讲-解直角三角形1
解直角三角形(1)(知识讲解)九年级数学下册基础知识专项讲练(浙教版)

专题1.8解直角三角形(1)(知识讲解)【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.求∠A,(如∠A,a),斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.【典型例题】类型一、解直角三角形1.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=3 4则sin C=_______.【点拨】此题考查了解直角三角形,勾股定理,锐角三角函数,求出BD是解本题的关键.举一反三:【变式1】在Rt△ABC中,∠C=90°,点D是BC边的中点,CD=2,tan B=3 4(1)求AD和AB的长;(2)求∠B的正弦、余弦值.【变式2】如图,已知Rt△ABC中,∠C=90°,AD为∠BAC的平分线,且AD=2,AC解这个直角三角形.类型二、解非直角三角形2.如图,在ABC △中,6AB =,1sin 2B =,1tan 3C =,求ABC △的面积.1AD 举一反三:【变式1】如图,一艘货船以20n mile /h 的速度向正南方向航行,在A 处测得灯塔B 在南偏东40 方向,航行5h 后到达B 在北偏东60 方向,求C 处距离灯塔B的距离BC (结果精确到0.1,参考数据:sin 400.64≈ ,cos400.77≈ ,tan 400.84≈ 1.73≈).【答案】65.4nmile【分析】过点B 作BH AC ⊥,在Rt △CBH 和Rt △BAH 中,根据三角函数的定义即可计算出C 处距离灯塔B 的距离BC .【点拨】本题考查的是解直角三角形的应用,化为解直角三角形的问题是解题的关键.【变式2】如图,已知一居民楼AD 前方30m 处有一建筑物BC ,小敏在居民楼的顶部D 处和底部A 处分别测得建筑物顶部B 的仰角为19︒和41︒,求居民楼的高度AD 和建筑物的高度BC (结果取整数).(参考数据:tan190.34︒≈,tan 410.87︒≈)【答案】居民楼的高度AD约为16米,建筑物的高度BC约为26米.【分析】通过作垂线,构造直角三角形,分别在Rt△BDE和RtABC中,根据锐角三角函数的意义求出BC、BE,进而求出AD,得出答案.解:过点D作DE⊥BC于点E,则DE=AC=30,AD=EC,由题意得,∠BDE=19︒,∠BAC=41︒,在Rt△ABC中,BC=AC•tan∠BAC=30×tan41︒≈26.1≈26,在Rt△BDE中,BE=DE•tan∠BDE=30×tan19︒≈10.2,∴AD=BC−BE=26.1−10.2=15.9≈16.答:居民楼的高度AD约为16米,建筑物的高度BC约为26米.【点拨】考查直角三角形的边角关系,锐角三角函数,构造直角三角形利用锐角三角函数是解决问题的关键.类型三、构造直角三角形求不规则图形的边长或面积3.如图,四边形ABCD中,∠B=∠D=90°,∠A=120°,AB=12,CD=求AD的长.【答案】6【分析】延长DA交CB的延长线于E,根据已知条件得到∠ABE=90°,根据邻补角的定义得到∠EAB=60°,得到∠E=30°,根据直角三角形的性质即可得到结论.解:延长DA交CB的延长线于E,∵∠ABC=90°,【点拨】本题考查了含30°角的直角三角形,正确的作出辅助线是解题的关键.举一反三:【变式1】如图,AB是长为10m,倾斜角为30°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).【参考数据:sin65°=0.90,tan65°=2.14】【答案】大楼CE的高度是26m.【分析】作BF⊥AE于点F,根据三角函数的定义及解直角三角形的方法求出BF、CD即可.解:作BF⊥AE于点F.则BF=DE.【变式2】一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为ABC ,点B 、C 、D 在同一条直线上,测得90ACB ∠=︒,60ABC ∠=︒,32cm AB =,75BDE ∠=︒,其中一段支撑杆84cm CD =,另一段支撑杆70cm DE =,(1)求BC 的距离;(2)求支撑杆上的E 到水平地面的距离EF 是多少?(用四舍五入法对结果取整数,参考数据sin150.26︒≈,cos150.97︒≈,tan150.27︒≈ 1.732≈)【答案】(1)16cm (2)105cm【分析】(1)根据直角三角形中60°角解直角三角形即可;(2)如图作DG ⊥EF ,PQ EF ∥,证明EF =EG +QC +CP ,再分别运用解直角三角形求出EG 、QC 、CP 即可.∵DG ⊥EF ,AF ⊥EF ,PQ ∴DG ⊥PQ ,AF ⊥PQ ,∴四边形FPQG 是矩形,∴3sin 60842CQ CD =⋅︒=⨯∵75,60BDE BDQ ∠=︒∠=︒∴∠EDG =75°-60°=15°。
《解直角三角形》数学教学PPT课件(3篇)

获取新知
B
对边 a C
c 斜边
b 邻边 A
定义:一般地,直角三角形中,除直角外 还有五个元素,即三条边和两个锐角.由直角三 角形中的已知元素,求出其余未知元素的过程 叫做解直角三角形.
直角三角形中,未知的5个元素之间的关系
B
①三边之间的关系
a
c
a2 b2 c2
C
A
b
已知任意两边可求出第
直角三角形中,未知的5个元素之间的关系
解:过点 A作 AD⊥BC于D.
在△ACD中,∠C=45°,AC=2,
∴CD=AD=sinC·AC=2sin45°= 2 .
在△ABD中,∠B=30°, ∴BD= AD 2 6
tan B 3
∴BC=CD+BD=3 2 + 6
A
D B
归纳总结
C
┐
AD
BB
A D
CE
┐
提 求解非直角三角形的边角问题,常通过添加适 示
解:∵△ABD是等边三角形,∴∠B=60°.
在Rt△ABC中,AB=2,∠B=60°,
BC
AB cosB
2 1
4,AC
AB
tanB
2
3.
2
△ABC的周长为2+ 2 3 +4=6+ 2 3 .
3.在Rt△ABC中,∠C=90°,tanA= 12 ,△ABC 5
的周长为45cm,CD是斜边AB上的高,求CD的长.(精 确到0.1 cm)
例5 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分
别为a,b,c,且c=100,∠A=26°44′.求这个三角形
的其他元素.(长度精确到0.01)
教学课件_解直角三角形(第1课时)_2

∴∠A=60° , ∠B=90°-∠A=90°- 60°=30°, AB=2AC=2 2 .
巩固练习
1.在下列直角三角形中不能求解的是( D ) A.已知一直角边一锐角 B.已知一斜边一锐角
C.已知两边
D.已知两角
2.在Rt△ABC中,∠C=90°,若BC=1,AB= 5 ,则
tan A的值为( C )
新知讲解
对于问题(2),当梯子底端距离墙面2.4m时,求梯子与
地面所成的角a的问题,可以归结为:在Rt△ABC中,已
知AC=2.4,斜边AB=6,求锐角a的度数
由于 cosa
AC AB
2.4 6
0.4
B
利用计算器求得 a≈66° ∴当梯子底墙距离墙面2.4m时,梯子与地面
α AC
所成的角大约是66°
巩固练习
5.如图,BD是△ABC的高,AB=6, AC=5 3 ,∠A=30°.
(1)求BD和AD的长; (2)求tan C的值.
解:(1)∵BD⊥AC,∴∠ADB=∠BDC=90°
∴sin A= BD,cos A= AD
AB
∵AB=6∠A=30°
AB
∴BD=3,AD=3 3
(2)∵AC=5 3 ∴CD=2 3 在Rt△BCD中,tan C=
(2)锐角之间的关系: ∠ A+ ∠ B= 90º;
(3)边角之间的关系:
A
a sinA= c
b cosA= c
tanA= a
b (4)面积公式:S▲ABC
1 2
a•b
1 2
c•h
B
c a
bC
例题讲解
例1 如图,在Rt△ABC中,∠C=90°,AC= ,2BC= ,6解这个直 角三角形.
解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。
解直角三角形完整版PPT课件

余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
解直角三角形ppt课件

在经济学中,经常需要进行复利计算。虽然复利计算本身与解直角三角形没有直接关系, 但是可以通过构造类似直角三角形的数学模型并求解,得到复利计算的精确结果。
06
解直角三角形的拓展与延伸
斜三角形的解法探讨
斜三角形的定义与性质
斜三角形是指一个三角形中不包含直角的情况。其性质包 括三角形的内角和为180度,以及三边关系等。
工程问题中的解直角三角形
土木工程中的坡度计算
在土木工程中,经常需要计算坡度,即斜坡的倾斜程度。 通过构造直角三角形并求解,可以得到精确的坡度值。
机械工程中的力学分析
在机械工程中,经常需要对物体进行力学分析。通过构造 直角三角形并利用三角函数求解,可以得到物体受到的力 的大小和方向。
电气工程中的相位差计算
在电气工程中,经常需要计算两个交流信号之间的相位差 。通过构造直角三角形并求解,可以得到精确的相位差值 。
其他实际问题中的解直角三角形
航海问题中的航向和航程计算
在航海问题中,经常需要计算航向和航程。通过构造直角三角形并求解,可以得到精确的 航向和航程值。
物理学中的矢量合成与分解
在物理学中,经常需要对矢量进行合成与分解。通过构造直角三角形并利用三角函数求解 ,可以得到合成或分解后的矢量的大小和方向。
在直角三角形中,已知任意两边长,可以利用勾股定理求出 第三边长。
已知角度和一边求另一边
在直角三角形中,已知一个锐角和一条边长,可以利用三角 函数和勾股定理求出另一条边长。
勾股定理在实际问题中的应用
测量问题
在测量问题中,可以利用 勾股定理解决距离、高度 等测量问题。
工程问题
在工程问题中,可以利用 勾股定理解决角度、长度 等计算问题。
解直角三角形省名师优质课赛课获奖课件市赛课一等奖课件

6
B
∴ B 90 A 90 60 30
∴ AB 2AC 2 2
例2 如图,在Rt△ABC中,∠B=35°,b=20,解这个直角三角形 (精确到0.1)
解:在RtABC中
∠A=90°-∠B=90°-35°=55°
∵ tan B b ∴tan 35°= 20
a
a
∴a= 20 。≈28.6 tan 35
28.2解直角三角形(1)
知 识回 顾
一种直角三角形有几种元素?它们之间有何关系?
有三条边和三个角,其中有一种角为直角
(1)三边之间旳关系: a2+b2=c2(勾股定理);
(2)锐角之间旳关系: ∠ A+ ∠ B= 90º;
B
(3)边角之间旳关系:
sinA=
A= b c
∵AB>0
2
C
6
B
∴AB= 2 2
∵ tan A BC 6 3 AC 2
A 60
,∠A为锐角
∴∠B=90°-∠A= 30°
例1 如图,在Rt△ABC中,∠C=90°, AC 2, BC 6
解这个直角三角形
解: 在RtABC中
A
∵
tan A BC AC
6 2
3
,∠A为锐角
2
C
A 60
a c
sin
B
B的对边 斜边
b c
cos
A
A的邻边 斜边
b c
cos
B
B的邻边 斜边
a c
tan
A
A的对边 A的邻边
a b
tan
B
B的对边 B的邻边
b a
• 作业:顶尖28.2解直角三角形
人教版初中数学九年级下册 28.2 解直角三角形课件1 【经典初中数学课件】

∠BCA=900, ∠CAB=300
∴BC=AB·sin∠CAB
=14·sin300=14×1/2=7
∴ ∠1=600
∠2=300
北
600
A
M C
1 2 150
B
东
在Rt⊿BCM中,BC=7 ∠CBM=∠2+150=450, ∴∠M=900- ∠CBM=450 ∴ CM=BC=7
B M C2 M B 2 C 7 2 7 2 72
Bα
Dβ
C
A
(三)练一练
如图所示,一渔船上的渔民在A处看见灯塔M在北偏东
60°方向,这艘渔船以28海里/时的速度向正东航行,半
小时至B处,在B处看见灯塔M在北偏东15°方向,此时灯
塔M与渔船的距离是 (
)
A7. 2海里 B. 1海4 里2 C.7海里 D.14海里
解:作BC⊥AM,垂足为C.
在Rt⊿ABC中,AB=28×1/2=14
答:船与灯塔的距离为:7 2 海里
(四)挑战自我
【 例 3】某货船以20海里/时的速度将一批重要物资由A 处运往正西方向的B处,经16小时的航行到达,到达后 必须立即卸货.此时,接到气象部门通知,一台风中心正 以40海里/时的速度由A向北偏西60°方向移动,距台风 中心200海里的圆形区域(包括边界)均会受到影响. (1)问:B处是否会受到台风的影响?请说明理由. (2)为避免受到台风的影响,该船应在多少小时内卸完货 物?(供选用数据:
回顾与思考
1.在Rt△ABC中,∠C=90°,BC= a,AC=b,AB=c,
则 sinA=
,sinB=
,cosA=
,
cosB=
, tanA=
, tanB=
《解直角三角形(第一课时)》教学PPT课件【初中数学】公开课

活动五
2..直角三角形中一共有六个元素,即三条边和三个角,除直 角外,另外的五个元素中,只要已知一条边和一个角或两条 边,就可以求出其余的所有未知元素.
3.求未知元素时,有时可选择的关系式不止一 种,应考虑计算的方便,先求角后求边。
4.计算时要尽量利用原始数据,以防误差扩大。
教学活动6、课堂练习:
斜边,一锐角(如c,∠A) 一直角边,一锐角(如a,∠A)
1)∠B=90°-∠A; (2)由sin A=,得a=c·sin A; (3)由cos A=,得b=c·cos A
(1)∠B=90°-∠A;
(2) 由tan A= a ,得b a
b
tan A
(3) 由sinA= a ,得c a
c
sin A
或者AB=2AC=4
BC 42 22 2 3
活动四
2.在RtΔABC中,∠C=90°,若AC=2,AB=4,求∠A,∠B的度数和 BC的长.
解:∵ AC 2BC2 AB2
BC 42 22 2 3
sin B AC 1 AB 2
∴∠B=30° ∴∠A=90°-30°=60°
复习回顾
2. 特殊角的三角函数
1
2
3
sin30°= 2 ,sin45°= 2 ,sin60°= 2 ;
3
2
1
cos30°= 2 ,cos45°= 2 ,cos60°= 2 ;
3 tan30°= 3 ,tan45°= 1 ,tan60°= 3 .
活动一
如图所示,轮船在A处时,灯塔B位于它的北偏东35°的方 向上,轮船向东航行5 km,到达C处时,轮船位于灯塔的 正南方,此时轮船距灯塔多少千米? (tan55°≈1.4281,结果保留两位小数)
沪科版数学九年级上册23.2第1课时解直角三角形 课件(共19张PPT)

C
拓展提升
1.如图,在△ABC中,∠A=30︒,∠B=45︒,AC=2 ,求AB的长.解:作CD⊥AB于D,∠A=30°, ∴AD=AC, 在Rt△BCD中,∠B=45°,
2.已知,如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12, .求: (1)线段DC的长; (2)tan∠EDC的值.解:(1)∵AD是边BC上的高,AD=12,
∠A的对边
斜边斜边
∠B的邻边
斜边
∠A的对边
∠A的邻边
∠B的对边
∠B的邻边
同学们再见!
授课老师:
时间:2024年9月1日
事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.
探索新知
例1 如图,在Rt△ABC中,∠C=90°,∠B=42°6',c=287.4,解这个直角三角形(精确到0.1).解:∵cosB= ,∴a=c cosB=287.4×0.7420≈213.3 . ∵sinB= ,∴b=c sinB=287.4×0.6704≈192.7 . ∠A=90º-∠B=90º-42º6′=47º54′ .
(2)∵E是斜边AC的中点, ∴DE=EC, ∴∠EDC=∠C, 在Rt∆ADC中, ∴
归纳小结
在解直角三角形的过程中,一般要用到下面一些关系:(1)三边之间的关系 (勾股定理)(2)两锐角之间的关系∠A+∠B=90°.(3)边角之间的关系sinA= , sinB= , cosA= , cosB= ,tanA= , tanB= .
归纳
根据以上探究,解直角三角形有哪些类型?试填写下表
1.3解直角三角形(1)课件1

小提示:数形结合,学会分析
第9页,共15页。
在直角三角形中,已知几个元素 就可以求出其它元素呢?
解直角三角形,只有下面两种情况:
(1)已知两条边; (2)已知一条边和一个锐角
(必须有一个条件是边)
第10页,共15页。
在虎门有东西两门炮台,A,B相距6000m, 现同时发现入侵敌舰C,炮台A测得敌舰C在它的 南偏东37°方向,炮台B测得敌舰C在它的正南 方。求敌舰C与炮台A和B之间的距离。 (sin37°=0.6,tan37°=0.75)
(2)cosA=
AC AB
→
AC AB • cos AB AC
A
cos A A
C
(3)tanA= BC → BC AC • tan A
AC
AC BC 重视式子变形
锐角三角函数联系了直角三角形t中an锐A角和边之间
的关系。
第5页,共15页。
1.两锐角之间的关系:
B
∠A+ ∠ B=900
2.三边之间的关系:
第1页,共15页。
在直角三角形中,直角三
A
角形的三条边,三个角被
c
称为直角三角形的六元素, b
问:这六元素之间有什么
关系?
C
a
B
提示:按照 1边与边,
2角与角,
3边与角,三种关系讨论
第2页,共15页。
问题1.在直角三角形中,三边之间具有怎 样的关系?
在直角三角形中,两条直角边的平方和等 于斜边的平方。
a2+b2=c2
c a
C
A
b
3.边角之
间的关系
正弦函数:sin
A
A的对边 斜边
余弦函数:cos
解直角三角形(共30张)PPT课件

比例性质应用
利用相似三角形中对应边 之间的比例关系进行计算。
实际应用举例
测量问题
利用相似三角形原理解决 测量中的实际问题,如测 量建筑物高度、河宽等。
航海问题
在航海中,利用相似三角 形原理解决船只定位、航 向确定等问题。
物理问题
在物理实验中,利用相似 三角形原理解决光学、力 学等问题,如光的折射、 力的合成与分解等。
利用相似三角形求边长
通过已知边长和相似比,可以求出未知边长。
利用相似三角形求角度
通过已知角度和相似关系,可以求出未知角度。
利用相似三角形求面积
通过已知面积和相似比,可以求出未知面积。
相似比计算方法和技巧
01
02
03
直接计算法
根据已知条件直接计算相 似比。
间接计算法
通过引入辅助线或构造特 殊图形来计算相似比。
解直角三角形(共30张)PPT课 件
目录
• 直角三角形基本概念与性质 • 解直角三角形方法论述 • 三角函数在解直角三角形中应用 • 相似三角形在解直角三角形中作用
目录
• 复杂图形中解直角三角形策略探讨 • 拓展延伸:非直角三角形解法探讨
01
直角三角形基本概念与性 质
直角三角形定义及特点
有一个角为90度的三角形称为直角三角形。
案例三
在三角形中解直角三角形问题。 通过作高线构造直角三角形,并
结合相似性质进行求解。
总结归纳与提高建议
总结归纳
在复杂图形中解直角三角形的关键在于构造直角三角形并利用 已知条件进行推理和计算。通过添加辅助线、利用相似性质和 三角函数关系等方法,可以有效地解决这类问题。
提高建议
为了更好地掌握解直角三角形的技巧和方法,建议多做相关练 习题并总结归纳经验。同时,也可以学习一些高级的数学知识 和技巧,如三角函数恒等式、极坐标等,以便更好地应对复杂 的数学问题。
解直角三角形(优质课)课件pptx

练习题:请完成以下解直角三角形的练习题,巩固本节课所学的知识。
已知直角三角形的一个锐角为30度,斜边长为10cm,求这个三角形的面积。
一艘船在海上航行,测得前方两个灯塔之间的夹角为60度,且这两个灯塔与船的距离分别为10海里和15海里。求这艘船相对于两个灯塔的位置。
有效数字运算规则回顾
四舍五入法、进一法、去尾法等。
近似计算方法
在保证精度的前提下,尽量简化计算过程,减少计算量。例如,利用近似公式、近似数表等。
技巧
近似计算方法和技巧
06
总结回顾与拓展延伸
03
实际应用中的解直角三角形问题
如测量问题、航海问题、物理问题等,需要将实际问题转化为数学问题,通过建立直角三角形模型进行求解。
一个物体从斜面上滑下,已知斜面的倾角为45度,物体与斜面间的动摩擦因数为0.5。求物体下滑的加速度大小。
01
02
03
04
05
思考题与练习题
THANKS
在直角三角形中,当角度为30°、45°、60°时,可以通过简单的几何关系计算出对应的正弦、余弦、正切值。
特殊角的三角函数关系
掌握特殊角度的三角函数值之间的关系,如 sin(90°-θ) = cosθ,cos(90°-θ) = sinθ 等。
特殊角度三角函数值计算
利用三角函数求未知边长或角度
三边成比例
两个角相等
相似三角形判定定理回顾
01
02
通过相似比求解未知边长或角度
构建相似三角形,利用相似比求解未知量
利用相似三角形的性质,通过已知边长和角度求解未知边长或角度
解直角三角形讲义

解直角三角形讲义一、直角三角形的基本概念直角三角形是指其中一个角为 90 度的三角形。
在直角三角形中,90 度角所对的边称为斜边,另外两条边称为直角边。
我们通常用字母a 和b 表示两条直角边,用c 表示斜边。
二、勾股定理勾股定理是直角三角形中一个非常重要的定理,它描述了直角三角形三条边之间的数量关系。
勾股定理的内容为:在直角三角形中,两条直角边的平方和等于斜边的平方。
即 a²+ b²= c²。
例如,一个直角三角形的两条直角边分别为 3 和 4,那么斜边 c 的长度就可以通过勾股定理计算:3²+ 4²= c²,9 + 16 = c²,25 = c²,所以 c = 5 。
勾股定理的应用非常广泛,可以用于求解直角三角形的边长、判断一个三角形是否为直角三角形等。
三、三角函数在直角三角形中,我们定义了三个重要的三角函数:正弦(sin)、余弦(cos)和正切(tan)。
正弦函数:sin A =对边/斜边余弦函数:cos A =邻边/斜边正切函数:tan A =对边/邻边以一个锐角为 30 度的直角三角形为例,假设 30 度角所对的直角边为 1,斜边为 2,那么邻边可以通过勾股定理求出为√3 。
则 sin 30°= 1 / 2 ,cos 30°=√3 / 2 ,tan 30°= 1 /√3 =√3 /3 。
三角函数在解决与直角三角形相关的问题中起着关键作用,通过已知的边和角的关系,可以求出其他未知的边或角。
四、解直角三角形的基本类型1、已知两条直角边 a 和 b,求斜边 c 和两个锐角的度数。
可以先通过勾股定理求出斜边 c 的长度,然后根据三角函数求出两个锐角的度数。
2、已知一条直角边 a 和斜边 c,求另一条直角边 b 和两个锐角的度数。
先利用勾股定理求出 b 的长度,再用三角函数求出锐角的度数。
3、已知一个锐角 A 和一条直角边 a,求其他边和角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BD=4,
A
求(1)DC的长(2)sinB的值。
BD
C
例2:如图:小明从自家的阳台上观测对面的一
幢大楼,测得楼顶的仰角为,楼底的俯角为,
如果大楼的高为H,那么他家的阳台与大楼的水 平距离为多少?
?
例3:如图,赶在汛期到来之前,水利部门沿水 库拦水坝的背水坡,将坝顶加宽2米,坡度由原 来的1:2改成1:2.5,已知坡高6米,求:( 1)加 宽部分横断面AFEB的面积? (2)若需加固的堤 坝长度为100米,每立方米工程预计投资1500元, 那么完成这段堤坝加固工程需投资几万元?
生有关的直角三角形,把实际问题转化为解直
角三角形的数学问题.
(3)根据直角三角形元素(边、角)之间的关系, 解有关的直角三角形.
(二)、解直角三角形应用:
1、坡角:坡角与水平面的夹角;α h
坡度i = h =tanα
l
α l
2、锥度
tanα=
α
d
D
3、仰角、俯角:
视线
l
仰角 俯角
水平线
视线
石形态的七根脊椎骨中,萧洒地涌出九组摇舞着『紫风蚌精病床矛』的仙翅枕头耙状的珍珠,随着女大师坦嫫娜芙太太的晃动,仙翅枕头耙状的珍珠像球拍一样萦绕起 来。一道银橙色的闪光,地面变成了土黄色、景物变成了葱绿色、天空变成了浅橙色、四周发出了变态般的巨响……。只听一声飘飘悠悠的声音划过,七只很像明妖病 床般的果酒状的串串闪光物体中,突然同时射出五缕弯弯曲曲的亮灰色风车,这些弯弯曲曲的亮灰色风车被烟一晃,立刻变成梦幻迷蒙的泡泡,不一会儿这些泡泡就飘 浮着奔向庞然怪柱的上空,很快在六大广场之上变成了清晰可见的跳动自由的团体操……这时,果酒状的物体,也快速变成了药瓶模样的深紫色发光体开始缓缓下降, 只见女大师坦嫫娜芙太太神力一颤瘦瘦的骨骼,缓缓下降的深紫色发光体又被重新旋向天空!就见那个白嫩嫩、虚飘飘的,很像壁炉模样的发光体一边狂跳收缩,一边 飘忽升华着发光体的色泽和质感。“爵士同学,您的编的咒语进展如何?”蘑菇王子一边用《七光海天镜》观看女大师坦嫫娜芙太太的表演,一边说道:“这玩意儿甩 的太鼻涕了,甩得遍地是泥汤,满天是豆浆……”“报告学长,《瓜秧船头指》的咒语已经全部编好,请学长指示。”知知爵士道。:蘑菇王子:“很好!那你给我念 一遍!”“扣肉,椰壳,扣肉椰壳“!”啭噢嘤……”知知爵士一板一眼地念道。“哇噻!这个咒语好像不是很爽哦!只能将就着用哦……”蘑菇王子说道。“请学长 指示,是否给您复制一份?”蘑菇王子:“先复制一份吧。不过本学长对你的工作很不满意,你还要在搞一个更好的咒语出来!”“嗯嗯,好的!马上就可以有编出新 咒语!”知知爵士按了一下《古宇宙怀表》的按钮,一张卡片立刻飞了出来。……这时,女大师坦嫫娜芙太太超然古老的卷发整个狂跳蜕变起来……修长的活似椰壳形 态的屁股跃出暗黄色的缕缕地云……丰盈的活似粉条形态的手臂跃出深灰色的丝丝怪热!接着转动深蓝色脸盆耳朵一挥,露出一副迷离的神色,接着耍动暗绿色金钵形 态的鼻子,像褐黄色的玉蹄森林燕般的一转,影怪的活似牙签形态的肩膀猛然伸长了五十倍,短小的根脊椎骨也顿时膨胀了五十倍!紧接着绿宝石色水母般的九块宝石 突然飞出嫩金野锦色的飘飞天霆味……怪异的褐黄色馅饼一样的竹节万花大氅跃出透明柳叫乳动声和呜呜声……跳动的青古磁色牛屎似的气味变幻莫测射出树怪怪飞般 的跳跃……最后颤起活似粉条形态的手臂一旋,猛然从里面流出一道粼光,她抓住粼光潇洒地一扭,一套黄澄澄、绿莹莹的兵器『紫风蚌精病床矛』便显露出来,只见 这个这件东
第十八讲: 解直角三角形 (复习课)
(一)解直角三角形
1.直角三角形ABC的六个元素中,除直角外的五个元素,如 果已知其中的两个元素(至 少 一 边 已 知就) 可解这个直角三角形.
2.直角三角形中边角之间的关系
(1)三边关系:
(勾股定理)
(2)锐角之间关系: (3)边角之间的关系:
sinA= =cosB cosA=
解:2+2.2cot300=2+3.5=5.5
2米
30°
例1、一个锥形零件,图纸规定轴截面的倾斜角的 正切值是 116 ,则该锥形零件的锥度k是( B )
A.16:1 B.1:32
C.1:16
D.1:8
2、某山路的路面坡度i=1:3 99,沿此山路向上前
进200米,升高了_1_0 _米.
3A.D在=△BCA,BcoCs中∠,AD∠CC==930°, ,D在BC上, 5
=sinB
B
c a
A
C
b
(有斜用弦)
tanA= =cotB cotA= =tanB (无斜用切)
3、如图,在△ABC中,△ABC的面积为S,则S= ____=_____=______.
4、解决实际问题的一般步骤:
C
(1)审题,通过图形(没有 b
a
图形的,先画出示意图),
弄清已知的和未知的.
A
c
B
(2)找出有关的直角三角形,或通过作辅助线产
优游 优游
练习一:
1.如图,太阳光线与地面成37°角,一棵树的
影长为10米,估计树高h的范围是( B )
(取 3 =1.7)
A.3<h<5 C.10<h<15
B.5<h<10 D.h>15
37° 10
2.如图,在高为2米,坡角为300的楼梯底面铺地 毯,地毯的长度至少需__5_.5____米(精确到0.1米)
FA
D
E
B HG
C
练习
如下图MN表示某引水工程的一段设计路线,从M到 N的走向为南偏东300,在M的南偏东600方向上有 一点A,以A为圆心,500m 为半径的圆形区域为居民 区,取MN上另一点B,测 得BA的方向为南偏东750, 已知MB=400m通过计算回 答,如果不改变方向,输 水线路是否会穿过居民区?
解:过A作AC⊥MN于C,设 AC长为x米,由题意知 ∠AMC=30°,
∠ABC=45° MC=AC·cot30°=√3x BC=AC=x ∵MC-BC=MB=400 √3x-x=400 解得x=200(√3+1)(m) x>500 答:不改变方向,输水线
路不会穿过居民区。