第2讲 直角三角形(基础)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形
【学习目标】
1. 掌握勾股定理的内容及证明方法、勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.
2. 能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题;能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.
3. 能够熟练地掌握直角三角形的全等判定方法(HL )及其应用. 【要点梳理】
要点一、勾股定理
直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为
,斜边长为,那么.
要点诠释:
(1)勾股定理揭示了一个直角三角形三边之间的数量关系.
(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目中的已知线段的长可以建
立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的. (3)理解勾股定理的一些变式:,, .
(4)勾股数:满足不定方程的三个正整数,称为勾股数(又称为高数或毕达
哥拉斯数),显然,以为三边长的三角形一定是直角三角形.
熟悉下列勾股数,对解题会很有帮助:
① 3、4、5; 5、12、13; 8、15、17; 7、24、25; 9、40、41……
②如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.
③(是自然数)是直角三角形的三条边长; ④(是自然数)是直角三角形的三条边长; ⑤ (是自然数)是直角三角形的三条边长. 要点二、勾股定理的证明
方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.
图(1)中
,所以
.
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.
a b ,c 222a b c +=2
2
2
a c
b =-2
2
2
b c a =-()2
2
2c a b ab =+-222
x y z +=x y z 、、a b c 、、t at bt ct 、、22
1
21n n n -+,,1,n n >2
2
22,21,221n n n n n ++++n 2
2
2
2
,,2m n m n mn -+,m n m n >
、
图(2)中,所以.
方法三:如图(3)所示,将两个直角三角形拼成直角梯形.
,所以.
要点三、勾股定理的逆定理
如果三角形的三条边长,满足,那么这个三角形是直角三角形. 要点诠释:
(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形. (2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直
角三角形.
要点四、如何判定一个三角形是否是直角三角形
(1) 首先确定最大边(如).
(2) 验证与是否具有相等关系.若,则△ABC 是∠C =90°的
直角三角形;若,则△ABC 不是直角三角形.
要点诠释:
当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边. 要点五、互逆命题与互逆定理
如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.
如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理. 要点诠释:
原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.一个定理是真命题,每一个定理不一定有逆定理,如果这个定理存在着逆定理,则一定是真命题.
a b c ,,222
a b c +=c 2
c 2
2
a b +2
2
2
c a b =+2
2
2
c a b ≠+2
2
2
a b c +<2
2
2
a b c +>c
要点六、直角三角形全等的判定(HL )
在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简 称“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备. 要点诠释: (1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角
形的形状和大小就确定了.
(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三
角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法. (3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,
书写时必须在两个三角形前加上“Rt ”.
【典型例题】 类型一、勾股定理
1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为、、. (1)若=5,=12,求; (2)若=26,=24,求.
举一反三:
【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为、、.
(1)已知=2,=3,求;
(2)已知,=32,求、.
2、一圆形饭盒,底面半径为8,高为12,若往里面放双筷子(粗细不计),那么筷子最长不超过多少,可正好盖上盒盖?
a b c a b c c b a a b c b c a :3:5a c b a c cm
cm