初中数学中考必考的公式定理
初中数学定理公式定律大全
初中数学定理公式定律大全1.代数定理-同号两数相乘为正,异号两数相乘为负。
-分配率:a×(b+c)=a×b+a×c。
-同底数幂相除,指数相减:(a^m)÷(a^n)=a^(m-n)。
-幂的乘法:(a^m)×(a^n)=a^(m+n)。
2.平方根公式-设a≥0,则√a×√a=a。
-若a≥0,则√(a^2)=a。
3.线性方程- 设a ≠ 0,方程 ax + b = 0 的解是 x = -b/a。
- 形如 ax + b = cx + d 的一次方程,有唯一解 x = (d - b)/(a -c)。
4.角度定理-外角和定理:一个三角形的外角等于它的两个不相邻内角的和。
-三角形内角和定理:一个三角形的内角之和等于180°。
-同位角定理:如果两条直线被一条截线分成两个内交角和两个外交角,则这两个内交角互为同位角,两个外交角互为同位角。
5.平行线和三角形定理-同位角、内错角定理:当两条直线被一条截线分成两个内交角和两个外交角时,同位角相等,内错角相等。
-平行线截割定理:当两条平行线被一条截线截断时,同位角相等,内错角相等。
-三角形内角和定理:一个三角形的内角之和等于180°。
-等腰三角形定理:两边相等的三角形中,两个对应的内角也相等。
6.几何定理-直角三角形定理:一个三角形中,如果一些角是直角,则它是直角三角形。
-直角边定理:在直角三角形中,斜边的平方等于各直角边的平方和。
-勾股定理:在直角三角形中,斜边的平方等于两个直角边的平方和。
-相似三角形定理:如果两个三角形的对应角相等,则这两个三角形相似。
-正方形的对角线垂直定理:正方形的对角线互相垂直且相等。
7.百分数与比例-百分数换分数:将百分数转化为分数,百分数除以100即可得到对应的分数。
-百分数的四则运算:百分数的加减乘除运算,先转化为分数进行计算,最后再转化为百分数。
-比例:设a:b=c:d,称a和b为比例的两个项,c和d为比例的两个对应项。
中考数学常用公式定理
中考数学常用公式定理数学是一门基础科学,常用公式和定理在中考数学中起着非常重要的作用。
它们是学生解题过程中的基石,也是学习数学知识的基础。
下面是一些中考数学中常用的公式和定理。
1.二次根式的化简:(a√b)*(c√b) = ac(b)(a√b)/(c√b)=a/c√a*√a=a2.两点间的距离:在坐标平面上,点A(x1,y1)和点B(x2,y2)的距离可以用勾股定理来计算:AB=√((x2-x1)²+(y2-y1)²)3.平均数的计算:n个数的平均数等于这些数的和除以n:平均数=(数1+数2+...+数n)/n4.利息的计算:利息=本金*年利率*时间5.百分数和比例:百分数是百分之一的意思,通常用%表示。
比例是两个相同类别的量的比值,通常用:表示。
6.几何图形的面积:-矩形的面积等于长乘以宽:面积=长*宽-正方形的面积等于边长的平方:面积=边长²-三角形的面积等于底边乘以高的一半:面积=(底边*高)/2-圆的面积等于半径的平方乘以π:面积=π*r²7.同底数幂的乘除计算:a^x*a^y=a^(x+y)a^x/a^y=a^(x-y)8.同底数幂的幂次计算:(a^x)^y=a^(x*y)9.二次方程的解法:二次方程一般是形如ax² + bx + c = 0的方程,可以用求根公式解:x = (-b ± √(b² - 4ac)) / (2a)10.两角和差的三角函数关系:- 余弦函数的和差公式:cos(A±B) = cosAcosB∓sinAsinB- 正弦函数的和差公式:sin(A±B) = sinAcosB±cosAsinB- 正切函数的和差公式:tan(A±B) = (tanA±tanB) / (1∓tanAtanB)以上是一些中考数学中常用的公式和定理,它们涵盖了数学的不同领域,包括代数、几何、三角等。
初中数学知识点中考必背公式
初中数学知识点中考必背公式一、代数部分:1.二次方程的求根公式:对于一元二次方程ax^2+bx+c=0其中a≠0,Δ=b^2-4ac≥0,则求根公式为:x1=[-b+√(b^2-4ac)]/2ax2=[-b-√(b^2-4ac)]/2a2.二次函数的顶点坐标:对于二次函数y=ax^2+bx+c(a≠0),其顶点坐标为:横坐标x=-b/2a,纵坐标y=-Δ/4a3.因式分解公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2(a+b)(a-b)=a^2-b^24.平方差公式:a^2-b^2=(a+b)(a-b)5.和差化积公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)6.一些特殊角的正弦、余弦、正切值:sin30°=1/2,cos30°=√3/2,tan30°=1/√3 sin45°=cos45°=1/√2,tan45°=1sin60°=√3/2,cos60°=1/2,tan60°=√37.等差数列前n项和公式:Sn=n(a1+an)/28.等差数列通项公式:an=a1+(n-1)d9.等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)10.等比数列通项公式:an=a1*q^(n-1)11.绝对值的性质:-a,=,aab,=,a,*,ba/b,=,a,/,b二、几何部分:1.直角三角形的勾股定理:直角三角形的两个直角边的平方和等于斜边的平方,即a^2+b^2=c^22.等边三角形的边长关系:等边三角形的三条边相等3.等腰三角形的性质:等腰三角形的两底角相等,两腰相等4.两条平行线与两条截线的关系:两条平行线与另外两条非平行线(截线)形成的内角、外角相等5.锐角三角函数的定义:sinA=对边/斜边cosA=邻边/斜边tanA=对边/邻边6.三角形内角和公式:三角形的内角和等于180°,即A+B+C=180°7.角平分线定理:角平分线将一个角分为两个大小相等的角8.两角的和差公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)9.三角形面积公式:对于任意三角形ABC,其面积S可以由三边长度a、b、c计算:S=√[s(s-a)(s-b)(s-c)]其中,s=(a+b+c)/2为半周长10.弦切弧定理:圆内一弦的两个弦心角相等,一弦上的切线与此弦所对的弧上任一弦心角相等11.正三角形的面积公式:对于边长为a的正三角形,其面积S=(√3*a^2)/4三、概率统计部分:1.事件的概率公式:对于随机试验的事件A,事件A发生的概率为P(A)=事件A发生的次数/试验次数2.互斥事件的概率公式:对于互斥事件A和B,两事件发生的概率之和为P(A∪B)=P(A)+P(B)3.相互独立事件的概率公式:对于相互独立事件A和B,两事件同时发生的概率为P(A∩B)=P(A)*P(B)4.条件概率公式:对于事件A和事件B,已知事件B发生的情况下事件A发生的概率为P(A,B)=P(A∩B)/P(B)这里列举的只是初中数学常见到的一部分公式,而实际中考中会用到的公式还有很多,建议同学们在备考过程中广泛积累、熟练掌握各类公式,提高解题能力。
中考初中数学140个数学公式定理逢考必出
中考数学140个数学公式定理逢考必出一、数学性质1、一元二次方程根的情况△=b 2 -4ac(前提必须化成一般形式ax 2 +bx+c=0)当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相等的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫它的对角线。
③平行四边形的对边相等并且平行,对角相等,邻角互补。
④平行四边形的对角线互相平分。
3、菱形:①一组邻边相等的平行四边形是菱形②领形的四条边相等,对边平行,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义、对角线互相垂直的平行四边形、四条边都相等的四边形。
4、矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等且平分,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的所有性质。
⑤一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形。
5、多边形:①n边形的内角和等于(n-2)180°②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的外角和多边形的外角和都等于360度。
6、平均数:7、加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
8、方差公式:二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线与已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,那么这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等全等三角形的判定方法:22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等角平分线的性质:27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相等的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合等腰(边)三角形的性质:30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°等腰(边)三角形的判定:34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半。
中考数学公式大全归纳
中考数学公式大全归纳下面整理了一些中考数学的常用公式,希望能对你的学习有所帮助。
1.代数和式:- 一次项和:(a + b)^2 = a^2 + 2ab + b^2- 平方差:(a - b)^2 = a^2 - 2ab + b^2-平方差公式:a^2-b^2=(a+b)(a-b)- 完全平方公式:(a + b)^ 2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^22.三角函数:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a^2 = b^2 + c^2 - 2bc*cosA,b^2 = a^2 + c^2 - 2ac*cosB,c^2 = a^2 + b^2 - 2ab*cosC- 正弦函数定义:sinA = 对边/斜边- 余弦函数定义:cosA = 邻边/斜边- 正切函数定义:tanA = 对边/邻边3.相似三角形:-边长比相等-对应角相等4.数列:-等差数列通项公式:an = a1 + (n - 1)d-等差数列求和公式:Sn = (a1 + an)n/2-等比数列通项公式:an = a1 * q^(n-1),其中q为公比-等比数列求和公式:Sn=a1(q^n-1)/(q-1)5.平面几何:-面积公式:矩形的面积=长*宽,三角形的面积=底边*高/2,梯形的面积=上底加下底的和*高/2,圆的面积=π*r^2-周长公式:正方形的周长=4*边长,矩形的周长=2*(长+宽),圆的周长=2*π*r6.平面解析几何:-中点公式:x=(x1+x2)/2,y=(y1+y2)/2-距离公式:两点之间的距离d=√((x2-x1)^2+(y2-y1)^2)7.三角函数:- 余角公式:sin(90° - A) = cosA,cos(90° - A) = sinA- 和差化积公式:sin(A + B) = sinA * cosB + cosA * sinB,cos(A + B) = cosA * cosB - sinA * sinB- 积化和差公式:sinA * sinB = (cos(A - B) - cos(A + B))/2,cosA * cosB = (cos(A - B) + cos(A + B))/28.指数与幂:- 指数运算公式:a^m * a^n = a^(m + n),(a^m)^n = a^(mn),(ab)^n = a^n * b^n-幂运算公式:a^(-m)=1/a^m,(1/a)^m=1/a^m以上是一些中考数学常用的公式,希望能对你的学习有所帮助。
中考数学公式定理汇总
中考数学公式定理汇总1. 两点间距离公式:设两点坐标分别为(x1,y1)和(x2,y2),则两点间距离公式为d=√[(x2-x1)²+(y2-y1)²]。
2. 勾股定理:直角三角形斜边的平方等于两直角边长度的平方和。
即a²+b²=c²(其中c为斜边,a、b为两直角边)。
3. 相似三角形定理:若两个三角形的对应角相等,那么它们的对应边成比例。
4. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC,其中a、b、c分别为三角形的三个边长。
5. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。
6. 集合论基本公式:①并集公式:A∪B表示A和B的并集,其中A、B为两个集合,则A∪B={x|x∈A∨x∈B};②交集公式:A∩B表示A和B的交集,其中A、B为两个集合,则A∩B={x|x∈A∧x∈B};③差集公式:A-B表示A与B的差集,其中A、B为两个集合,则A-B={x|x∈A∧x∉B}。
7. 均值不等式:对于任意非负实数a1、a2、……、an,则有(a1+a2+……+an)/n≥√(a1a2……an),即算术平均数大于等于几何平均数。
8. 对数基本公式:①a^m*a^n=a^(m+n);②(a^m)^n=a^(mn);③a^(m-n)=a^m/a^n;④loga(m*n)=logam+logan;⑤loga(m/n)=logam-logan;⑥loga(m^n)=n*logam。
9. 斯涅尔定理:(1)光线从光疏介质到光密介质中以一定角度射入后,会向法线方向弯曲;(2)入射角和折射角之比是一个定值,称为折射率n,即n=sin(i)/sin(r)。
10. 三角函数基本公式:sin(-x)=-sinx,cos(-x)=cosx,tan(-x)=-tanx,cot(-x)=-cotx。
11. 欧拉公式:e^(ix)=cosx+i*sinx。
中考数学常用公式和定理大全
中考数学常用公式和定理大全整数和分数都是有理数,其中分数包括有限小数和无限循环小数。
无限不循环小数是无理数,如π和根号2.实数包括有理数和无理数。
绝对值的定义是a大于等于0时等于a,a小于等于0时等于-a。
例如,绝对值|-3|=3,|3.14-π|=π-3.14.一个数的有效数字是指从左边第一个非零数字到最后一个数字之间的所有数字。
例如,把0.精确到0.001得0.060,有效数字是6和0.科学记数法是把一个数写成±a×10^n的形式,其中1≤a<10,n是整数。
例如,-×10^-5=-4.07×10^5,0.=4.3×10^-5.乘法公式包括:(a+b)(a-b)=a^2-b^2,(a±b)^2=a^2±2ab+b^2,(a+b)(a^2-ab+b^2)=a^3+b^3,a^2+b^2=(a+b)^2-2ab,(a-b)(a^2+ab+b^2)=a^3-b^3,(a-b)^2=(a+b)^2-4ab。
幂的运算性质包括:am×an=am+n,am÷an=am-n,(am)^n=amn,(ab)^n=anbn,(a^n)^m=a^(nm),a^-n=1/a^n,特别地,(1/a)^n=1/a^n。
例如,a^3×a^2=a^5,a^6÷a^2=a^4,(a^3)^2=a^6,(3a^3)^3=27a^9.二次根式包括:根号a乘根号b=根号(ab),根号a除以根号b=根号(a/b),根号a的平方=|a|,根号a的负方= -根号a。
例如,根号3乘根号2=根号6,根号8除以根号2=根号4=2,(-3.14)^2=1,根号a的平方=|a|。
一元二次方程的求解需要用到韦达定理和求根公式。
韦达定理指出,方程ax^2+bx+c=0的两个根x1和x2满足x1+x2=-b/a和x1x2=c/a。
求根公式是x=(-b±根号△)/2a,其中△=b^2-4ac是根的判别式。
初中数学必背公式大全初中数学重要公式定律汇总
初中数学必背公式大全初中数学重要公式定律汇总
一、几何公式
1、三角形面积公式
△ABC的面积S=1/2ab sin C
其中a、b为△ABC的两边,C为两边夹角
2、四边形面积公式
正方形面积公式:S=a2
长方形面积公式:S=ab
其中a、b分别为正方形或长方形的边长
3、圆的面积公式
S=πr2
其中r为圆的半径
4、梯形面积公式
S=(a+b)h/2
其中a、b分别为梯形的上下底,h为梯形的高
5、椭圆面积公式
S=πab
其中a、b分别为椭圆的长轴短轴
6、圆柱体体积公式
V=πr2h
其中r为圆柱体的底面半径,h为圆柱体的高
7、圆锥体体积公式
V=1/3πr2h
其中r为圆锥体的底面半径,h为圆锥体的高
8、球的表面积公式
S=4πr2
其中r为球的半径
9、球的体积公式
V=4/3πr3
其中r为球的半径
10、圆柱和圆锥的体积比公式
V1:V2=r2:2r
其中V1为圆柱体体积,V2为圆锥体体积,r为两个体积半径相同
二、三角函数
1、正弦定理
a/sinA=b/sinB=c/sinC=(2S)/R
其中a、b、c分别为△ABC的三边,A、B、C分别为两边夹角,S为△ABC的面积,R为三角形的外接圆半径
2、余弦定理
a2=b2+c2-2bc cosA
其中a、b、c分别为△ABC的三边,A为两边夹角3、正切关系
tanA= a/b
cotA= b/a
其中a、b分别为△ABC的两边,A为两边夹角4、正弦定理的应用
1)角的大小。
中考数学公式和定理(数学公式定理)
中考数学公式和定理(数学公式定理)中考数学公式和定理(数学公式定理)在平时的学习中,说起知识点,应该没有人不熟悉吧?知识点就是学习的重点。
掌握知识点是我们提高成绩的关键!下面是小编精心整理的中考数学公式和定理,欢迎大家分享。
中考数学公式和定理一、二项式定理二项式定理是指这样一个展开式的公式.它是(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3…等等展开式的一般形式,在初等数学中它与各章节的联系似乎不太多,而在高等数学中它是许多重要公式的共同基础,根据二项式定理的展开,才求得y=xn的导数公式y′=nxn-1,同时e≈2.718281…也正是由二项式定理的展开规律所确定。
二、掌握二项展开式的特点1.项数:共n+1项.2.系数:组合数Crm叫做二项式系数.要注意"二项式系数"是严格定义的概念,仅指展开式中的组合数,它与"项的系数"是不同的概念.3.指数:按通项公式记准升幂与降幂的规律.4.因为二项式系数就是组合数,所以应将上一节学过的组合数的两个性质与本节学习的性质综合起来概括出组合数的所有有用的性质.中考数学公式和定理分享一、指数函数的定义指数函数的一般形式为y=a^x(a>0且≠1) (x∈R).二、指数函数的性质1.曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞)2.曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)高中数学知识点:幂函数一、定义形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
二、性质幂函数不经过第三象限,如果该函数的指数的分子n是偶数,而分母m是任意整数,则y>0,图像在第一;二象限.这时(-1)^p的指数p的奇偶性无关.如果函数的指数的分母m是偶数,而分子n是任意整数,则x>0(或x>=0);y>0(或y>=0),图像在第一象限.与p的奇偶性关系不大。
中考数学高频定理公式
中考数学高频定理公式中考数学中,有一些定理公式是非常重要且高频出现的,同学们在备考过程中要熟练运用这些定理公式。
一、几何常识与定理1.重心定理:三角形的三条中线交于一点,该点称为重心。
2.中线定理:三角形的中线上的那个点,将中线分为两段,其中一段的长度是另一段长度的2倍。
3.垂心定理:三角形的三条高交于一点,该点称为垂心。
4.相似三角形的性质:对应角相等,对应边成比例。
5.三角形的面积公式:三角形的面积等于底乘以高的一半。
6.直角三角形的勾股定理:直角三角形的斜边的平方等于两边的平方和。
7.常见勾股数:(3,4,5)、(5,12,13)、(8,15,17)。
二、代数运算1.分配律:a*(b+c)=a*b+a*c。
2.因式分解公式:差的平方可以分解为两个数的乘积,例如:a²-b²=(a+b)(a-b)。
3. 完全平方公式:两个含有平方的项相加可以化简为一个完全平方,例如:a²+2ab+b² = (a+b)²。
4. 二次方程两根之和与两根之积:对于二次方程ax²+bx+c=0,两根之和为-b/a,两根之积为c/a。
5.平方差公式:两个含有平方的项相减可以化简为一个平方差,例如:a²-b²=(a+b)(a-b)。
6. 二次函数顶点坐标:对于二次函数y=ax²+bx+c,顶点坐标为(-b/2a, f(-b/2a))。
三、概率与统计1.事件概率:事件A发生的概率P(A)等于事件A的可能性总数除以总的样本空间的可能性总数。
2.相反事件的概率:事件A的对立事件A'发生的概率为1减去事件A发生的概率,即P(A')=1-P(A)。
3.和事件的概率:P(AUB)=P(A)+P(B)-P(AB)。
4.互斥事件的概率:互斥事件A和B之间没有共同的样本点,即P(AB)=0,P(AUB)=P(A)+P(B)。
5.条件概率:事件A在事件B已经发生的条件下发生的概率定义为P(A,B)=P(AB)/P(B)。
初中中考数学常用公式及重要性质和定理
初中中考数学常用公式及重要性质和定理数学是一门高效的科学,而公式则是数学思想的高效表达方式。
在初中中考数学中,掌握常用公式、重要性质和定理是很重要的。
下面我将重新整理并详细介绍常用公式、重要性质和定理。
一、常用公式:1.直角三角形的勾股定理:设直角三角形的两直角边分别为a、b,斜边为c,则有a²+b²=c²。
2. 二次函数的解法公式:设二次函数为y = ax² + bx + c,其中a ≠ 0,则它的解法公式为x = [-b ± √(b² - 4ac)] / (2a)。
3.等差数列的通项公式:设等差数列的首项为a₁,公差为d,第n项为aₙ,则有aₙ=a₁+(n-1)d。
4.等差数列的前n项和公式:设等差数列的首项为a₁,公差为d,前n项的和为Sn,则有Sn=(n/2)(a₁+aₙ)。
5. 平方差公式:(a + b)² = a² + 2ab + b²。
6. 两角和、差公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB。
7.梯形面积公式:设梯形的上底长度为a,下底长度为b,高为h,则梯形的面积为S=(a+b)h/28.圆的周长公式:设圆的半径为r,则圆的周长L=2πr。
9.圆的面积公式:设圆的半径为r,则圆的面积S=πr²。
二、重要性质和定理:1.三角形内角和定理:设三角形的三个内角分别为A、B、C,则有A+B+C=180°。
2.三角形面积公式:设三角形的底边为a,对应高为h,则三角形的面积S=1/2×a×h。
3.三角形的相似性质:若两个三角形的对应角相等,则这两个三角形相似。
4.三角形的勾股定理:设三角形的三个边长分别为a、b、c,其中c为斜边,则有a²+b²=c²。
数学中考必考知识点公式
数学中考的必考知识点包括整数、小数、分数、百分数、代数式与方程、数列、图形与变换、几何运动、三角函数等内容。
以下是这些知识点的相关公式和参考内容。
1.整数:•整数的加法和减法公式:a + b = b + a,a - b = a + (-b)•整数的乘法和除法公式:a × b = b × a,a ÷ b = a/b•整数的乘方公式:a^m × a^n = a^(m + n),a^m ÷ a^n = a^(m - n)2.小数:•小数的加法和减法公式:a + b = b + a,a - b = a + (-b)•小数的乘法和除法公式:a × b = b × a,a ÷ b = a/b•小数的乘方公式:a^m × a^n = a^(m + n),a^m ÷ a^n = a^(m - n)3.分数:•分数的加法和减法公式:a/b + c/d = (ad + bc) / bd,a/b - c/d = (ad - bc) / bd•分数的乘法和除法公式:a/b × c/d = ac/bd,a/b ÷ c/d = ad/bc•分数的乘方公式:(a/b)^n = a n/b n4.百分数:•百分数的转化公式:百分数 = 小数 × 100%,百分数 = 分数 × 100%•百分数的加法和减法公式:a% + b% = (a + b)%,a% - b% = (a - b)%•百分数的乘法和除法公式:a% × b% = (a × b)%,a% ÷ b% = (a ÷ b)%5.代数式与方程:•一元一次方程:ax + b = 0,解为x = -b/a•一元一次方程组:ax + by = c,dx + ey = f,解为x = (ce - fb) / (ae - bd),y = (af - cd) / (ae - bd)•一元二次方程:ax^2 + bx + c = 0,解为x = (-b ± √(b^2 - 4ac)) / (2a)6.数列:•等差数列的公差公式:an = a1 + (n - 1)d•等差数列的前n项和公式:Sn = n(a1 + an) / 2•等比数列的公比公式:an = a1 × r^(n - 1)•等比数列的前n项和公式(r ≠ 1):Sn = a1(1 - r^n) / (1 - r)7.图形与变换:•长方形的面积公式:面积 = 长 × 宽•正方形的面积和周长公式:面积 = 边长^2,周长 = 4 × 边长•三角形的面积公式:面积 = 底边 × 高 / 2•圆的面积和周长公式:面积= π × 半径^2,周长= 2 × π × 半径•旋转变换的坐标公式:顺时针旋转θ°后的新坐标(x’, y’) = (x × cosθ - y × sinθ, x × sinθ + y × cosθ)8.几何运动:•平均速度的公式:平均速度 = 总位移 / 总时间•加速度的公式:加速度 = (末速度 - 初始速度)/ 时间9.三角函数:•正弦函数的定义:sinθ = 对边 / 斜边•余弦函数的定义:cosθ = 邻边 / 斜边•正切函数的定义:tanθ = 对边 / 邻边•三角函数的基本关系:sin^2θ + cos^2θ = 1,tanθ = sinθ / cosθ以上是数学中考必考知识点的一部分公式和参考内容,希望能帮助到你备考数学中考。
中考数学必备公式及定理
中考数学必备公式及定理中考数学涉及的公式和定理有很多,但是为了精简,以下列举一些中考数学必备的公式和定理:1. 一元一次方程:ax + b = 0,方程的解为x = -b/a。
2. 一元二次方程:ax^2 + bx + c = 0,判别式为D = b^2 - 4ac,如果D>0,方程有两个不等实根;如果D=0,方程有两个相等实根;如果D<0,方程没有实数解。
3.平方差公式:(a-b)(a+b)=a^2-b^24.勾股定理:在直角三角形中,斜边的平方等于两直角边平方的和,即a^2+b^2=c^25. 正弦定理:对于任意三角形ABC,设a是边BC的对边,b是边AC 的对边,c是边AB的对边,那么有a/sinA = b/sinB = c/sinC。
6. 余弦定理:对于任意三角形ABC,设a是边BC,b是边AC,c是边AB,那么有c^2 = a^2 + b^2 - 2ab*cosC。
7.相似三角形的性质:相似三角形的对应角相等,对应边成比例。
8. 相对长度公式:设两个相似三角形的对应边长度分别为a,b,c和k*a,k*b,k*c,那么对应角的正弦函数和余弦函数的值也成比例,即sinA/sinB = a/b = c/kc,cosA/cosB = a/b = c/kc。
9.面积公式:矩形的面积为长乘以宽,三角形的面积为底乘以高的一半,平行四边形的面积为底乘以高。
10.直角三角形的面积公式:直角三角形的面积为两直角边的乘积的一半。
11.长方体的体积公式:长方体的体积为长乘以宽乘以高。
14.杨辉三角形:杨辉三角形是一个由数字排列成的三角形的数列,数列中的每个数是上一行两个相邻数之和。
15.相对速度公式:设A、B两个物体以不同的速度运动,并且运动方向相同,则它们之间的相对速度是两个速度的差。
初中数学常见的146条定理和公式
初中数学常见的146条定理和公式
1、几何定理:
(1)直角三角形斜边长的平方等于两直角边长的乘积:a2=b2+c2(2)梯形面积=底边*高/2
(3)三角形面积=底边*高/2
(4)正方形的面积=边长的平方
(5)长方形的面积=长*宽
(6)圆形的面积=πr2
(7)椭圆的面积=πa*b
(8)任意多边形的面积=1/2*a*h
(9)平行四边形面积=对边乘积/2
(10)三角形的周长=a+b+c
(11)正多边形的周长=边数×边长
(12)圆的周长=2πr
(13)椭圆的周长=2π(a+b)/2
(14)正方体的表面积=6a2
(15)正方体的体积=a3
(16)长方体的表面积=2(a+b)h
(17)长方体的体积=a*b*h
(18)圆柱的表面积=2πr(r+h)
(19)圆柱的体积=πr2h
(20)圆锥的表面积=πrl+πr2
(21)圆锥的体积=πr2h/3
(22)球的表面积=4πr2
(23)球的体积=4/3πr3
2、数列定理:
(1)等差数列之和Sn=n(a1+an)/2
(2)等比数列之和Sn=a1(1-qn)/(1-q)
(3)调和数列之和Sn=n2/2(a1+an)
(4)加绝对值的调和数列之和Σ,a,=n(2a1+n-1da/2 ) 3、代数定理:
(1)多项式乘积与乘积分配律:(a+b)(c+d)=ac+ad+bc+bd (2)二次多项式求根公式:X1,2=[-b±√(b2-4ac)]/2a。
中考数学必考公式定律整理
中考数学必考公式定律整理中考数学是考察学生对数学基本概念、定理和方法的掌握程度的一门科目。
在备考中,整理并熟记一些重要的公式和定律对学生来说非常重要。
下面是一些常见的中考数学必考公式和定律的整理:1.四则运算公式-加法和减法的交换律:a+b=b+a,a-b≠b-a-乘法和除法的交换律:a×b=b×a,a÷b≠b÷a-加法和乘法的结合律:(a+b)+c=a+(b+c),(a×b)×c=a×(b×c)2.整式公式-a²-b²=(a+b)(a-b)- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²- a² + b² = (a + b)² - 2ab- a³ - b³ = (a - b)(a² + ab + b²)- a³ + b³ = (a + b)(a² - ab + b²)3.平方根公式- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²-a²-b²=(a+b)(a-b)4.二次方程公式- 一元二次方程ax² + bx + c = 0的解公式为:x = (-b ± √(b² - 4ac)) / (2a)5.百分数和比例-百分数的计算公式:百分数=(部分/总数)×100%-比例的计算公式:部分/总数=n/1006.倍数和因数-一个数a是另一个数b的倍数,当且仅当b是a的一个因数。
-如果一个数a能被另一个数b整除,则a是b的倍数,b是a的因数。
中考数学公式定理大全
中考数学公式定理大全1.多边形的内角和定理:任何一个n边形的内角和等于(n-2)×180°2.一次函数的标准方程:y = kx + b3.两点间距离公式:AB=√((x₂-x₁)²+(y₂-y₁)²)4.平面直角坐标系上两点的中点坐标公式:M((x₁+x₂)/2,(y₁+y₂)/2)5.点到直线的距离公式(点A(x₁,y₁),直线Ax+By+C=0):d=,Ax₁+By₁+C,/√(A²+B²)6.一元二次方程的解法:-b ± √(b² - 4ac) / (2a)7.同底数幂的乘法法则:xᵐ*xⁿ=x^(m+n)8.同底数幂的除法法则:xᵐ/xⁿ=x^(m-n)9.幂的乘幂规则:(xᵐ)ⁿ=x^(m*n)10.倒数的幂规则:(1/x)ⁿ=1/xⁿ11.对数的定义:如果aⁿ=x,那么就写作logₐx = n,其中a称为底数,x称为真数,n 称为对数。
12.对数的乘法法则:logₐ(xy) = logₐx + logₐy13.对数的除法法则:logₐ(x/y) = logₐx - logₐy14.对数的换底公式:logₐb = logcb / logca15.几何中,两角平分线定理:如果一条射分线把一个角分成两个相等的小角,那么这条射分线就是这个角的角平分线。
16.反比例函数:y=k/x。
其中k是常数。
17.三角形的面积公式:S = 1/2 * a * b * sinC18.三角形的余弦定理:c² = a² + b² - 2ab * cosC19.三角形的正弦定理:a / sinA =b / sinB =c / sinC20.三角形的中线定理:AD²=AB²/4+AC²/4-BC²/421.内切圆和外接圆的性质:a是三角形的边长,r是内切圆半径,R是外接圆半径。
初中数学常用定理和公式
初中数学常用定理和公式一、几何定理和公式1.直角三角形定理:直角三角形的斜边的平方等于两个直角边的平方和。
2.勾股定理:直角三角形中,直角边平方和等于斜边平方。
3.边角和定理:三角形的三个内角和等于180度。
4.同位角定理:同位角相等。
5.内切圆定理:三角形的内切圆的半径等于三角形的面积除以半周长。
6.外接圆定理:三角形的外接圆的直径等于三角形的斜边。
7.直线的平行与垂直定理:两条直线互相平行,则其斜率相等;两条直线互相垂直,则其斜率的乘积为-18.余弦定理:在任意三角形中,任意一边的平方等于另外两边的平方之和减去这两边的乘积与该角的二倍积的余弦之积。
9.正弦定理:在任意三角形中,任意一边的长度与该边对应的角的正弦之比等于另外两边与其对应角的正弦之比。
10.钝角三角形中位线定理:对于任意一个钝角三角形,连接其钝角的两边中点所得线段是该钝角三角形的长边所对应的中线。
11.相似三角形定理:两个三角形对应角相等,则这两个三角形相似;两个三角形两对应边成比例,则这两个三角形相似。
二、代数定理和公式1. 分配律:对于任意实数a、b、c,有a(b+c)=ab+ac。
2.公因式提取法则:a×b+a×c=a×(b+c)。
3.差平方公式:(a+b)×(a-b)=a²-b²。
4. 二次根式性质:(a√b)²=ab。
5. 斜截式方程:y = kx+b。
6. 一次函数:y = kx + b。
7. 平方根性质:√a × √b = √(ab)。
8. 一元一次方程:ax + b = 0。
9. 一元二次方程:ax² + bx + c = 0。
10.因式分解法则:将一个多项式表示成几个因式的乘积。
11.高次方程根与系数的关系:对于一个n次方程,有n个复数根。
三、概率与统计定理和公式1.相对频率:其中一事件出现的次数与总次数的比值。
2.排列公式:n个元素中选取r个元素进行排列的方法数为nPr=n!/(n-r)。
中考数学必备公式大全
中考数学必备公式大全一、代数公式1.二项式定理:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^n−1b^1+C(n,2)a^n−2b^2+…+C(n,n−1)a^1b^(n −1)+C(n,n)a^0b^n2.因式分解公式:a^2−b^2=(a+b)(a−b)a^2+2ab+b^2=(a+b)^2a^2−2ab+b^2=(a−b)^2a^3+b^3=(a+b)(a^2−ab+b^2)a^3−b^3=(a−b)(a^2+ab+b^2)3.分式相关公式:倒数的倒数=本身 eg. a/b 的倒数的倒数 = b/a分式相乘,分子与分母相乘eg. (a/b) × (c/d) = (a×c) / (b×d)分式相除,分子与分母互换并相乘eg. (a/b) ÷ (c/d) = (a×d) / (b×c)相等分式的分子与分母对应相等,且不为0 eg. (a/b) = (c/d),a:c=b:d,ab≠0,cd≠04.求根公式:一元二次方程 ax^2 + bx + c = 0 的根公式为 x = (−b ±√(b^2−4ac)) / 2a二、几何公式1.三角形公式:(1)三角形的面积公式:S=1/2×底×高(2)三角形的海伦公式:c=a+b+c/2,S=√(c×(c−a)×(c−b)×(c−c))(3)三角形内角和公式:三角形内角之和等于180°(4)三角形的斜边关系:a^2+b^2=c^2(直角三角形)(5)正弦定理:a/sinA = b/sinB = c/sinC = 2R(R为外接圆半径)(6)余弦定理:c^2 = a^2 + b^2 - 2abcosC2.平面图形面积公式:(1)矩形的面积公式:S=长×宽(2)正方形的面积公式:S=边长×边长(3)平行四边形的面积公式:S=底×高(4)梯形的面积公式:S=(上底+下底)×高/2(5)圆的面积公式:S=πr^2(r为半径)3.立体图形体积公式:(1)长方体的体积公式:V=长×宽×高(2)正方体的体积公式:V=边长×边长×边长(3)圆柱体的体积公式:V=πr^2×h(r为底面半径,h为高)(4)圆锥体的体积公式:V=1/3×πr^2×h(r为底面半径,h为高)三、概率与统计公式1.事件概率公式:(1)事件的概率:P(A)=n(A)/n(S)(A为事件,n(A)为事件A包含的样本点数,n(S)为样本空间中的样本点数)2.统计指标公式:(1)平均数:平均值=总和/样本个数(2)中位数:奇数个数字的中位数为中间那个数,偶数个数字的中位数为中间两个数之和的一半(3)众数:出现频率最高的数(4)范围:样本最大值减去样本最小值(5)方差:每个数与平均数之差的平方和除以样本个数(6)标准差:方差的平方根(7)百分位数:P%的百分位数是这样一个数值,它将数据分成两部分,较小部分中至少有P%的数据以上是中考数学必备公式的大致集合,希望对你的备考有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学中考必考的公式定理
初中几何公式定理:线
1.同角或等角的余角相等
2.过一点有且只有一条直线和已知直线垂直
3.过两点有且只有一条直线
4.两点之间线段最短
5.同角或等角的补角相等
6.直线外一点与直线上各点连接的所有线段中,垂线段
最短
7.平行公理经过直线外一点,有且只有一条直线与这条直线平行
8.如果两条直线都和第三条直线平行,这两条直线也互
相平行
9.定理线段垂直平分线上的点和这条线段两个端点的
距离相等
10.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
11.线段的垂直平分线可看作和线段两端点距离相等的
所有点的集合
12.定理1:关于某条直线对称的两个图形是全等形
13.定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
14.定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
15.逆定理:如果两个图形的对应点连线被同一条直线垂
直平分,那么这两个图形关于这条直线对称
初中几何公式定理:角
16.同位角相等,两直线平行
17.内错角相等,两直线平行
18.同旁内角互补,两直线平行
19.两直线平行,同位角相等
20.两直线平行,内错角相等
21.两直线平行,同旁内角互补
22.定理1:在角的平分线上的点到这个角的两边的距离
相等
23.定理2:到一个角的两边的距离相同的点,在这个角的平分线上
24.角的平分线是到角的两边距离相等的所有点的集合
初中几何公式定理:三角形
25.定理:三角形两边的和大于第三边
26.推论:三角形两边的差小于第三边
27.三角形内角和定理三角形三个内角的和等于180°
28.推论1:直角三角形的两个锐角互余
29.推论2:三角形的一个外角等于和它不相邻的两个内
角的和
30.推论3:三角形的一个外角大于任何一个和它不相邻
的内角
31.勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c
32.勾股定理的逆定理:如果三角形的三边长a、b、c 有关系a+b=c,那么这个三角形是直角三角形
初中几何公式定理:等腰、直角三角形
33.等腰三角形的性质定理等腰三角形的两个底角相等
34.推论1:等腰三角形顶角的平分线平分底边并且垂直
于底边
35.等腰三角形的顶角平分线、底边上的中线和高互相重
合
36.推论3:等边三角形的各角都相等,并且每一个角都等于60°
37.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
38.推论1:三个角都相等的三角形是等边三角形
39.推论2:有一个角等于60°的等腰三角形是等边三角形
40.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
41.直角三角形斜边上的中线等于斜边上的一半
初中几何公式定理:相似、全等三角形
42.定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
43.相似三角形判定定理1:两角对应相等,两三角形相似(ASA)
44.直角三角形被斜边上的高分成的两个直角三角形和
原三角形相似
45.判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)
46.判定定理3:三边对应成比例,两三角形相似(SSS)
47.定理:如果一个直角三角形的斜边和一条直角边与另
一个直角三角形的斜边和一条直角边对应成比例,那么这两
个直角三角形相似
48.性质定理1:相似三角形对应高的比,对应中线的比
与对应角平分线的比都等于相似比
49.性质定理2:相似三角形周长的比等于相似比
50.性质定理3:相似三角形面积的比等于相似比的平方
51.边角边公理:有两边和它们的夹角对应相等的两个三
角形全等
52.角边角公理:有两角和它们的夹边对应相等的两个三
角形全等
53.推论:有两角和其中一角的对边对应相等的两个三角
形全等
54.边边边公理:有三边对应相等的两个三角形全等
55.斜边、直角边公理:有斜边和一条直角边对应相等的
两个直角三角形全等
56.全等三角形的对应边、对应角相等
初中几何公式定理:四边形
57.定理:四边形的内角和等于360°
58.四边形的外角和等于360°
59.多边形内角和定理:n边形的内角的和等于(n-2)×180°
60.推论:任意多边的外角和等于360°
61.平行四边形性质定理1:平行四边形的对角相等
62.平行四边形性质定理2:平行四边形的对边相等
63.推论:夹在两条平行线间的平行线段相等
64.平行四边形性质定理3:平行四边形的对角线互相平
分
65.平行四边形判定定理1:两组对角分别相等的四边形
是平行四边形
66.平行四边形判定定理2:两组对边分别相等的四边形
是平行四边形
67.平行四边形判定定理3:对角线互相平分的四边形是平行四边形
68.平行四边形判定定理4:一组对边平行相等的四边形是平行四边形
初中几何公式定理:矩形
69.矩形性质定理1:矩形的四个角都是直角
70.矩形性质定理2:矩形的对角线相等
71.矩形判定定理1:有三个角是直角的四边形是矩形
72.矩形判定定理2:对角线相等的平行四边形是矩形
初中几何公式:菱形
73.菱形性质定理1:菱形的四条边都相等
74.菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角
75.菱形面积=对角线乘积的一半,即S=(a×b)÷2
76.菱形判定定理1:四边都相等的四边形是菱形
77.菱形判定定理2:对角线互相垂直的平行四边形是菱
形
初中几何公式定理:正方形
78.正方形性质定理1:正方形的四个角都是直角,四条边都相等
79.正方形性质定理2:正方形的两条对角线相等,并且
互相垂直平分,每条对角线平分一组对角
80.定理1:关于中心对称的两个图形是全等的
81.定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
82.逆定理:如果两个图形的对应点连线都经过某一点,
并且被这一点平分,那么这两个图形关于这一点对称
初中几何公式定理:等腰梯形
83.等腰梯形性质定理:等腰梯形在同一底上的两个角相
等
84.等腰梯形的两条对角线相等
85.等腰梯形判定定理:在同一底上的两个角相等的梯形
是等腰梯形
86.对角线相等的梯形是等腰梯形
初中几何公式:等分
87.平行线等分线段定理:如果一组平行线在一条直线上
截得的线段相等,那么在其他直线上截得的线段也相等
88.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰
89.推论2:经过三角形一边的中点与另一边平行的直
线,必平分第三边
90.三角形中位线定理:三角形的中位线平行于第三边,
并且等于它的一半
91.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h
92.比例的基本性质:如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d
93.合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
94.等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b
95.平行线分线段成比例定理:三条平行线截两条直线,
所得的对应线段成比例
96.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
97.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第
三边
98.平行于三角形的一边,并且和其他两边相交的直线,
所截得的三角形的三边与原三角形三边对应成比例
99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100.任意锐角的正切值等于它的余角的余切值,任意锐
角的余切值等于它的余角的正切值
初中几何公式:圆
101.圆是定点的距离等于定长的点的集合。