低碳钢和铸铁在拉伸和压缩时的力学性能资料讲解

合集下载

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理一.拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸和压缩试验
低碳钢和铸铁是常见的材料,在进行拉伸和压缩试验时可以评估其力学性能。

下面是关于低碳钢和铸铁拉伸和压缩试验的一些基本知识:
1. 拉伸试验:拉伸试验是用来评估材料的拉伸强度、屈服强度、延伸性和抗拉性能。

在拉伸试验中,材料样本会被拉伸直至断裂。

根据拉伸过程中的力和变形,可以绘制应力-应变曲线,
从而得到材料的力学性能参数。

2. 压缩试验:压缩试验是用来评估材料的压缩强度和抗压性能。

在压缩试验中,材料样本会受到压缩力直至破坏。

根据压缩过程中的力和变形,可以绘制应力-应变曲线,进而获得材料的
力学性能参数。

3. 低碳钢拉伸和压缩试验:低碳钢是一种具有较低碳含量的钢材,具有良好的可加工性和焊接性能。

低碳钢通常具有相对较高的塑性,因此在拉伸试验中能够产生较大的延伸和变形。

而在压缩试验中,低碳钢通常具有较高的压缩强度。

4. 铸铁拉伸和压缩试验:铸铁是一种用于铸造的铁合金,具有良好的流动性和耐磨性能。

与低碳钢相比,铸铁通常具有较高的硬度和较低的塑性。

在拉伸试验中,铸铁的断裂强度相对较低,且往往呈现脆性断裂,而在压缩试验中,铸铁通常具有较高的压缩强度。

在进行低碳钢和铸铁拉伸和压缩试验时,需要注意以下关键点:
样本的准备和尺寸、试验设备的选择和设置、试验参数的确定、试验过程的规范和数据的记录与分析。

这些都是确保试验获得可靠结果的重要因素。

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时地力学性能根据材料在常温,静荷载下拉伸试验所得地伸长率大小,将材料区分为塑性材料和脆性材料.它是由试验来测定地.工程上常用地材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时地力学性能..低碳钢拉伸实验在拉伸实验中,随着载荷地逐渐增大,材料呈现出不同地力学性能:()弹性阶段在拉伸地初始阶段,σε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段.线性段地最高点则称为材料地比例极限(σ),线性段地直线斜率即为材料地弹性摸量.线性阶段后,σε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失.卸载后变形能完全消失地应力最大点称为材料地弹性极限(σ),一般对于钢等许多材料,其弹性极限与比例极限非常接近.(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服.使材料发生屈服地应力称为屈服应力或屈服极限(σ).当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成°斜纹.这是由于试件地°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成地,故称为滑移线.()强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料地抗变形能力又增强了,这种现象称为应变硬化.若在此阶段卸载,则卸载过程地应力应变曲线为一条斜线,其斜率与比例阶段地直线段斜率大致相等.当载荷卸载到零时,变形并未完全消失,应力减小至零时残留地应变称为塑性应变或残余应变,相应地应力减小至零时消失地应变称为弹性应变.卸载完之后,立即再加载,则加载时地应力应变关系基本上沿卸载时地直线变化.因此,如果将卸载后已有塑性变形地试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化.在硬化阶段应力应变曲线存在一个最高点,该最高点对应地应力称为材料地强度极限(σ),强度极限所对应地载荷为试件所能承受地最大载荷.()局部变形阶段试样拉伸达到强度极限σ之前,在标距范围内地变形是均匀地.当应力增大至强度极限σ之后,试样出现局部显著收缩,这一现象称为颈缩.颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在点断裂.试样地断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏地原因不仅有拉应力还有切应力.()伸长率和断面收缩率试样拉断后,由于保留了塑性变形,标距由原来地变为.用百分比表示地比值δ()*称为伸长率.试样地塑性变形越大,δ也越大.因此,伸长率是衡量材料塑性地指标.原始横截面面积为地试样,拉断后缩颈处地最小横截面面积变为,用百分比表示地比值Ψ()*称为断面收缩率.Ψ也是衡量材料塑性地指标.所以,低碳钢拉伸破坏变形很大,断口缩颈后,端口有度茬口,由于该方向上存在最大剪应力τ造成地,属于剪切破坏力..铸铁拉伸实验铸铁是含碳量大于并含有较多硅,锰,硫,磷等元素地多元铁基合金.铸铁具有许多优良地性能及生产简便,成本低廉等优点,因而是应用最广泛地材料之一.铸铁在拉伸时地力学性能明显不同于低碳钢,铸铁从开始受力直至断裂,变形始终很小,既不存在屈服阶段,也无颈缩现象.断口垂直于试样轴线,这说明引起试样破坏地原因.铸铁拉伸破坏断口与正应力方向垂直说明由拉应力拉断地,属于拉伸破坏,正应力大于了许用值.三、低碳钢和铸铁在拉伸和压缩时力学性质地异同点综述在工程建设中,低碳钢是典型地塑性材料,铸铁是典型地脆性材料.塑性材料和脆性材料在力学性能上地主要特征是:塑性材料在断裂前地变形较大,塑性指标(断后伸长率和断面收缩率)较高,抗拉能力较好,其常用地强度指标是屈服强度,一般地说,在拉伸和压缩时地屈服强度相同:脆性材料在断裂前地保存较小,塑性指标较低,其强度指标是强度极限,而且其拉伸强度远低于压缩强度.但是,材料不管是塑性地还是脆性地,将随材料所处地温度、应变速率和应力状态等条件地变化而不同.。

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理一.拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理一.拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

低碳钢和铸铁在拉伸和压缩时的力学性能资料讲解

低碳钢和铸铁在拉伸和压缩时的力学性能资料讲解

低碳钢和铸铁在拉伸和压缩时的力学性能低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。

因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸试验中的力学性能低碳钢具有良好的塑性,由R-ε曲线(图1-1)可以看出,低碳钢断裂前明显地分成四个阶段:弹性阶段(OA):试件的变形是弹性的。

在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。

习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即比例系数E代表直线(OA) 的斜率,称作材料的弹性模量。

屈服(流动)阶段(BC):R-ε曲线上出现明显的屈服点。

这表明材料暂时丧失抵抗继续变形的能力。

这时,应力基本上不变化,而变形快速增长。

通常把下屈服点(Bˊ)作为材料屈服极限ReL。

ReL是材料开始进入塑性的标志。

结构、零件的应力一旦超过ReL,材料就会屈服,零件就会因为过量变形而失效。

因此强度设计时常以屈服极限ReL作为确定许可应力的基础。

从屈服阶段开始,材料的变形包含弹性和塑性两部分。

如果试样表面光滑,材料杂质含量少,可以清楚地看到表面有45°方向的滑移线。

强化阶段(CD):屈服阶段结束后,R-ε曲线又开始上升,材料恢复了对继续变形的抵抗能力,载荷就必须不断增长。

如果在这一阶段卸载,弹性变形将随之消失,而塑性变形将永远保留下来。

强化阶段的卸载路径与弹性阶段平行。

卸载后若重新加载,加载线仍与弹性阶段平行,但重新加载后,材料的弹性阶段加长、屈服强度明显提高,而塑性却相应下降。

这种现象称作为形变强化或冷作硬化。

冷作硬化是金属材料极为宝贵的性质之一。

塑性变形和形变强化二者联合,是强化金属材料的重要手段。

例如喷丸,挤压,冷拨等工艺,就是利用材料的冷作硬化来提高材料强度的。

强化阶段的塑性变形是沿轴向均匀分布的。

随塑性变形的增长,试样表面的滑移线亦愈趋明显。

D点是R-ε曲线的最高点,定义为材料的强度极限又称作材料的抗拉强度记作Rm。

对低碳钢来说Rm是材料均匀塑性变形的最大抗力,是材料进入颈缩阶段的标志。

颈缩阶段(DE):应力达到强度极限后,塑性变形开始在局部进行。

(完整word版)低碳钢和铸铁拉伸和压缩试验

(完整word版)低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理一.拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。

因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。

因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。

因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,ζ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(ζp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,ζ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(ζs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。

因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸和压缩试验低碳钢和铸铁是两种具有不同力学性能的材料,在拉伸和压缩试验中表现出明显的差异。

下面是这两种材料的拉伸和压缩试验的详细介绍。

1.低碳钢低碳钢是一种塑性材料,因此在拉伸试验中,低碳钢的应力-应变曲线呈现出明显的塑性变形阶段。

在弹性阶段,应力与应变成正比,低碳钢的弹性模量约为200-250GPa。

当应力超过弹性极限后,低碳钢进入塑性变形阶段,变形量逐渐增大,但应力增长速度减缓。

在塑性阶段后期,低碳钢发生颈缩现象,局部截面面积减小,应力集中,最终导致试样断裂。

在压缩试验中,低碳钢的应力-应变曲线与拉伸试验类似,但在压缩情况下,不会出现颈缩现象。

由于低碳钢具有较好的塑性,因此其抗压强度高于抗拉强度。

2.铸铁铸铁是一种脆性材料,因此在拉伸试验中,铸铁的应力-应变曲线呈现出明显的脆性断裂特征。

铸铁的弹性模量约为150-200GPa,略低于低碳钢。

在拉伸过程中,铸铁的变形量很小,并且应力增长速度迅速下降。

当应力达到一定值后,铸铁突然断裂,断口呈脆性断裂特征。

在压缩试验中,铸铁的应力-应变曲线也呈现出明显的脆性断裂特征。

铸铁在压缩情况下具有较高的抗压强度,但与低碳钢相比仍然较低。

综上所述,低碳钢和铸铁在拉伸和压缩试验中的表现具有明显的差异。

低碳钢具有较好的塑性和较高的抗拉强度,而铸铁则呈现出脆性断裂特征和较低的抗压强度。

这些差异使得这两种材料在不同的应用场景中有各自的优势和局限性。

在实际工程应用中,应根据具体受力情况和使用要求来选择合适的材料。

例如,对于需要承受较大拉力的结构部件,应选择低碳钢等塑性材料;而对于一些需要承受较大压力且对脆性断裂不敏感的结构部件,铸铁等脆性材料可能更为合适。

此外,对于材料的加工和制造工艺也需要考虑,以充分发挥材料的力学性能并降低成本。

为了获得更准确的结果,实际测试中需要注意以下几点:(1)测试前应对材料进行充分的预处理,以消除材料内部的缺陷和应力;(2)测试过程中应保证试样的尺寸和形状符合标准要求,以确保结果的准确性;(3)在测试过程中应使用合适的加载设备和测试仪器,以确保测试结果的可靠性;(4)测试后应对结果进行分析和处理,以得出材料的力学性能参数和结论。

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理一.拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

1、低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,ζ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(ζp ),线性段的直线斜率即为材料的弹性摸量E 。

线性阶段后,ζ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(ζs )。

当材料屈服时,如果用砂纸将试件表面 1打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。

因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。

因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低碳钢和铸铁在拉伸和压缩时的力学性能
低碳钢和铸铁在拉伸和压缩时的力学性能
根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

1.低碳钢拉伸实验
在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:
(1)弹性阶段
在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段
超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段
经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。

因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的强度极限(σb),强度极限所对应的载荷为试件所能承受的最大载荷Fb。

(4)局部变形阶段
试样拉伸达到强度极限σb之前,在标距范围内的变形是均匀的。

当应力增大至强度极限σb之后,试样出现局部显著收缩,这一现象称为颈缩。

颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在f点断裂。

试样的断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力还有切应力。

(5)伸长率和断面收缩率
试样拉断后,由于保留了塑性变形,标距由原来的L变为L1。

用百分比表示的比值
δ=(L1-L)/L*100%
称为伸长率。

试样的塑性变形越大,δ也越大。

因此,伸长率是衡量材料塑性的指标。

原始横截面面积为A的试样,拉断后缩颈处的最小横截面面积变为A1,用百分比表示的比值
Ψ=(A-A1)/A*100%
称为断面收缩率。

Ψ也是衡量材料塑性的指标。

所以,低碳钢拉伸破坏变形很大,断口缩颈后,端口有45度茬口,由于该方向上存在最大剪应力τ造成的,属于剪切破坏力。

2.铸铁拉伸实验
铸铁是含碳量大于2.11%并含有较多硅,锰,硫,磷等元素的多元铁基合金。

铸铁具有许多优良的性能及生产简便,成本低廉等优点,因而是应用最广泛的材料之一。

铸铁在拉伸时的力学性能明显不同于低碳钢,铸铁从开始受力直至断裂,变形始终很小,既不存在屈服阶段,也无颈缩现象。

断口垂直于试样轴线,这说明引起试样破坏的原因。

铸铁拉伸破坏断口与正应力方向垂直说明由拉应力拉断的,属于拉伸破坏,正应力大于了许用值。

三、低碳钢和铸铁在拉伸和压缩时力学性质的异同点综述
在工程建设中,低碳钢是典型的塑性材料,铸铁是典型的脆性材料。

塑性材料和脆性材料在力学性能上的主要特征是:塑性材料在断裂前的变形较大,塑性指标(断后伸长率和断面收缩率)较高,抗拉能力较好,其常用的强度指标是屈服强度,一般地说,在拉伸和压缩时的屈服强度相同:脆性材料在断裂前的保存较小,塑性指标较低,其强度指标是强度极限,而且其拉伸强度远低于压缩强度。

但是,材料不管是塑性的还是脆性的,将随材料所处的温度、应变速率和应力状态等条件的变化而不同。

相关文档
最新文档