△ PEF 的位置,并使PF 丄AF ,则五棱锥P -ABCEF 的体积的取值范围为【解答】 解:T PF 丄AF , PF 丄EF, AF G EF=F 二PF 丄平面ABCD 设 PF=x 贝U O v x v 1, 且 EF=DF=x•五棱锥P-ABCEF 的体积V 丄 丄(3-x 2) x 设 f (x ) (3x - x 3),贝U f ' (x) — (3 - 3x 2)6 6•••当 O v x v 1 时,f'(x )>0,则:T 2n = I' 1-4 故答案为: 討护). (0,丄) •五边形ABCEF 的面积为S=S 弟形ABCD - x( 1+2)x 1-—X 2丄(3-x 2). (3x — x 3), (1-x 2),••• f(x)在(0, 1)上单调递增,又f (0)=0, •五棱锥P-ABCEF的体积的范围是(0,丄).故答案为:三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (12分)已知△ ABC的内角A, B, C的对边a, b, c分别满足c=2b=2.2bcosA+acosC+ccosA=Q 又点 D 满足 【解答】 解:(1)由2bcosA+acosC+ccosA=0及正弦定理得-2sinBcosA=sinAcos&osAsinC 即—2si nBcosA=si n( A+C ) =s inB, 在厶 ABC 中,sinB >0,所以一”二二. 在厶 ABC 中,c=2b=2,由余弦定理得 a 2=b 2+c 2 - 2bccosA=k J +c 2+bc=7, 18. (12分)在四棱柱ABCD — A i B i C i D i 中,底面ABCD 是正方形,且匚-■-,/ A 1AB=Z A 1AD=6C °.(1) 求证:BD 丄CG ;(2) 若动点E 在棱C 1D 1上,试确定点E 的位置,使得直线DE 与平面BDB 所成 角的正弦值为….又A €(0, n),所以(1)求a 及角A 的大小; C所以一 I【解答】解:(1)连接A i B, A i D, AC,因为AB=AA=AD,/ A i AB=Z A i AD=60,所以△ A i AB和厶A i AD均为正三角形,于是A i B=A i D.设AC与BD的交点为0,连接A i O,则A i O丄BD,又四边形ABCD是正方形,所以AC丄BD, 而A i O n AC=O,所以BD丄平面A i AC.又AA i?平面A i AC,所以BD丄AA i, 又CG // AA i,所以BD丄CG.(2)由,及BDW2AB=2,知A i B丄A i D,结合A i O丄BD, AO n AC=O 得A i O丄底面ABCD, 所以OA、OB、OA i两两垂直.如图,以点O为坐标原点,| &的方向为x轴的正方向,建立空间直角坐标系 -xyz 则A (i, 0, 0), B (0 , i , 0), D (0 , - i , 0), A i (0 , 0 , i) , C(- i , 0 , DB=(O, 2, 0),瓦二瓯二(一1・ 0, 1), D]C[二磋(T, 1;",由i 丨,得Di (- i, - i , i).设:,I- ■:.:'(疋[0 , i]),则(X E+i , y E+i , Z E- i)=入(-i , i , 0),即 E (-入—i,入—i , i), 所以;「―■•亠.设平面B i BD的一个法向量为|• • •'!,O 0),B,从而A i O丄AO,设直线DE 与平面BDB 所成角为9, 则血*k^<运,(—'—D+oy m 丨申, V2XV X 2+(-1-\)£+1 14 解得二二或•,二丄(舍去),2 3所以当E 为D i C i 的中点时,直线DE 与平面BDBi 所成角的正弦值为「.19. ( 12分)过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节 前夕,A 市某质检部门随机抽取了 100包某种品牌的速冻水饺,检测其某项质量 指标,(1) 求所抽取的100包速冻水饺该项质量指标值的样本平均数■:(同一组中的 数据用该组区间的中点值作代表);(2) ①由直方图可以认为,速冻水饺的该项质量指标值 Z 服从正态分布N(卩, ;),利用该正态分布,求Z 落在(14.55, 38.45)内的概率;②将频率视为概率,若某人从某超市购买了 4包这种品牌的速冻水饺,记这 4 包速冻水饺中这种质量指标值位于(10, 30)内的包数为X ,求X 的分布列和数 学期望. 附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为②若(卩,^ ),贝U P (卩―eV Z w p+ o ) =0.6826, P (卩―2 eV Z w (J +2 o ) =0.9544.得n=(l, 0, 1),n ・ E6=0 {十…… n • &B-i =0 L得 产。

1. 《2024年高考数学模拟试题及答案》

1. 《2024年高考数学模拟试题及答案》

1. 《2024年高考数学模拟试题及答案》一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1、已知集合 A ={x |-2 < x < 3},B ={x | x² 5x + 4 <0},则A ∩ B =()A {x | 1 < x < 3}B {x |-2 < x < 1}C {x | 1 < x < 4}D {x |-2 < x < 4}2、复数 z =(1 + i)(2 i)在复平面内对应的点位于()A 第一象限B 第二象限C 第三象限D 第四象限3、已知向量 a =(1, 2),b =(m, -1),若 a ⊥ b,则 m =()A -2B 2C -1/2D 1/24、某中学高一年级有学生 1000 人,高二年级有学生 800 人,高三年级有学生 600 人,现采用分层抽样的方法从该校抽取一个容量为 n的样本,若从高二年级抽取了 80 人,则 n 的值为()A 200B 240C 280D 3205、函数 f(x) = log₂(x² 4x + 3)的单调递增区间是()A (∞, 1)B (∞, 2)C (2, +∞)D (3, +∞)6、若直线 l₁:ax + 2y + 6 = 0 与直线 l₂:x +(a 1)y + a² 1= 0 平行,则 a =()A -1B 2C -1 或 2D 17、已知等差数列{aₙ}的前 n 项和为 Sₙ,若 a₁= 2,S₃= S₅,则公差 d =()A -2B 0C 2D 48、已知圆 C:(x 1)²+(y 2)²= 4 与直线 l:x y + 1 = 0 相交于 A,B 两点,则弦长|AB| =()A 2√2B 2√3C 4D 69、一个几何体的三视图如图所示,则该几何体的体积为()(正视图和侧视图是等腰三角形,底边为 4,高为 4;俯视图是边长为 4 的正方形)A 32B 64C 128/3D 256/310、设函数 f(x) =sin(ωx +φ)(ω > 0,|φ| <π/2)的最小正周期为π,且f(π/8) =√2/2,则()A f(x)在(0, π/2)上单调递减B f(x)在(π/8, 3π/8)上单调递增C f(x)在(0, π/2)上单调递增D f(x)在(π/8, 3π/8)上单调递减11、已知函数 f(x) = x³ 3x,若过点 M(2, t)可作曲线 y = f(x)的三条切线,则实数 t 的取值范围是()A (-6, -2)B (-4, -2)C (-6, 2)D (0, 2)12、已知双曲线 C:x²/a² y²/b²= 1(a > 0,b > 0)的左、右焦点分别为 F₁,F₂,过 F₂作双曲线 C 的一条渐近线的垂线,垂足为 H,若|F₂H| = 2a,则双曲线 C 的离心率为()A √5B 2C √3D √2二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13、已知函数 f(x) = 2sin(2x +π/6),则 f(x)的最小正周期为_____14、若 x,y 满足约束条件 x +y ≥ 1,x y ≥ -1,2x y ≤ 2,则 z= x + 2y 的最大值为_____15、已知抛物线 y²= 2px(p > 0)的焦点为 F,点 A(4, 2)在抛物线上,且|AF| = 5,则 p =_____16、已知数列{aₙ}满足 a₁= 1,aₙ₊₁= 2aₙ + 1,则 a₅=_____三、解答题(本大题共 6 小题,共 70 分)17、(10 分)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a = 3,b = 5,c = 7、(1)求角 C 的大小;(2)求△ABC 的面积18、(12 分)已知数列{aₙ}是等差数列,a₁= 1,a₃+ a₅=14、(1)求数列{aₙ}的通项公式;(2)设数列{bₙ}满足 bₙ = aₙ × 2ⁿ,求数列{bₙ}的前 n 项和 Sₙ19、(12 分)如图,在四棱锥 P ABCD 中,底面 ABCD 是平行四边形,PA ⊥底面 ABCD,PA = AB = 2,AD = 4,∠BAD = 60°(1)证明:BD ⊥平面 PAC;(2)求二面角 P BD A 的余弦值20、(12 分)某工厂生产甲、乙两种产品,已知生产每吨甲产品要用 A 原料 3 吨,B 原料 2 吨;生产每吨乙产品要用 A 原料 1 吨,B原料 3 吨。

2023-2024学年河北省部分学校高三下学期高考演练数学模拟试题(一模)含解析

2023-2024学年河北省部分学校高三下学期高考演练数学模拟试题(一模)含解析

2023-2024学年河北省部分学校高三下学期高考演练数学模拟试题(一模)一、单选题1.已知集合{}220|A x x x =-<,集合{}210|2x B x -=-≤,则A B ⋃=()A .{}|02x x <<B .{}2|0x x <≤C .{}|2x x <D .{}2|x x ≤【正确答案】D【分析】根据一元二次不等式以及指数不等式化简集合,A B ,由集合的并运算即可求解.【详解】由于22021022202x x x x ---≤⇒≤⇒-≤⇒≤所以{}|02A x x =<<,{}|2B x x =≤,所以{}|2A B x x ⋃=≤.故选:D.2.已知复数1z ,2z ,“21z z >”是“211z z >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】D【分析】根据充分条件和必要条件的定义求解.【详解】若21z z >,可得复数1z ,2z 都为实数,当120z z <<时,211z z <,充分性不成立;反之,若211z z >取复数11i z =+,222i z =+,满足2121z z =>,但此时复数1z ,2z 均为虚数,不能比较大小,必要性不成立,所以“21z z >”是“211z z >”的既不充分也不必要条件;故选:D.3.若函数923log ,14()1,123x x f x x x x ⎧->⎪⎪=⎨⎪≤⎪++⎩,则523f f ⎡⎤=⎪⎢⎥⎢⎣⎛ ⎝⎦⎭⎥⎫()A .517B .175C .417D .174【正确答案】C【分析】根据自变量的取值,即可代入到分段函数中,计算即可.【详解】由于5231>,所以5522935313log 34442f ⎛⎫=-=-= ⎪⎝⎭,故5211431217134f f f ⎡⎤⎛⎫==⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+⎪⎭+⎛⎫ ⎝=,故选C.4.2021年5月22日上午10点40分,祝融号火星车安全驶离着陆平台,到达火星表面,开始巡视探测.为了帮助同学们深入了解祝融号的相关知识,某学校进行了一次航天知识讲座,讲座结束之后,学校进行了一次相关知识测试(满分100分),学生得分都在[]50,100内,其频率分布直方图如下,若各组分数用该组的中间值代替,估计这些学生得分的平均数为()A .70.2B .72.6C .75.4D .82.2【正确答案】C【分析】根据题意,由频率之和为1,可得m 的值,然后结合平均数的计算公式,代入计算,即可得到结果.【详解】由条件可得()0.0040.0540.0120.010101m ++++⨯=,则0.020m =,故得分的平均数为.()0.004550.020650.054750.012850.010951075.4⨯+⨯+⨯+⨯+⨯⨯=故选:C5.中国国家大剧院的外观被设计成了半椭球面的形状.如图,若以椭球的中心为原点建立空间直角坐标系,半椭球面的方程为2222221x y z a b c++=(0,z ≥,,,0a b c >,且a ,b ,c 不全相等).若该建筑的室内地面是面积为2(0)m m π>的圆,给出下列结论:①a b =;②c m =;③2ac m =;④若ac m >,则1c >,其中正确命题的个数为()A .1B .2C .3D .4【正确答案】B【分析】根据已知得a b m ==,结合题设判断各项正误即可.【详解】在2222221x y z a b c ++=中,令0z =可得该建筑室内地面对应的曲线方程为22221x y a b+=,由室内地面是面积为2πm (0)m >的圆,故a b =,①对;且22ππa m =,则a b m ==,又,,a b c 不全相等,故c m ≠,②错;若2ac m =,则2mc m =,可得c m =,与,,a b c 不全相等矛盾,③错;若ac m >,则0mc m >>,故1c >,④对.故选:B.6.已知α是第三象限角,3cos 2sin 2αα+=,则tan α=()A .24B 33C 3D .22【正确答案】A【分析】根据α是第三象限角,3cos 2sin 2αα+=,利用二倍角公式整理得26sin sin 10αα--=,求得sin α,再利用基本关系求解.【详解】∵α是第三象限角,3cos 2sin 2αα+=,∴()2312sin sin 2αα-+=,∴26sin sin 10αα--=,解得1sin 3α=-或1sin 2α=(舍去),∴22cos 1sin 3αα=--=-,∴2tan 4α=,故选:A.7.直线:40l ax by +-=与圆22:4O x y +=相切,则22(3)(4)a b -+-的最大值为()A .16B .25C .49D .81【正确答案】C【分析】利用圆与直线的位置关系得出,a b 的方程,根据方程分析利用22(3)(4)a b -+-表示的几何意义求解即可.【详解】由直线l 与圆O 相切可得:圆心()0,0O 到直线l 的距离等于圆的半径,2=,故224a b +=,即点(,)a b 在圆O 上,22(3)(4)a b -+-的几何意义为圆上的点(,)a b 与点(3,4)之间距离的平方,由224a b +=圆心为()0,0,因为22344+>,所以点(3,4)在圆224a b +=外,所以点(,)a b 到点(3,4)的距离的最大值为圆心到(3,4)的距离与圆半径之和,即27d r +=,所以22(3)(4)a b -+-的最大值为2749=.故选:C.8.为了提高同学们对数学的学习兴趣,某高中数学老师把《周髀算经》、《九章算术》、《孙子算经》、《海岛算经》这4本数学著作推荐给学生进行课外阅读,若该班A ,B ,C 三名同学有2名同学阅读其中的2本,另外一名同学阅读其中的1本,若4本图书都有同学阅读(不同的同学可以阅读相同的图书),则这三名同学选取图书的不同情况有()A .144种B .162种C .216种D .288种【正确答案】A【分析】利用排列组合公式进行合理分类讨论即可.【详解】分两种情况:第一种情况,先从4本里选其中2本,作为一组,有24C 种,第二组从第一组所选书籍中选1本,再从另外2本中选取1本作为一组,剩余一本作为一组,再分给3名同学,共有211342231C C C A 2方法;第二种情况:从4本里任选2本作为一组,剩余的两本作为一组,有224222C C A 种分法,分给3名同学中的2名同学,有23A 种分法,剩余1名同学,从这4本中任选一本阅读,有14C 种分法,共有2221423422C C A C A ⋅种方法.故这三名同学选取图书的不同情况有222113214242233422C C 1C C C A A C 1442A +⋅=种.故选:A.二、多选题9.已知函数()sin cos (0)f x x x ωωω=+>的最小正周期为π2,若12()()2f x f x =-,则()A .()f x 关于直线1x x =对称B .()f x 关于点2(,0)x 对称C .12x x +的最大值为π2D .12x x +的最小值为π8【正确答案】AD【分析】根据辅助角公式化简()f x ,利用周期的公式求解4ω=,进而根据12()()2f x f x =-可判断12,x x x x ==为()f x 的对称轴,即可判断AB,利用对称中心可求解DC.【详解】由π()sin cos cos )4f x x x x ω=+=+的最小正周期为π2可得2ππ2ω=,即4ω=,故π())4f x x =+,由12()()2f x f x =-可得1()f x ,2()f x 分别为()f x 的最大值和最小值,故()f x 关于直线1x x =对称,不关于点2(,0)x 对称,故A 正确,B 错误;由()π4πZ 4x k k +=∈可得()1πZ 416x kx k =-∈,故()f x 的对称中心()1ππ,0Z 416k k ⎛⎫-∈ ⎪⎝⎭,则121π1π2ππ,Z 41628x x n n n +=-=-∈,当0n =时,12x x +取得最小值π8,没有最大值,故C 错误,D 正确.故选:AD10.已知双曲线2222:1(0,0)x y C a b a b-=>>的虚轴长为2,过C 上点P 的直线l 与C 的渐近线分别交于点A ,B ,且点P 为AB 的中点,则下列正确的是()A .若(,)P m n 且直线l 的斜率存在,直线l 的方程为21mynx a -=B .若(2,1)P ,直线l 的斜率为1C.若离心率e =2OAB S=△D .若直线l 的斜率不存在,2AB =【正确答案】BCD【分析】根据点差法可得直线的斜率,进而可判断A ,利用A 选项的求解可判断B ,利用离心率可得渐近线方程,进而联立直线AB 与渐近线方程得交点坐标,利用三角形面积公式以及双曲线方程可判断C ,根据顶点和渐近线方程可求解D.【详解】由题意1b =,双曲线222:1x C y a-=.对于A ,若(,)P m n ,则2221m n a-=,即2222m a n a -=.设11(,)A x y ,22(,)B x y ,则221120x y a -=,222220x y a -=,利用点差法可得121222212122()2ABy y x x m m k x x a y y a n a n-+===-+=,所以直线l 的方程为y n -=2()mx m a n-,即2222a ny a n mx m -=-,所以22222mx a ny m a n a -=-=,即21mxny a -=,故A 错误;对于B ,若(2,1)P ,可得222211a -=,则a =l 的斜率为22121m a n ==⨯,即B 正确;对于C,若离心率222,2c e c a b a==+,可得2a =.则双曲线22:14x C y -=,其渐近线方程为2xy =±,设11(,)2x A x ,22(,2xB x -,直线()()121112:22x x x AB y x x x x +=-+-,令121220,x xy x x x ==+,则121221122212221OAB x x x x x x S x x +=+=△,由A 知AB 方程为14mxny -=,联立方程142mxny x y ⎧-=⎪⎪⎨⎪=⎪⎩可得142x m n =-,同理可得242x m n =+,所以1211442222OAB S x x m n m n ==⨯-+△2288244m n ===-,故C 正确;对于D ,若直线l 的斜率不存在,则直线l 过双曲线的顶点,所以(,0)P a ±,双曲线的渐近线方程为1y x a=±,当x a =±时,代入渐近线方程易得A ,B 两点的纵坐标为1±,所以2AB =,故D 正确;故选:BCD.11.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,点P ,Q ,M 分别为11A D ,11C D ,BC 的中点,下列结论正确的有()A .//AC 平面PQMB .该四棱柱有外接球,则四边形ABCD 为正方形C .BC 与平面PQM 不可能垂直D .BD QM⊥【正确答案】ABC【分析】根据线线平行即可判断A ,利用外接圆的对角互补,则可判断B ,利用反证法,结合线面垂直的性质定理可判断C,D.【详解】对A ,连接11AC ,由点P ,Q ,分别为11A D ,11C D 可得11//ACPQ ,11111////.AA BB CC AA BB CC == ,所以四边形11A ACC 为平行四边形,则11//AC AC ,故//AC PQ ,AC ⊄平面PQM ,PQ ⊂平面PQM ,则//AC 平面PQM ,即A 正确;对B ,若四棱柱有外接球,则四边形ABCD 有外接圆,则ABCD 对角互补,则ABCD 为正方形,即B 正确;对C ,若BC ⊥平面PQM ,PQ ⊂平面PQM ,则BC PQ ⊥,由//PQ AC 可得BC AC ⊥,与条件矛盾,故BC 与平面PQM 不可能垂直,即C 正确;对D ,取CD 的中点N ,连接MN ,QN ,则//MN BD ,1//QN CC ,1CC ⊥ 平面ABCD ,QN ∴⊥平面ABCD ,MN ⊂ 平面ABCD ,QN MN ∴⊥,90QNM ∴∠=︒,则90QMN ∠<︒,故BD 与QM 不垂直,即D 错误.故选:ABC.12.设()f x 是定义在R 上的偶函数,其图象关于直线2x =对称,当[0,2]x ∈时,2()f x x =,若方程()4log (5)(0,1)a f x x a a >=+≠在[]4,6-上恰有5个实数解,则()A .()f x 的周期为4B .()f x 在[]8,10上单调递减C .()f x 的值域为[]0,2D .711a <<【正确答案】AD【分析】由对称性与奇偶性得到函数的周期性,即可判断A 、B ,结合所给函数解析式求出函数的值域,即可判断C ,画出函数()y f x =与4log (5)(1)a y x a =+>的图象,数形结合,即可判断D.【详解】由()f x 的图象关于2x =对称可得(4)()f x f x +=-,再由()f x 为偶函数可得()()f x f x -=,故()(4)f x f x =+,即()f x 的周期为4,即A 正确;当[0,2]x ∈时,由2()f x x =,可得()f x 在[0,2]上单调递增,故()f x 在[]8,10上单调递增,即B 错误;又(0)0f =,(2)4f =,故()f x 的值域为[]0,4,即C 错误;在同一坐标系下画出函数()y f x =与4log (5)(1)a y x a =+>的图象如图所示.由图可知,要使()y f x =与()4log (5)b g x x =+在[]4,6-上恰有5个不同交点,只需()()24641g g a ⎧<⎪>⎨⎪>⎩,即log 71log 1111a a a <⎧⎪<⎨⎪>⎩,解得711a <<,即a 的取值范围为()7,11,故D 正确.故选:AD三、填空题13.已知O 为ABC 的外心,若2OA =,且75BAC ∠=︒,则OB OC ⋅=__________.【正确答案】23-【分析】由平面向量数量积公式进行求解.【详解】由圆的性质可得2150BOC BAC ∠=∠=︒,2OA OB OC ===,故cos 22cos15023OB OC OB OC BAC ⋅=⋅∠=⨯⨯︒= 故23-14.若函数4()ln 42mxf x x-=-的图象关于原点对称,则实数m 的值为__________.【正确答案】2-【分析】根据奇函数的性质根据()()f x f x -=-,即可求解.【详解】依题意,()()f x f x -=-,即44ln ln 4242mx mxx x-+=-+,所以442424mx x x mx +-=+-,解得2m =±,当2m =时,42()ln42xf x x-=-,定义域{}2x x ≠不关于原点对称,故舍去,当2m =-时,42()ln 42xf x x+=-,定义域为{}22x x -<<,符合要求,故2m =-,故2-15.函数33()sincos sin cos 2222x x x xf x =-的最小值为__________.【正确答案】14-/0.25-【分析】根据二倍角公式化简()1sin 24f x x =-,即可求解最值.【详解】因为33()sin cos sin cos 2222x x x x f x =-22sin cos sin cos 2222x x x x ⎛⎫=-= ⎪⎝⎭1sin cos 2x x -1sin 24x =-,所以当π22π,Z 2x k k =+∈时,sin 21x =,此时()f x 的最小值为14-.故14-四、双空题16.如图,在三棱锥A BCD -中,AB CD ⊥,AD BC ⊥,且3BD AC =,点E ,F 分别为AD ,BC 的中点,则异面直线AC 与BD 所成角的大小为__________,AC 与EF 所成角的余弦值为__________.【正确答案】90︒10【分析】根据异面直线夹角的定义作辅助线,构造三角形.【详解】取AB 的中点G ,连接EG ,FG ,则//FG AC ,//EG BD ,故EFG ∠或其补角为异面直线AC 与EF 所成的角,过A 作AO ⊥平面BCD 于点O ,连接BO ,CO ,DO ,则AO CD ⊥,又AB CD ⊥,且AB AO A = ,故CD ⊥平面AOB ,故BO CD ⊥,同理可得DO BC ⊥,即O 为BCD △的垂心,故BD CO ⊥,又AO BD ⊥,AO CO O = ,AO ⊂平面AOC ,CO ⊂平面AOC ,故BD ⊥平面AOC ,故AC BD ⊥,即AC 与BD 所成角为90︒;所以90EGF ∠=︒,由3BD AC =可得3EG FG =,故cos FG EFG EF ∠==即异面直线AC 与EF故①90︒,②10.五、解答题17.已知n S 是公差不为0的等差数列{}n a 的前n 项和,2a 是1a ,4a 的等比中项,1278S =.(1)求数列{}n a 的通项公式;(2)已知1213n a n n b a --=⋅,求数列{}n b 的前n 项和n T .【正确答案】(1)n a n=(2)(1)31nn T n =-⨯+【分析】(1)根据题意列式求解1,a d ,即可得结果;(2)由(1)可得:1(21)3n n b n -=-⨯,利用错位相减法求和.【详解】(1)设数列{}n a 的公差为d ,因为2a 是1a ,4a 的等比中项,则2214a a a =,即2111()(3)a d a a d +=+,且0d ≠,整理得1d a =①,又因为121121211782dS a =+⨯⨯=,整理得163339a d +=②由①②解得,11a =,1d =,所以()11n a n n =+-=.(2)由(1)知,()11213213n n n n b a n ---=⨯=-⨯,则021133353(21)3n n T n -=⨯+⨯+⨯+⋅⋅⋅+-⨯,可得12313133353(23)3(21)3n nn T n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯,两式相减得0123121323232323(21)3n nn T n --=⨯+⨯+⨯+⨯+⋅⋅⋅+⨯--⨯16(13)1(21)313n n n --=+--⨯-(22)32n n =-⨯-,所以(1)31nn T n =-⨯+.18.为了了解大家对养宠物的看法,某单位对本单位450名员工(其中女职工有150人)进行了调查,发现女职工中支持养宠物的职工占13,若从男职工与女职工中各随机选取一名,至少有1名职工支持养宠物的概率为12.(1)求该单位男职工支持养宠物的人数,并填写下列22⨯列联表;支持养宠物不支持养宠物合计男职工女职工合计450(2)依据小概率值0.05α=的独立性检验,能否认为该单位职工是否支持养宠物与性别有关?附:()()()()()22n ad bc a b c d a c b d χ-=++++,n a b c d =+++.α0.100.050.0100.001x α2.7063.8416.63510.828【正确答案】(1)表格见解析(2)不能认为该单位职工是否支持养宠物与性别有关【分析】(1)运用对立事件列方程求出男职工支持养宠物的概率p ,再求出男职工中支持养宠物的人数;(2)根据卡方公式求解.【详解】(1)从男职工中随机选取1人,设支持养宠物的概率为p ,则2人中至少有一名支持养宠物是都不支持养宠物的对立事件,∴111(1)(1)32p ---=,解得14p =,则男职工中支持养宠物的人数为1300745⨯=,22⨯列联表如下:支持养宠物不支持养宠物合计男职工75225300女职工50100150合计125325450(2)零假设为:0H :性别与态度无关联;由于22450(7510022550) 3.462 3.841125325300150χ<⨯-⨯=≈⨯⨯⨯,∴不能认为该单位职工是否支持养宠物与性别有关;综上,男职工中支持养宠物的人数为75;不能认为该单位职工是否支持养宠物与性别有关.19.在ABC 中,4AB =,AC =点D 为BC 的中点,连接AD 并延长到点E ,使3AE DE =.(1)若1DE =,求BAC ∠的余弦值;(2)若π4ABC ∠=,求线段BE 的长.【正确答案】(1)4-2【分析】(1)设BD DC x ==,由cos cos 0ADB ADC ∠+∠=结合余弦定理求解即可求出x =ABC 中,由余弦定理即可求出答案.(2)在ABC 中,由余弦定理求出BC =ABD △中,由余弦定理求出AD =,连接BE ,在ABE 中,由余弦定理即可求出线段BE 的长.【详解】(1)因为1DE =,3AE DE =,所以2AD =,因为πADB ADC ∠+∠=,所以cos cos 0ADB ADC ∠+∠=,设BD DC x ==,则222222022BD AD AB CD AD AC BD AD CD AD+-+-+=⋅⋅,即224164802222x x x x +-+-+=⋅⋅⋅⋅,解得x =2BC BD ==在ABC 中,由余弦定理知,222cos2AB AC BC BAC AB AC +-∠==-⋅(2)在ABC 中,由余弦定理知,2222cos AC AB BC AB BC ABC =+-⋅⋅∠,所以2816242BC BC =+-⋅⋅⋅,化简得280BC -+=,解得BC =因为D 是BC 的中点,所以12BD BC ==在ABD △中,由余弦定理知,2222cos AD AB BD AB BD ABC =+-⋅⋅∠16224102=+-⨯=,所以AD =,因为3AE DE =,所以32AE AD ==在ABD △中,由余弦定理知,222cos2AB AD BD BAE AB AD +-∠=⋅连接BE ,在ABE 中,由余弦定理知,2222cos BE AB AE AB AE BAE =+-⋅⋅∠=351624222⎛⎫+-⨯⨯= ⎪ ⎪⎝⎭,所以BE =20.如图,在三棱锥-P ABC 中,平面PAC ⊥平面ABC ,若PAC △为等边三角形,ABC 为等腰直角三角形,且AC BC =,点E 为AC 的中点,点D 在线段AB 上,且4AB AD =.(1)证明:AB ⊥平面PDE ;(2)求平面PDE 与平面PBC 所成锐二面角的余弦值.【正确答案】(1)证明见解析4【分析】(1)作出辅助线,得到DE AB ⊥,由三线合一得到PE AC ⊥,从而得到线面垂直,面面垂直,从而证明出结论;(2)建立空间直角坐标线,利用空间向量求解二面角的余弦值.【详解】(1)如图,取AB 的中点G ,由AC BC =可得CG AB ⊥,由4AB AD =可得D 为AG 的中点,由E 为AC 的中点可得DE 为ACG 的中位线,∴DE CG ∥,∴DE AB ⊥,∵E 为AC 的中点,PA PC =,∴PE AC ⊥,∵平面PAC ⊥平面ABC ,且平面PAC 平面ABC AC =,PE 在面PAC 内,∴PE ⊥平面ABC ,而AB ⊂平面ABC ,∴PE AB ⊥,又PE DE E = ,且PE DE ⊂,平面PDE ,∴AB ⊥平面PDE .(2)以C 为原点,CA 、CB 为x 、y 轴,过C 垂直于面ABC 的直线为z 轴,设4PA =.则(4,0,0)A ,(0,4,0)B ,(0,0,0)C,P ,则(2,0,PA =- ,()4,4,0AB =-,∴1(1,1,4PD PA AD PA AB =+=+=-,(2,4,PB =--,(2,0,PC =--,设平面PBC 的一个法向量为(,,)n x y z =,由24020n PB x y z n PC x ⎧⋅=-+-=⎪⎨⋅=--=⎪⎩,解得0y =,令x =1z =-,故1)n =-,由(1)可知(4,4,0)AB =-为平面PDE 的一个法向量,∴cos,4ABAB nA nBn=⋅=-⋅,又平面PDE与平面PBC21.已知抛物线2:2(0)C x py p=>的焦点为F,直线:(1)2(0)l y k x k=>--与C交于A,B 两点,当3k=时,28AF BF+=.(1)求抛物线C的方程;(2)若直线:(1)2m y k x=---与抛物线C交于M,N两点,证明:由直线AM,直线BN及y 轴围成的三角形为等腰三角形.【正确答案】(1)24x y=(2)证明见解析【分析】(1)根据直线抛物线方程的联立以及抛物线的定义即可求解;(2)根据直线与抛物线方程的联立以及坐标关系即可求解.【详解】(1)当3k=时,直线:3(1)235l y x x=--=-,与22x py=联立消去y,整理可得26100x px p-+=,由0∆>得236400p p->,即109p>.设11(,)A x y,22(,)B x y,可得126x x p+=,所以()12123101810y y x x p +=+-=-,由题意可得0,2p F ⎛⎫ ⎪⎝⎭,准线方程为2py =-,根据抛物线的定义可得12p AF y =+,22p BF y =+,所以121810191028AF BF y y p p p p +=++=-+=-=,解得2p =,满足0∆>,所以抛物线C 的方程为24x y =.(2)直线():12(0)l y k x k =-->与24x y =联立可得24480x kx k -++=,由0∆>得21616320k k -->,即2k >或1k <-(舍)设11(,)A x y ,22(,)B x y ,则124x x k +=;直线:(1)2m y k x =---与24x y =联立消去y ,整理可得24480x kx k +-+=,由0∆>得21616320k k +->,即1k >或2k <-(舍),故2k >,设33(,)M x y ,44(,)N x y ,则344x x k +=-;因为2231313131314()4AMy y x x x xk x x x x --+===--,同理424BN x x k +=,所以123404AMBN x x x xk k ++++==,所以由直线AM ,直线BN 及y 轴围成的三角形为等腰三角形.22.已知函数()()2ln 2R f x ax x x x a =--∈.(1)若4a =,求()f x '的极值;(2)若函数()2y f x x =+有两个零点1x ,2x ,且21x ex >,求证.12ln ln 3a x x +>【正确答案】(1)极大值为4ln 22-,无极小值(2)证明见解析【分析】(1)对()f x 求导,判断()f x '的单调性,即可求出()f x '的极值;(2)根据极值点的概念整理原不等式可得12211221ln ln ln ln x x x x x x x x +-=+-即112122111ln()ln 1x x xx x x x x +=-,构建新函数1()ln (e)1t t t t t ϕ+=>-,求导,利用导数证明()2t ϕ>即可.【详解】(1)2()ln 2f x ax x x x =--的定义域为(0,)+∞,当4a =时,()4ln 22f x x x '=-+,设()4ln 22g x x x =-+,则442()2xg x x x-'=-=,由()0g x =可得2x =,当02x <<时,()0g x '>,当2x >时,()0g x '<,∴()f x '在(0,2)上单调递增,在(2,)+∞上单调递减,∴()f x '的极大值为(2)4ln 22f '=-,无极小值;(2)由()20f x x +=可得2 ln 0ax x x -=,即1ln xa x=.设ln ()(0)xh x x x=>,则21ln ()x h x x -'=.由()0h x '=可得e x =,当(0,e)x ∈时,()0h x '>,函数()h x 单调递增,当(e,)x ∈+∞时,()0h x '<,函数()h x 单调递减.∴()h x 有极大值1(e)eh =,当01x <<时,()0h x <,当1x >时,()0h x >.要使()2y f x x =+有两个零点1x ,2x ,需有110ea <<,即e a >.∵1212ln ln 1x x a x x ==,由比例的性质可得12211221ln ln ln ln x x x x x x x x +-=+-,即()21211221ln ln x x x x x x x x =+-,故121212122211111ln()ln ln 1x x x x x x x x x x x x x x ++==--,设21x t x =,由21e 0x x >>可得t e >,设函数1()ln (e)1t t t t t ϕ+=>-,则212ln ()(1)t t t t t ϕ--'=-,设1()2ln s t t t t =--,则22211()110s t t t t ⎛⎫'=-+=-> ⎪⎝⎭,∴()s t 在(e,)+∞上单调递增,故1()(e)e 20es t s >=-->,故()0t ϕ'>,∴()t ϕ在(e,)+∞上单调递增,故e 12()(e)12e 1e 1t ϕϕ+>==+>--,∴212e x x >,故312e ax x >,故312ln()ln e ax x >,即12ln ln 3a x x +>.关键点点睛:本题(2)的关键点在于由题意得出1212ln ln 1x x a x x ==,建立关系112122111ln()ln 1x x xx x x x x +=-,再结合题意化简整理,再利用导数证明不等式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【典型题】数学高考模拟试题及答案一、选择题1.某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是 A .24B .16C .8D .122.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .3.设ω>0,函数y=sin(ωx+3π)+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是 A .23B .43C .32D .34.()()31i 2i i --+=( )A .3i +B .3i --C .3i -+D .3i -5.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A .54钱 B .43钱 C .32钱 D .53钱 6.函数2||()x x f x e -=的图象是( )A .B .C .D .7.函数()23x f x x+=的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称8.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f x B .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i fξξ∈1[,]i i x x +)D .以上答案均正确9.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A .2 B .3 C .2D .510.下列说法正确的是( ) A .22a b ac bc >⇒> B .22a b a b >⇒> C .33a b a b >⇒> D .22a b a b >⇒> 11.若实数满足约束条件,则的最大值是( )A .B .1C .10D .1212.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A .3B .2C 3D 2二、填空题13.在区间[1,1]-上随机取一个数x ,cos2xπ的值介于1[0,]2的概率为 .14.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=_______________. 15.函数()lg 12sin y x =-的定义域是________.16.已知复数z=1+2i (i 是虚数单位),则|z|= _________ .17.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).18.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.19.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.20.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________. 三、解答题21.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:喜欢游泳不喜欢游泳合计男生10女生20合计已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为. (1)请将上述列联表补充完整;(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率. 下面的临界值表仅供参考: P(K 2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828(参考公式:22n(ad bc)K (a b)(c d)(a c)(b d)-=++++,其中n=a+b+c+d )22.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为()5,0,离心率为5.(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.23.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.24.在平面直角坐标系xOy 中,直线l 的参数方程为21x ty at=+⎧⎨=-⎩(t 为参数,a R ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,线C 的极坐标方程是224πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)己知直线l 与曲线C 交于A 、B 两点,且AB =a 的值.25.(选修4-4:坐标系与参数方程)在平面直角坐标系xOy ,已知曲线:sin x aC y a⎧=⎪⎨=⎪⎩(a 为参数),在以O 原点为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为cos()124πρθ+=-. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过点()1,0M -且与直线l 平行的直线1l 交C 于A ,B 两点,求点M 到A ,B 的距离之积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据题意,可分三步进行分析:(1)要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序;(2)将这个整体与英语全排列,排好后,有3个空位;(3)数学课不排第一行,有2个空位可选,在剩下的2个空位中任选1个,得数学、物理的安排方法,最后利用分步计数原理,即可求解。

【详解】根据题意,可分三步进行分析:(1)要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序,有222A =种情况;(2)将这个整体与英语全排列,有222A =中顺序,排好后,有3个空位;(3)数学课不排第一行,有2个空位可选,在剩下的2个空位中任选1个, 安排物理,有2中情况,则数学、物理的安排方法有224⨯=种, 所以不同的排课方法的种数是22416⨯⨯=种,故选B 。

【点睛】本题主要考查了排列、组合的综合应用,其中解答红注意特殊问题和相邻问题与不能相邻问题的处理方法是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题。

2.A解析:A【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.3.C解析:C 【解析】函数sin 23y x πω⎛⎫=++ ⎪⎝⎭的图象向右平移43π个单位后44sin 2sin 23333w y w x wx ππππ⎡⎤⎛⎫⎛⎫=-++=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦所以有43332013222w kk k w w k w ππ=∴=>∴≥∴=≥ 故选C4.B解析:B 【解析】 【分析】先分别对分子和分母用乘法公式化简,再分子分母同时乘以分母的共轭复数,化简即得最后结果. 【详解】由题意得,复数()()()31i 2i 13i i 13i 3i i ii i--+-+⋅-+===----⋅.故应选B【点睛】本小题主要考查复数的乘法和除法的运算,乘法的运算和实数的运算类似,只需要记住2i 1=-.除法的运算记住的是分子分母同时乘以分母的共轭复数,这一个步骤称为分母实数化,分母实数化的主要目的是将分母变为实数,然后将复数的实部和虚部求出来.属于基础题.5.B解析:B 【解析】设甲、乙、丙、丁、戊所得钱分别为2,,,,2a d a d a a d a d --++,则22a d a d a a d a d -+-=++++,解得6a d =-,又225,a d a d a a d a d -+-+++++=1a,则4422633a a d a a ⎛⎫-=-⨯-== ⎪⎝⎭,故选B.6.A解析:A 【解析】 【分析】通过(0)1f =,和函数f(x)>0恒成立排除法易得答案A . 【详解】2||()x x f x e -=,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B , 故选A 【点睛】图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目.7.C解析:C 【解析】 【分析】求函数的定义域,判断函数的奇偶性即可. 【详解】解:()f x =0x ∴≠解得0x ≠()f x ∴的定义域为()(),00,D =-∞+∞,D 关于原点对称.任取x D ∈,都有()()f x f x x-===,()f x ∴是偶函数,其图象关于y 轴对称,故选:C . 【点睛】本题主要考查函数图象的判断,根据函数的奇偶性的定义判断函数的奇偶性是解决本题的关键.8.C解析:C 【解析】 【分析】 【详解】根据近似替代的定义,近似值可以是该区间内的任一函数值()(i i f ξξ∈ []1,i i x x +),故选C .9.A解析:A 【解析】 【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.10.C解析:C【解析】【分析】由不等式的性质,对各个选项逐一验证即可得,其中错误的可举反例.【详解】选项A,当c=0时,由a>b,不能推出ac2>bc2,故错误;选项B,当a=﹣1,b=﹣2时,显然有a>b,但a2<b2,故错误;选项C,当a>b时,必有a3>b3,故正确;选项D,当a=﹣2,b=﹣1时,显然有a2>b2,但却有a<b,故错误.故选:C.【点睛】本题考查命题真假的判断,涉及不等式的性质,属基础题.11.C解析:C【解析】【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以为顶点的三角形区域(包含边界),由图易得当目标函数经过平面区域的点时,取最大值.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.12.B解析:B 【解析】 【分析】 【详解】M N ,是双曲线的两顶点,M O N ,,将椭圆长轴四等分 ∴椭圆的长轴长是双曲线实轴长的2倍 双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故答案选B二、填空题13.【解析】试题分析:由题意得因此所求概率为考点:几何概型概率解析:13【解析】试题分析:由题意得1220cos,[1,1]112232222333xx x x x x πππππππ≤≤∈-⇒≤≤-≤≤-⇒≤≤-≤≤-或或,因此所求概率为22(1)13.1(1)3-=--考点:几何概型概率14.2【解析】试题分析:因为四边形是正方形所以所以直线的方程为此为双曲线的渐近线因此又由题意知所以故答案为2【考点】双曲线的性质【名师点睛】在双曲线的几何性质中渐近线是其独特的一种性质也是考查的重点内容解析:2 【解析】试题分析:因为四边形OABC 是正方形,所以45AOB ∠=︒,所以直线OA 的方程为y x =,此为双曲线的渐近线,因此a b =,又由题意知22OB =,所以22222(22)a b a a +=+=,2a =.故答案为2.【考点】双曲线的性质【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为的形式,当,,时为椭圆,当时为双曲线.15.【解析】由题意可得函数满足即解得即函数的定义域为解析:513|22,66x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭【解析】由题意可得,函数lg(12sin )y x =-满足12sin 0x ->,即1sin 2x , 解得51322,66k x k k Z ππππ+<<+∈, 即函数lg(12sin )y x =-的定义域为513{|22,}66x k x k k Z ππππ+<<+∈. 16.【解析】【分析】【详解】复数z=1+2i (i 是虚数单位)则|z|==故答案为 解析:【解析】 【分析】 【详解】复数z=1+2i (i 是虚数单位),则|z|==.故答案为.17.390【解析】【分析】【详解】用2色涂格子有种方法用3色涂格子第一步选色有第二步涂色共有种所以涂色方法种方法故总共有390种方法故答案为:390解析:390 【解析】 【分析】 【详解】用2色涂格子有种方法,用3色涂格子,第一步选色有,第二步涂色,共有种,所以涂色方法种方法,故总共有390种方法. 故答案为:39018.【解析】【分析】首先根据题中所给的类比着写出两式相减整理得到从而确定出数列为等比数列再令结合的关系求得之后应用等比数列的求和公式求得的值【详解】根据可得两式相减得即当时解得所以数列是以-1为首项以2 解析:63-【解析】 【分析】首先根据题中所给的21n n S a =+,类比着写出1121n n S a ++=+,两式相减,整理得到12n n a a +=,从而确定出数列{}n a 为等比数列,再令1n =,结合11,a S 的关系,求得11a =-,之后应用等比数列的求和公式求得6S 的值.【详解】根据21n n S a =+,可得1121n n S a ++=+, 两式相减得1122n n n a a a ++=-,即12n n a a +=, 当1n =时,11121S a a ==+,解得11a =-, 所以数列{}n a 是以-1为首项,以2为公比的等比数列,所以66(12)6312S --==--,故答案是63-.点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.19.画画【解析】以上命题都是真命题∴对应的情况是:则由表格知A 在跳舞B 在打篮球∵③C 在散步是A 在跳舞的充分条件∴C 在散步则D 在画画故答案为画画解析:画画 【解析】以上命题都是真命题,∴对应的情况是:则由表格知A在跳舞,B在打篮球,∵③“C在散步”是“A在跳舞”的充分条件,∴C在散步,则D在画画,故答案为画画20.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP点在底面的投影为H点则底面三角形的外接圆半径解析:33493【解析】【分析】做出简图,找到球心,根据勾股定理列式求解棱锥的高,得到两种情况.【详解】正三棱锥P ABC -的外接球的表面积为16π,根据公式得到21642,r r ππ=⇒= 根据题意画出图像,设三棱锥的高为h,P 点在底面的投影为H 点,则2,2,2OP r OA r OH h =====-,底面三角形的外接圆半径为AH ,根据正弦定理得到323sin 60=,故得到外接圆半径为 3. 在三角形OAH 中根据勾股定理得到()223413h h -+=⇒=或 三棱锥的体积为:13ABCh S ⨯⨯代入数据得到13133133.32⨯⨯⨯⨯⨯=或者1319333 3.324⨯⨯⨯⨯⨯= 故答案为:33或93. 【点睛】这个题目考查了已知棱锥的外接球的半径,求解其中的一些量;涉及棱锥的外接球的球心的求法,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.三、解答题21.(1)列联表见解析;(2)有99.9%的把握认为喜欢游泳与性别有关;(3).【解析】试题分析:(1)根据在100人中随机抽取1人抽到喜欢游泳的学生的概率为35, 可得喜爱游泳的学生,即可得到列联表;(2)利用公式求得2K 与邻界值比较,即可得到结论;(3)利用列举法,确定基本事件的个数,即利用古典概型概率公式可求出恰好有1人喜欢游泳的概率.试题解析:(1)因为在100人中随机抽取1人抽到喜欢游泳的学生的概率为, 所以喜欢游泳的学生人数为人其中女生有20人,则男生有40人,列联表补充如下:喜欢游泳 不喜欢游泳 合计 男生 40 10 50 女生 20 30 50 合计 6040100(2)因为所以有99.9%的把握认为喜欢游泳与性别有关(3)5名学生中喜欢游泳的3名学生记为a ,b ,c ,另外2名学生记为1, 2,任取2名学生,则所有可能情况为(a ,b )、(a ,c )、(a ,1)、(a ,2)、(b ,c )、(b ,1)、(b ,2)、(c ,1)、(c ,2)、(1,2),共10种.其中恰有1人喜欢游泳的可能情况为(a ,1)、(a ,2)、(b ,1)、(c ,1)、 (c ,2),共6种所以,恰好有1人喜欢游泳的概率为【方法点睛】本题主要考查古典概型概率公式,以及独立性检验的应用,属于中档题,利用古典概型概率公式,求概率时,找准基本事件个数是解题的关键,在找基本事件个数时,一定要按顺序逐个写出:先11(,)A B ,12(,)A B …. 1(,)n A B ,再21(,)A B ,22(,)A B …..2(,)n A B 依次31(,)A B 32(,)A B ….3(,)n A B … 这样才能避免多写、漏写现象的发生.22.(1)22194x y +=;(2)22013x y +=. 【解析】 【分析】 【详解】试题分析:(1)利用题中条件求出c 的值,然后根据离心率求出a 的值,最后根据a 、b 、c 三者的关系求出b 的值,从而确定椭圆C 的标准方程;(2)分两种情况进行计算:第一种是在从点P 所引的两条切线的斜率都存在的前提下,设两条切线的斜率分别为1k 、2k ,并由两条切线的垂直关系得到121k k =-,并设从点()00,P x y 所引的直线方程为()00y k x x y =-+,将此直线的方程与椭圆的方程联立得到关于x 的一元二次方程,利用0∆=得到有关k 的一元二次方程,最后利用121k k =-以及韦达定理得到点P 的轨迹方程;第二种情况是两条切线与坐标轴垂直的情况下求出点P 的坐标,并验证点P 是否在第一种情况下所得到的轨迹上,从而得到点P 的轨迹方程. (1)由题意知5533a a =⇒=,且有2235b -=2b =,因此椭圆C 的标准方程为22194x y +=;(2)①设从点P 所引的直线的方程为()00y y k x x -=-,即()00y kx y kx =+-, 当从点P 所引的椭圆C 的两条切线的斜率都存在时,分别设为1k 、2k ,则121k k =-, 将直线()00y kx y kx =+-的方程代入椭圆C 的方程并化简得()()()222000094189360k x k y kx x y kx ++-+--=,()()()2220000184949360k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦, 化简得()2200940y kx k ---=,即()()2220009240x k kx y y --+-=,则1k 、2k 是关于k 的一元二次方程()()2220009240x k kx y y --+-=的两根,则201220419y k k x -==--,化简得220013x y +=;②当从点P 所引的两条切线均与坐标轴垂直,则P 的坐标为()3,2±±,此时点P 也在圆2213x y +=上.综上所述,点P 的轨迹方程为2213x y +=.考点:本题以椭圆为载体,考查直线与圆锥曲线的位置关系以及动点的轨迹方程,将直线与二次曲线的公共点的个数利用∆的符号来进行转化,计算量较大,从中也涉及了方程思想的灵活应用.23.(1)证明见解析;(2)35. 【解析】 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义即可证得线线垂直;(2)建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后结合线面角的正弦值和同角三角函数基本关系可得线面角的余弦值. 【详解】(1)如图所示,连结11,A E B E ,等边1AAC △中,AE EC =,则1A E AC ⊥, 平面ABC ⊥平面11A ACC ,且平面ABC ∩平面11A ACC AC =, 由面面垂直的性质定理可得:1A E ⊥平面ABC ,故1A E BC ⊥, 由三棱柱的性质可知11A B AB ∥,而AB BC ⊥,故11A B BC ⊥,且1111A B A E A =,由线面垂直的判定定理可得:BC ⊥平面11A B E , 结合EF ⊆平面11A B E ,故EF BC ⊥.(2)在底面ABC 内作EH ⊥AC ,以点E 为坐标原点,EH ,EC ,1EA 方向分别为x ,y ,z 轴正方向建立空间直角坐标系E xyz -.设1EH =,则3AE EC ==1123AA CA ==3,3BC AB ==,据此可得:()()()1330,3,0,,,0,0,3,3,022A B A C ⎛⎫- ⎪ ⎪⎝⎭,由11AB A B =可得点1B 的坐标为1333,322B ⎛⎫⎪⎝⎭, 利用中点坐标公式可得:333,344F ⎛⎫⎪⎝⎭,由于()0,0,0E ,故直线EF的方向向量为:34EF ⎛⎫=⎪⎝⎭设平面1A BC 的法向量为(),,m x y z =,则:()()133,,3302233,,022m A B x y z x y z m BC x y z x y ⎧⎛⎫⋅=⋅-=+-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪⋅=⋅-=-= ⎪⎪ ⎪⎝⎭⎩, 据此可得平面1A BC 的一个法向量为()1,3,1m =,34EF ⎛⎫=⎪⎝⎭此时4cos ,55EF m EF m EF m⋅===⨯, 设直线EF 与平面1A BC 所成角为θ,则43sin cos ,,cos 55EF m θθ===. 【点睛】本题考查了立体几何中的线线垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.24.(1)l 的普通方程210ax y a +--=;C 的直角坐标方程是22220x y x y +--=;(2)【解析】 【分析】(1)把直线l 的标准参数方程中的t 消掉即可得到直线l 的普通方程,由曲线C 的极坐标方程为ρ=(θ4π+),展开得22ρ=(ρsinθ+ρcosθ),利用x cos y sin ρθρθ=⎧⎨=⎩即可得出曲线C 的直角坐标方程; (2)先求得圆心C 到直线AB 的距离为d ,再用垂径定理即可求解.【详解】(1)由直线l 的参数方程为21x ty at=+⎧⎨=-⎩,所以普通方程为210ax y a +--=由曲线C 的极坐标方程是4πρθ⎛⎫=+⎪⎝⎭,所以22sin 2cos 4πρθρθρθ⎛⎫=+=+ ⎪⎝⎭, 所以曲线C 的直角坐标方程是22220x y x y +--=(2)设AB 的中点为M ,圆心C 到直线AB 的距离为d,则MA =, 圆()()22:112C x y -+-=,则r =()1,1C ,12d MC ====,由点到直线距离公式,12d ===解得a =±,所以实数a的值为±.【点睛】本题考查了极坐标方程化为直角坐标方程、直线参数方程化为普通方程,考查了点到直线的距离公式,圆中垂径定理,考查了推理能力与计算能力,属于中档题.25.(1)曲线C :2213x y +=,直线l 的直角坐标方程20x y -+=;(2)1.【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线C 化为普通方程,再根据cos ,sin x y ρθρθ== 将直线l 的极坐标方程化为直角坐标方程;(2)根据题意设直线1l 参数方程,代入C 方程,利用参数几何意义以及韦达定理得点M 到A ,B 的距离之积试题解析:(1)曲线C 化为普通方程为:2213x y +=,cos 14πρθ⎛⎫+=- ⎪⎝⎭,得cos sin 2ρθρθ-=-, 所以直线l 的直角坐标方程为20x y -+=.(2)直线1l的参数方程为122x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),代入2213x y +=化简得:2220t -=,设,A B 两点所对应的参数分别为12,t t ,则121t t =-,121MA MB t t ∴⋅==.。

相关文档
最新文档