高考数学 题型全归纳 正弦定理知识归纳典型例题

合集下载

高考正弦定理和余弦定理练习题及复习资料

高考正弦定理和余弦定理练习题及复习资料

高考正弦定理和余弦定理练习题与答案一、选择题1.已知△中, a=c=2, A=30°, 则b=( )A. B.2C.3.D. +1答案:B解析: ∵a=c=2, ∴A=C=30°, ∴B=120°.由余弦定理可得b=2.2.△中, a= , b= , = , 则符合条件的三角形有( )A.1.B.2个C.3.D.0个答案:B解析: ∵= ,∴<b= <a= ,∴符合条件的三角形有2个.3.(2010·天津卷)在△中, 内角A, B, C的对边分别是a, b, c.若a2-b2= , =2 , 则A=( )A. 30°B. 60°C. 120°D. 150°答案:A解析: 利用正弦定理, =2 可化为c=2 b.又∵a2-b2= ,∴a2-b2= b×2 b=6b2, 即a2=7b2, a= b.在△中, === ,∴A=30°.4. (2010·湖南卷)在△中, 角A, B, C所对的边长分别为a, b, c, 若∠C=120°, c= a, 则( )A. a>bB. a<bC. a=bD. a与b的大小关系不能确定答案:A解析: 由正弦定理, 得= ,∴==>.∴A>30°.∴B=180°-120°-A<30°.∴a>b.5.如果等腰三角形的周长是底边长的5倍, 则它的顶角的余弦值为( )A..B.C..D.答案:D解析: 方法一: 设三角形的底边长为a, 则周长为5a,∴腰长为2a, 由余弦定理知α== .方法二:如图, 过点A作⊥于点D,则=2a, = , ∴= ,∴α=1-22=1-2×=.6.(2010·泉州模拟)△中, = , =1, ∠B=30°, 则△的面积等于( )A..B.C. 或.D. 或解析: ∵= ,∴=·30°=.∴C=60°或C=120°.当C=60°时, A=90°, S△=×1×= ,当C=120°时, A=30°, S△=×1× 30°= .即△的面积为或.二、填空题7. 在△中, 若b=1, c= , ∠C= , 则a=.答案:1解析: 由正弦定理= , 即= , = .又b<c, ∴B= , ∴A= .∴a=1.8.(2010·山东卷)在△中, 角A, B, C所对的边分别为a, b, c.若a = , b=2, += , 则角A的大小为.答案:解析: ∵+= ,∴(B+)=1.又0<B<π, ∴B= .由正弦定理, 知= , ∴= .又a<b, ∴A<B, ∴A= .9.(2010·课标全国卷)在△中,D为边上一点,=,∠=120°,=2.若△的面积为3-,则∠=.答案: 60°解析: S△=×2××=3- ,解得=2( -1),∴=-1, =3( -1).在△中, 2=4+( -1)2-2×2×( -1)×120°=6,在△中, 2=4+[2( -1)]2-2×2×2( -1)×60°=24-12 ,∴= ( -1),则∠=== ,∴∠=60°.三、解答题10.如图, △是等边三角形, ∠=45°, = , A.B.C三点共线.(1)求∠的值;(2)求线段的长.解: (1)∵△是等边三角形, ∠=45°,∴∠=45°+60°,∴∠=(45°+60°)=45°60°+45°60°=.(2)在△中, = ,∴=∠×=×=1+.11.(2010·全国Ⅱ卷)△中, D为边上的一点, =33, = , ∠= , 求. 解: 由∠= >0知B< ,由已知得= , ∠= ,从而∠=(∠-B)=∠-∠=×-×=.由正弦定理得= ,===25.12.(2010·安徽卷)设△是锐角三角形, a, b, c分别是内角A, B, C 所对边长, 并且2A=+2B.(1)求角A的值;(2)若·=12, a=2 , 求b, c(其中b<c).解: (1)因为2A=+2B= 2B- 2B+2B= ,所以=±.又A为锐角, 所以A= .(2)由·=12, 可得=12.①由(1)知A= , 所以=24.②由余弦定理知a2=c2+b2-2, 将a=2 与①代入, 得c2+b2=52, ③③+②×2, 得(c+b)2=100,所以c+b=10.因此c, b是一元二次方程t2-10t+24=0的两个根.解此方程并由c>b知c=6, b=4.。

正弦定理知识点与典型例题

正弦定理知识点与典型例题

正弦定理【基础知识点】1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==21ca sin B ; sin(A+B)=sinC, cos(A+B)=-cosC, sin(A+B)/2=cosC/2, cos(A+B)/2=sinC/22.三角形中的边角不等关系: A>B ⇔a>b,a+b>c,a-b<c ;3.【正弦定理】:A a sin =B b sin =Cc sin =2R (外接圆直径); 正弦定理的变式:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2;a ∶b ∶c =sin A ∶sin B ∶sin C .asinB=bsinA bsinC=csinB asinC=csinA sinA=a/2R sinB=b/2R sinC=c/2R4.正弦定理应用范围:①已知两角和任一边,求其他两边及一角.②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况:(1)A 为锐角a=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角当时有一解.典型例题:例1、在ABC ∆中,ο45,1,2===A b a 求B 的大小。

例2、在△ABC 中,已知3=a ,2=b ,B=45 求A 、C 及c .例3、在△ABC 中,a=15,b=10,A=ο60,则cosB 的值例4、在△ABC 中,ο30=B ,32=AB ,AC=2,求△ABC 的面积。

例5、在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.例6、在△ABC 中,)sin()()sin()(2222B A b a B A b a +-=-+,试判断△ABC 的形状例7、在△ABC 中,cos 2B 2=a +c 2c(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为?例8、在△ABC 中,tan A =12,cos B =31010,若最长边为1,则最短边的长例9、在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足cos A 2=255,AB →·AC →=3. (1)求△ABC 的面积;例10、设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且a cos C +12c =b . (1)求角A 的大小;(2)若a =1,求△ABC 的周长l 的取值范围.例11、在△ABC 中,sin(C-A)=1,sinB=31.(Ⅰ)求sinA 的值;(Ⅱ)设AC= 6 求△ABC 的面积.。

2024全国高考真题数学汇编:正弦定理与余弦定理

2024全国高考真题数学汇编:正弦定理与余弦定理

2024全国高考真题数学汇编正弦定理与余弦定理一、单选题1.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A B C D 二、解答题2.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.3.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .4.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.5.(2024北京高考真题)在ABC 中,,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.参考答案1.C【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,由正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.2.(1)4(3)5764【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.(2)法一:因为B 为三角形内角,所以sin 16B =,再根据正弦定理得sin sin a b A B =,即4sin A =sin 4A =,法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin 4A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知sin B =因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()9157cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯+⨯=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以sin 16B ===,所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=⨯=3.(1)π3B =(2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===因为()0,πC ∈,所以sin 0C >,从而sin 2C =,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.(2)由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而,a b ===,由三角形面积公式可知,ABC的面积可表示为21113sin 222228ABC S ab C c c ==⋅= ,由已知ABC的面积为32338c =所以c =4.(1)π6A =(2)2+【分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 122A A +=,即sin()1π3A +=,由于ππ4π(0,π)(,)333A A ∈⇒+,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A得到:224cos 30(2cos 0A A A -+=⇔=,解得cos 2A =,又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos sin f A A A '==,即tan 3A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=,又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,2222)sin 211t t A A t t-+==+++,整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=,由正弦定理可得,sin sin sin a b cA B C==,即2ππ7πsin sin sin 6412bc==,解得b c ==故ABC的周长为2+5.(1)2π3A =;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B =,因为A 为钝角,则cos 0B ≠,则2sin 7B =,则7sin sin sin b a BA A ==,解得sin 2A =,因为A 为钝角,则2π3A =.(2)选择①7b =,则sin 7B ==2π3A =,则B 为锐角,则3B π=,此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin B ,则代入2sin 7B =得2147⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B⎛⎫=+=+=+ ⎪⎝⎭131142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7322ABC S ab C ==⨯⨯选择③sin c A =2c ⨯=5c =,则由正弦定理得sin sin a c A C =5sin C,解得sin 14C =,因为C为三角形内角,则11cos 14C ==,则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+⎪⎝⎭111142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7522ABC S ac B ==⨯⨯=△。

正余弦定理知识点及高考考试题型整理学生理

正余弦定理知识点及高考考试题型整理学生理

正、余弦定理一、知识总结 (一)正弦定理1.正弦定理:2,sin sin sin a b cR A B C===其中R 是三角形外接圆半径. 2.变形公式:(1)化边为角:(2)化角为边:(3)(4).3、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一)在△ABC 中,已知a 、b 和A 时,解的情况如下:a =b sin A b sin A <a <b a ≥b a >b 1.余弦定理: 2222cos a b c bc A =+-2222cos c a b ab C =+-2222cos b a c ac B =+-2.变形公式:222222222cos ,cos ,cos .222b c a a c b a b c A B C ab ac ab+-+-+-===.注:2a >22c b +⇒A 是钝角;2a =22c b +⇒A 是直角;2a <22c b +⇒A 是锐角;2sin ,2sin ,2sin ;a R A b R B c R C ===sin ,sin ,sin ;222a b cA B C R R R ===::sin :sin :sin a b c A B C =2sin sin sin sin sin sin a b c a b c RA B C A B C ++====++3.余弦定理可以解决的问题:(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):4.由余弦定理判断三角形的形状a2=b2+c2⇔A是直角⇔△ABC是直角三角形,a2>b2+c2⇔A是钝角⇔△ABC是钝角三角形,a2<b2+c⇔A是锐角/△ABC是锐角三角形。

(注意:A是锐角/ △ABC是锐角三角形,必须说明每个角都是锐角)(三) ΔABC的面积公式:(1)1() 2a aS a h h a= 表示边上的高;(2)111sin sin sin() 2224abcS ab C ac B bc A RR====为外接圆半径;(3)1()() 2S r a b c r=++为内切圆半径(四) 实际问题中的常用角1.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)2.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。

高考数学复习好题精选 正弦定理和余弦定理应用举例

高考数学复习好题精选 正弦定理和余弦定理应用举例

正弦定理和余弦定理应用举例题组一距 离 问 题1.一船自西向东航行,上午10时到达灯塔P 的南偏西75°、距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船航行的速度为( )A.海里/时 B .34海里/时17626C.海里/时 D .34海里/时17222解析:如图.由题意知∠MPN =75°+45°=120°,∠PNM =45°.在△PMN 中,由正弦定理,得sin120sin 45MN PM = ,∴MN.又由M 到N 所用时间为14-10=4小时,∴船的航行速度v== (海里/时).答案:A2.一船以每小时15km 的速度向东航行,船在A 处看到一灯塔M 在北偏东60°方向,行驶4h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.解析:如图,依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°,在△AMB 中,由正弦定理得=,解得BM=30 km.60sin45°BMsin30°2答案:3.如图所示,为了测量河对岸A ,B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长.解:在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .①在△BCD 中,由正弦定理可得BC ==a . ②a sin105°sin45°3+12在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A 、B 两点之间的距离为AB ==a .AC 2+BC 2-2AC ·BC ·cos30°22题组二高 度 问 题4.据新华社报道,强台风“珍珠”在广东饶平登陆.台风中心最大风力达到12级以上,大风降雨给灾区带来严重的灾害,不少大树被大风折断.某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20米,则折断点与树干底部的距离是 ( )A.米 B .10米 C.米 D .20米2063610632解析:如图,设树干底部为O ,树尖着地处为B ,折断点为A ,则∠ABO=45°,∠AOB=75°,∴∠OAB=60°.由正弦定理知,20sin 45sin 60AO ,∴AO= (米).答案:A5.在一个塔底的水平面上某点测得该塔顶的仰角为θ,由此点向塔底沿直线行走了30 m ,测得塔顶的仰角为2θ,再向塔底前进103m ,又测得塔顶的仰角为4θ,则塔的高度为________.解析:如图,依题意有PB=BA=30,PC=BC=.在三角形BPC 中,由余弦定理可得cos2θ,所以2θ=30°,4θ=60°,在三角形PCD 中,可得PD =PC ·sin4θ=15(m).答案:15 m6.某人在山顶观察地面上相距2 500m 的A 、B 两个目标,测得目标A 在南偏西57°,俯角为30°,同时测得B 在南偏东78°,俯角是45°,求山高(设A 、B 与山底在同一平面上,计算结果精确到0.1 m).解:画出示意图(如图所示)设山高PQ =h ,则△APQ 、△BPQ 均为直角三角形,在图(1)中,∠PAQ =30°,∠PBQ =45°.∴AQ =tan 30PQ = ,BQ =tan 45PQ =h .在图(2)中,∠AQB =57°+78°=135°,AB =2 500,所以由余弦定理得:AB 2=AQ 2+BQ 2-2AQ ·BQ cos ∠AQB ,即2 5002h )2+h 2h ·h )h 2,∴h984.4(m).答:山高约984.4 m.题组三角 度 问 题7.在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,如果c =a ,B =30°,那么3角C 等于 ( )A .120°B .105°C .90°D .75°解析:∵c =a ,∴sin C =sin A =sin(180°-30°-C )=sin(30°+C )3333=(sin C +cos C ),33212即sin C =-cos C .∴tan C =-.又C ∈(0,180°),33∴C =120°.答案:A8.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定解析:设增加同样的长度为x ,原三边长为a 、b 、c ,且c 2=a 2+b 2,a +b >c 新的三角形的三边长为a +x 、b +x 、c +x ,知c +x 为最大边,其对应角最大.而(a +x )2+(b +x )2-(c +x )2=x 2+2(a +b -c )x >0,由余弦定理知新的三角形的最大角的余弦为正,则为锐角,那么它为锐角三角形.答案:A题组四正、余弦定理的综合应用9.有一山坡,坡角为30°,若某人在斜坡的平面上沿着一条与山坡底线成30°角的小路前进一段路后,升高了100米,则此人行走的路程为 ( )A .300 mB .400 mC .200 mD .200 m3解析:如图,AD 为山坡底线,AB 为行走路线,BC 垂直水平面.则BC=100,∠BDC=30°,∠BAD=30°,∴BD=200,AB=2BD=400 米.答案:B10.线段AB 外有一点C ,∠ABC =60°,AB =200 km ,汽车以80km/h 的速度由A 向B 行驶,同时摩托车以50km/h 的速度由B 向C 行驶,则运动开始________h 后,两车的距离最小.解析:如图所示:设th 后,汽车由A 行驶到D ,摩托车由B 行驶到E ,则AD =80t ,BE =50t .因为AB =200,所以BD =200-80t ,问题就是求DE 最小时t 的值.由余弦定理:DE 2=BD 2+BE 2-2BD ·BE cos60°=(200-80t )2+2500t 2-(200-80t )·50t=12900t 2-42000t+40000.当t =7043时DE 最小.答案:704311.如图,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.解:因为CP ∥OB ,所以∠CPO =∠POB =60°-θ,∴∠OCP =120°.在△POC 中,由正弦定理得=,∴=,所以CP =sinθ.OP sin ∠PCO CP sin θ2sin120°CP sin θ43又Error!=,∴OC =sin(60°-θ).2sin120°43因此△POC 的面积为S (θ)=CP ·OC sin120°=·sin θ·sin(60°-θ)×1212434332=sin θsin(60°-θ)=sin θ(cos θ-sin θ)43433212=,θ∈(0°,60°).23所以当θ=30°时,S (θ)取得最大值为.3312.(2010·宁波模拟)某建筑的金属支架如图所示,根据要求AB 至少长2.8 m ,C 为AB 的中点,B 到D 的距离比CD 的长小0.5 m ,∠BCD =60°,已知建造支架的材料每米的价格一定,问怎样设计AB ,CD 的长,可使建造这个支架的成本最低?解:设BC =am (a ≥1.4),CD =bm ,连接BD .则在△CDB 中,(b -)2=b 2+a 2-2ab cos60°.12∴b =.a 2-14a -1∴b +2a =+2a .a 2-14a -1设t =a -1,t ≥-1=0.4,2.82则b +2a =Error!+2(t +1)=3t ++4≥7,34t 等号成立时t =0.5>0.4,a =1.5,b =4.答:当AB =3 m ,CD =4 m 时,建造这个支架的成本最低.。

高中数学必修5常考题型:正弦定理Word版含解析

高中数学必修5常考题型:正弦定理Word版含解析

【知识梳理】1.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C. 2.解三角形一般地,把三角形的三个角A 、B 、C 和它们的对边a 、b 、c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形.【常考题型】题型一、已知两角及一边解三角形【例1】 在△ABC 中,已知a =8,B =60°,C =75°,求A ,b ,c .[解] A =180°-(B +C )=180°-(60°+75°)=45°.由b sin B =a sin A得, b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A =c sin C得, c =a sin C sin A =8×sin 75°sin 45°=8×2+6422=4(3+1). ∴A =45°,b =46,c =4(3+1).【类题通法】已知三角形任意两角和一边解三角形的基本思路(1)由三角形的内角和定理求出第三个角.(2)由正弦定理公式的变形,求另外的两条边.注意:若已知角不是特殊角时,往往先求出其正弦值(这时应注意角的拆并,即将非特殊角转化为特殊角的和或差,如75°=45°+30°),再根据上述思路求解.【对点训练】1.在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形.解:∵A =45°,C =30°,∴B =180°-(A +C )=105°.由a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=10 2. 由b sin B =c sin C 得b =c sin B sin C =10×sin 105°sin 30°=20sin 75°,∵sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45° =2+64, ∴b =20×2+64=52+5 6. 题型二、已知两边及一边的对角解三角形【例2】 在△ABC 中,已知c =6,A =45°,a =2,解这个三角形.[解] ∵a sin A =c sin C ,∴sin C =c sin A a =6×sin 45°2=32, ∴C =60°或C =120°.当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1; 当C =120°时,B =15°,b =c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°,C =120°.【类题通法】已知三角形两边和其中一边的对角解三角形时的方法(1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角时,由三角形中大边对大角,大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角唯一.(3)如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.【对点训练】 2.在△ABC 中,若c =6,C =π3,a =2,求A ,B ,b . 解:由a sin A =c sin C ,得sin A =a sin C c =22. ∴A =π4或A =34π. 又∵c >a ,∴C >A ,∴只能取A =π4, ∴B =π-π3-π4=5π12,b =c sin B sin C=6·sin 5π12sin π3=3+1. 题型三、判断三角形的形状【例3】 在△ABC 中,sin 2 A =sin 2 B +sin 2 C ,且sin A =2sin B ·cos C .试判断△ABC 的形状.[解] 由正弦定理,得sin A =a 2R ,sin B =b 2R ,sin C =c 2R. ∵sin 2 A =sin 2 B +sin 2 C ,∴⎝⎛⎭⎫a 2R 2=⎝⎛⎭⎫b 2R 2+⎝⎛⎭⎫c 2R 2,即a 2=b 2+c 2,故A =90°.∴C =90°-B ,cos C =sin B .∴2sin B ·cos C =2sin 2 B =sin A =1.∴sin B =22.∴B =45°或B =135°(A +B =225°>180°,故舍去). ∴△ABC 是等腰直角三角形.【类题通法】1.判断三角形的形状,可以从考查三边的关系入手,也可以从三个内角的关系入手,从条件出发,利用正弦定理进行代换、转化,呈现出边与边的关系或求出角与角的关系或大小,从而作出准确判断.2.判断三角形的形状,主要看其是否是正三角形、等腰三角形、直角三角形、钝角三角形或锐角三角形,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.【对点训练】3.在△ABC 中,若b =a cos C ,试判断该三角形的形状.解:∵b =a cos C ,a sin A =b sin B=2R .(2R 为△ABC 外接圆直径) ∴sin B =sin A ·cos C .∵B =π-(A +C ),∴sin (A +C )=sin A ·cos C .即sin A cos C +cos A sin C =sin A ·cos C ,∴cos A sin C =0,∵A 、C ∈(0,π),∴cos A =0,∴A =π2, ∴△ABC 为直角三角形.【练习反馈】1.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( )A .43B .2 3 C. 3 D.32解析:选B 由正弦定理得:BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.2.在△ABC 中,a =5,b =3,C =120°,则sin A ∶sin B 的值是( )A.53B.35C.37D.57答案:A3.在△ABC 中,若(sin A +sin B )(sin A -sin B )=sin 2 C ,则△ABC 是________三角形.解析:由已知得sin 2 A -sin 2 B =sin 2 C ,根据正弦定理知sin A =a 2R ,sin B =b 2R ,sin C =c 2R , 所以⎝⎛⎭⎫a 2R 2-⎝⎛⎭⎫b 2R 2=⎝⎛⎭⎫c 2R 2,即a 2-b 2=c 2,故b 2+c 2=a 2.所以△ABC 是直角三角形.答案:直角4.在△ABC 中,若a =3,b =3,∠A =π3,则∠C 的大小为________. 解析:由正弦定理可知sin B =b sin A a =3sin π33=12,所以∠B =π6或5π6(舍去),所以∠C =π-∠A -∠B =π-π3-π6=π2. 答案:π25.不解三角形,判断下列三角形解的个数.(1)a =5,b =4,A =120°;(2)a =7,b =14,A =150°;(3)a =9,b =10,A =60°.解:(1)sin B =b sin 120°a =45×32<32, 所以△ABC 有一解.(2)sin B =b sin 150°a=1,所以△ABC 无解. (3)sin B =b sin 60°a =109×32=539,而32<539<1,所以当B 为锐角时,满足sin B =539的B 的取值范围为60°<B <90°.当B 为钝角时,有90°<B <120°,也满足A +B <180°,所以△ABC 有两解.。

正弦定理经典题型归纳

正弦定理经典题型归纳

正弦定理1. 正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即公式适用于任意三角形。

2. 正弦定理的变形3. 判断三角形解的问题 “已知a,b 和A,解三角形”①当sin B >1,无解 ②sin B =1,一解 ③sinB <1,两个解(其中B 可能为锐角也可能为钝角,具体是锐角还是钝角还是两个都可以,要根据“大边对大角”及“三角形内角和等于180”来判断)题型一:已知两角及任意一边解三角形1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A. 6 B. 2 C. 3 D .2 62.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.3233.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12C .2 D.14变形:题型二:已知两边及一边对角解三角形1.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对2.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.4 .在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 5.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.6. 判断满足下列条件的三角形个数 (1)b=39,c=54,︒=120C 有________组解(2)a=20,b=11,︒=30B 有________组解(3)b=26,c=15,︒=30C 有________组解(4)a=2,b=6,︒=30A 有________组解7.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.8.在△ABC 中,B=4π,b=2,a=1,则A 等于 .题型三:正弦定理的边角转化1.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定2.在△ABC 中,若cos A cos B =b a,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 3.在△ABC 中,如果Cc B b A a tan tan tan ==,那么△ABC 是( ) A.直角三角形 B.等边三角形 C.等腰直角三角形 D.钝角三角形 4. 在△ABC 中,已知b B a 3sin 32=,且cosB=cosC ,试判断△ABC 形状。

高考数学 高频考点归类分析 正弦定理和余弦定理的应用

高考数学 高频考点归类分析 正弦定理和余弦定理的应用

正弦定理和余弦定理的应用典型例题:例1. (2012年上海市理5分)在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是 ▲A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 【答案】C 。

【考点】正弦定理和余弦定理的运用。

【解析】由正弦定理,得,sin 2,sin 2,sin 2C Rc B R b A R a ===代入得到222a b c +<。

由余弦定理的推理得222cos 02a b c C ab+-=<。

∴C 为钝角,即该三角形为钝角三角形。

故选C 。

例2. (2012年广东省文5分)在ABC ∆中,若°60A ∠=,°45B ∠=,32BC =,则=AC 【 】A . 43B . 23C . 3D . 32【答案】B 。

【考点】正弦定理的应用。

【解析】由正弦定理得sin sin BC ACA B=,即0032sin 60sin 45AC =,解得=23AC 。

故选B 。

例3. (2012年湖北省文5分)设△ABC 的内角,,A B C 所对的边分别为,,a b c ,若三边的长为连续的三个正整数,且>>A B C ,320cos =b a A ,则sin :sin :sin A B C 为【 】 A.4∶3∶2 B.5∶6∶7 C.5∶4∶3 D.6∶5∶4 【答案】D 。

【考点】正弦定理和余弦定理的应用。

【解析】∵,,a b c 为连续的三个正整数,且>>A B C ,∴a b c >>。

∴2,1=+=+a c b c ①。

又∵已知320cos =b a A ,∴3cos 20bA a=②。

由余弦定理可得222cos 2+-=b c a A bc ③。

则由②③可得2223202b b c a a bc+-=④。

联立①④,得2713600--=c c ,解得4=c 或157=-c (舍去),则6=a ,5=b 。

正弦定理基础知识及常见题型汇总

正弦定理基础知识及常见题型汇总

正弦定理一、考点、热点回顾(一)正弦定理及其变形1. 正弦定理:________=________=________=2R ,其中R 是三角形外接圆的半径. 2. 正弦定理的常用变形(1)a ∶b ∶c =________________;(2)a =__________,b =__________,c =__________; (3)sin A =________,sin B =__________,sin C =________;3. 三角形中边角的不等关系在三角形中,A >B >C ⇔ a >b >c ⇔ sinA >sinB >sinC 。

(二)正弦定理的应用:解三角形 1、 解三角形的概念2、 利用正弦定理解三角形利用正弦定理可解决两类解三角形问题: (1)已知两角及一边解三角形基本思路: 1)由三角形的内角和定理求出第三个角.2)由正弦定理公式的变形,求另外的两条边.(2)已知两边及其中一边的对角解三角形基本思路:1)由正弦定理求出另一已知边所对的角.2)由三角形的内角和定理求出第三个角. 3)由正弦定理公式的变形,求第三条边.(3)解三角形的解的情况在△ABC 中,已知a ,b 和A ,以点C 为圆心,以边长a 为半径画弧,此弧与射线AB 的公共点(除去顶点A )A 为锐角 A 为钝角或直角 图形关系式 a <b sin A a =b sin A b sin A <a <ba ≥b a >b a ≤b 解的个数无解一解两解一解一解无解(三)三角形的面积公式S △ABC =12ah =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·()()()p p a p b p c ---二、典型例题考点一、正弦定理概念及变形例1、已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a =________.变式训练1、(1)在△ ABC 中,若b =1,c =3,C =2π3,则a = .(2)在△ABC 中,若A =60°,a =3,则a +b +csin A +sin B +sin C=________.考点二、已知两角及一边解三角形例2、在△ABC中,已知a=8,B=60°,C=75°,求A,b,c.变式训练2、(1)在△ABC中,若A=60°,B=45°,BC=32,则AC=() A.43B.2 3C. 3D.3 2(2)在△ABC中,A=45°,B=75°,c=2,则此三角形的最短边的长度是。

专题01:正弦定理常见题型

专题01:正弦定理常见题型

专题01:正弦定理常见题型题型一:正弦定理及辨析例1:1.在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,若sin cos A Ba b=,则B =( ) A .34πB .3π C .4π D .6π【答案】C 【解析】 【分析】 由正弦定理结合sin cos A Ba b=求得tan 1B =,即可求出B . 【详解】 由正弦定理可得sin sin cos A B B a b b==,则sin cos B B =,tan 1B =,又()0,B π∈,则4B π=.故选:C. 举一反三1.(多选)在ABC 中,角A ,B ,C 所对的边为a ,b ,c , 则下列说法正确的有( ) A .A :B :C = a :b :c B .sin sin sin sin a b c aA B C A++=++C .若A >B , 则a >bD .πA B C ++=【答案】BCD 【解析】 【分析】结合三角形的性质、正弦定理求得正确答案. 【详解】在三角形中,大角对大边,所以C 选项正确. 三角形的内角和为π,所以D 选项正确.由正弦定理得::sin :sin :sin a b c A B C =,所以A 选项错误. 设sin sin sin a b ck A B C===, 则()sin sin sin sin sin sin sin sin sin sin k A B C a b c a k A B C A B C A++++===++++,B 选项正确.故选:BCD2.在ABC 中,15,10,60a b A ===︒,则sin B =( )ABCD【答案】A 【解析】 【详解】由正弦定理可知:sin sin sin a b B A B =⇒=故选:A题型二:正弦定理解三角形例2:1.(2015·山东·高考真题)在△ABC 中,105A ∠=︒,45C ∠=︒,AB =BC 等于______.【解析】 【分析】由和角正弦公式求sin105︒函数值,再应用正弦定理求BC 即可. 【详解】sin105sin(6045)sin 60cos 45cos 60sin 45︒=︒+︒=︒︒+︒︒=由正弦定理可知,sin sin AB BCC A=,∴sin sin AB A BC C ==2.(2016·江苏·高考真题)在ABC 中,AC=6,4cos .54B C π==,(1)求AB 的长;(2)求()6cos A π-的值.【答案】(1)2【解析】 【详解】试题分析:(1)利用同角三角函数的基本关系求sin B , 再利用正弦定理求AB 的长;(2)利用诱导公式及两角和与差正余弦公式分别求sin ,cos A A ,然后求cos().6A π-试题解析:解(1)因为4cos B=5,0B π<<,所以2243sin 1cos 1(),55B B =-=-= 由正弦定理知sin sin AC AB B C =,所以26sin 25 2.3sin 5AC CAB B⨯⋅===(2)在ABC 中,A B C π++=,所以,于是cos cos()cos()cos cos sin sin ,444A B C B B B πππ=-+=-+=-+又43cos ,sin ,55B B ==故42322cos 55A =-= 因为0A π<<,所以272sin 1cos A A =- 因此23721726cos()cos cos sin sin 6662A A A πππ--=+==举一反三1.(2012·湖南·高考真题(文))在△ABC 中,7,BC=2,B =60°,则BC 边上的高等于 A 3B 33C 36+D 339+【答案】B 【解析】 【详解】 7232127sin 60sin 7A A A =⇒==, 所以321sin sin()sin cos cos sin C A B A B A B =+=+= 则BC 边上的高3213377h C ===B . 2.(2018北京高考)在△ABC 中,a =7,b =8,cos B = –17.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.【答案】(1) ∠A =π3 (2) AC 33【解析】 【详解】分析:(1)先根据平方关系求sin B ,再根据正弦定理求sin A ,即得A ∠;(2)根据三角形面积公式两种表示形式列方程11sin 22ab C hb =,再利用诱导公式以及两角和正弦公式求sin C ,解得AC 边上的高.详解:解:(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B =2431cos 7B -=.由正弦定理得sin sin a b A B = ⇒ 7sin A =8437,∴sin A =32.∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3.(2)在△ABC 中,∵sin C =sin (A +B )=sin A cos B +sin B cos A =311432727⎛⎫⨯-+⨯ ⎪⎝⎭=3314.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=33337142⨯=,∴AC 边上的高为332.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的. 题型三:正弦定理判定三角形解得个数例3:1.设在ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,若满足3,,6a b m B π===的ABC 不唯一,则m 的取值范围为( ) A .33⎝ B .3)C .132⎛ ⎝⎭D .1,12⎛⎫⎪⎝⎭【答案】A 【解析】 【分析】根据正弦定理计算可得; 【详解】解:由正弦定理sin sin a b A B =12m=,所以m =, 因为ABC 不唯一,即ABC 有两解,所以566A ππ<<且2A π≠,即1sin 12A <<,所以12sin 2A <<,所以11122sin A <<m <<故选:A2.在ABC 中,若3b =,2c =,45B =,则此三角形解的情况为( ) A .无解 B .两解C .一解D .解的个数不能确定【答案】C 【解析】 【分析】求出sin C 的值,结合大边对大角定理可得出结论. 【详解】由正弦定理可得sin sin b c B C=可得2sin 2sin sin 33c B C B b ===<, 因为c b <,则C B <,故C 为锐角,故满足条件的ABC 只有一个. 故选:C. 举一反三1.在△ABC 中,3A π∠=,b =6,下面使得三角形有两组解的a 的值可以为( )A .4 B.C.D.【答案】C 【解析】 【分析】由正弦定理即可求解. 【详解】解:由题意,根据正弦定理有sin sin a bA B=,所以sin sin b A B a =,要使三角形有两组解,则sin sin 1b AB a=<,且a b <,即sin b A a b <<,所以6a <,所以a 的值可以为 故选:C .2.(多选)ABC 中,角A ,B ,C 所对的三边分别是a ,b ,c ,以下条件中,使得ABC 无解的是( )A .120a b A ===;B .45a b A ===;C .60;b A B ===D .,sin ,60c A B c ===, 【答案】ABD 【解析】 【分析】根据正余弦定理及三角形的性质分析解即可. 【详解】对于A ,大边对大角,而a <b ,无解; 对于B ,由正弦定理得sinB 1>,无解;对于C ,由cos A 可得sin A =a ,再由正弦定理或余弦定理可求出c ,有解;对于D ,由=c 和a ,通过余弦定理可得cos 0C =,与60C =矛盾,无解. 故选:ABD题型四:正弦定理求外接圆的半径例4:1.(2011·全国·高考真题(理))设向量,,a b c 满足2a b ==,2a b ⋅=-,,60a c b c --=︒,则c 的最大值等于A .4B .2CD .1【答案】A 【解析】 【详解】因为2a b ==,2a b ⋅=-,所以1cos ,2a b a b a b⋅==-, ,120a b =︒.如图所以,设,,OA a OB b OC c ===,则CA a c =-, C B b c =-,120AOB ∠=︒. 所以60ACB ∠=︒,所以180AOB ACB ∠+∠=︒,所以,,,A O B C 四点共圆. 不妨设为圆M ,因为AB b a =-,所以222212AB a a b b =-+=. 所以23AB =由正弦定理可得AOB ∆的外接圆即圆M 的直径为2R 4AB sin AOB==∠.所以当OC 为圆M 的直径时,c 取得最大值4. 故选A.点睛:平面向量中有关最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决. 2.(2022·上海·高考真题)在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为________ 211213【解析】 【分析】运用正弦定理及余弦定理可得解. 【详解】 根据余弦定理:22212cos 4922372BC AB AC AB AC BAC =+-⋅∠=+-⨯⨯⨯=, 得7BC =由正弦定理△ABC sin3=故答案为 举一反三1.(2022·湖北·鄂南高中模拟预测)ABC 的内角A B C 、、的对边分别为a b c 、、,且1,cos sin a b C c A ==-,则ABC 的外接圆半径为__________.【解析】 【分析】利用正弦定理可得sin sin cos sin sin B A C C A =-,进而可得34A π=,即得.【详解】1a =,则cos sin b a C c A =-,由正弦定理,得sin sin cos sin sin B A C C A =- 故()sin sin cos sin sin A C A C C A +=-,展开化简得:cos sin sin sin A C C A =-,()0,C π∈,sin 0C ≠, 故cos sin A A =-,()0,A π∈, 即34A π=,∴外接圆直径2R sin aA==,.2.(2022·河南·长葛市第一高级中学模拟预测(文))在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边若2a =,3b =,sin 2sin cos A B C =,则ABC 外接圆的半径为_____________.【解析】 【分析】利用正弦定理角化边求出cos C ,再根据余弦定理求出c ,进而求出外接圆半径.由正弦定理得,2cos a b C =,1cos 3C =, 由余弦定理得222222231cos 22233a b c c C ab +-+-===⨯⨯,解得3c =.又sin C =,所以外接圆半径12sin c R C =⋅=故答案为:8. 题型五:正弦定理边角互化例5:1.(2019·全国·高考真题(文))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 【答案】34π. 【解析】 【分析】先根据正弦定理把边化为角,结合角的范围可得. 【详解】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠得sin cos 0B B +=,即tan 1B =-,3.4B π∴=故选D . 【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在(0,)π范围内,化边为角,结合三角函数的恒等变化求角.2.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+ 【答案】(1)5π8; (2)证明见解析. 【解析】(1)根据题意可得,()sin sin C C A =-,再结合三角形内角和定理即可解出; (2)由题意利用两角差的正弦公式展开得()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再根据正弦定理,余弦定理化简即可证出.(1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =. (2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a cb bc a b c a a b c +--+-=+--+-,化简得:2222a b c =+,故原等式成立. 举一反三1.(2014·江西·高考真题(文))在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若32a b =,则2222sin sin sin B A A -的值为( )A .19B .13C .1D .72【答案】D 【解析】 【分析】根据正弦定理边化角求解即可. 【详解】由正弦定理有22222222sin sin 221sin B A b a b A a a --⎛⎫==- ⎪⎝⎭.又3322b a b a =⇒=, 故297212142b a ⎛⎫-=⨯-= ⎪⎝⎭.故选:D【点睛】本题主要考查了正弦定理边化角的问题,属于基础题.2.(2022·安徽·一模(理))在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sin a c B =,则tan A 的最大值为( )A .1B .32C .43D .54 【答案】C【解析】【分析】 先由正弦定理化简得111tan tan C B +=,结合基本不等式求得tan tan 4B C ≥,再由正切和角公式求解即可.【详解】在ABC 中,sin a c B =,所以sin sin sin A C B =,又()sin sin A B C =+,整理得:sin cos cos sin sin sin B C B C B C +=,又sin sin 0B C ≠,得到111tan tan C B +=,因为角A 、B 、C 为锐角,故tan A 、tan B 、tan C 均为正数,故1≥tan tan 4B C ≥,当且仅当tan tan 2B C ==时等号成立, 此时tan tan tan tan 1tan tan()11tan tan 1tan tan 1tan tan B C B C A B C B C B C B C +⋅=-+=-=-=---⋅,当tan tan B C 取最小值时,1tan tan B C 取最大值,11tan tan B C -取最小值,故111tan tan B C-⋅的最大值为43, 即当tan tan 2B C ==时,tan A 的最大值为43. 故选:C .。

高考复习 第4篇 第6讲 正弦定理和余弦定理知识点+例题+练习 含答案

高考复习 第4篇 第6讲 正弦定理和余弦定理知识点+例题+练习 含答案

第6讲正弦定理和余弦定理知识梳理1.正弦定理和余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,则正弦定理余弦定理内容asin A=bsin B=csin C=2R(R为△ABC外接圆半径)a2=b2+c2-2bc cos Ab2=a2+c2-2ac cos Bc2=a2+b2-2ab cos C常见变形(1)a=2R sin A,b=2R sinB,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin A∶sinB∶sin Ccos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab解决的问题(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边和其他两角(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角2.在△ABC中,已知a,b和A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数一解两解一解一解(1)S=12ah(h表示边a上的高).(2)S=12bc sin A=12ab sin C=12ac sin B.(3)S=12r(a+b+c)(r为△ABC内切圆半径).辨析感悟1.三角形中关系的判断(1)在△ABC中,sin A>sin B的充分不必要条件是A>B.(×)(2)(教材练习改编)在△ABC中,a=3,b=2,B=45°,则A=60°或120°.(√) 2.解三角形(3)(2013·北京卷改编)在△ABC中,a=3,b=5,sin A=13,则sin B=59.(√)(4)(教材习题改编)在△ABC中,a=5,c=4,cos A=916,则b=6.(√)3.三角形形状的判断(5)在△ABC中,若sin A sin B<cos A cos B,则此三角形是钝角三角形.(√)(6)在△ABC中,若b2+c2>a2,则此三角形是锐角三角形.(×)[感悟·提升]一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B,如(1).判断三角形形状的两种途径一是化边为角;二是化角为边,并常用正弦(余弦)定理实施边、角转换.考点一利用正弦、余弦定理解三角形【例1】(1)(2013·湖南卷改编)在锐角△ABC中,角A,B所对的边长分别为a,b.若2a sin B=3b,则角A等于______.(2)(2014·杭州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,c=42,B=45°,则sin C=________.解析(1)在△ABC中,由正弦定理及已知得2sin A·sin B=3sin B,∵B 为△ABC 的内角,∴sin B ≠0. ∴sin A =32.又∵△ABC 为锐角三角形, ∴A ∈⎝ ⎛⎭⎪⎫0,π2,∴A =π3.(2)由余弦定理,得b 2=a 2+c 2-2ac cos B =1+32-82×22=25,即b =5. ∴sin C =C sin B b =42×225=45. 答案 (1)π3 (2)45规律方法 已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【训练1】 (1)在△ABC 中,a =23,c =22,A =60°,则C =________. (2)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =________.解析 (1)由正弦定理,得23sin 60°=22sin C ,解得:sin C =22,又c <a ,所以C <60°,所以C =45°. (2)∵sin C =23sin B ,由正弦定理,得c =23b ,∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,又A 为三角形的内角,∴A =30°.答案 (1)45° (2)30°考点二 判断三角形的形状【例2】 (2014·临沂一模)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状. 解 (1)由2a sin A =(2b -c )sin B +(2c -b )sin C , 得2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2, ∴cos A =b 2+c 2-a 22bc =12,∴A =60°.(2)∵A +B +C =180°,∴B +C =180°-60°=120°. 由sin B +sin C =3,得sin B +sin(120°-B )=3, ∴sin B +sin 120°cos B -cos 120°sin B = 3. ∴32sin B +32cos B =3,即sin(B +30°)=1. ∵0°<B <120°,∴30°<B +30°<150°. ∴B +30°=90°,B =60°.∴A =B =C =60°,△ABC 为等边三角形.规律方法 解决判断三角形的形状问题,一般将条件化为只含角的三角函数的关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.另外,在变形过程中要注意A ,B ,C 的范围对三角函数值的影响.【训练2】 (1)(2013·山东省实验中学诊断)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2c 2=2a 2+2b 2+ab ,则△ABC 的形状是________三角形.(填“直角”、“钝角”或“锐角”等)(2)在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,则△ABC 的形状是________三角形.(填“锐角”、“直角”、“等腰”或“等腰或直角”)解析 (1)由2c 2=2a 2+2b 2+ab ,得a 2+b 2-c 2=-12ab ,所以cos C =a 2+b 2-c 22ab =-12ab2ab =-14<0,所以90°<C <180°,即△ABC 为钝角三角形. (2)由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )], 即b 2sin A cos B =a 2cos A sin B , 即sin 2 B sin A cos B =sin 2 A cos A sin B ,所以sin 2B =sin 2A ,由于A ,B 是三角形的内角, 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B , 即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形. 答案 (1)钝角 (2)等腰或直角考点三 与三角形面积有关的问题【例3】 (2013·浙江卷)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a sin B =3b . (1)求角A 的大小;(2)若a =6,b +c =8,求△ABC 的面积.审题路线 (1)把2a sin B =3b 变形为2a =3b sin B ⇒利用正弦定理a sin A =bsin B ⇒得到sin A =?⇒A 为锐角,得出A =?(2)由(1)知cos A 的值⇒利用余弦定理⇒又b +c =8,求bc 的值⇒利用三角形面积公式S =12bc sin A 求得.解 (1)由2a sin B =3b ,得2a =3bsin B ,又由正弦定理a sin A =b sin B ,得a sin A =2a 3,所以sin A =32,因为A 为锐角,所以A =π3.(2)由(1)及a 2=b 2+c 2-2bc cos A ,得b 2+c 2-bc =(b +c )2-3bc =36,又b +c =8,所以bc =283,由S =12bc sin A ,得△ABC 的面积为733.规律方法 在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =12ac sin B 最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来. 【训练3】 (2013·湖北卷)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1. (1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值. 解 (1)由cos 2A -3cos(B +C )=1, 得2cos 2A +3cos A -2=0,即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去).因为0<A <π,所以A =π3.(2)由S =12 bc sin A =12bc ·32=34bc =53,得bc =20. 又b =5,所以c =4.由余弦定理,得a 2=b 2+c 2-2bc cos A =25+16-20=21, 故a =21.又由正弦定理,得sin B sin C =b a sin A ·ca sin A =bc a 2sin 2A =2021×34=57.1.在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解. 2.正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化.如a 2=b 2+c 2-2bc cos A 可以转化为sin 2 A =sin 2 B +sin 2 C -2sin B sin C cos A ,利用这些变形可进行等式的化简与证明.答题模板6——解三角形问题【典例】 (13分)(2013·重庆卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+3bc . (1)求A ;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值,并指出此时B 的值.[规范解答] (1)由余弦定理, 得cos A =b 2+c 2-a 22bc =-3bc 2bc =-32. 又因为0<A <π,所以A =5π6.(4分) (2)由(1)得sin A =12, 又由正弦定理及a =3,得S =12bc sin A =12·a sin B sin A ·a sin C =3sin B sin C ,(6分) 因此,S +3cos B cos C =3(sin B sin C +cos B cos C )= 3cos(B -C ).(9分)所以,当B =C ,即B =π-A 2=π12时, S +3cos B cos C 取最大值3.(13分)[反思感悟] (1)在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.(2)在本题第(2)问中,不会结合正弦定理表达S 的角的形式是失分的主要原因.答题模板 第一步:定已知.即梳理已知条件,确定三角形中已知的边与角;第二步:选定理.即根据已知的边角关系灵活地选用定理和公式;第三步:代入求值. 【自主体验】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =3a sin C -c cos A . (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c . 解 (1)由c =3a sin C -c cos A 及正弦定理,得 3sin A sin C -cos A ·sin C -sin C =0, 由于sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A -π6=12,又0<A <π,所以-π6<A -π6<5π6,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8,解得b =c =2.基础巩固题组 (建议用时:40分钟)一、填空题1.(2013·盐城模拟)在△ABC 中,若a 2-c 2+b 2=3ab ,则C =________. 解析 由a 2-c 2+b 2=3ab ,得cos C =a 2+b 2-c 22ab =3ab 2ab =32,所以C =30°. 答案 30°2.(2014·合肥模拟)在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为________.解析 S =12×AB ·AC sin 60°=12×2×32AC =32,所以AC =1,所以BC 2=AB 2+AC 2-2AB ·AC cos 60°=3,所以BC = 3. 答案33.(2013·新课标全国Ⅱ卷改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为________. 解析 由正弦定理b sin B =csin C 及已知条件得c =22, 又sin A =sin(B +C )=12×22+32×22=2+64. 从而S △ABC =12bc sin A =12×2×22×2+64=3+1. 答案3+14.(2013·山东卷改编)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =________.解析 由a sin A =b sin B ,得a sin A =b sin 2A ,所以1sin A =32sin A cos A ,故cos A =32,又A ∈(0,π),所以A =π6,B =π3,C =π2,c =a 2+b 2=12+(3)2=2.答案 25.(2013·陕西卷改编)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为________三角形(填“直角”、“锐角”或“钝角”).解析 由正弦定理及已知条件可知sin B cos C +cos B sin C =sin 2 A ,即sin(B +C )=sin 2 A ,而B +C =π-A ,所以sin(B +C )=sin A ,所以sin 2 A =sin A ,又0<A <π,sin A >0,∴sin A =1,即A =π2. 答案 直角6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解析 由题意知,sin B +cos B =2,所以2sin ⎝ ⎛⎭⎪⎫B +π4=2,所以B =π4,根据正弦定理可知a sin A =b sin B ,可得2sin A =2sin π4,所以sin A =12,又a <b ,故A =π6.答案 π67.(2014·惠州模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________.解析 由余弦定理,得a 2+c 2-b 22ac =cos B ,结合已知等式得cos B ·tan B =32,∴sin B =32,∴B =π3或2π3. 答案π3或2π38.(2013·烟台一模)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B 等于________.解析 由余弦定理,得c 2=a 2+b 2-2ab cos C =4,即c =2.由cos C =14得sin C =154.由正弦定理b sin B =c sin C ,得sin B =b sin C c =22×154=154(或者因为c =2,所以b =c =2,即三角形为等腰三角形,所以sin B =sin C =154). 答案154二、解答题9.(2014·扬州质检)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,且a =12c +b cos C . (1)求角B 的大小;(2)若S △ABC =3,b =13,求a +c 的值. 解 (1)由正弦定理,得sin A =12sin C +sin B cos C , 又因为A =π-(B +C ),所以sin A =sin(B +C ), 可得sin B cos C +cos B sin C =12sin C +sin B cos C , 即cos B =12,又B ∈(0,π),所以B =π3.(2)因为S △ABC =3,所以12ac sin π3=3,所以ac =4,由余弦定理可知b 2=a 2+c 2-ac ,所以(a +c )2=b 2+3ac =13+12=25,即a +c =5.10.(2013·深圳二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =3,b =5,c =7.(1)求角C 的大小;(2)求sin ⎝ ⎛⎭⎪⎫B +π3的值. 解 (1)由余弦定理,得cos C =a 2+b 2-c 22ab =32+52-722×3×5=-12.∵0<C <π,∴C =2π3.(2)由正弦定理b sin B =c sin C ,得sin B =b sin C c =5sin 2π37=5314,∵C =2π3,∴B 为锐角, ∴cos B =1-sin 2 B =1-⎝ ⎛⎭⎪⎫53142=1114. ∴sin ⎝ ⎛⎭⎪⎫B +π3=sin B cos π3+cos B sin π3 =5314×12+1114×32=437.能力提升题组(建议用时:25分钟)一、填空题1.(2014·温岭中学模拟)在锐角△ABC 中,若BC =2,sin A =223,则A B →·A C →的最大值为________.解析 由余弦定理,得a 2=b 2+c 2-2bc ×13=4,由基本不等式可得4≥43bc ,即bc≤3,又∵sin A=223,∴cos A=13,所以A B→·A C→=bc cos A=13bc≤1.答案 12.(2013·青岛一中调研)在△ABC中,三边长a,b,c满足a3+b3=c3,那么△ABC的形状为________三角形.(填“锐角”、“钝角”或“直角”).解析由题意可知c>a,c>b,即角C最大,所以a3+b3=a·a2+b·b2<ca2+cb2,即c3<ca2+cb2,所以c2<a2+b2.根据余弦定理,得cos C=a2+b2-c22ab>0,所以0<C<π2,即三角形为锐角三角形.答案锐角3.在△ABC中,B=60°,AC=3,则AB+2BC的最大值为________ .解析由正弦定理知ABsin C=3sin 60°=BCsin A,∴AB=2sin C,BC=2sin A.又A+C=120°,∴AB+2BC=2sin C+4sin(120°-C)=2(sin C+2sin 120°cos C-2cos 120°sin C)=2(sin C+3cos C+sin C)=2(2sin C+3cos C)=27sin(C+α),其中tan α=32,α是第一象限角,由于0°<C<120°,且α是第一象限角,因此AB+2BC有最大值27.答案27二、解答题4.(2013·长沙模拟)在△ABC中,边a,b,c分别是角A,B,C的对边,且满足b cos C=(3a-c)cos B.(1)求cos B;(2)若B C →·B A →=4,b =42,求边a ,c 的值. 解 (1)由正弦定理和b cos C =(3a -c )cos B , 得sin B cos C =(3sin A -sin C )cos B ,化简,得sin B cos C +sin C cos B =3sin A cos B , 即sin(B +C )=3sin A cos B ,故sin A =3sin A cos B ,所以cos B =13.(2)因为B C →·B A →=4,所以B C →·B A →=|B C →|·|B A →|· cos B =4,所以|B C →|·|B A →|=12,即ac =12.①又因为cos B =a 2+c 2-b 22ac =13,整理得,a 2+c 2=40.②联立①②⎩⎨⎧ a 2+c 2=40,ac =12,解得⎩⎨⎧ a =2,c =6或⎩⎨⎧ a =6,c =2.。

正弦定理题型总结

正弦定理题型总结

第一讲 正弦定理一.正弦定理:2sin sin sin a b cR A B C=== (1)在实际应用中正弦定理有多种变化形式.①a ∶b ∶c =sin A ∶sin B ∶sin C . ②a b =sin A sin B ,a c =sin A sin C ,b c =sin Bsin C .③a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C. ④a =2R sin A ,b =2R sin B ,c =2R sin C . ⑤sin A =a 2R ,sin B =b 2R ,sin C =c2R . ⑥A <B ⇔a <b ⇔2R sin A <2R sin B ⇔sin A <sin B .要点一 已知两角及一边解三角形:已知两角与一边,用正弦定理,有解时,只有一解.1、(2013·荆门市高三元月调考)在△ABC 中,B =45°,C =60°,c =1,则此三角形最短边的长度为________. 【解析】 A =180°-B -C =180°-45°-60°=75°,所以B <C <A ,则该三角形最短边为b .根据正弦定理得 b =c sin B sin C =1×sin 45°sin 60°=1×2232=63.【答案】 632、已知△ABC 中,a =20,A =30°,C =45°,求B ,b ,c . 【解析】 ∵A =30°,C =45°,∴B =180°-(A +C )=105°,由正弦定理b =a sin B sin A =20sin 105°sin 30°=40sin(45°+60°)=10(6+2);c =a sin C sin A =20sin 45°sin 30°=202,∴B =105°,b =10(6+2),c =20 2. 答案: (1)105° 10(6+2) 20 2练习3.(2012·福建卷)在△ABC 中,已知∠BAC =60°,∠ABC =45°,BC =3,则AC =________. 解析:由正弦定理,得AC sin ∠ABC =BC sin ∠BAC ,即AC =BC sin ∠BAC ×sin ∠ABC =332×22= 2. 答案: 24、(2012·广东)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C. 3 D.32【解析】 由正弦定理得BC sin A =AC sin B ,即32sin 60°=ACsin 45°,解得AC =2 3.【答案】 B5.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323解析:∵B =60°,C =75°,∴A =45°.由a sin A =b sin B ,得8sin 45°=bsin 60°,∴b =4 6.答案:C 要点二 已知两边及其中一边的对角解三角形∠A 为锐角 ∠A 为钝角或直角1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3解析:在△ABC 中,由正弦定理a sin A =b sin B ,得sin B =b a ×sin A =13×32=12.又∵b =1<a =3, ∴B <A =π3,而0<B <π,∴B =π6,从而C =π2,由勾股定理可得c =a 2+b 2=1+3=2,故选B.2.(2013·山东卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =( ) A .2 3 B .2 C. 2 D .1解析:由正弦定理a sin A =b sin B 得:1sin A =3sin B ,又∵B =2A ,∴1sin A =3sin 2A =32sin A cos A ,∴cos A =32,∴∠A =30°,∴∠B =60°,∠C =90°,∴c =12+(3)2=2. 答案:B练习3.(2013·北京卷)在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A.15B.59C.53D .1 解析:根据正弦定理,a sin A =b sin B ,则sin B =b a sin A =53·13=59,故选B.4、.已知下列各三角形中的两边及其一边的对角,先判断三角形是否有解,有解的作出解答. (1)a =7,b =8,A =105°; (2)a =10,b =20,A =80°; (3)b =10,c =56,C =60°; (4)a =23,b =6,A =30°.【解】 (1)∵a =7,b =8, ∴a <b ,又∵A =105°>90°,∴本题无解.(2)a =10,b =20,a <b ,A =80°<90°, ∵b sin A =20·sin 80°>20·sin 60°=103, ∴a <b ·sin A ,∴本题无解. (3)b =10,c =56,b <c ,C =60°<90°,本题有一解.∵sin B =b sin C c =10·sin 60°56=22, ∴B =45°,A =180°-(B +C )=75°.∴a =b sin A sin B =10·sin 75°sin 45°=10×6+2422=5(3+1). (4)a =23,b =6,a <b ,A =30°<90°,又∵b sin A =6sin 30°=3,a >b sin A ,∴本题有两解. 由正弦定理得sin B =b sin A a =6sin 30°23=32,∴B =60°或120°.当B =60°时,C =90°,c =a sin C sin A =23sin 90°sin 30°=4 3. 当B =120°时,C =30°,c =a sin C sin A =23sin 30°sin 30°=23,∴B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.5.在△ABC 中,a =x ,b =2,B =45°,若△ABC 只有一解,则x 的取值范围是( ) A .0<x <2 B .0<x ≤2 C .0<x <2或x =2 2 D .0<x ≤2或x =2 2 解析:sin A =a sin Bb=x ×222=24x , 当x =22时,sin A =1,△ABC 有一解; 又当a ≤b 时,即x ≤2时,A 为锐角,△ABC 只有一解. 所以D 项正确.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则满足b =2a ,A =25°的△ABC 的个数是( ) A .0 B .1 C .2 D .3解析: 如图,h =b sin A =2a sin 25°<a , ∴有两解,选C.7.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C . (1)求B 的范围;(2)试求ab 的范围.解:(1)在锐角三角形ABC 中,0°<A <90°,0°<B <90°,0°<C <90°,即:⎩⎪⎨⎪⎧0°<B <90°0°<2B <90°0°<180°-3B <90°⇒30°<B <45° (2)由正弦定理知a b =sin A sin B =sin 2Bsin B =2cos B ∈(2,3),故所求的范围是(2,3).要点三 判断三角形的形状1.确定三角形的形状主要有两条途径:(1)化边为角:根据a =2R sin A .b =2R sin B .c =2R sin C 化边为角(其中R 为△ABC 外接圆半径).(2)化角为边:根据sin A =a 2R ,sin B =a 2R ,sin C =a2R化角为边.2.确定三角形形状的思想方法:先将条件中的边角关系由正弦定理统一为角角或边边关系,再由三角变形或代数变形分解因式,判定形状.在变形过程中要注意等式两端的公因式不要约掉,应移项提取公因式,否则会有漏掉一种解的可能. 1.在△ABC 中,若sin 2A =sin 2B +sin 2C ,sin A =2sin B ·cos C ,试判断△ABC 的形状.【思路启迪】 sin 2A =sin 2B +sin 2C ――→正弦定理a 2=b 2+c 2――→B +C =90°cos C =sin B【解】 记a sin A =b sin B =c sin C =k , 则sin A =a k ,sin B =b k ,sin C =c k .∵sin 2A =sin 2B +sin 2C ,∴⎝⎛⎭⎫a k 2=⎝⎛⎭⎫b k 2+⎝⎛⎭⎫c k 2, 即a 2=b 2+c 2,A =90°. ∴C =90°-B ,cos C =sin B . ∴1=sin A =2sin 2B ,sin B =22. ∴B =45°或B =135°(A +B =225°>180°,舍去). ∴△ABC 是以A 为直角的等腰直角三角形.2、在△ABC 中,已知a ,b ,c 分别是角A 、B 、C 的对边,若a b =cos Bcos A ,则△ABC 为( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形解析:由正弦定理得a b =sin A sin B ,所以,a b =cos B cos A ⇒sin A sin B =cos Bcos A ⇒sin A cos A =sin B cos B ⇒sin 2A =sin 2B ⇒2A =2B 或2A=π-2B ⇒A =B 或A +B =π2, ∴△ABC 是等腰三角形或直角三角形.选C.3、在△ABC 中,已知2a =b +c ,sin 2A =sin B sin C ,则△ABC 的形状为________.解析: ∵sin 2 A =sin B sin C 由正弦定理得a 2=bc 又2a =b +c 得(b -c )2=0,∴b =c 代入2a =b +c 得a =b =c ∴△ABC 为等边三角形.练习:4.已知在△ABC 中,角A ,B 所对的边分别是a 和b ,若a cos B =b cos A ,则△ABC 一定是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形 解析:由正弦定理得:a cos B =b cos A ⇒2R sin A cos B =2R sin B cos A ⇒sin(A -B )=0, 由于-π<A -B <π,故必有A -B =0,即△ABC 为等腰三角形. 答案:A 5、在△ABC 中,cos cos cos a b cA B C==,则△ABC 一定是( ) A .直角三角形 B .钝角三角形 C .等腰三角形 D .等边三角形 解:D .6.若a sin A =b cos B =ccos C,则△ABC 为( )A .等边三角形B .有一个内角为30°的直角三角形C .等腰直角三角形D .有一个内角为30°的等腰三角形 解析:因为a sin A =b cos B =c cos C ,所以由正弦定理得sin A sin A =sin B cos B =sin Ccos C,所以tan B =tan C =1, 又B ∈(0,π),C ∈(0,π),所以B =C =π4,A =π2,所以△ABC 为等腰直角三角形.答案:C7.(2013·北京西城高三模拟改编)在△ABC 中,若cos A cos B =b a =43,试判断△ABC 的形状.解:由正弦定理,得cos A cos B =sin B sin A =43, ∴sin A cos A =sin B cos B ,∴sin 2A =sin 2B ,∴2A =2B ,或2A +2B =π,∴A =B ,或A +B =π2. 又∵b a =43>1,即b >a ,∴B >A . ∴A +B =π2,从而△ABC 是直角三角形.8.(2013·乐山一中阶段考试)在△ABC 中,若a 2b 2=a 2+c 2-b2b 2+c 2-a2,则△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形 解析:a 2b 2=2ac cos B 2bc cos A =a cos B b cos A 即a b =cos B cos A∴sin A cos A =sin B cos B∴A =B 或A B π+= ∴ △ABC 为等腰三角或直角三角形. 答案:D 四、边角互化1.(2013·天津市和平区高三第一次质量调查)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若b cos C +c cos B =3a cos B ,则cos B 的值为________.解析:由正弦定理可得sin B ·cos C +sin C ·cos B =3sin A cos B ,则有sin B ·cos C +cos B ·sin C =sin(B +C )=sin A ,所以sin A =3sin A cos B ,所以cos B =33. 答案:332.在△ABC 中,a ∶b ∶c =1∶3∶5,则2sin A -sin Bsin C 的值为________.解析:由正弦定理可知,2sin A -sin B sin C =2a -b c =-15. 答案:-153.(1)(2012·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b =5c ,C =2B ,则cos C =( ) A.725 B .-725 C .±725 D.2425解析:(1)∵8b =5c ,由正弦定理得8sin B =5sin C ,又∵C =2B ,∴8sin B =5sin 2B ,所以8sin B =10sin B cos B ,易知sin B ≠0,∴cos B =45,cos C =cos 2B =2cos 2B -1=725.答案:A4、(2013·辽宁卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则∠B =( )A.π6B.π3C.2π3D.5π6解析: 根据正弦定理a sin B cos C +c sin B cos A =12b 且sin B ≠0等价于sin A cos C +sin C cos A =12,即sin(A +C )=12.又a >b ,所以A +C =5π6,所以B =π6,故选A.五、面积问题1.在△ABC 中,B =30°,AB =23,AC =2,求△ABC 的面积.【正确解答】 由正弦定理,得sin C =AB ·sin B AC =32.又∵AB >AC ,∴C =60°或120°.当C =60°时,A =90°,S △ABC =23;当C =120°时,A =30°,S △ABC = 3.2.(2013·课标全国Ⅱ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为( )A .23+2 B.3+1 C .23-2 D.3-1解析:A =π-(B +C )=π-⎝⎛⎭⎫π6+π4=7π12, 由正弦定理得a sin A =b sin B , 则a =b sin Asin B =2sin7π12sin π6=6+2, ∴S △ABC =12ab sin C =12×2×(6+2)×22=3+1. 答案:B3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin A =35,向量m =(2cos C 2,-sin C ),n =(cos C2,2sin C ),且m ⊥n . (1)求sin B 的值;(2)若c =5,求△ABC 的面积.解:由题意知,m ·n =0,即2cos 2C2-2sin 2C =0,1+cos C -2(1-cos 2C )=0,2cos 2C +cos C -1=0,即cos C =-1(舍去)或cos C =12, ∵0<C <π,∴C =π3.(1)∵sin A =35,35<32=sin π3,∴A 为锐角∴cos A =1-sin 2A =45 又B =2π3-A ,∴sin B =sin ⎝⎛⎭⎫2π3-A =sin 2π3cos A -cos 2π3sin A =32·45-⎝⎛⎭⎫-12·35=43+310. (2)由C =π3知sin C =32,又sin A =35. 由正弦定理得a c =sin A sin C =235. 又∵c =5,∴a =2 3.∴S △ABC =12ac sin B =12×23×5×43+310=12+332.六、综合问题1.(2013·成都模拟改编)已知函数f (x )=cos ⎝⎛⎭⎫2x -2π3-cos 2x (x ∈R ).△ABC 内角A ,B ,C 的对边长分别为a ,b ,c ,若f ⎝⎛⎭⎫B 2=-32,b =1,c =3,且a >b ,试求角B 和角C . 解:∵f (x )=cos ⎝⎛⎭⎫2x -2π3-cos 2x =32sin 2x -32cos 2x =3sin ⎝⎛⎭⎫2x -π3,∴f ⎝⎛⎭⎫B 2=3sin ⎝⎛⎭⎫B -π3=-32,∴sin ⎝⎛⎭⎫B -π3=-12. ∵0<B <π,∴-π3<B -π3<2π3,∴B -π3=-π6,即B =π6.由正弦定理得,a sin A =1sin π6=3sin C ,∴sin C =32,∵0<C <π,∴C =π3或2π3. 当C =π3时,A =π2;当C =2π3时,A =π6,此时a =b (不合题意,舍) 所以B =π6,C =π3.2.在△ABC 中,tan A =14,tan B =35. (1)求角C 的大小; (2)若△ABC 最大边的边长为17,求最小边的边长.解:(1)∵C =π-A -B , ∴tan C =-tan(A +B )=-14+351-14×35=-1. 又∵0<C <π,∴C =3π4.(2)在△ABC 中,∵C =3π4,∴角C 最大,即AB =17. 又∵tan A <tan B ,A ,B ∈⎝⎛⎭⎫0,π2,∴角A 最小,即BC 边最小. 由⎩⎪⎨⎪⎧tan A =sin A cos A =14,sin 2A +cos 2A =1,且A ∈(0,π2),得sin A =1717. 根据正弦定理,由AB sin C =BCsin A,得BC =AB ·sin A sin C = 2. ∴△ABC 的最小边的边长为 2.。

(完整版)正弦定理和余弦定理典型例题

(完整版)正弦定理和余弦定理典型例题

《正弦定理和余弦定理》典型例题透析类型一:正弦定理的应用:例1.已知在ABC ∆中,10c =,45A =o ,30C =o ,解三角形.思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C=Q , ∴sin 10sin 45102sin sin 30c A a C ⨯===oo∴ 180()105B A C =-+=o o , 又sin sin b c B C=, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ⨯====⨯=o o o 总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在∆ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。

【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在∆ABC 中,已知075B =,060C =,5c =,求a 、A .【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴56a =【变式3】在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在3,60,1ABC b B c ∆===o 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .解析:由正弦定理得:sin sin b c B C=, ∴sin 1sin 23c B C b ===o , (方法一)∵0180C <<o o , ∴30C =o 或150C =o ,当150C =o 时,210180B C +=>o o ,(舍去);当30C =o 时,90A =o ,∴222a b c =+=.(方法二)∵b c >,60B =o , ∴C B <,∴60C <o 即C 为锐角, ∴30C =o ,90A =o ∴222a b c =+=.总结升华:1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。

(完整版)正弦定理和余弦定理典型例题(最新整理)

(完整版)正弦定理和余弦定理典型例题(最新整理)

【答案】根据余弦定理可得:
cos A b2 c2 a2 8 8 4 3 4 3
2bc
22 2 6 2 2
∵ 0 A 180 , ∴ A 30 ;
∴由正弦定理得: sin C c sin A
6 2 sin 30
6 2
.
a
2
4
【变式 2】在 ABC 中,已知 B 750 , C 600 , c 5 ,求 a 、 A .
【答案】 A 1800 (B C) 1800 (750 600 ) 450 ,
根据正弦定理
a
5
,∴ a 5
6
.
sin 45o sin 60o
3
【变式 3】在 ABC 中,已知 sin A : sin B : sin C 1: 2 : 3 ,求 a : b : c 【答案】根据正弦定理 a b c ,得 a : b : c sin A : sin B : sin C 1: 2 : 3 .
【答案】根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ;
根据正弦定理,
b
asin B sin A
42.9sin81.80 sin32.00
80.1(cm)

根据正弦定理,
c
asinC sin A
42.9sin 66.20 sin32.00
74.1(cm).
sin A sin B sin C
例 2.在 ABC中,b 3, B 60, c 1,求: a 和 A , C .
思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角 C ,然后用三角形 内角和求出角 A ,最后用正弦定理求出边 a .

解三角形(正弦定理、余弦定理)知识点、例题解析、高考题汇总及答案

解三角形(正弦定理、余弦定理)知识点、例题解析、高考题汇总及答案

解三角形【考纲说明】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题【知识梳理】一、正弦定理1、正弦定理:在△ABC 中,R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径)。

2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b cA B C R R R=== (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C++====++.3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABCabc S ah ab C ac B bc A R A B C R∆====== 4、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一) 二、余弦定理1、余弦定理:A bc c b a cos 2222-+=⇔bcac b A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=2、余弦定理可以解决的问题:α北东h i l=θ(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):(3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).图1 图2 图3 图42、方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 3、方向角相对于某一正方向的水平角(如图3).4、坡角:坡面与水平面所成的锐二面角叫坡角(如图4). 坡度:坡面的铅直高度与水平宽度之比叫做坡度(或坡比)【经典例题】1、(2012天津理)在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =( )A .725B .725-C .725±D .2425【答案】A 【解析】85,b c =由正弦定理得8sin 5sin B C =,又2C B =,8sin 5sin 2B B ∴=,所以8sin 10sin cos B B B =,易知247sin 0,cos ,cos cos 22cos 1525B BC B B ≠∴===-=. 2、(2009广东文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若62a c ==75A ∠=,则b =α 北东南西 B目标lh( )A .2B .4+ C .4— D【答案】 A【解析】0sin sin 75sin(3045)sin 30cos 45sin 45cos304A ==+=+=由a c ==可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得1sin 2sin 2ab B A=⋅==,故选A3、(2011浙江)在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( )A .-12 B .12C . -1D . 1 【答案】D【解析】∵B b A a sin cos =,∴B A A 2sin cos sin =,∴1cos sin cos cos sin 222=+=+B B B A A .4、(2012福建文)在ABC ∆中,已知60,45,BAC ABC BC ∠=︒∠=︒=则AC =_______.【解析】由正弦定理得sin 45AC AC =⇒=︒5、(2011北京)在ABC 中,若15,,sin 43b B A π=∠==,则a = . 【答案】325 【解析】:由正弦定理得sin sin a b A B =又15,,sin 43b B A π=∠==所以5,13sin 34a a π==6、(2012重庆理)设ABC ∆的内角,,A B C 的对边分别为,,abc ,且35cos ,cos ,3,513A B b ===则c =______ 【答案】145c =【解析】由35412cos ,cos sin ,sin 513513A B A B ==⇒==, 由正弦定理sin sin a b A B=得43sin 13512sin 513b A a B ⨯===, 由余弦定理2222142cos 25905605a cb bc A c c c =+-⇒-+=⇒=7、(2011全国)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知sin csin sin sin a A C C b B +=. (I )求B ; (Ⅱ)若075,2,A b ==a c 求,. 【解析】(I)由正弦定理得222a cb +=由余弦定理得2222cos b a c ac B =+-.故cos 2B =,因此45B = (II )sin sin(3045)A =+sin30cos 45cos30sin 45=+4=故sin 1sin A a b B =⨯==+ sin sin 6026sin sin 45C c b B =⨯=⨯=8、(2012江西文)△ABC 中,角A,B,C 的对边分别为a,b,c.已知3cos(B-C)-1=6cosBcosC.(1)求cosA;(2)若a=3,△ABC 的面积为求b,c.【解析】(1) 3(cos cos sin sin )16cos cos 3cos cos 3sin sin 13cos()11cos()3B C B C B C B C B C B C A π+-=⎧⎪-=-⎪⎪+=-⎨⎪⎪-=-⎪⎩则1cos 3A =. (2)由(1)得sin A =,由面积可得bc=6①,则根据余弦定理 2222291cos 2123b c a b c A bc +-+-===则2213b c +=②,①②两式联立可得32b a =⎧⎪⎨=⎪⎩或32a b =⎧⎪⎨=⎪⎩.9、(2011安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a=3,b=2,12cos()0B C ++=,求边BC 上的高.【解析】:∵A +B +C =180°,所以B +C =A , 又12cos()0B C ++=,∴12cos(180)0A +-=, 即12cos 0A -=,1cos 2A =, 又0°<A<180°,所以A =60°.在△ABC 中,由正弦定理sin sin a b A B=得sin 2sin 602sin 3b A B a ===,又∵b a <,所以B <A ,B =45°,C =75°, ∴BC 边上的高AD =AC·sinC 2752sin(4530)=+2(sin 45cos30cos 45sin 30)=+2321312()2+==10、(2012辽宁理)在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(I )求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值. 【解析】(I )由已知12,,,cos 32B AC A B C B B ππ=+++=∴==(Ⅱ)解法一:2b ac =,由正弦定理得23sin sin sin 4A CB ==, 解法二:2222221,cos 222a c b a c ac b ac B ac ac+-+-====,由此得22a b ac ac +-=,得a c =所以3,sin sin 34A B C A C π====【课堂练习】1、(2012广东文)在ABC ∆中,若60A ∠=︒,45B ∠=︒,BC =,则AC =( )A .B .CD 2、(2011四川)在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )A .(0,]6πB .[,)6ππC .(0,]3πD .[,)3ππ3、(2012陕西理)在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A B C .12 D .12- 4、(2012陕西)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若2222c b a =+,则C cos 的最小值为( ) A .23B .22 C .21D .21-5、(2011天津)如图,在△ABC 中,D 是边AC 上的点,且,2,2AB CD AB BC BD ===则sin C 的值为( )A .3 B .6 C .3 D .66、(2011辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=ab( )A .B .CD 7、(2012湖北文)设ABC ∆的内角,,,A B C 所对的边分别为,,a b c ,若三边的长为连续的三个正整数,且A B C >>,320cos b a A =,则sin :sin :sin A B C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶48、(2011上海)在相距2千米的A .B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则A C 两点之间的距离是 千米。

高考数学题型全归纳:正余弦定理的应用知识归纳(含答案)

高考数学题型全归纳:正余弦定理的应用知识归纳(含答案)

高考数学题型全归纳:正余弦定理的应用知识归纳(含答案)正余弦定理在解决三角形问题中的应用知识点归纳:1.正弦定理:形式一:R 2Csin c B sin b A sin a ===;形式二:R 2a A sin =;R 2b B sin =;R 2c C sin =;(角到边的转换)形式三:A sin R 2a ?=,B sin R 2b ?=,C sin R 2c ?=;(边到角的转换)形式四:B sin ac 2 1A sin bc 21C sin ab 21S ===;(求三角形的面积)解决以下两类问题:1)、已知两角和任一边,求其他两边和一角;(唯一解)2)、已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角)。

若给出A ,b a ,那么解的个数为:无解(A sin b a <);一解(A sin b a A sin b a ≥=或者);两解(b a A sin b <<);2.余弦定理:形式一:A cos bc 2c b a 222?-+=,B cos ac 2c a b 222?-+=,C cos ab 2b a c 222?-+= 形式二:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab2c b a C cos 222-+=,(角到边的转换)解决以下两类问题:1)、已知三边,求三个角;(唯一解)2)、已知两边和它们得夹角,求第三边和其他两个角;(唯一解)3、角平分线定理:DCAD BC AB = ;其中BD 为角B 的角平分线。

规律方法总结:1、要正确区分两个定理的不同作用,围绕三角形面积公式及三角形外接圆直径展开三角形问题的求解。

2、两个定理可以实现将“边、角混合”的等式转化成“边或角的单一”等式。

3、记住一些结论:1,,,sin 2A B C A B C S ab C π++==均为正角;等。

4、余弦定理的数量积表示式:cos ||||BA CA A BA CA ?= 。

数学正弦定理余弦定理公式题目

数学正弦定理余弦定理公式题目

数学正弦定理余弦定理公式题目一、正弦定理相关题目。

(一)题目1。

1. 题目。

在ABC中,A = 30^∘,B = 60^∘,a = 10,求b的值。

2. 解析。

根据正弦定理(a)/(sin A)=(b)/(sin B)。

已知A = 30^∘,sin A=(1)/(2);B = 60^∘,sin B=(√(3))/(2),a = 10。

将值代入正弦定理可得:b=(asin B)/(sin A)=(10×frac{√(3))/(2)}{(1)/(2)} = 10√(3)。

(二)题目2。

1. 题目。

在ABC中,a = 2√(3),b = 6,A=30^∘,求B的值。

2. 解析。

由正弦定理(a)/(sin A)=(b)/(sin B),可得sin B=(bsin A)/(a)。

已知a = 2√(3),b = 6,A = 30^∘,sin A=(1)/(2)。

则sin B=(6×frac{1)/(2)}{2√(3)}=(√(3))/(2)。

因为B∈(0^∘,180^∘),所以B = 60^∘或B = 120^∘。

(三)题目3。

1. 题目。

在ABC中,a=5,b = 7,sin A=(1)/(3),求sin B的值。

2. 解析。

根据正弦定理(a)/(sin A)=(b)/(sin B),则sin B=(bsin A)/(a)。

已知a = 5,b = 7,sin A=(1)/(3),所以sin B=(7×frac{1)/(3)}{5}=(7)/(15)。

(四)题目4。

1. 题目。

在ABC中,已知asin A=bsin B,试判断三角形的形状。

2. 解析。

由正弦定理(a)/(sin A)=(b)/(sin B)= 2R(R为ABC外接圆半径),则a = 2Rsin A,b=2Rsin B。

已知asin A=bsin B,即(2Rsin A)sin A=(2Rsin B)sin B,化简得sin^2A=sin^2B。

高考数学专项正余弦定理知识点及例题解析精讲

高考数学专项正余弦定理知识点及例题解析精讲

正、余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.请注意综合近两年的高考试卷可以看出:三角形中的三角函数问题已成为近几年的高考热点.不仅选择题中时有出现,而且解答题也经常出现,故这部分知识应引起充分的重视.正弦定理a sinA =b sinB =c sinC=2R 其中2R 为△ABC 外接圆直径.变式:a =2RsinA ,b =2RsinB ,c =2RsinC . a ∶b ∶c =sinA ∶sinB ∶sinC .余弦定理a 2=b 2+c 2-2bccosA ;b 2=a 2+c 2-2accosB ; c 2=a 2+b 2-2abcosC .变式:cosA =b 2+c 2-a 22bc ;cosB =a 2+c 2-b 22ac ;cosC =a 2+b 2-c 22ab.sin 2A =sin 2B +sin 2C -2sinBsinCcosA.解三角形(1)已知三边a ,b ,c.运用余弦定理可求三角A ,B ,C. (2)已知两边a ,b 及夹角C. 运用余弦定理可求第三边c. (3)已知两边a ,b 及一边对角A. 先用正弦定理,求sinB :sinB =bsinAa.①A 为锐角时,若a<bsinA ,无解;若a =bsinA ,一解;若bsinA<a<b ,两解;若a ≥b ,一解.②A 为直角或钝角时,若a ≤b ,无解;若a>b ,一解.(4)已知一边a 及两角A ,B(或B ,C)用正弦定理,先求出一边,后求另一边.三角形常用面积公式(1)S =12a·h a (h a表示a 边上的高).(2)S =12absinC =12acsinB =12bcsinA =abc 4R .(3)S =12r(a +b +c)(r 为内切圆半径).1.判断下列说法是否正确(打“√”或“×”). (1)在△ABC 中,A>B 必有sinA>sinB.(2)在△ABC 中,若b 2+c 2>a 2,则△ABC 为锐角三角形.(3)在△ABC 中,若A =60°,a =43,b =42,则∠B =45°或∠B =135°. (4)若满足条件C =60°,AB =3,BC =a 的△ABC 有两个,则实数a 的取值范围是(3,2).(5)在△ABC 中,若acosB =bcosA ,则△ABC 是等腰三角形. (6)在△ABC 中,若tanA =a 2,tanB =b 2,则△ABC 是等腰三角形. 2.(教材习题改编)在△ABC 中,若a =2bsinA ,则B 等于( ) A .30°或60° B .45°或60° C .60°或120° D .30°或150°3.(2016·课标全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =5,c =2,cosA =23,则b =( )A. 2B. 3 C .2D .34.(2017·课标全国Ⅱ,文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2bcosB =acosC +ccosA ,则B =________.5.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c.若(a +b -c)(a +b +c)=ab ,则角C =________.6.在△ABC 中,已知c =102,A =45°,在a 分别为20,102,2033,10和5的情况下,求相应的角C.题型一 利用正余弦定理解三角形(1)在△ABC 中,已知a =2,b =3,A =45°,求角B ,C 及边c.(2)在△ABC 中,sinA ∶sinB ∶sinC =4∶5∶6,则2acosAc=________.(1)在已知三角形两边及其中一边的对角,求该三角形的其他边角的问题时,首先必须判明是否有解,(例如在△ABC 中,已知a =1,b =2,A =60°,则sinB =ba sinA =3>1,问题就无解),如果有解,是一解,还是两解.(2)在三角形的判断中注意应用“大边对大角”来确定.思考题1 (1)(2017·课标全国Ⅲ,文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知C =60°,b =6,c =3,则A =________.(2)(2016·课标全国Ⅲ,理)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cosA =( )A.31010B.1010C .-1010D .-31010题型二 正余弦定理的综合运用(1)(2017·课标全国Ⅰ,理)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为a 23sinA.①求sinBsinC ;②若6cosBcosC =1,a =3,求△ABC 的周长.(2)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a 2=12c 2.①求tanC 的值;②若△ABC 的面积为3,求b 的值.思考题2 (1)(2017·天津,理)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a>b ,a =5,c =6,sinB =35.①求b 和sinA 的值; ②求sin(2A +π4)的值.(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =π4,bsin(π4+C)-csin(π4+B)=a.①求证:B -C =π2;②若a =2,求△ABC 的面积.题型三 判断三角形形状在△ABC 中,若b 2sin 2C +c 2sin 2B =2bccosB ·cosC ,试判断△ABC 的形状.★状元笔记★三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a =2RsinA ,a 2+b 2-c 2=2abcosC 等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系,如sinA =sinB ⇔A =B ;sin(A -B)=0⇔A =B ;sin2A =sin2B ⇔A =B 或A +B =π2等.(2)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.思考题3 在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B)=(a 2-b 2)·sin(A +B),判断△ABC 的形状.题型四 解三角形(2018·皖南八校联考)如图,在四边形ABCD中,已知AB ⊥AD ,∠ABC =120°,∠ACD =60°,AD =27,设∠ACB =θ,点C 到AD 的距离为h.(1)用θ表示h 的解析式;(2)求AB +BC 最大值.思考题4 如图,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ;(2)若∠APB =150°,求tan ∠PBA.1.根据所给条件确定三角形的形状,主要有两种途径:①化边为角,②化角为边;并常用正弦(余弦)定理实施边、角转换.2.用正弦(余弦)定理解三角形问题时可适当应用向量数量积求三角形内角与应用向量的模求三角形边长等.3.在判断三角形形状或解斜三角形时,一定要注意解是否唯一,并注重挖掘隐含条件.如: (1)A +B +C =π.(2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边. (4)在△ABC 中,A ,B ,C 成等差数列的充要条件是B =60°.作业(二十六)(第一次作业)1.(2018·安徽马鞍山一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知a =3,b =2,A =60°,则c =( ) A.12B .1C. 3 D .22.(2018·山西五校联考)在△ABC 中,a =3b ,A =120°,则角B 的大小为( ) A .30° B .45° C .60°D .90°3.(2018·陕西西安一中期中)在△ABC 中,sin 2A ≤sin 2B +sin 2C -sinBsinC ,则A 的取值范围是( ) A .(0,π6]B .[π6,π)C .(0,π3]D .[π3,π)4.(2018·广东惠州三调)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.3+1B.3-1 C .4D .25.(2018·东北八校联考)已知△ABC 三边a ,b ,c 上的高分别为12,22,1,则cosA =( )A.32B .-22C .-24D .-346.(2016·山东)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sinA).则A =( ) A.3π4 B.π3 C.π4D.π67.(2014·江西,文)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若3a =2b ,则2sin 2B -sin 2Asin 2A 的值为( )A .-19B.13 C .1D.728.(2018·安徽合肥检测)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b)(sinA +sinB)=(c -b)sinC.若a =3,则b 2+c 2的取值范围是( )A .(3,6]B .(3,5)C .(5,6]D .[5,6]9.在△ABC 中,若AB =3,AC =1,B =30°,则△ABC 的面积为________. 10.(2018·河南信阳调研)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为△ABC 的面积,S =34(a 2+b 2-c 2),则C 的大小为________. 11.(2017·甘肃定西统考)在△ABC 中,若a 2b 2=tanAtanB ,则△ABC 的形状为________.12.(2018·河北唐山一模)在△ABC 中,角A ,B ,C 的对边a ,b ,c 成等差数列,且A -C =90°,则cosB =________.13.(2018·广东揭阳一模)在△ABC 中,∠B =π6,AC =1,点D 在边AB 上,且DA =DC ,BD =1,则∠DCA =________.14.(2017·北京,理)在△ABC 中,∠A =60°,c =37a.(1)求sinC 的值;(2)若a =7,求△ABC 的面积.15.(2018·河南豫南九校质量考评)已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2+b 2-c 2a 2+c 2-b 2=2sinA -sinC sinC ,且b =4.(1)求角B ;(2)求△ABC 面积的最大值.16.(2017·课标全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C)=8sin 2B2.(1)求cosB ;(2)若a +c =6,△ABC 的面积为2,求b.17.(2018·福建高中毕业班质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2bcosC(1)求B的大小;(2)若a=3,且AC边上的中线长为192,求c的值.18.(2018·衡水中学调研卷)设△ABC的内角A,B,C所对边的长分别为a,b,c,且有2sinBcosA =sinAcosC+cosAsinC.(1)求角A的大小;(2)若b=2,c=1,D为BC的中点,求AD的长.(第二次作业)1.(2015·广东,文)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=23,cosA=32且b<c,则b=()A.3 B.2 2C.2 D. 32.在△ABC中,AC=7,BC=2,B=60°,则BC边上的高等于()A.32 B.332C.3+62 D.3+3943.(2018·北京西城期末)已知△ABC中,a=1,b=2,B=45°,则A等于() A.150°B.90°C.60°D.30°4.(2018·安徽合肥模拟)在△ABC中,A=60°,AB=2,且△ABC的面积为32,则BC的A.32B. 3 C .2 3D .25.在△ABC 中,三边长a ,b ,c 满足a 3+b 3=c 3,那么△ABC 的形状为( ) A .锐角三角形 B .钝角三角形 C .直角三角形D .以上均有可能6.(2016·北京)在△ABC 中,∠A =2π3,a =3c ,则bc=________.7.已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a =1,2cosC +c =2b ,则△ABC 周长取值范围是________.8.(2015·广东,理)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若a =3,sinB =12,C =π6,则b =________.9.(2018·湖北黄冈中学、黄石二中、鄂州高中三校联考)已知△ABC 的三内角A ,B ,C 所对的边分别是a ,b ,c ,向量m =(sinB ,1-cosB)与向量n =(2,0)的夹角θ的余弦值为12.(1)求角B 的大小;(2)若b =3,求a +c 的取值范围.10.如图所示,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.11.如图,在等腰直角△OPQ 中,∠POQ =90°,OP =22,点M 在线段PQ 上.(1)若OM =5,求PM 的长;(2)若点N 在线段MQ 上,且∠MON =30°,问:当∠POM 取何值时,△OMN 的面积最小?并求出面积的最小值.12.(2017·课标全国Ⅲ,理)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinA +3cosA =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.13.(2017·山东,文)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,AB →·AC →=-6,S △ABC =3,求A 和a.14.(2017·天津,文)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知asinA =4bsinB ,ac =5(a 2-b 2-c 2). (1)求cosA 的值; (2)求sin(2B -A)的值.1.(2018·上海杨浦质量调研)设锐角△ABC 的三内角A ,B ,C 所对边的边长分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为( ) A .(2,3) B .(1,3) C .(2,2)D .(0,2)2.已知△ABC ,a =5,b =15,∠A =30°,则c =( )A.2 5 B. 5C.25或 5 D.均不正确3.(2015·课标全国Ⅰ,理)在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是________.4.(2017·西安五校模拟)M为等边△ABC内一动点,且∠CMB=120°,则AMMC的最小值为________.5.(2015·安徽,文)在△ABC中,AB=6,∠A=75°,∠B=45°,则AC=________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 -
正弦定理知识归纳
1.正弦定理:
在一个三角形中,各边的长和它所对角的正弦的比相等,即sin sin a
b
A
B
=
sin c
C =
2.理解定理:
⑴正弦定理是解三角形的重要定理,它反映了三角形各边和它所对角的正弦的比的关系,并非常好的描述了任意三角形中边与角的一种数量关系。

常与三角、向量、几何等基础知识相结合命题,以考察综合运用数学知识的能力,这是近几年高考的重点、热点和今后命题的发展趋势。

⑵定理的推导是从探究三角形中的边角关系入手的,运用分类讨论的方法及从特殊到一般的思维方法,把在直角三角形中得到的关系进一步推广到锐角三角形与钝角三角形中,从而得到对任意三角形都成立的边角关系式。

(推导过程见课本)
⑶对于正弦定理:,其中R 为△ABC 的外接圆半径,要注意它
的几个变式的应用:
①,,; ②sin a
k A =,sin b k B
=,
sin c k C
=;
③C B A c b a sin :sin :sin ::=;

B A B A B A B A >>>>,则若,则若sin sin ;sin sin ;

B ac A bc
C ab S ABC sin 21
sin 21sin 21===

⑷正弦定理的基本作用为:
①已知三角形的任意两角及其一边可以求其他边,如
sin sin b A
a B =

②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如
sin sin a A B
b
=。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

相关文档
最新文档