电磁感应-双棒模型(学生版)-2
高考物理电磁感应双杆模型(答案)
WORD 格式1、双杆所在轨道宽度相同——常用动量守恒求稳定速度 1.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨足够长。
试求:(1)、棒的最终速度;(2)全过程 导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构中感应电流产生的焦耳热。
成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为 R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖 直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨 无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初 速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是 多少?【解析】下滑进入磁场后切割磁感线,在电路中产 生感应电流,、各受不同的磁场力作用而分别作变减 速、变加速运动,电路中感应电流逐渐减小,当感应电流为 零时,、不再受磁场力作用,各自以不同的速度匀速 滑动。
解析:ab 棒向cd 棒运动时,磁通量变小,产生感应电流.ab 棒受到与运动方向相反的安培力作用作减速运动,cd 棒则在 安培力作用下作加速运动.在ab 棒的速度大于cd 棒的速度(1)自由下滑,机械能守恒:①时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.临 由于、串联在同一电路中,任何时刻通过的电流总相界状态下:两棒速度达到相同后,回路面积保持不变,磁通 量不变化,不产生感应电流,两棒以相同的速度v 作匀速运 等,金属棒有效长度,故它们的磁场力为: 动.(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv2mv0根据能量守恒,整个过程中产生的总② 111222 Qmv(2m)vmv热量04 022(2)设ab 棒的速度变为初速度的3/4时,cd 棒的速度为v1,在磁场力作用下,、各作变速运动,产生的感应电动 势方向相反,当时,电路中感应电流为零(),则由动量守恒可知: 3mvmvmv 。
高中物理-电磁感应中的“双杆模型”
高中物理-电磁感应中的“双杆模型”“双杆”模型分为两类:一类是“一动一静”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止、受力平衡.另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减.一、平行导轨:不受其他外力作用光滑平行导轨光滑不等距导轨示意图质量m1=m2 电阻r1=r2 长度L1=L2质量m1=m2电阻r1=r2长度L1=2L2规律分析杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动稳定时,两杆的加速度均为零,两杆的速度之比为1∶2(2015·高考四川卷)如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ.均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef 棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止.空间有方向竖直的匀强磁场(图中未画出).两金属棒与导轨保持良好接触,不计所有导轨和ab棒的电阻,ef棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g.(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电量;(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止.求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离.[解析](1)设ab棒的初动能为E k,ef棒和电阻R在此过程产生的热量分别为W和W1,有W+W1=E k①且W=W1②由题意有E k=12m v21③得W=14m v21.④(2)设在题设过程中,ab棒滑行时间为Δt,扫过的导轨间的面积为ΔS,通过ΔS的磁通量为ΔΦ,ab棒产生的电动势平均值为E,ab棒中的电流为I,通过ab棒某横截面的电荷量为q,则甲E=ΔΦΔt⑤且ΔΦ=BΔS⑥I=qΔt⑦又有I=2ER⑧由图甲所示ΔS=d(L-d cot θ)⑨联立⑤~⑨,解得q=2Bd(L-d cot θ)R.⑩(3)ab棒滑行距离为x时,ab棒在导轨间的棒长L x为L x=L-2x cot θ⑪此时,ab棒产生的电动势E x为E x=B v2L x⑫流过ef棒的电流I x为I x=E xR⑬ef棒所受安培力F x为F x=BI x L⑭联立⑪~⑭,解得F x=B2v2LR(L-2x cot θ)⑮由⑮式可得,F x在x=0和B为最大值B m时有最大值F1.由题知,ab棒所受安培力方向必水平向左,ef棒所受安培力方向必水平向右,使F1为最大值的受力分析如图乙所示,图中f m为最大静摩擦力,有F1cos α=mg sin α+μ(mg cos α+F1sin α)⑯联立⑮⑯,得B m=1Lmg(sin α+μcos α)R(cos α-μsin α)v2⑰⑰式就是题目所求最强磁场的磁感应强度大小,该磁场方向可竖直向上,也可竖直向下.乙丙由⑮式可知,B为B m时,F x随x增大而减小,x为最大x m时,F x为最小值F2,如图丙可知F2cos α+μ(mg cos α+F2sin α)=mg sin α⑱联立⑮⑰⑱,得x m =μL tan θ(1+μ2)sin αcos α+μ.[答案]见解析二、平行导轨:一杆受恒定水平外力作用光滑平行导轨不光滑平行导轨示意图质量m1=m2电阻r1=r2长度L1=L2摩擦力F f1=F f2=F f 质量m1=m2电阻r1=r2长度L1=L2规律分析开始时,两杆做变加速运动;稳定时,两杆以相同的加速度做匀变速运动开始时,若F f<F≤2F f,则PQ杆先变加速后匀速,MN杆一直静止;若F>2F f,PQ杆先变加速,MN后做变加速最后两杆做匀速运动如图所示,两条平行的金属导轨相距L=1 m,水平部分处在竖直向下的匀强磁场B1中,倾斜部分与水平方向的夹角为37°,处于垂直于斜面的匀强磁场B1中,B1=B2=0.5 T.金属棒MN和PQ的质量均为m=0.2 kg,电阻R MN=0.5 Ω、R PQ=1.5 Ω.MN置于水平导轨上,PQ置于倾斜导轨上,刚好不下滑.两根金属棒均与导轨垂直且接触良好.从t=0时刻起,MN棒在水平外力F的作用下由静止开始向右运动,MN棒的速度v与位移x满足关系v=0.4x.不计导轨的电阻,MN始终在水平导轨上运动,MN与水平导轨间的动摩擦因数μ=0.5.(1)问当MN棒运动的位移为多少时PQ刚要滑动?(2)求从t=0到PQ刚要滑动的过程中通过PQ棒的电荷量;(3)定性画出MN受的安培力随位移变化的图象,并求出MN从开始到位移x1=5 m的过程中外力F做的功.[解析](1)开始PQ刚好不下滑时,PQ受沿倾斜导轨向上的最大静摩擦力F fm,则F fm=mg sin 37°设PQ刚好要向上滑动时,MN棒的感应电动势为E,由法拉第电磁感应定律E=B1L v设电路中的感应电流为I,由闭合电路的欧姆定律得I=ER MN+R PQ设PQ所受安培力为F A,有F A=B2IL此时PQ受沿倾斜导轨向下的最大静摩擦力,由力的平衡条件有:F A=F fm+mg sin 37°又由v=0.4x,联立解得x=48 m.(2)在从t=0到PQ刚要滑动的过程中,穿过回路MNQP的磁通量的变化量ΔΦ=B1Lx=0.5×1×48 Wb=24 Wb通过PQ棒的电荷量q=I·t=ER MN+R PQ·t=ΔΦR MN+R PQ=240.5+1.5C=12 C.(3)回路中的电流I=B1L vR MN+R PQ,MN受到的安培力F A=B1IL,又v=0.4x,故推出F A=0.4xB21L2R MN+R PQ因此MN受的安培力与位移x成正比,故画出如图所示的安培力—位移图象.考虑到MN受的安培力与位移方向相反,故安培力与位移图象包围的面积等于克服安培力做的功,故安培力对MN做功W A=-12·0.4x1B21L2R MN+R PQx1=-0.625 J当x1=5 m时,速度v1=0.4x1=0.4×5 m/s=2 m/s对MN棒由动能定理:W F-μmgx1+W A=12m v21-0故W F=12m v21+μmgx1-W A=⎝⎛⎭⎫12×0.2×22+0.5×0.2×10×5+0.625J=6.025 J.[答案](1)48 m(2)12 C(3)6.025 J三、倾斜导轨:两杆不受外力作用注意双杆之间的制约关系,即“主动杆”与“被动杆”之间的关系,因为两杆都有可能产生感应电动势,相当于两个电源,并且最终两杆的收尾状态的确定是分析问题的关键.(2014·高考天津卷)如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m .导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN ,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg ,电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2.问:(1)cd 下滑的过程中,ab 中的电流方向;(2)ab 刚要向上滑动时,cd 的速度v 多大;(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少.[审题点睛] (1)ab 刚好不下滑,隐含F fm =mg sin θ,方向沿斜面向上,ab 刚要向上滑动时,隐含F 安=F fm +mg sin θ,摩擦力方向沿斜面向下.(2)由于ab 中的电流变化,产生的热量要用功能关系(能量守恒)结合电路知识求解.[解析] (1)由右手定则可判断出cd 中的电流方向为由d 到c ,则ab 中电流方向为由a 流向b . (2)开始放置ab 刚好不下滑时,ab 所受摩擦力为最大静摩擦力,设其为F max ,有F max =m 1g sin θ① 设ab 刚要上滑时,cd 棒的感应电动势为E ,由法拉第电磁感应定律有E =BL v ② 设电路中的感应电流为I ,由闭合电路欧姆定律有 I =ER 1+R 2③ 设ab 所受安培力为F 安,有F 安=BIL ④此时ab 受到的最大静摩擦力方向沿斜面向下,由平衡条件有F 安=m 1g sin θ+F max ⑤ 综合①②③④⑤式,代入数据解得v =5 m/s.(3)设cd 棒运动过程中在电路中产生的总热量为Q 总,由能量守恒定律有m 2gx sin θ=Q 总+12m 2v 2又Q =R 1R 1+R 2Q 总解得Q =1.3 J.[答案] (1)由a 流向b (2)5 m/s (3)1.3 J 四、倾斜导轨:一杆受到外力作用(2016·浙江金华高三质检)如图所示,两根足够长的光滑平行金属导轨MN 、PQ 间距为l =0.5 m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m =0.02 kg ,电阻均为R =0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B =0.2 T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止,取g =10 m/s 2,问:(1)通过棒cd 的电流I 是多少,方向如何? (2)棒ab 受到的力F 多大?(3)棒cd 每产生Q =0.1 J 的热量,力F 做的功W 是多少?[解析] (1)棒cd 受到的安培力F cd =IlB棒cd 在共点力作用下受力平衡,则F cd =mg sin 30° 代入数据解得I =1 A根据楞次定律可知,棒cd 中的电流方向由d 至c . (2)棒ab 与棒cd 受到的安培力大小相等,F ab =F cd 对棒ab ,由受力平衡知F =mg sin 30°+IlB 代入数据解得F =0.2 N.(3)设在时间t 内棒cd 产生Q =0.1 J 的热量,由焦耳定律知Q =I 2Rt设棒ab 匀速运动的速度大小为v ,其产生的感应电动势E =Bl v ,由闭合电路欧姆定律知,I =E2R由运动学公式知在时间t 内,棒ab 沿导轨的位移 x =v t力F 做的功W =Fx综合上述各式,代入数据解得W =0.4 J. [答案] (1)1 A 方向由d 至c (2)0.2 N (3)0.4 J 五、竖直导轨如图是一种电磁驱动电梯的原理图,竖直平面上有两根很长的平行竖直轨道,轨道间有垂直轨道平面的匀强磁场B 1和B 2,B 1=B 2=1 T ,且B 1和B 2的方向相反,两磁场始终竖直向上做匀速运动.电梯桥厢(未在图中画出)固定在一个用超导材料制成的金属框abdc 内,并且与之绝缘.电梯载人时的总质量为5×103 kg ,所受阻力f =500 N ,金属框垂直轨道的边长L cd =2m ,两磁场沿轨道的宽度均与金属框的竖直边长L ac 相同,金属框整个回路的电阻R =9.5×10-4Ω,若设计要求电梯以v 1=10 m/s 的速度向上匀速运动,取g =10 m/s 2,那么 (1)磁场向上运动速度v 0应该为多大?(2)在电梯向上做匀速运动时,为维持它的运动,外界对系统提供的总功率为多少?(保留三位有效数字)[解析] (1)当电梯向上做匀速运动时,安培力等于重力和阻力之和,所以 F A =mg +f =50 500 N金属框中感应电流大小为 I =2B 1L cd (v 0-v 1)R金属框所受安培力F A =2B 1IL cd 解得v 0=13 m/s.(2)当电梯向上做匀速运动时,由第(1)问中的I =2B 1L cd (v 0-v 1)R ,求出金属框中感应电流I =1.263×104 A金属框中的焦耳热功率P 1=I 2R =1.51×105 W 有用功率为克服电梯重力的功率 P 2=mg v 1=5×105 W阻力的功率为P 3=f v 1=5×103W电梯向上运动时,外界提供的能量,一部分转变为金属框内的焦耳热,另一部分克服电梯的重力和阻力做功.因而外界对系统提供的总功率P 总=P 1+P 2+P 3=6.56×105W. [答案] (1)13 m/s (2)6.56×105 W1.(多选)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F /3D .两金属棒间距离保持不变解析:选BC.对两金属棒ab 、cd 进行受力分析和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab 速度小于金属棒cd 速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向由b 到a ,A 、D 错误,B 正确;以两金属棒整体为研究对象有:F =3ma ,隔离金属棒cd 分析其受力,则有:F -F 安=ma ,可求得金属棒cd 所受安培力的大小F 安=23F ,C 正确.2.(多选)(2016·唐山模拟)如图所示,水平传送带带动两金属杆a 、b 匀速向右运动,传送带右侧与两光滑平行金属导轨平滑连接,导轨与水平面间夹角为30°,两虚线EF 、GH 之间有垂直导轨平面向下的匀强磁场,磁感应强度为B ,磁场宽度为L ,两金属杆的长度和两导轨的间距均为d ,两金属杆质量均为m ,两杆与导轨接触良好.当金属杆a 进入磁场后恰好做匀速直线运动,当金属杆a 离开磁场时,金属杆b 恰好进入磁场,则( )A .金属杆b 进入磁场后做加速运动B .金属杆b 进入磁场后做匀速运动C .两杆在穿过磁场的过程中,回路中产生的总热量为mgLD .两杆在穿过磁场的过程中,回路中产生的总热量为mgL2解析:选BC.两杆从导轨顶端进入磁场过程中,均只有重力做功,故进入磁场时速度大小相等,金属杆a 进入磁场后匀速运动,b 进入磁场后,a 离开磁场,金属杆b 受力与金属杆a 受力情况相同,故也做匀速运动,A 项错,B 项正确;两杆匀速穿过磁场,减少的重力势能转化为回路的电热,即Q =2mgL sin 30°=mgL ,C 项正确,D 项错.3.(多选)如图所示,光滑平行的金属导轨宽度为L ,与水平方向成θ角倾斜固定,导轨之间充满了垂直于导轨平面的足够大的匀强磁场,磁感应强度为B ,在导轨上垂直导轨放置着质量均为m 、电阻均为R 的金属棒a 、b ,二者都被垂直于导轨的挡板挡住保持静止,金属导轨电阻不计,现对b 棒施加一垂直于棒且平行于导轨平面向上的牵引力F ,并在极短的时间内将牵引力的功率从零调为恒定的功率P .为了使a 棒沿导轨向上运动,P 的取值可能为(重力加速度为g )( )A.2m 2g 2RB 2L 2·sin 2θB .3m 2g 2RB 2L 2·sin 2θC.7m 2g 2RB 2L2·sin 2θ D .5m 2g 2RB 2L2·sin 2θ解析:选CD.以b 棒为研究对象,由牛顿第二定律可知F -mg sin θ-BL v2R BL =ma ,以a 棒为研究对象,由牛顿第二定律可知BL v 2R BL -mg sin θ=ma ′,则F >2mg sin θ,v >2Rmg sin θB 2L 2,故P =F v >4m 2g 2R B 2L 2sin 2θ,由此可得选项C 、D 正确,选项A 、B 错误.4.如图所示,竖直平面内有平行放置的光滑导轨,导轨间距为l =0.2 m ,电阻不计,导轨间有水平方向的匀强磁场,磁感应强度大小为B =2 T ,方向如图所示,有两根质量均为m =0.1 kg ,长度均为l =0.2 m ,电阻均为R =0.4 Ω的导体棒ab 和cd 与导轨接触良好,当用竖直向上的力F 使ab 棒向上做匀速运动时,cd 棒刚好能静止不动,则下列说法正确的是(g 取10m/s 2)( )A .ab 棒运动的速度是5 m/sB .力F 的大小为1 NC .在1 s 内,力F 做的功为5 JD .在1 s 内,cd 棒产生的电热为5 J解析:选A.对导体棒cd 由B Bl v2R l =mg ,得到v =5 m/s ,选项A 正确;再由F =mg +F 安=2 N 知选项B 错误;在1 s 内,力F 做的功W =F v t =10 J ,选项C 错误;在1 s 内,cd 棒产生的电热Q =⎝⎛⎭⎫Bl v2R 2Rt =2.5 J ,选项D 错误.5.(2016·合肥一中高三检测)如图所示,间距l =0.3 m 的平行金属导轨a 1b 1c 1和a 2b 2c 2分别固定在两个竖直面内.在水平面a 1b 1b 2a 2区域内和倾角θ=37°的斜面c 1b 1b 2c 2区域内分别有磁感应强度B 1=0.4 T 、方向竖直向上和B 2=1 T 、方向垂直于斜面向上的匀强磁场.电阻R =0.3 Ω、质量m 1=0.1 kg 、长为l 的相同导体杆K 、S 、Q 分别放置在导轨上,S 杆的两端固定在b 1、b 2点,K 、Q 杆可沿导轨无摩擦滑动且始终接触良好.一端系于K 杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m 2=0.05 kg 的小环.已知小环以a =6 m/s 2的加速度沿绳下滑.K 杆保持静止,Q 杆在垂直于杆且沿斜面向下的拉力F 作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小环所受摩擦力的大小; (2)Q 杆所受拉力的瞬时功率.解析:(1)设小环受到的摩擦力大小为F f ,由牛顿第二定律,有m 2g -F f =m 2a 代入数据,得F f =0.2 N.(2)设通过K 杆的电流为I 1,K 杆受力平衡, 有F f =B 1I 1l设回路总电流为I ,总电阻为R 总,有I =2I 1 R 总=32R设Q 杆下滑速度大小为v ,产生的感应电动势为E ,有I =ER 总E =B 2l vF +m 1g sin θ=B 2Il拉力的瞬时功率为P =F v联立以上方程,代入数据得P =2 W. 答案:(1)0.2 N (2)2 W6.如图所示,两根足够长且平行的光滑金属导轨与水平面成53°角固定放置,导轨间连接一阻值为6 Ω的电阻R ,导轨电阻忽略不计.在两平行虚线m 、n 间有一方向垂直于导轨所在平面向下、磁感应强度为B 的匀强磁场.导体棒a 的质量为m a =0.4 kg ,电阻R a =3 Ω;导体棒b 的质量为m b =0.1 kg ,电阻R b =6 Ω.导体棒a 、b 分别垂直导轨放置并始终与导轨接触良好.a 、b从开始相距L 0=0.5 m 处同时由静止释放,运动过程中它们都能匀速穿过磁场区域,当b 刚穿出磁场时,a 正好进入磁场,g 取10 m/s 2,不计a 、b 之间电流的相互作用,sin 53°=0.8,cos 53°=0.6.求:(1)在a 、b 分别穿越磁场的过程中,通过R 的电荷量之比;(2)在穿越磁场的过程中,a 、b 两导体棒匀速运动的速度大小之比; (3)磁场区域沿导轨方向的宽度d ; (4)在整个运动过程中,产生的总焦耳热. 解析:(1)由q 总=I Δt ,I =E R 总,E =ΔΦΔt ,得q 总=ΔΦR 总在b 穿越磁场的过程中,b 是电源,a 与R 是外电路,电路的总电阻R 总1=8 Ω 通过R 的电荷量为q Rb =13q 总1=13·ΔΦR 总1同理,a 在磁场中匀速运动时,R 总2=6 Ω,通过R 的电荷量为q Ra =12q 总2=12·ΔΦR 总2,可得q Ra ∶q Rb =2∶1.(2)设a 、b 穿越磁场的过程中的速度分别为v a 和v b ,则b 中的电流I b =BL v bR 总1由平衡条件得B 2L 2v bR 总1=m b g sin 53°同理,a 在磁场中匀速运动时有 B 2L 2v aR 总2=m a g sin 53°, 解得v a ∶v b =3∶1.(3)设b 在磁场中穿越的时间为t ,由题意得: v a =v b +gt sin 53°,d =v b t因为v 2a -v 2b =2gL 0sin 53°,v a ∶v b =3∶1所以d =0.25 m.(4)a 穿越磁场时所受安培力F 安=m a g sin 53° 克服安培力所做的功W a =m a gd sin 53°=0.8 J 同理,b 穿越磁场时克服安培力所做的功 W b =m b gd sin 53°=0.2 J由功能关系得,在整个过程中,电路中产生的总焦耳热Q =W a +W b =1 J. 答案:(1)2∶1 (2)3∶1 (3)0.25 m (4)1 J。
高中物理电磁感应综合模型--双导体棒模型
电磁感应综合应用--双导体棒模型【一动一静】1、如图所示,平行且足够长的两条光滑金属导轨,相距L=0.4 m,导轨所在平面与水平面的夹角为30°,其电阻不计。
把完全相同的两金属棒(长度均为0.4 m)ab、cd分别垂直于导轨放置,并使每棒两端都与导轨良好接触。
已知两金属棒的质量均为m=0.1 kg、电阻均为R=0.2 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.5 T,当金属棒ab在平行于导轨向上的力F作用下沿导轨向上匀速运动时,金属棒cd恰好能保持静止。
(g=10 m/s2),则()A.F的大小为0.5 NB.金属棒ab产生的感应电动势为1.0 VC.ab棒两端的电压为1.0 VD.ab棒的速度为5.0 m/s2、如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4 m,导轨所在空间被分成区域Ⅰ和Ⅰ,两区域的边界与斜面的交线为MN。
Ⅰ中的匀强磁场方向垂直斜面向下,Ⅰ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T。
在区域Ⅰ中,将质量m1=0.1 kg、电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑。
然后,在区域Ⅰ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑。
cd在滑动过程中始终处于区域Ⅰ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2,问:(1)cd下滑的过程中,ab中的电流方向;(2)ab刚要向上滑动时,cd的速度v多大?(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8 m,此过程中ab 上产生的热量Q是多少?3、如图甲所示,光滑倾斜导体轨道(足够长)与光滑水平导体轨道平滑连接。
轨道宽度均为L=1 m,电阻忽略不计。
水平向右的匀强磁场仅分布在水平轨道平面所在区域;垂直于倾斜轨道平面向下,同样大小的匀强磁场仅分布在倾斜轨道平面所在区域。
专题 电磁感应力电综合之双杆模型
——双动式导体棒同向运动
电磁感应力电综合——双动式导体棒同向运动
电磁感应中,“导体棒”切割磁感线问题 是高考常见命题。其中,双导体棒切割磁感线 考查内容覆盖面广,涵盖力学、电磁学、电路 及能量等方面的知识,对学生能力要求高,本 节就双导体棒在平行等间距与平行不等间距导 轨中同向切割磁感线做一分析
电磁感应力电综合——双动式导体棒同向运动
变式1.足够长的固定金属轨道位于同一水平面内,两 导轨间的距离为L,导轨上面横放着两根导体棒ab和 cd,构成矩形回路,如图所示,两根导体棒的质量为 m1,m2,电阻均为R,回路中其余电阻不计,匀强磁场 垂直整个导轨平面,磁感应强度为B,设两导体棒均 可沿导轨无摩擦的滑行,开始两棒静止,瞬间给cd棒 向右的初速度v0 (1)试分析两导体棒的运动情况,画出v-t图;
BILt BqL m1v
q It m1m2 v0 (m1 m2 )BL
电磁感应力电综合——双动式导体棒同向运动
(4)整个过程中,安培力所做的功
Wcd
1 2
m2v2
1 2
m2v02
cd 动能减小量等于它克服安培力做的功;
Wab
1 2
m1v 2
安培力对ab 做功等于它动能增加量;
电磁感应力电综合——双动式导体棒同向运动
例题.足够长的固定金属轨道位于同一水平面内,两 导轨间的距离为L,导轨上面横放着两根导体棒ab和 cd,构成矩形回路,如图所示,两根导体棒的质量为 m1,m2,电阻均为R,回路中其余电阻不计,匀强磁场 垂直整个导轨平面,磁感应强度为B,不计一切摩擦。 现将ab棒固定,瞬间给cd棒向右的初速度v0 (1)分析cd棒的运动情况,画出v-t图 (2)计算cd棒运动的距离x (3)整个过程中,安培力做了多少功?有哪些能量 转化?
高中物理电磁感应双杆模型.docx
电磁感应双杆模型学生姓名:年级:老师:上课日期:时间:课次:磁感力学分析1.受力情况、运情况的分析及思考路体受力运生感→感流→通体受安培力→合力化→加速度化→速度化→感化→⋯周而复始地循,直至最达到定状,此加速度零,而体通加速达到最大速度做匀速直运或通减速达到定速度做匀速直运.2.解决此的基本思路解决磁感中的力学的一般思路是“先后力”.(1) “源”的分析——分离出路中由磁感所生的源,求出源参数 E 和 r ;(2)“路”的分析——分析路构,弄清串、并关系,求出相关部分的流大小,以便求解安培力;(3)“力”的分析——分析研究象( 常是金属杆、体圈等 ) 的受力情况,尤其注意其所受的安培力;(4)“运”状的分析——根据力和运的关系,判断出正确的运模型.3.两种状理(1)体于平衡——静止状或匀速直运状.理方法:根据平衡条件 ( 合外力等于零 ) ,列式分析.(2)体于非平衡——加速度不零.理方法:根据牛第二定律行分析或合功能关系分析.4.磁感中的力学界(1)解决的关是通运状的分析找程中的界状,如由速度、加速度求最大或最小的条件.(2)基本思路注意当体切割磁感运存在界条件:(1)若体初速度等于界速度,体匀速切割磁感;(2)若体初速度大于界速度,体先减速,后匀速运;(3)若导体初速度小于临界速度,导体先加速,后匀速运动.1、【平行等距无水平外力】如所示,两根足的固定的平行金属位于同一水平面内,两的距离L,上面横放着两根体棒ab 和 cd,构成矩形回路,两根体棒的量皆m,阻皆R,回路中其余部分的阻可不.在整个平面内都有直向上的匀磁,磁感度B.两体棒均可沿无摩擦地滑行,开始,棒cd 静止,棒ab 有指向棒cd 的初速度v0,若两体棒在运中始不接触,求:( 1)在运动中产生的焦耳热最多是多少?( 2)当ab 棒的速度变为初速度的3/4时, cd棒的加速度是多少?2、【平行不等间距无水平外力】如图所示,光滑导轨EF、 GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。
电磁感应单双棒问题ppt
等距双棒特点分析
1.电路特点 棒2相当于电源;棒1受安培力而加 速起动,运动后产生反电动势. 2.电流特点
v0 1 2
Blv2 Blv1 Bl( v2 v1 ) I R1 R2 R1 R2
随着棒2的减速、棒1的加速,两棒的相对速 度v2-v1变小,回路中电流也变小。 两 个 极 值 最大电流
Blv0 当v1=0时: I m R1 R2
当v2=v1时: I=0
最小电流
3.两棒的运动情况特点
2 2 B l ( v2 v1 ) 安培力大小: FB BIl 1 R1 R2
v0 2
两棒的相对速度变小,感应电流变小,安培力变小. 棒1做加速度变小的加速运动 棒2做加速度变小的减速运动 最终两棒具有共同速度 v0
v
v共
O
t
4.一个规律 (1)能量转化规律
1 系统机械能的减小量等于内能的增加量. (类似于完全非弹性碰撞) 2
v0
1 1 2 2 m2 v0 ( m1 m2 )v共+Q 2 2 Q R 1 两棒产生焦耳热之比: 1 Q2 R2
5.几种变化: (1)初速度的提供方式不同 (2)磁场方向与导轨不垂直
a=(F-f)/m
v
E=BLv
I= E/R
f=BIL
最后,当f=F 时,a=0,速度达到最大, F=f=BIL=B2 L2 vm / R a f1 f2 b
vm=FR /
B2
L2
R
F
f
F
F
vm称为收尾速度.
B
a
R b B F
• 这类问题覆盖面广,题型也多种多样;但解决这类问题的关 键在于通过运动状态的分析来寻找过程中的临界状态,如速 度、加速度取最大值或最小值的条件等. • 基本思路是: E
电磁感应中的单导体棒模型(学生版)--2024届新课标高中物理模型与方法
2024版新课标高中物理模型与方法电磁感应中的单导体棒模型目录一.阻尼式单导体棒模型二.发电式单导体棒模型三.无外力充电式单导体棒模型四.无外力放电式单导体棒模型五.有外力充电式单导体棒模型六.含“源”电动式模型一.阻尼式单导体棒模型【模型如图】1.电路特点:导体棒相当于电源。
当速度为v 时,电动势E =BLv2.安培力的特点:安培力为阻力,并随速度减小而减小:F 安=BIL =B 2L 2v R +r∝v3.加速度特点:加速度随速度减小而减小,a =B 2L 2vm (R +r )+μg4.运动特点:速度如图所示。
a 减小的减速运动5.最终状态:静止6.四个规律(1)全过程能量关系:−μmgx −Q =0−12mv 20 , 速度为v 时的能量关系−μmgx −Q =12mv 2-12mv 20电阻产生的焦耳热Q R Q=RR +r (2)瞬时加速度:a =B 2L 2vm (R +r )+μg ,(3)电荷量q =I Δt =ER +r Δt =ΔφΔt (R +r )Δt =ΔφR +r (4)动量关系:μmg Δt −BIL Δt =μmg Δt -BqL =0−mv 0(安培力的冲量F Δt =BIL Δt =BqL )安培力的冲量公式是μmg Δt −BIL Δt =0−mv 0①闭合电路欧姆定律I =ER +r ②平均感应电动势:E =BLv③位移:x =vt ④①②③④得μmg Δt +B 2L 2xR +r=mv 01(2023春·山西晋城·高三校联考期末)舰载机利用电磁阻尼减速的原理可看作如图所示的过程,在磁感应强度大小为B 、方向竖直向下的匀强磁场中,有间距为L 的水平平行金属导轨ab 、cd ,ac 间连接一电阻R ,质量为m 、电阻为r 的粗细均匀的金属杆MN 垂直于金属导轨放置,现给金属杆MN 一水平向右的初速度v 0,滑行时间t 后停下,已知金属杆MN 与平行金属导轨间的动摩擦因数为μ,MN 长为2L ,重力加速度为g ,下列说法中正确的是()A.当MN 速度为v 1时,MN 两端的电势差为U MN =2BLv 1B.当MN 速度为v 1时,MN 的加速度大小为a =μg +2B 2L 2v 1m 2R +r C.当MN 速度为v 1时,MN 的加速度大小为a =2μg +2B 2L 2v 1m R +rD.MN 在平行金属导轨上滑动的最大距离为s =mv 0-μmgt 2R +r2B 2L 22(2023·北京·高三专题练习)如图所示,宽度为L 的平行金属导轨水平放置,一端连接阻值为R 的电阻。
电磁感应之双杆模型ppt课件
c
2019 -
b
20
等距双棒特点分析
1.电路特点 棒2相当于电源;棒1受安培力而加 速起动,运动后产生反电动势. 2.电流特点
v0 1 2
Blv2 Blv1 Bl( v2 v1 ) I R1 R2 R1 R2
随着棒2的减速、棒1的加速,两棒的相对速 度v2-v1变小,回路中电流也变小。 两 个 极 值
2019 2
一、给某杆初速度条件稳定状态分析 1.平行等间距双杆
2019
-
3
2019
-
4
图像分析:
动量分析:
mv0 2mv
1 1 2 2 Q mv 0 2 mv 2 2
5
能量分析:
2019
2.平行不等间距双杆
2019
-
6
图像分析:
_
动量分析:
2 B I Lt mv1 mv0
2019
-
30
解析:因先释放b,后释放a,所以a、b一开始速度是不 相等的,而且b的速度要大于a的速度,这就使a、b和 导轨所围的线框面积增大,使穿过这个线圈的磁通量 发生变化,使线圈中有感应电流产生,利用楞次定律 和安培定则判断所围线框中的感应电流的方向如图所 示。再用左手定则判断两杆所受的安培力,对两杆进 行受力分析如图1。开始两者的速度都增大,因安培力 作用使a的速度增大的快,b的速度增大的慢,线圈所 围的面积越来越小,在线圈中产生了感应电流;当二 者的速度相等时,没有感应电流产生,此时的安培力 也为零,所以最终它们以相同的速度都在重力作用下 向下做加速度为g的匀加速直线运动。
2019
-
27
解析: (1)ab棒由静止从M滑下到N的过程中,只有重力 做功,机械能守恒,所以到N处速度可求,进而可 求ab棒切割磁感线时产生的感应电动势和回路中 的感应电流。 ab棒由M下滑到N过程中,机械能守恒,故有
电磁感应中的双杆类问题(适合各年级使用) ppt课件
1
2
2.电流特点 I Blv2 Blv1 Bl( v2 v1 )
R1 R2
R1 R2
随着棒2的减速、棒1的加速,两棒的相对速
度v2-v1变小,回路中电流也变小。
v1=0时: 电流最大
Im
Blv0 R1 R2
v2=v1时: 电流 I=0
ppt课件
21
无外力等距双棒
3.两棒的运动情况
在着垂直轨道平面向上的匀强磁场(图中未画出),
磁感应强度 B 的大小相同.让a’, b’固定不动,将金属
棒ab 由静止释放,当 ab 下滑速度达到稳定时,整个
回路消耗的电功率为 8W .求 ( 1 ) ab 达到的最大速
度多大? ( 2 ) ab 下落了 30m 高度时,其下滑速度已
经达到稳定,则此过程中回路电流的发热量 Q 多大?
安培力对导体棒做的功:
W安
1 2
mvm2
m(BlCE)2 2(m B2l 2C)
易错点:认为电容器最终带电量为零
ppt课件
17
电容放电式:
7.几种变化 (1)导轨不光滑
(2)光滑但磁场与导轨不垂直
ppt课件
18
电容无外力充电式
1.电路特点 导体棒相当于电源;电容器被充电.
v0
2.电流的特点
Q1 R1 Q2 R2
8.流过某一截面的电量
Bl2q m2v2 0
ppt课件
28
无外力不等距双棒
9.几种变化
(1)两棒都有初速度
(2)两棒位于不同磁场中
v1
v2
2 1
ppt课件
29
有外力等距双棒
电磁感应应中的双杆模型
双杆金属棒在磁场中滑轨上运动归类例析:一、问题分析这类问题常规的要用到能量观点,求解能的转化,常见的有机械能能间转移,机械能向电能转化,电能向内能即系统内能转化。
常用到一种平衡一一回路中的1=0,而不是两棒的速度相等。
当两导轨平行时,系统动量守恒,稳定态为两棒速度相等;若两导轨不平行,系统(两棒)受合力不为0,动量不守恒,这时稳定态为两棒运动通过的①相同,即1=0( △①=0),两棒的速度比与两棒对应有效长成反比关系,这一点有些学生受思维定势影响,套用结论,从而导致错误•二、问题分类A.两根棒,无其它力:例1.如图所示,光滑水平导轨间距为L,电阻不计,处在竖直方向的匀强磁场中,磁感应强度为B,质量均为m,电阻均为R的导体棒ab和cd静止于导轨上,若给 ab棒一个水平向右的瞬时冲量I,求两导体棒最终的运动速度。
例2.如图所示,固定于同一水平面内的光滑平行金属导轨分为两段且相连,AB段的宽为CD段宽的2倍,BC两侧两段导轨足够长且处在竖直方向的同一匀强磁场B中,两质量均为m的直金属棒a、b分别放在AB、CD段且均与导轨垂直。
现给 a施以作用时间极短的冲击,使其获得大小为V。
的初速度。
求;(1)若a、b距离两端导轨的连接处 BC足够远,则a在AB段上,b在CD段上的最终速度各为多大?(2)从a获得的初速度 V0到a和b达到上述最终速度的过程中,系统中产生的热量是多少?(3)如果a和b分别在AB段和CD段上达到上述最终速度后进入同一段导轨AB或CD 上且永不相碰,则 a和b在AB或CD上的最终速度各为多大?B.两根棒,受其它力:(3) ab 杆和cd 杆的瞬时速度 V ab 与V cd 大小关系怎样?练习:1.杆平行的金属导轨,固定在同一水平面上,磁感强度B = 0.50T 的匀强磁场与导轨所在平 面垂直,导轨的电阻很小,可不计。
导轨间的距离I = 0.20m 。
两根质量均为 m = 0.10kg的平行杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电 阻R=0.50 Q, t = 0时刻,两杆都处于静止状态。
电磁感应 双棒模型
1、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为 m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v0(见图).若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,棒cd 的加速度是多少?[例3] 如图3所示,金属棒 在离地 高处从静止开始沿弧形轨道下滑,导轨水平部分有竖直向上的匀强磁场B ,水平部分导轨上原来放有一个金属棒 。
已知棒 的质量为 。
且与棒 的质量之比,水平导轨足够长,不计摩擦,求整个过程中回路释放的电能是多少?图320.如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a 、b 垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面。
现用一平行于导轨的恒力F 作用在a 的中点,使其向上运动。
若b始终保持静止,则它所受摩擦力可能A .变为0B . 先减小后不变C . 等于FD .先增大再减小【答案】ABv 0 B d a b c L解析:选棒为研究对象,棒从高处下滑到弧形轨道底部的过程中机械能守恒。
设棒到达弧形轨道底部的速度为,则有(1)棒进入磁场后,回路中产生感应电流,棒、都受到安培力的作用,做减速运动,做加速运动。
经一段时间,棒、的速度达到相同,之后回路的磁通量不再发生变化,感应电流为零,安培力为零,二者做匀速直线运动。
设、达到的共同速度为,选、系统为研究对象,系统从棒滑到弧形轨道底部至棒、以共同速度运动的过程中,所受的合外力为零,系统的动量守恒。
由动量守恒定律有(2)由能量转化及守恒定律可知,回路中释放的电能等于、系统机械能的损失,即(3)联立以上三式得。
高考模型——电磁场中双杆模型
虿高考模型——电磁场中的双杆模型衿研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生的一个难点,下面就这类问题的解法举例分析。
羇一、在竖直导轨上的“双杆滑动〞问题蚃1.等间距型莁如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a和b和导轨紧密接触且可自由滑动,先固定a,释放b,当b速度到达10m/s 时,再释放a,经1s时间a的速度到达12m/s,那么:A、B、蚈当va=12m/s时,vb=18m/s肇B、当va=12m/s时,vb=22m/s肄C、假设导轨很长,它们最终速度必相同衿D、它们最终速度不相同,但速度差恒定蒇【解析】因先释放b,后释放a,所以a、b一开始速度是不相等的,而且b的速度要大于a的速度,这就使a、b和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定那么判断所围线框中的感应电流的方向如图所示。
再用左手定那么判断两杆所受的安培力,对两杆进行受力分析如图1。
开始两者的速度都增大,因安培力作用使a的速度增大的快,b的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g的匀加速直线运动。
膆在释放a后的1s内对a、b使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s内它的冲量大小都为I,选向下的方向为正方向。
膁当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。
释放棒后,经过时间t,分别以和为研究对象,根据动量定理,那么有:薁对a有:(mg+I)t=·mv a0,膆对b有:(mg-I)t·=mv b-mv b0芆联立二式解得:v b=18m/s,正确答案为:A、C。
动量观点在电磁感应中的应用ppt(双棒模型)
端向上弯曲,导轨间距为l,电阻不计.水平段导轨所处空间存在方向竖
直向上的匀强磁场,磁感应强度为B.导体棒a与b的质量均为m,接入电
路的有效电阻分别为Ra=R,Rb=2R.b棒放置在水平导轨上足够远处, a棒在弧形导轨上距水平面h高度处由静止释放.运动过程中导体棒与导
轨接触良好且始终与导轨垂
直,重力加速度为g.求:
(3)试分析棒b进入倾斜轨道DED′E′的运动情况. 答案 先变加速运动,后匀速下滑
解析 稳定后,电容器不再充放电,由平衡条件可得
mgsin θ=BI L2cos θ, 回路产生的感应电流为
B I=
L2vcos R+2r
θ ,联立代入数据可解得
v=1654
m/s,
故棒b进入倾斜轨道DED′E′的运动情况为:先变加速运动,后匀速下滑.
释放,都能以恒定速度经过BB′处且经过BB′处时b的锁定装置解除,
之后棒a、b在各自轨道上运动足够长时间,当棒a运动到CC′处与两固
定在CC′处的金属立柱相撞并粘在一起,最终棒b恰能通过DD′处光滑
圆弧绝缘件进入倾斜轨道DED′E′.在ABA′B′导轨间区域存在垂直
导轨向上的匀强磁场,其他导轨间区域存在竖直向上的匀强磁场,磁感应
(1)a棒刚进入磁场时受到的
安培力的大小和方向;
答案
B2l2 2gh 3R
方向水平向左
解析 设a棒刚进入磁场时的速度为v,从开始下落到进入磁场, 根据机械能守恒定律 mgh=12mv2 a棒切割磁感线产生感应电动势
E=Blv 根据闭合电路欧姆定律 I=R+E2R a棒受到的安培力F=BIl 联立以上各式解得,F=B2l23R2gh,方向水平向左.
(2)棒a进入水平轨道后棒a上产生的焦耳热;
电磁感应之双杆模型
mbv0 (mb mc )v
解得c棒的最大速度为:
v
mb mb mc
v0
1 2
v0
5m
s
B
N M
c
b
5.几种变化:
(1)初速度的提供方式不同 (2)磁场方向与导轨不垂直
m
B
M
m
FB
h
v0
1
2
(3)两棒都有初速度
v1
v2
1
2
(4)两棒位于不同磁场中
e
O1 c
B2 f
v0
B1 O2 d
例2:如图所示,两根间距为l的光滑金属导轨(不计电 阻),由一段圆弧部分与一段无限长的水平段部分组 成.其水平段加有竖直向下方向的匀强磁场,其磁感 应强度为B,导轨水平段上静止放置一金属棒cd,质量 为2m,电阻为2r.另一质量为m,电阻为r的金属棒ab, 从圆弧段M处由静止释放下滑至N处进入水平段,圆 弧段MN半径为R,所对圆心角为60°,求:
R1
Q2 R2
解析:(1)刚开始运动时回路中的感应电流为:
I E Blv0 1 0.510 2.5A
Rb Rc Rb Rc
11
刚开始运动时C棒的加速度最大:
a
BIl mc
1 2.5 0.5 0.1
12.5 m s2
B
N M
c
b
(2)在磁场力的作用下,b棒做减速运动,当两棒速 度相等时,c棒达到最大速度。取两棒为研究对象, 根据动量守恒定律有:
析
加速运动 加速运动
速 度 图 象
解 动量守恒定律, 动量定理,能量 动量定理,能量 动量定理,能
题 能量守恒定律及 守恒定律及电磁 守恒定律及电 量守恒定律及
专题20 电磁感应中的双导体棒和线框模型(学生版) 2025年高考物理模型归纳
1.电路特点棒2相当于电源;棒F=BIl(4)两棒位于不同磁场中(两棒动量守恒吗?)1.如图所示,两条足够长的平行光滑金属导轨为B的匀强磁场垂直于导轨平面向上,金属棒长度均为d,金属棒1的横截面积为金属棒vA.金属棒1的最大速度为03C.金属棒1上产生的焦耳热为A .金属棒刚进入磁场时的速度大小为02v B .匀强磁场的磁感应强度大小为032mv R L A .导体棒ab 和cd 在运动过程中系统动量不守恒B .导体棒ab 获得的最大速度为C .导体棒ab 上产生的焦耳热为D .最终导体棒ab 和cd 之间的距离为4.如图所示,倾角为θ=37°的足够长的平行金属导轨固定在水平面上,平行导轨间的距离为(1)求两根导体棒最终的速度;(2)整个过程中回路产生的焦耳热Q ;(3)若导体棒ab 运动之前,两根导体棒相距的距离为L 0,要保证运动过程中两根导体棒不相撞,L 0最小是多少?5.如图,间距为L 的平行光滑金属轨道AEM 与CFN 由倾斜和水平两部分平滑连接而成,EF ME ⊥且AC EF P ,倾斜轨道的倾角为q ,水平轨道足够长,轨道电阻不计。
倾斜部分处于垂直轨道向上的匀强磁场中,其磁感应强度大小为B 。
已知金属细棒a b 、的质量均为m 、电阻均为R 、长度均为L 。
现将a 棒从高度为h 的AC 位置由静止释放,当a 棒到达EF 时,立即将b 棒也从AC 位置由静止释放,当b 棒到达EF 时速度大小为2v ,此时在水平轨道部分加竖直向下的匀强磁场。
运动过程中金属细棒始终与EF 下平行且与轨道接触良好,重力加速度为g 。
求:(1)b 棒在倾斜轨道加速至速度1v 时,其加速度大小;(2)b 棒到达EF 处时a b 、棒之间的距离;(3)若b 棒到达EF 处时a b 、棒间距离用0x 表示,再经1t 时间a 棒继续向左运动距离为1x ,此时a b 、棒之间的距离。
6.如图所示,间距均为1L =m 的光滑平行倾斜导轨与足够长光滑平行水平导轨在M 、N 处平滑连接,虚线MN 右侧存在方向竖直向下、磁感应强度为1B =T 的匀强磁场。