一元一次方程追及问题
一元一次方程应用题-(含答案)
一元一次方程应用题-(含答案)一元一次方程应用题-(含答案)一元一次方程应用题列方程解应用题的一般步骤(解题思路)(1)审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设出未知数:根据提问,巧设未知数.(3)列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)一、相遇与追击问题1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。
2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时 3.6km,骑自行车的人的速度是每小时10.8km。
如果一列火车从他们背后开来,的车长是多少米?6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。
出发地到目的地的距离是60千米。
问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)7、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。
一元一次方程之追及问题及公式
甲、乙两车站相距400千米慢车每小时行驶100千米,快车每小时行驶140千米先让慢车行驶100千米,然后快车再出发问多长时间快车能追上慢车如果不是快车慢车的那再给你找一些追及应用题吧1、甲车在乙车前500千米,同时出发,速度分别为每小时40千米和每小时60千米,多少小时候,乙车追上甲车2、甲乙两人相距6千米,乙在前,甲在后,两人同时同向出发,3小时甲追上乙。
乙每小时行4千米,甲每小时行多少千米3、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,10分钟后两人相距多远4、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,甲出发后30分钟到达终点,这时,乙离终点还有多远5、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,甲出发后30分钟到达终点,甲到达终点后原路返回起跑点,起跑后多少分两人相遇6、一辆货车以每小时60千米的速度前进,一辆客车在它后面30千米,以每小时75千米的速度前进,问客车多长时间能追上货车7、甲车1小时行驶60千米,1小时后,乙车从同一地点出发追赶甲车,如果乙车的速度为每小时80千米,几小时后可以追上甲车8、兄弟俩骑车郊游,弟弟先出发,速度为每分钟行200米,5分钟后哥哥带一条狗出发,以每分钟250米的速度去追弟弟,而狗则以每分钟300米的速度向弟弟跑去,追上弟弟后就又返回,遇到哥哥后又立即向弟弟追去,直到哥哥追上弟弟时狗跑了多少米9、甲乙两站相距360千米,客车与货车同时从甲站出发驶向乙站,客车每小时行驶60千米,货车每小时行驶40千米,客车到达乙站后又以原速度返回甲站,两车在开出几小时后相遇10、甲乙两人在周长是400米的环形跑道上跑步,甲比乙跑得快,如果两人从同一地点出发,背向而行,那么经过2分钟相遇,如果两人从同一地点同向而行,那么经过20分钟甲追上乙,求甲乙各自的速度是多少11.小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地每小时步行4千米。
一元一次方程应用题-相遇及追击问题
一船航行于A、B两个码头之间,顺水航行需要3小时,逆水航行需要5小时,已知水流速度是4km/h,求这两个码头之间的距离。
顺水速度=船速+水速 逆水速度=船速-水速
A码头
B码头
水流方向
从甲地到乙地,水路比公路近40千米,上午十时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地驶往乙地,结果同时到达终点。已知轮船的速度是每小时24千米,汽车的速度是每小时40千米,求甲、乙两地水路、公路的长,以及汽车和轮船行驶的时间?
甲
乙
A
B
A车路程+B车路程=相距路程
解:设B车行了x小时后与A车相遇,根据题意列方程得 50x+30x=240 解得 x=3 答:设B车行了3小时后与A车相遇。
练 一
例1、 A、B两车分别停靠在相距240千米的甲、乙两地,甲车每小时行50千米,乙车每小时行30千米。 (2)若两车同时相向而行,请问B车行了多长时间后两车相距80千米?
1、画出示意图:
3km/h甲
乙2km/h
A
B
2、甲乙相遇时,两人所走的路程与AB两地的距离有什么关系?
时间角度:甲行走的时间=乙行走的时间
3、甲行走的时间与乙行走的时间有什么关系?
甲行走的速度×时间+乙行走的速度×时间=AB的距离
练习1
西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?
慢车先行路程
快车路程
(慢车先行路程+慢车后行路程)+快车路程=总路程
慢车后行路程
相遇问题
慢车后行的时间=快车行驶的时间
例2:甲、乙从一点出发,同向而行,甲每小时走3km,乙每小时走2km,乙先出发3小时,甲再出发追赶乙,问甲要多久才能追上乙?
一元一次方程应用题归类汇集(含答案)
一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。
设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
一元一次方程解题方法和技巧应用题
一元一次方程应用题解题方法和技巧一元一次方程应用题解题方法和技巧如下:方法:(1)和差倍分问题:①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长,公率......”来体现。
②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。
(2)行程问题:基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间。
路程=速度×时间。
①相遇问题:快行距+慢行距=原距。
②追及问题:快行距-慢行距=原距。
③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度。
逆水(风)速度=静水(风)速度-水流(风)速度。
技巧:1、注意语言与解析式的互化:如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”等。
2、注意从语言叙述中写出相等关系:如,x比y大3,则x-y=3或x=y+3或x-3=y。
3、注意单位换算:如,“小时”、“分钟”的换算;s、v、t单位的一致等。
一元一次方程:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
一元一次方程只有一个根。
一元一次方程最早见于约公元前1600年的古埃及时期。
公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。
16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。
1859年,数学家李善兰正式将这类等式译为一元一次方程。
数学教案-一元一次方程的应用之追及问题
数学教案-一元一次方程的应用之追及问题一、教学目标1.理解追及问题的基本概念,掌握追及问题的解题方法。
2.能够运用一元一次方程解决追及问题,提高解决问题的能力。
3.培养学生分析问题、解决问题的思维能力和团队协作精神。
二、教学内容1.追及问题的基本概念和类型2.一元一次方程在追及问题中的应用3.追及问题的解题方法和步骤三、教学过程1.导入新课(1)引导学生回顾一元一次方程的应用,如年龄问题、行程问题等。
(2)提出追及问题,让学生思考如何解决。
2.知识讲解(1)介绍追及问题的基本概念:追及问题是指两个物体在相对运动过程中,一个物体从后面追赶另一个物体,直到追上为止的问题。
(2)讲解追及问题的类型:直线追及和圆周追及。
(3)分析追及问题的解题思路:找出等量关系,列出方程。
3.案例分析(1)案例一:甲车从A地出发,以每小时60公里的速度行驶,乙车从A地出发1小时后以每小时80公里的速度追赶甲车,求乙车追上甲车需要多少时间?(2)引导学生分析案例,找出等量关系:甲车行驶的距离+1小时行驶的距离=乙车行驶的距离。
(3)列出方程:60x+60=80(x-1)。
(4)解方程:60x+60=80x-80,20x=140,x=7。
(5)得出结论:乙车追上甲车需要7小时。
4.练习巩固1.甲、乙两辆火车从相距600公里的两个车站同时出发,相向而行,甲车速度为每小时80公里,乙车速度为每小时100公里。
求两车相遇需要多少时间?2.一辆汽车从甲地出发,以每小时60公里的速度行驶,一辆自行车从甲地出发1小时后以每小时20公里的速度追赶汽车。
求自行车追上汽车需要多少时间?(2)学生展示解题过程,教师点评并给出正确答案。
(2)强调找等量关系、列方程的重要性。
(3)鼓励学生多练习,提高解决问题的能力。
四、课后作业1.完成课后练习题,巩固追及问题的解题方法。
2.收集生活中的追及问题,尝试用一元一次方程解决。
五、教学反思本节课通过讲解追及问题的基本概念、类型和解题方法,让学生掌握了运用一元一次方程解决追及问题的能力。
一元一次方程的应用之追及问题——初中数学第一册教案
一元一次方程的应用之追及问题——初中数学第一册教案第16课4。
4一元一次方程的应用之追及问题教学目的一、使学生会分析相向而行的同时与不同时动身的相遇问题中的相等关系,列出一元一次方程解简单的应用题。
二、使学生增强了解列一元一次方程解应用题的方式步骤。
教学分析重点:利用路程、速度、时间的关系,按照相遇问题中的相等关系,列出一元一次方程。
难点:寻觅相遇问题中的相等关系。
冲破:同时动身到相遇时,所历时间相等。
注重审题,从而找到相等关系。
教学进程一、温习一、列方程解应用题的一般步骤是什么?二、路程、速度、时间的关系是什么?3、慢车每小时行驶48千米,x小时行驶千米,快车每小时行驶72千米,若是快车先开0。
5小时,那么慢车开出x小时后,快车行驶了千米。
二、新授一、引入列方程解应用题,关键是寻觅相等关系,今天咱们通过一例来学习如何寻觅相等关系,和把相等关系表示成方程的方式。
例(讲义P216例3)题目见教材。
分析:(1)可以画出图形,明显有这样的相等关系:慢车行程+快车行程=两站路程设两车行了x小时相遇,则两车的行程的代数式别离为85x,65x,放入相等关系中,即可得出方程:85x+65x=450(2)再分析快车先开了30分两车相向而行的情形。
一样画出图形,并按讲义讲解,(见教材P217~218)由学生完成求解进程,并作出答案。
解:略说明:(1)本题是相向而行的相遇问题,一路点是有一个相同的相等关系,即慢车行程+快车行程=两站路程。
不同点是一个同时动身,一个不是同时动身,所以所历时间不必然相等。
(2)不是同时动身的,要注意时间的关系。
三、练习P220练习:1,2。
四、小结一、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。
二、相向而行的相遇问题中,要注意时间的关系。
五、作业一、P222 4。
4A:13,14,15。
二、基础训练:同步练习3。
一元一次方程应用题——行程问题
行程问题【基本关系式】(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水的路程 = 逆水的路程注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。
常见的还有:相背而行;环形跑道问题。
【经典例题】例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?例2.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、C两地之间的路程为10千米,求A、B两地之间的路程。
【专项训练】一、行程(相遇)问题A.基础训练1.小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?3.王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇?4.两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇?5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。
追及问题PPT课件
———————— = ————————
2020年10月2日
3
相等关系:
通讯员行进路程 学生行进路程
———————— = ————————
2020年10月2日
4
变化(1):
• 一队学生去校外进行军事野营训练。他 们以5km/h的速度行进,走了18分的时 候,学校要将一个紧急通知传给队长。 通讯员从学校出发,骑自行车以 14km/h的速度按原路追上去。队长出 发后经过多少时间接到通知?
2020年10月2日
5
变化(2):
• 一队学生去校外进行军事野营训练。他 们以5km/h的速度行进,走了18分的时 候,学校要将一个紧急通知传给队长。 通讯员从学校出发,骑自行车以 14km/h的速度按原路追上去。当通讯 员追上学生队伍时,他们已经走了多少 路?
2020年10月2日
6
变化(3):
• 一队学生去校外进行军事野营训练。他 们以5km/h的速度行进,走了18分的时 候,学校要通讯员骑自行车从学校出发 按原路追上去,用10分钟的时间将一个 紧急通知传给队长。通讯员必须以怎样 的速度行进?
2020年10月2日
7
变化(4):
• 一队学生去校外进行军事野营训练。他 们从学校出发,走了18分的时候,学校 要将一个紧急通知传给队长。通讯员也 从学校出发,骑自行车以14km/h的速 度按原路追上去,只用了10分钟就追上 了队伍。通讯员出发前学生走了多少时 间?
2020年10月2日
8
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this documentБайду номын сангаасcan be modified, adjusted and printed at will after downloading. Welcome to download!
人教版七年级上册 一元一次方程的应用-追及相遇问题(含答案)
人教版七年级上册一元一次方程的应用-追及相遇问题(含答案)一、单选题1.甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米.若甲让乙先跑10米,设甲跑x秒后可以追上乙,则下列四个方程中不正确的是()A.7x=6.5x+10B.7x-10=6.5x C.(7-6.5)x=10D.7x=6.5x-102.甲、乙两列火车在平行轨道上相向而行,已知两车自车头相遇到车尾相离共需8 s.若甲、乙两车的速度之比为3∶2,甲车长200 m,乙车长280 m,则甲、乙两车的速度分别为( ) A.30 m/s,20 m/s B.36 m/s,24 m/sC.38 m/s,22 m/s D.60 m/s,40 m/s3.明月从家里骑车去游乐场,若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟,设她家到游乐场的路程为xkm,根据题意可列出方程为()A.851060860x x-=-B.851060860x x-=+C.851060860x x+=-D.85108x x+=+4.如图,甲船从北岸码头A向南行驶,航速为36千米/时;乙船从南岸码头B向北行驶,航速为27千米/时.两船均于7:15出发,两岸平行,水面宽为18.9千米,则两船距离最近时的时刻为()A.7:35B.7:34C.7:33D.7:325.甲乙两人练习跑步,甲先让乙跑10米,则甲5秒钟追上乙,若甲让乙先跑2秒,甲跑4秒就追上乙,甲乙两人每秒分别跑()A.4米、6米B.2米、4米C.6米、4米D.4米、2米6.甲、乙两人从学校到博物馆去,甲每小时走 4km ,乙每小时走 5km ,甲先出发 0.1h ,结果乙还比甲早到 0.1h .设学校到博物馆的距离为 xkm ,则以下方程正确的是( ) A.+0.1=0.145x x- B.-0.1=0.145x x+ C.=0.145x x- D.4x ﹣0.1=5x+0.17.甲、已两地相距50千米,小明、小刚分别以6?千米/时、4千米/时从甲乙两地同时出发,小明领一只小狗以10千米/时奔向小刚,碰到小刚后奔向小明,碰到小明后奔向小刚…一直到两人相遇,小狗共跑了多少路程?( ) A.25千米B.30千米C.35千米D.50千米8.A 、B 两地相距900千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是( ) A .4小时 B .4.5小时 C .5小时 D .4小时或5小时 二、填空题9.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是_____千米/时.10.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里早到24分钟,如果每小时走12公里,就要迟到15分钟,原定时间是________分.11.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,若A ,C 两地距离为2千米,则A ,B 两地之间的距离是_____.12.甲、乙两人练习赛跑,若甲让乙先跑10米,则甲跑5秒种就能追上乙.若甲让乙先跑2秒钟,则甲跑4秒种就能追上乙,则甲每秒跑____米,乙每秒跑____米.13.在一段双轨铁道上,两人辆火车迎头驶过,A 列车车速为20米/秒,B 列车车速为25米/秒,若A 列车全长200米,B 列车全长160米,两列车错车的时间为____秒。
追及问题一元一次方程
一元一次方程的应用:追及问题初中数学学习目标一、考点突破追及问题是两物体同向行驶,快的(后出发的)追上慢的(先出发的)。
通过本讲的学习,弄清这类问题的数量关系,能够正确找到相等关系并列方程求解,学会熟练地画线段图解决行程问题。
二、重难点提示重点:弄清追及问题的各种类型及其数量关系。
难点:环形跑道和时钟的问题。
考点精讲1. 追及问题的特点:两物体在同一直线或封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。
这类常常会在考试考到,一般分为两种:一种是双人追及、双人相遇,此类问题比较简单;另一种是多人追及、多人相遇,此类则较困难。
2. 追及问题的数量关系:速度差×追及时间=路程差,路程差÷速度差=追及时间(同向追及)等。
这类问题的等量关系是:同时不同地:甲的时间=乙的时间,甲走的路程-乙走的路程=原来甲、乙相距的路程;同地不同时:甲的时间=乙的时间-时间差,甲的路程=乙的路程。
3. 环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和=一圈的路程;同地同向而行的等量关系是两人所走的路程差=一圈的路程。
示例甲、乙两人在400 米长的环形跑道上跑步,甲每分钟跑240 米,乙每分钟跑200米,两人同时同地同向出发,几分钟后两人相遇?若背向跑,几分钟后相遇?思路分析:等量关系:两人同时同地同向出发,甲的路程-乙的路程=400 米两人背向跑:甲的路程+乙的路程=400 米典例精讲例题1 甲、乙两人练习赛跑,甲每秒钟跑7 米,乙每秒钟跑6.5 米,他俩从同一地点起跑,乙先跑5 米后,甲出发追赶乙。
设甲出发x 秒后追上乙,则下列四个方程中正确的是()A. 7x =6.5x+5B. 7x =6.5x-5C. 7x+5 =6.5xD.(7+6.5)x =5思路分析:首先理解题意找出题中存在的等量关系:乙跑的路程=甲跑的路程,根据此等式列方程即可。
答案:设甲出发x 秒钟后追上乙,则甲所跑的路程为7x,而此时乙所跑的路程为6.5x +5;根据此时“甲追上乙”那么他们的总路程应该相同,即7x =6.5x+5 ,故选A。
(完整版)一元一次方程应用行程问题
:一元一次方程应用之--------------行程问题专题一、【根本概念】行程类应用题根本关系:路程=速度×时间速度=路程÷时间时间=路程÷速度相遇问题:甲、乙相向而行,那么:甲走地路程+乙走地路程=总路程.追及问题:①甲、乙同向不同地,那么:追者走地路程=前者走地路程+两地间地距离.②甲、乙同向同地不同时,那么:追者走地路程=前者走地路程环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快地必须多跑一圈才能追上慢地.②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时地总路程为环形跑道一圈地长度.飞行〔航行〕问题、根本等量关系:①顺风〔顺水〕速度=无风〔静水〕速度+风速〔水速〕②逆风〔逆水〕速度=无风〔静水〕速度-风速〔水速〕顺风〔水〕速度-逆风〔水〕速度=2×风〔水〕速车辆〔车身长度不可忽略〕过桥问题:车辆通过桥梁〔或隧道等〕,那么:车辆行驶地路程=桥梁〔隧道〕长度+车身长度超车〔会车〕问题:超车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度差.会车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度和.在行程问题中,按照题意画出行程图,可以使问题地分析过程更直观,更容易理解.特别是问题中运动状态复杂,涉及地量较多地时候,画行程图就成了理解题意地关键.所以画行程图是我们必须学会地一种分析手段.另外,由于行程问题中地根本量只有“路程〞、“速度〞和“时间〞三项,所以,列表分析也是解决行程问题地一种重要方法.二、【典型例题】〔一〕相遇问题相遇问题:甲、乙相向而行,那么:甲走地路程+乙走地路程=总路程.例1、甲、乙两站相距 600km,慢车每小时行40km,快车每小时行60km.⑴经过xh后,慢车行了km,快车行了 km,两车共行了km;⑵慢车从甲站开出,快车从乙站开出,相向而行,两车相遇共行了km, 如果两车同时开出,xh相遇,那么可得方程:;⑶如果两车相向而行,快车先行50km,在慢车开出yh后两车相遇,那么可得方程:;⑷如果两车相向而行,慢车先开50min,在快车开出th后两车相遇,那么可得方程:.例2、甲、乙两站地路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米.两车同时开出,相向而行,多少小时相遇?分析:1/3慢车的路程快车的路程甲站乙站两站相距450km例3、甲、乙两地相距376km,A车从甲地开往乙地,半小时后B车从乙地开往甲地,A车开出5h后与B车相遇,又知B车地时速是A车时速地倍,求B车地时速?例4、甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进.两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间地路程.课堂练习1:电气机车和磁悬浮列车从相距298千米地两地同时出发相对而行,磁悬浮列车地速度比电气机车速度地5倍还快20千米/时,半小时后两车相遇.两车地速度各是多少?2、甲、乙两人从相距35km地两地同时出发,相向而行,甲步行每小时走4km,乙骑车小时后相遇,求乙地速度.3、甲步行,乙骑自行车,同时从相距 27km地两地相向而行,2h 相遇,乙比甲每小时多走5.5km,求甲、乙两人地速度.4、A、B两地相距153km,汽车从A地开往B地,时速为38km;摩托车从B地开往A地,时速为24km.摩托车开出小时后,汽车再出发.问汽车开出几小时后遇到摩托车?5、甲骑自行车从A地出发,以12km/h地速度驶向B地,同时,乙也骑自行车从B地出发,以14km/h 地速度驶向A地.两人相遇时,乙已超过A、B两地中点1.5km,求A、B两地地距离.〔二〕追及问题例1、甲、乙两地相距10km,A、B两人分别从甲、乙两地同时、同向出发,A在前,B在后,A地速度是每小时4km,B地速度是每小时5km,xh后A走了km,B走了km.如果这时刚好B追上A,那么可列方程:.例2、甲、乙两人都从A地出发到B地,甲先走5km后乙再出发,甲速度是4km/h,乙速度是5km/h.如果A、B两地相距xkm,那么甲先走地时间是h,乙走地时间是h, 假设两人同时到达B地,那么可列方程:.例3、甲、乙两人同时以4km/h地速度从A地前往B地,走了后,甲要回去取一份文件.他以6km/h 地速度往回走,在办公室耽误了15min后,仍以6km/h地速度追赶乙,结果两人同时到达B地.求A、B两地间地距离.分析:你能求出第二段甲乙所用时间为h吗?假设设A、B两地间地距离为xkm,可以用表示第四段甲乙所用时间.课堂练习1:跑得快地马每天走240里,跑得慢地马每天走150里.慢马先走12天,快马几天可以追上慢马?课堂练习2:一辆每小时行30km地卡车由甲地驶往乙地,1h后,一辆每小时行40km地摩托车也由甲地驶往乙地,问卡车开出几h后摩托车可追上卡车?家庭练习:1、甲、乙两人相距18km,乙出发后甲再出发,甲在后,乙在前同向而行,甲骑车每小时行8km,乙步行每小时行5km,问甲出发几h后追上乙?2、甲每小时走5km,出发2h后乙骑车追甲.⑴如乙地速度为每小时20km,问乙多少分钟追上甲?⑵如果要求乙出发14km时追上甲,问乙地速度是多少?3、从甲地到乙地走水路比走公路近20km,上午10时,一条轮船甲地从驶往乙地,下午1时一2/3辆汽车也从甲地驶向乙地,结果汽车与轮船同时到达乙地.轮船时速20km,汽车时速60km,求甲地到乙地地水路和公路地长.4、同村地甲、乙两人都去县城,甲比乙早走1h,却迟到半小时,甲每小时走4km,乙每小时走5km.问村庄到县城地距离是多少?〔三〕环形跑道问题例1、某城举行环城自行车赛,骑得最快地人在出发后 35min就遇到骑得最慢地人,骑得最慢地人地车速是骑得最快地人地车速地5,环城一周是6km,求骑得最快地人地车速.7例2、一环形公路周长是24千米,甲乙两人从公路上地同一地点同一时间出发,背向而行,3小时后他们相遇.甲每小时比乙慢千米,求甲、乙两人速度各是多少?家庭练习:1、甲、乙两人在400m环形跑道上练竞走,乙每分钟走80m,甲地速度是乙地速度地11倍,现4甲在乙前面100m,问多少分钟后两人可首次相遇?2、运动场地跑道一圈长 400m.甲练习骑自行车,平均每分骑350m;乙练习跑步,平均每分钟跑250m.两人从同一处同时反向出发 ,经过多少时间首次相遇?又经过多少时间再次相遇?〔四〕航行〔飞行〕问题例1、一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了小时.水流速度是3千米/时,求船在静水中地平均速度.例2、一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机地航速和两城之间地航程.课堂练习1:一艘船从A港到B港顺流行驶,用了5小时;从B港返回A港逆流而行,用了小时,水流速度是3千米/小时,求船在静水中地速度.课堂练习2:有A、B、C三个码头,BC相距24km,某船从B顺水而下到达A后,立即逆水而上到达C.共用8h,水流速度为5km/h,船在静水中地速度为20km/h,求A、B之间地距离.1、客机和战斗机从相距600km地两个机场起飞,30min相遇,客机顺风飞行,战斗机逆风飞行,如果在静风中战斗机地速度是客机地3倍,风速是每小时24km,问两机地速度各是多少?2、船在静水中地速度是14km/h,水流速度是2km/h,船先顺流由一码头开出,再逆流返回,假设要船在3h30min内返回,那么船最远能开出多远?3、甲船从A地顺流下行,乙船同时从B地逆水上行,12h后相遇,此时甲船已走了全程地一半多9km,甲船在静水中地速度是每小时4km,乙船在静水地速度是每小时5km,求水流地速度.〔五〕错车问题例1.甲乙两人辞别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车从甲身旁开过,用了15s;然后从乙身旁开过用了17s.两人地速度都是3.6km/h,这列火车有多长?随堂练习:1.某部队执行任务,以6km/h地速度前进,通信员在队尾接到命令后把命令传给了排头,然后立即返回队尾,通讯员来回地速度是10km/h,共用7.5min,求队伍地长度.2.在高速公路上,一辆长4米,速度为110千米/时地轿车准备超越一辆长12米,速度为100千米/时地卡车,那么轿车从开始超越到超越卡车需要花费地时间约是多少?3.某隧道长500m,现有一列火车从隧道内通过,测得火车通过隧道〔即从车头进入入口到车尾地离开出口〕共用30s,而整列火车完全在隧道内地时间为10s,求火车地速度和火车地长.4.一列火车用26s地时间通过一个长256m地隧道〔即从车头进入隧道到车尾离开隧道〕,这列火车又以同样地速度用16s地时间通过了另一个长96m地隧道,求这列火车地长度3/3。
一元一次方程的应用之追及问题——初级中学数学第一册教案_七年级数学教案.doc
3、慢车每小时行驶48千米,x小时行驶
千米,快车每小时行驶72千米,如果快车先开0.5小时,那么慢车开出x小时后,快车行驶了
千米。
列方程解应用题,关键是寻找相等关系,今天我们通过一例来学习如何寻找相等关系,和把相等关系表示成方程的方法。
设两车行了x小时相遇,则两车的行程的代数式分别为85x,65x,放入相等关系中,即可得出方程:85x+65x=450
说明:(1)本题是相向而行的相遇问题,共同点是有一个相同的相等关系,即慢车行程+快车行程=两站路程。
不同点是一个同时出发,一个不是同时出发,所以所用时间不一定相等。
一月高考热点特殊类型招生与港澳高校内
地招生
特殊类型招生
教育部近日下发《关于做好2018年普通高等学校部分特殊类型招生工作的通知》,对高校艺术类专业、高水平艺术团、高水平运动队及保送生招生工作进行了部署。
1月,有关高校将陆续公布特殊类型招生简章,请考生和家长密切关注高校招生网站。
此外,2017年12月,江苏、江西、重庆等省份的部分艺术类专业进行了省统考。
1月,还将有一些省份进行统考,如湖南艺术类统考;河北、广东美术类专业统考;贵州音乐类、舞蹈类、戏剧影视导演等专业统考。
详细信息请查看艺术类专业的招考政策、招考动态等栏目。
港澳高校内地招生
2018年香港、澳门高校内地招生陆续进行。
如香港大学预计在内地招收300人,已开始接受报名;香港中文大学2018年全国计划招收300人,其中北京今年计划招收17人,文史类5人,理工类12人,该校在提前批招生,申请者必须参加全国统一高考,英语单科达到指定水平。
来源:教育部阳光高考信息平台。
一元一次方程之追及问题及公式
一元一次方程之追及问题及公式(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--甲、乙两车站相距400千米慢车每小时行驶100千米,快车每小时行驶140千米先让慢车行驶100千米,然后快车再出发问多长时间快车能追上慢车如果不是快车慢车的那再给你找一些追及应用题吧1、甲车在乙车前500千米,同时出发,速度分别为每小时40千米和每小时60千米,多少小时候,乙车追上甲车2、甲乙两人相距6千米,乙在前,甲在后,两人同时同向出发,3小时甲追上乙。
乙每小时行4千米,甲每小时行多少千米3、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,10分钟后两人相距多远4、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,甲出发后30分钟到达终点,这时,乙离终点还有多远5、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,甲出发后30分钟到达终点,甲到达终点后原路返回起跑点,起跑后多少分两人相遇6、一辆货车以每小时60千米的速度前进,一辆客车在它后面30千米,以每小时75千米的速度前进,问客车多长时间能追上货车7、甲车1小时行驶60千米,1小时后,乙车从同一地点出发追赶甲车,如果乙车的速度为每小时80千米,几小时后可以追上甲车8、兄弟俩骑车郊游,弟弟先出发,速度为每分钟行200米,5分钟后哥哥带一条狗出发,以每分钟250米的速度去追弟弟,而狗则以每分钟300米的速度向弟弟跑去,追上弟弟后就又返回,遇到哥哥后又立即向弟弟追去,直到哥哥追上弟弟时狗跑了多少米9、甲乙两站相距360千米,客车与货车同时从甲站出发驶向乙站,客车每小时行驶60千米,货车每小时行驶40千米,客车到达乙站后又以原速度返回甲站,两车在开出几小时后相遇10、甲乙两人在周长是400米的环形跑道上跑步,甲比乙跑得快,如果两人从同一地点出发,背向而行,那么经过2分钟相遇,如果两人从同一地点同向而行,那么经过20分钟甲追上乙,求甲乙各自的速度是多少11.小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地每小时步行4千米。
追及问题的基本公式
追及问题的基本公式1,追及问题的基本公式追及路程:速度差=追及时间追及路程差÷速度差=追及时间在行程问题中,我们专研究这样的三个量:分别是:珞桎,速度•时间.其中,路程=速度X时间速度=珞隹+时间时间=—+速度2,一元一次方程的追及问题怎么做公式是什么追及问题:追及路程(路程差)二速度差X追及时间相遇问题:相遇路程(路程和)=速度和X相遇时间找出等量关系列方程就可以了等量关系:路程=速度*时间<<<<<可以做一下下面的题热热身:甲乙两车从相距480千米的两地相向而行,甲车先行2小时乙车才出发,已知甲车每小时行75千米,乙车每小时性60千米,乙车开出后几小时与甲车相遇?甲乙两人在周长400米的环形跑道上竞走,已知乙的速度是平均每分钟80米,甲的速度是乙的1.25倍,乙在甲前100米,问多少分钟后,甲可以追上乙?上面的原理是你自己想出来的还是有人告诉人的?1、同时不同地出发,如果是同向行驶,甲追乙的路程=两地路程+乙走的路程,因为甲在走的同时,乙也在走,甲还要走不同出发点间的距离2的一个是对的。
3,有没有追及相遇问题的公式相遇问题相遇路程=两车速度和X相遇时间相遇时间二相遇路程÷两车速度和两车速度和=相遇路程÷相遇时间追及问题追及距离=两车速度差X追及时间追及时间=追及距离:两车速度差两车速度差=追及距离÷追及时间相遇问题:相遇路程二速度和X相遇时间相遇时间=相遇路程♦速度和速度和二相遇路程:相遇时间追击问题:追击距离二速度差X追及时间追及时间二追及距离÷速度差速度差二追及距离÷追及时间相遇:t=s∕(v1+v2)追及:t=s∕(v1-v2)追及时要求v1>v2,否则追不上。
行程问题基本数量关系式有:速度X时间=距离距离÷速度二时间距离÷时间=速度1.相遇问题:速度之和X相遇时间二两地距离两地距离÷速度之和=相距时间两地距离÷相遇时间二速度之和2.追及问题:追及距离÷速度之差二追及时间速度之差X追及时间二追及距离追及供饥垛渴H韭讹血番摩距离÷追及时间=速度之差快速-慢速二速度差先算速度相等,求加速度,在具体分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x=10
小彬和小明每天早晨坚持跑步, 小明每秒跑6米,小彬每秒跑4米。
(2)如果小明站在百米跑道的起跑处,小彬 站在他前面10米处,两人同时同向起跑,几 秒后小明能追上小彬?
小明 小彬 追及点
若设x秒后小明能追上小彬
10
小 明 小
彬
6x
4x
追 及 点
解:设,根据图 示可知:
6 x=4 x+10
解得
x=5
练习1.小明每天早上要在7:50之前 赶到距家1000米的学校上学。小明以80 米/分钟的速度出发,5分钟后,小明的 爸爸发现他忘了带语文书。于是,爸爸 立即以180米/分钟的速度去追小明,并 且在途中追上了他。 (1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多 远?
80×5
80x
180x
解:(1)设爸爸追上小明用了x分钟,根据图示 可知: 80×5+80x=180 x 解得 x=4
(2)追上小明时,小明一共步行了 80×5+80×4=720米,此时距离学校还有1000720=280米
如果爸爸要赶在小明进校门之前 把书送到,那么小明爸爸的速度最少 应为多少?
第五章
一元一次方程
做一做
1.若小明每秒跑4米,那么他5秒能跑 200 米。 ______ 2.小明用4分绕学校操场跑了两圈,(每 2.5 米/秒. 圈300米)那么他的速度为____ 3.小明家距离火车站1500米,他以4 米/秒的速度骑车到达火车站需375 ___秒。
应用示例
例1、小明和小彬每天早晨坚持跑步,小 彬每秒跑4米,小明每秒跑6米。 (1)如果他们站在百米跑道的两端同时相 向起跑,那么几秒后两人相遇? (2)如果小明站在百米跑道的起跑处,小 彬站在他前面10米处,两人同时同向起跑, 几秒后小明能追上小彬?
小彬和小明每天早晨坚持跑步, 小明每秒跑6米,小彬每秒跑4米。 (1)如果他们站在百米跑道的两端同时 相向起跑,那么几秒后两人相遇?
100米 小明所跑的路程
小 明
小彬所跑的路程
小 彬
相 遇
解:设经过x秒后两人相遇,则小明 跑步的路程是6 x米,小彬跑步的路 程是4 x米,根据图示可知:
6 x+4 x=100
根据上面的事实提出问题,并尝试解答。
小结:
(1)学会借助线段图分析较复杂的数 量关系; (2)在探索解决实际问题时,应从多 角度思考问题.
议一议:
育红学校七年级学生步行到郊外旅行。 (1)班学生组成前队,步行速度为4千米时, (2)班学生组成后队,速度为6千米时。前 队出发一小时后,后队才出发,同时后队 派一名联络员骑自行车在两队之间不间断 地来回进行联络,他骑车的速度为12千米 时。