高二数学复数专题训练(一)

合集下载

高二数学复数试题答案及解析

高二数学复数试题答案及解析

高二数学复数试题答案及解析1.已知复数,(,是虚数单位).(1)若复数在复平面上对应点落在第一象限,求实数的取值范围;(2)若虚数是实系数一元二次方程的根,求实数值.【答案】(1);(2).【解析】(1)先算出,再根据在复平面上对应的点落在第一象限,可得不等式组,从中求解即可得出的取值范围;(2)根据实系数的一元二次方程有一复数根时,则该方程的另一个根必为,且,从而可先求解出的值,进而求出的值.(1)由条件得 2分因为在复平面上对应点落在第一象限,故有 4分∴解得 6分(2)因为虚数是实系数一元二次方程的根,所以也是该方程的一个根根据二次方程根与系数的关系可得,即 10分把代入,则, 11分所以 14分.【考点】1.复数的几何意义;2.实系数的一元二次方程在复数范围内根与系数的关系;3.复数的运算.2.已知复数Z=,则Z在复平面上对应的点在A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】,其对应的点落在第四象限。

故选D。

【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.点评:本题主要考查两个复数代数形式的除法,虚数单位i的幂运算性质,利用了两个复数相除,分子和分母同时乘以分母的共轭复数,属于基础题.3.设是虚数,是实数,且,则的实部取值范围是()A.B.C.D.【答案】B【解析】根据题意,由于是虚数,是实数,且,=0,则可知b=0,=,则可知其实部取值范围,故答案为B【考点】复数的计算点评:主要是考查了复数的计算的运用,属于基础题。

4.若复数是纯虚数(是虚数单位,为实数),则A.2B.C.D.【答案】A【解析】,复数为纯虚数,则,解得:。

故选A。

【考点】复数的概念点评:在复数中,当时,复数为实数;当时,复数为虚数;当时,复数为纯虚数。

5.若复数是纯虚数(是虚数单位),则的值为()A.B.C.D.【答案】D【解析】根据题意,由于复数是纯虚数,则可知 (2+ai)(1+i)=,那么可知2-a=0,故可知a=2,答案为D.【考点】复数的概念点评:主要是考查了复数的计算以及概念的运用,属于基础题。

高二数学复数练习试题

高二数学复数练习试题

一、复数选择题1.已知复数1z i =+,则21z +=( ) A .2 B .5C .4D .5 2.i 是虚数单位,复数13i +=( ) A .3i -- B .3i -+ C .3i - D .3i +3.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <-B .1a >或2a <-C .12a -<<D .21a -<< 4.在复平面内复数Z=i (1﹣2i )对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 5.若复数()()24z i i =--,则z =( )A .76i --B .76-+iC .76i -D .76i +6.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是1z ,2z ,则12z z -=( )A 2B .2C .2D .8 7.))552121i i --+=( )A .1B .-1C .2D .-2 8.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( )A 3B 5C .3D .5 9.已知复数1z i i =+-(i 为虚数单位),则z =( )A .1B .2iC 2iD 2i 10.若复数1211i z i +=--,则z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限11.已知复数202111i z i-=+,则z 的虚部是( ) A .1- B .i - C .1 D .i12.复数12i z i =+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限13.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( )A .68i +B .68i -C .68i --D .68i -+14.复数()()212z i i =-+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 15.复数22(1)1i i -+=-( ) A .1+i B .-1+i C .1-i D .-1-i二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.已知复数122z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+ 18.下列四个命题中,真命题为( )A .若复数z 满足z R ∈,则z R ∈B .若复数z 满足1R z ∈,则z R ∈C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =19.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为220.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点21.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 22.复数z 满足233232i z i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =23.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限 24.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z25.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A.若0m =,则共轭复数1z =- B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++= 26.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z = B .12i 5z +=- C .复数z 的实部为1- D .复数z 对应复平面上的点在第二象限27.已知i 为虚数单位,下列说法正确的是( )A .若,x y R ∈,且1x yi i +=+,则1x y ==B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于128.给出下列命题,其中是真命题的是( )A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数29.(多选)()()321i i +-+表示( )A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模 30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( )A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题1.B【分析】先求出,再计算出模.【详解】,,.故选:B.解析:B【分析】 先求出21z+,再计算出模. 【详解】 1z i =+,()()()21221112111i i z i i i -∴+=+=+=-++-,21z∴+==. 故选:B.2.B【分析】由复数除法运算直接计算即可.【详解】.故选:B.解析:B【分析】由复数除法运算直接计算即可.【详解】()211iii i++==--.故选:B.3.A【分析】根据虚数不能比较大小可得,再解一元二次不等式可得结果.【详解】因为,,所以,,所以或.故选:A【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.解析:A【分析】根据虚数不能比较大小可得a b=,再解一元二次不等式可得结果.【详解】因为,a b∈R,2()2a b a b i-+->,所以a b=,220a a-->,所以2a>或1a<-.故选:A【点睛】关键点点睛:根据虚数不能比较大小得a b=是解题关键,属于基础题.4.A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚解析:A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.5.D【分析】由复数乘法运算求得,根据共轭复数定义可求得结果.【详解】,.故选:.解析:D【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果.【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .6.B【分析】根据复数的几何意义,求两个复数,再计算复数的模.【详解】由图象可知,,则,故.故选:B.解析:B【分析】根据复数的几何意义,求两个复数,再计算复数的模.【详解】由图象可知1z i =,22z i =-,则1222z z i -=-+,故12|22|z z i -=-+==故选:B .7.D【分析】先求和的平方,再求4次方,最后求5次方,即可得结果.【详解】∵,,∴,,∴,,∴,故选:D.【分析】先求)1-和)1+的平方,再求4次方,最后求5次方,即可得结果. 【详解】∵)211-=--,)2+1=-,∴)()42117-=--=-+,)()42+17=-=--,∴)()51711-=-+-=--,)()51711+=--+=-,∴))55121-+=--, 故选:D.8.D【分析】求出复数,然后由乘法法则计算.【详解】由题意,.故选:D .解析:D【分析】求出复数z ,然后由乘法法则计算z z ⋅.【详解】 由题意12122i z i i i-==-+=--, 22(2)(2)(2)5z z i i i ⋅=---+=--=.故选:D .9.D【分析】先对化简,求出,从而可求出【详解】解:因为,所以,故选:D解析:D先对1z i i =+-化简,求出z ,从而可求出z【详解】解:因为1z i i i i =+-==,所以z i =,故选:D 10.B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】,所以,在复平面内的对应点为,则对应点位于第二象限故选:B解析:B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】()()12i 1i 12i 33i 33i 111i 2222z +++-+=-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫-⎪⎝⎭,则对应点位于第二象限 故选:B11.C【分析】求出,即可得出,求出虚部.【详解】,,其虚部是1.故选:C.解析:C【分析】求出z ,即可得出z ,求出虚部.【详解】()()()220211i 1i i 1i 1i 1i z --===-++-,i z ∴=,其虚部是1. 故选:C. 12.A对复数进行分母实数化,根据复数的几何意义可得结果.【详解】由,知在复平面内对应的点位于第一象限,故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题 解析:A【分析】对复数z 进行分母实数化,根据复数的几何意义可得结果.【详解】 由()()()122112121255i i i z i i i i -===+++-, 知在复平面内对应的点21,55⎛⎫⎪⎝⎭位于第一象限, 故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题.13.D【分析】设,根据复数对应的向量与共线,得到,再结合求解.【详解】设,则复数对应的向量,因为向量与共线,所以,又,所以,解得或,因为复数对应的点在第三象限,所以,所以,,解析:D【分析】设(,)z a bi a R b R =+∈∈,根据复数z 对应的向量OZ 与(3,4)a =共线,得到43a b =,再结合10z =求解.【详解】设(,)z a bi a R b R =+∈∈,则复数z 对应的向量(),OZ a b =,因为向量OZ 与(3,4)a =共线,所以43a b =, 又10z =,所以22100+=a b ,解得68a b =-⎧⎨=-⎩或68a b =⎧⎨=⎩, 因为复数z 对应的点在第三象限,所以68a b =-⎧⎨=-⎩, 所以68z i =--,68z i =-+,故选:D14.A【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论.【详解】,因此,复数在复平面内对应的点位于第一象限. 故选:A.解析:A【分析】利用复数的乘法化简复数z ,利用复数的乘法可得出结论.【详解】()()221223243z i i i i i =-+=+-=+,因此,复数z 在复平面内对应的点位于第一象限.故选:A.15.C【分析】直接根据复数代数形式的乘除运算法则计算可得;【详解】解:故选:C解析:C【分析】直接根据复数代数形式的乘除运算法则计算可得;【详解】 解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+ 12i i =+-1i =-故选:C二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+,所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为221122z ⎛⎫-=-- ⎪ ⎪⎝⎭=,12z =,所以2z z ≠,所以B 错误;因为3211122z z z ⎛⎫⎛⎫=⋅=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.18.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.19.ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距2=,故D 正确. 故选:ACD【点睛】 本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题.20.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.21.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.22.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.24.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 25.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.26.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 27.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 28.AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D.根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 29.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。

高二数学复数综合运算试题答案及解析

高二数学复数综合运算试题答案及解析

高二数学复数综合运算试题答案及解析1.已知,其中、为实数,则 .【答案】3【解析】由题意可得:,所以.【考点】复数的运算.2.是虚数单位,复数的共轭复数是A.2+B.2-C.-1+2D.-1-2【解析】,共轭复数为.【考点】复数的四则运算和共轭复数.3.已知复数z=,则|z|=________.【答案】【解析】∵z====,所以|z|==.考点:复数的运算,复数的模4.“a = 1”是“复数(,i为虚数单位)是纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】由复数(,i为虚数单位)是纯虚数得,解得=1,故是充要条件,故选C.【考点】纯虚数的概念,充要条件5.已知i为虚数单位,复数,则复数在复平面上的对应点位于()A.第四象限B.第三象限C.第二象限D.第一象限【答案】B【解析】由复数的除法运算得==,所以=,在复平面上的对应点为(,位于第三象限,故选B【考点】复数的除法运算,共轭复数的概念,复数的点表示6.若则|z|=A.3B.4C.5D.7【答案】C【解析】复数的模长为,所以,故选C【考点】复数模长计算.7.已知为虚数单位,复数,则复数的虚部是( )A.B.C.D.【答案】B【解析】,则复数的虚部是。

【考点】复数的除法运算复数的基本概念。

8.已知复数,则 .【答案】5【解析】.【考点】复数的模.9.若复数是纯虚数,则实数的值为()A.1B.2C.1或2D.-1【答案】B【解析】当,时,复数为纯虚数,由解得或,又,所以.【考点】复数的分类.10.复数z满足是虚数单位),若复数的实部与虚部相等,则等于()A.12B.4C.D.l2【答案】D.【解析】∵,∴,∵复数的实部与虚部相等,∴.【考点】复数的计算.11.已知是方程的一个根(为实数).(1)求的值;(2)试说明也是方程的根.【答案】(1);(2)证明详见解析.【解析】(1)依题意将代入方程化简整理即可得到,然后根据复数相等的条件得到,进而求出即可;(2)根据(1)中确定的方程,将代入方程的左边,化简得到0,即可说明也是方程的一个根.(其实作为实系数的二次方程,若有虚根,则该二次方程的两根必互为共轭复数.)(1)因为是方程的根∴即∴,得∴的值为 5分(2)因为方程为把代入方程左边得,显然方程成立∴也是方程的一个根 10分【考点】1.复数的四则运算;2.两复数相等的条件.12.是虚数单位,复数在复平面上的对应点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】对于在复平面中对应的点为,,可知在平面上的对应点为,在第四象限.【考点】复数的四则运算,复数的几何意义.13.已知是复数,且,则的最大值为.【答案】6【解析】,在复平面中表示的是单位圆,为表示的点与表示的点距离,结合图象可知最大值为6.【考点】复数的几何意义,数形结合的数学思想.14.复数的虚部为()A.B.C.D.【答案】A【解析】因为,所以复数的虚部为1,故选A.【考点】1.复数的运算;2.复数的基本概念.15.已知复数,则()A.B.C.D.【答案】A【解析】由题意【考点】复数的运算16.若是纯虚数,则实数的值是【答案】2【解析】因为是纯虚数,所以,解得【考点】纯虚数概念17.若复数满足,则等于【答案】【解析】设z=a+bi(a,b∈R),由得,,∴,解得a=3,b=4,故选B.【考点】1.复数相等的充要条件;2.复数求模.18.(本小题满分12分)已知复数.(1)实数为何值时,复数为纯虚数?(2)若,计算复数.【答案】(1)m=0;(2).【解析】(1)若z为纯虚数,则z的实部不为0,虚部为0从而可以建立与m有关的方程与不等式,进而求得m的值;(2)当m=2时,z=2+i,代入计算即可求得.(1)复数z为纯虚数,则, 5分解得m=0 6分(2)若m=2,则z=2+i 7分∴ 12分.【考点】 1、纯虚数的概念;2、复数的计算.19.已知为虚数单位,若复数为纯虚数,则实数的值是 .【答案】【解析】因为,所以若复数为纯虚数,则有.【考点】1.复数的基本概念;2.复数的四则运算.20.已知复数(为虚数单位),则 .【答案】【解析】因为,所以所以本题也可利用复数模的性质进行求解,即【考点】复数的模21.在复平面内,设(是虚数单位),则复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】因为,所以,该复数对应点的坐标为,落在第一象限,所以选A.【考点】1.复数的四则运算;2.复数的几何意义.22.若复数 (为虚数单位,)是纯虚数,则复数的模是________.【答案】【解析】因为,由复数(为虚数单位,)是纯虚数可得,所以复数的模为.【考点】1.复数的四则运算;2.复数的基本概念.23. 已知a ,b ∈R ,a +bi =(1+2i)(1-i) (i 为虚数单位),则a +b 的值为 . 【答案】4【解析】根据复数乘法法则,将化为,再由两复数相等,它们实部与虚部分别相等得【考点】复数乘法法则,复数相等概念24. 已知复数z =1+i ,求实数a ,b ,使az +2b =(a +2z )2. 【答案】或【解析】∵z =1+i ,∴az +2b =(a +2b )+(a -2b )i. 而(a +2z )2=[(a +2)+2i]2=(a +2)2+4(a +2)i +4i 2 =(a 2+4a )+4(a +2)i. ∵az +2b =(a +2z )2,∴解得或25. 已知复数z 1=3和z 2=-5+5i 对应的向量分别为=a ,=b ,求向量a 与b 的夹角.【答案】【解析】设a ,b 的夹角为α,a =(3,0),b =(-5,5), 则cos α=,∵0≤α≤π,∴α=.26. 复数的共轭复数为 ( ).A .-iB .iC .-iD .i【答案】C 【解析】=i ,其共轭复数为-i.27. 已知复数z 1满足(z 1-2)(1+i)=1-i ,复数z 2的虚 部为2,且z 1z 2为实数,求z 2及|z 2|. 【答案】 【解析】z 1=+2=+2=+2=2-i ,设z 2=a +2i(a ∈R),则z 1z 2=(2-i)(a +2i)=(2a +2)+(4-a )i , 由于z 1z 2为实数, ∴4-a =0.∴a =4. ∴z 2=4+2i |z 2|=. 28.=( ).A .2-iB .1-2iC .-2+iD .-1+2i【答案】C【解析】==-2+i.29.当z=-时,z100+z50+1的值等于().A.1B.-1C.i D.-i【答案】D【解析】根据题意,当z=-时,z100+z50+1=的值等于-i,故选D.【考点】导数研究函数的单调性点评:本题考查利用导数研究函数的单调性,易错点在于忽视函数的定义域,属于中档题30.在复数范围内解方程.(i为虚数单位)【答案】z=-±i.【解析】本试题主要考查了复数的运算的问题。

高中复数练习题及答案

高中复数练习题及答案

高中复数练习题及答案精品文档高中复数练习题及答案1(已知z1,a,bi,z2,c,di,若z1,z2是纯虚数,则有A(a,c,0且b,d?0B(a,c,0且b,d?0C(a,c,0且b,d?0 D(a,c,0且b,d?02([,i],[,i]等于A(,2b,2bi B(,2b,2bi的值为,下列结论正确的是A(a,0?a,bi为纯虚数 B(b,0?a,bi为实数C(a,i,3,2i?a,3,b,,D(,1的平方等于i8,若复数,i不是纯虚数,则A(a,,1 B(a?,1且a?2C(a?,1 D(a?29,已知|z|,3,且z,3i是纯虚数,则z,A(,3i B(3iC(?3i D(4i10,若sin2θ,1,i是纯虚数,则θ的值为ππA(2kπ, B(2kπ44πkππC(2kπ?D.,以上k?Z) 12131415虚[答案]1,A ,A3,C ,B ,C ,D ,B ,B ,B 10,1 / 18精品文档B 11, 16i 12, 13,— 14, 1 15, ,11i16, [解析] 所以当a,6时,z为实数(所以当a????时,z为虚数(所以不存在实数a使得z为纯虚数(一、选择题3,i1(复数等于1,iA(1,2iB(1,2iC(2,iD(2,i 答案:C3,i4,2i解析:,2,i.故选C.21,i3,2i3,2i2(复数,2,3i2,3iA(0 B( C(,2iD(2i 答案:D3,2i3,2i13i,13i解析:,,,i,i,2i.132,3i2,3i13z,23(已知z是纯虚数,z等于1,iA(2i B(i C(,iD(,2i 答案:D解析:由题意得z,ai.( z,22,a,i?,2 / 18精品文档21,i则a,2,0,?a,,2.有z,,2i,故选D.(若f,x3,x2,x,1,则f, A(2i B(0 C(,2iD(,答案:B解析:依题意,f,i3,i2,i,1,,i,1,i,1,0,选择B.2,i5(复数z,在复平面内对应的点位于1,iA(第一象限 B(第二象限 C(第三象限 D(第四象限答案:D2,i13解析:zi,它对应的点在第四象限,故选D.1,i222,ib6(表示为a,biia11A(,B(, C(D.22答案:A3 / 18精品文档2,ib解析:,1,2i,把它表示为a,bi的形式,则2,故选A.ia27(设i是虚数单位,复数z,tan45?,i?sin60?,则z等于 13i B.,3i471,D.,44答案:B31解析:z,tan45?,i?sin60?,1,i,z2,,3i,故选B.248(3,i在复平面内对应的直线的倾斜角为ππA. B(,625π D.π6答案:D353,i对应的点为,所求直线的斜率为,,则倾斜角为,故选D.36a,bi9(设a、b、c、d?R,若c,diA(bc,ad?0B(bc,ad?0 C(bc,ad,0D(bc,ad,0 答案:Ca,biac,bdbc,adbc,ad4 / 18精品文档解析:因为i,所以由题意有,0?bc,ad,0. c,dic,dc,dc,dc,d110(已知复数z,1,2i,那么z55,i5512,55答案:D525512D.,i5B.11,2i121,i.故选D. z1,2i1,455解析:由z,1,2i知z,1,2i,于是z11(已知复数z1,3,bi,z2,1,2i是实数,则实数b的值为z21A( B(,C(0 D.6答案:Az13,bi,i解析:是实数,则实数b的值为6,故选A.z21,2i512(设z是复数,α表示满足zn,1的最小正整数n,则对虚数单位i,α, A( B( C(D(答案:B解析:α表示in,1的最小正整数n,因i4k,1,显5 / 18精品文档然n,4,即α,4.故选B.1313(若z,且4,a0x4,a1x3,a2x2,a3x,a4,则a2等于2213A(,,iB(,3,33i22C(6,33iD(,3,33i 答案:B4,r解析:?Tr,1,Crr,x由4,r,2得r,2,1322?a2,C2i),6?,i对应的点位于 A(第一象限B(第二象限 C(第三象限D(第四象限答案:B解析:??ABC为锐角三角形, ?A,B,90?,B,90?,A, ?cosB,sinA,sinB,cosA,?cosB,sinA,0,sinB,cosA,0, ?z对应的点在第二象限(2,bi15(如果复数的实部和虚部互为相反数,那么b等于1,2i22C(, D(26 / 18精品文档33答案:C2,bi解析:51,2i552,2b,4,b2由,,b553,1316(设函数f,,x5,5x4,10x3,10x2,5x,1,则f的值为221331A(,,i B.,i2222131,iD(,222答案:C解析:?f,,51313?f,),,5222213,,ω5221313,,ω,,,i.222217(若i是虚数单位,则满足2,q,pi的实数p,q7 / 18精品文档一共有 A(1对 B(2对 C(3对 D(4对答案:D22???p,q,q,??p,0,?p,0,222解析:由,q,pi得,2pqi,q,pi,所以?解得?或??2pq,p.?q,0,?q,,1,????p,2或?1q,?2,?p2,或?1q,?2因此满足条件的实数p,q一共有4对(总结评述:本题主要考查复数的基本运算,解答复数问题的基本策略是将复数问题转化为实数问题来解决,解答中要特1别注意不要出现漏解现象,如由2pq,p应得到p,0或q22x2018(已知,6的展开式中,不含x的项是,那么正数p的值是xp27A(1 B( C( D(答案:C204128 / 18精品文档解析:由题意得:C62,,求得p,3.故选C.p27总结评述:本题考查二项式定理的展开式,注意搭配展开式中不含x的项,即找常数项(,19(复数z,,lg,i在复平面内对应的点位于 A(第一象限 B(第二象限 C(第三象限 D(第四象限答案:C解析:本题考查复数与复平面上的点之间的关系,复数与复平面上的点是一一对应的关系,即z,a,bi,与复平面上的,点Z对应,由z,,lg,i知:,,a,,lg,0,又2x,2x,1?2?2,1,1,0;,?,,0,即b,0.?应为第三象限的点,故选C.20(设复数z,i在映射f下的象为复数z的共轭复数与i的积,若复数ω在映射f下的象为,1,2i,则相应的ω为A(B(2,2i C(,2,i D(2,i 答案:A9 / 18精品文档解析:令ω,a,bi,a,b?R,则ω,[a,i],i, ?映射f下ω的象为[a,i]?i,,ai,,1,2i. ???b,1,,1,?b,0,??解得??ω,2. ?a,2.?a,2.??第?卷二、填空题1(已知z是复数,i是虚数单位,若z,2i,则z,________. 答案:,1,i2i解析:z,2i,z,,,1,i.1,i22(若复数z满足z,1,i,则其共轭复数z,________. 答案:i1,i2解析:zi,1,i?z,i.23(若复数z1,4,29i,z2,6,9i,其中i是虚数单位,则复数i的实部为________( 答案:,20解析:i,i,,20,2i,故i的实部为,20.1,ai24(在复平面内,复数对应的点位于虚轴上,则a,________.i答案:01,ai解析:a,i,由于它对应的点在虚轴上,则a,0.10 / 18精品文档i223344556625(i是虚数单位,则1,C16i,C6i,C6i,C6i,C6i,C6i,________. 答案:,8i22334455666233解析:1,C16i,C6i,C6i,C6i,C6i,C6i,,[],,,8i.三、解答题6(计算下列问题: 773;1,i1,i4,3i2,2i83112,.221,3i分析:对于复数运算,除了应用四则运算法则之外,对于一些简单算式是知道其结果,这样起点高,方便计算,达到迅1,i1,ia,bi11313速简捷、少出错的效果(比如2,?2i,,,i,i,i,,b,ai,3,1,)3,,1等等( ii22221,i1,i28?2i231,i231,i8解析:原式,[],[],3?i,3?,11 / 18精品文档i1,i1,ii,8,8,16,16i,,16i.2,2i83112,221,3i?1,i?133?,i12?12,?122???22?13[2]42213,[3]4,221333[]2213,1,422,1,8,83i,,7,83i.27(求同时满足下列两个条件的所有复数z;101,z,6;z12 / 18精品文档z的实部和虚部都是整数( 解析:设z,x,yi,222210xy则z,,i.zx,yx,yy,0,???10?1,z6,??xz1,6. ??x,y?1010由?得y,0或x2,y2,10,将y,0代入?得1,,x?6x?210,6矛盾,xx1?y?0.将x2,y2,10代入?得,x?3.2?x,1,?x,3,??又x,y为整数,??或???y,?3.y,?1.??故z,1?3i或z,3?i.3228(已知z1,,i,z2,,b,i且3z21,z2,0,求z1和z2.213 / 18精品文档解析:?3z21,z2,0, zz?2,,3,即3i. z1z1?z2,3iz1.当z2,3iz1时,得33,33b,i,3i[a,i],,3,ai.22由复数相等的条件,知b,a,1,????a,2,????b,1.b,2,,??2?22?z1,,3i,z2,,33,3i.3当z2,,3iz1时,得,3b,i3,2,3b,a,1,??由复数相等的条件,知?b,2.?2??a,,7,??1b,?7.10?已知a,b?,?此时适合条件的a,b不存在( ?z1,3,3i,z2,,33,3i.14 / 18精品文档高三复习:复数一、选择题1( [2014?重庆卷] 实部为,2,虚部为1的复数所对应的点位于复平面的A(第一象限 B(第二象限 C(第三象限 D(第四象限7,i2( [2014?天津卷] i是虚数单位,复数,,4i17311725A(1,i B(,1,Ii D(,,2525772i3( [2014?安徽卷] 设i是虚数单位,复数i3,, 1,iA(,i B(i C(,1 D(14( [2014?福建卷] 复数i等于A(,2,3i B(,2,3i C(2,3i D(2,3i5( [2014?广东卷] 已知复数z满足z,25,则z,A(,3,4i B(,3,4i C(3,4i D(3,4i6( [2014?广东卷] 对任意复数ω1,ω2,定义ω1*ω2,ω1ω2,其中ω2是ω2的共轭复数,对任意复数z1,z2,z3有如下四个命题:?*z3,,;?z1*,,;?*z3,z1*;?z1*z2,z2*z1. 则真命题的个数是A(1 B( C( D(41,i2?7( [2014?湖北卷] i为虚数单位,?, ?115 / 18精品文档,i?A(1 B(,1 C(i D(,i8( [2014?江西卷] 若复数z满足z,2i,则|z|,A(1 B( D.39( [2014?辽宁卷] 设复数z满足,5,则z,A(2,3i B(2,3i C(3,2i D(3,2i1,3i10( [2014?新课标全国卷?] 1,iA(1,2i B(,1,2iC(1,2i D(,1,2i111( [2014?全国新课标卷?] 设zi,则|z|, 1,i123A. B.D(22212( [2014?山东卷] 已知a,b?R,i是虚数单位,若a,i,2,bi,则2,A(3,4i B(3,4i C(4,3i D(4,3i,13( [2014?陕西卷] 已知复数z,2,i,则z?z的值为A( B. C( D.二、填空题2,2i14( [2014?四川卷] 复数,________( 1,i1,i15( [2014?浙江卷] 已知i是虚数单位,计算,________( 16( [2014?北京卷] 若i,,1,2i,则x,________(3,i17( [2014?湖南卷] 复数的实部等于16 / 18精品文档________( i18( [2014?江苏卷] 已知复数z,2,则z的实部为________(复数答案:一、选择题1(B2(A3(D4(B5(D6(B7(B8(C9(A10(B11(B12(A13(A二、填空题14(,2i1115(,i 216(2 17(,18(2117 / 18精品文档18 / 18。

高二数学复数练习题

高二数学复数练习题

高二文科数学复数练习题一、选择题1.复数9-的平方根是( )A .i 3B .i 3-C .i 3±D .不存在 2.若复数i m m m m z )23(23222+-+--=是纯虚数,则实数m 的值为( )A .21或B .221或-C .21-D .2 3.=+-2)3(31i i ( )A .431i + B .431i +- C .231i + D .231i+- 4.适合方程02=--i z z 的复数z 是( )A .i 2163+ B .i 2163- C .i 2163-- D .i 2163+± 5.复数()()221345+-i i 等于 ( )A .13+iB .-13+iC .13-iD .-13-i6.10032i i i i …··…··=( )A .1B .-1C .ID.-i7.在复平面内,复数2(1)1ii++对应的点位于( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限) 8.若实数y x ,,满足2)1()1(=-++y i x i ,则xy 的值是( )A. 1B. 2C.-2D.-3 9.已知复数z 满足,11i zz=+-则z +1=( ) A .1 B. 0 C. 2 D. 210.=-+2014)11(ii ( ) A .1 B . 1- C .i D .i - 11.如果复数3z ai =+满足条件22z -<,那么实数a 的取值范围为()A.(-B.(22)-,C.(11)-,D.(12.若复数z 满足)1z z i +=,则2z z +的值等于( )A .1B .0C .1-D .12-13.已知 3()z =⋅- ,那么复数z 在平面内对应的点位于( )A .第一象限B . 第二象限C .第三象限D .第四象限14.若122ω=-+,则等于421ωω++=( )A .1B .0C .3+D .1- 15.设456124561212,,z i i i i z i i i i =+++++⋅⋅⋅⋅则12,z z 的关系是( )A .12z z =B .12z z =-C .121z z =+D .无法确定 16. 2020(1)(1)i i +--的值是( )A . 1024-B . 1024C . 0D .1024 17.已知12121z z z z ==-=,则12z z +等于( )A .1BCD .18.如果复数z 满足11=-+i z ,那么i z +-2的最大值是( )A .5B .i 31+C .113-D .413+二、填空题:1、已知复数z 1=3+4i ,z 2=t+i ,且21z z ⋅是实数,则实数t 等于___________.2、若22(1)(32)x x x i -+++是纯虚数,则实数x 的值是___________3、已知复数122,13z i z i =-=-,则复数215z i z + = 。

高二数学复数练习试题doc

高二数学复数练习试题doc

一、复数选择题1.若()211z i =-,21z i =+,则12z z 等于( ) A .1i + B .1i -+C .1i -D .1i --2.已知复数()2m m m iz i--=为纯虚数,则实数m =( )A .-1B .0C .1D .0或13.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+i C .76i - D .76i + 4.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( )ABC .3D .55.已知i 为虚数单位,若复数()12iz a R a i+=∈+为纯虚数,则z a +=( ) AB .3C .5D.6.若复数z 满足()322iz i i-+=+,则复数z 的虚部为( ) A .35 B .35i -C .35D .35i7.满足313i z i ⋅=-的复数z 的共扼复数是( )A .3i -B .3i --C .3i +D .3i -+8.已知复数z 满足202122z i i i+=+-+,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限9.已知复数z 满足22z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上 B .恒在虚轴上C .恒在直线y x =上D .恒在直线y x=-上10.在复平面内,已知平行四边形OABC 顶点O ,A ,C 分别表示25-+i ,32i +,则点B 对应的复数的共轭复数为( ) A .17i -B .16i -C .16i --D .17i --11.3( ) A .i -B .iC.iD.i -12.已知i 是虚数单位,设复数22ia bi i-+=+,其中,a b ∈R ,则+a b 的值为( )A .75B .75-C .15D .15-13.复数22(1)1i i-+=-( ) A .1+iB .-1+iC .1-iD .-1-i14.在复平面内,复数z 对应的点的坐标是(1,1),则zi=( ) A .1i - B .1i --C .1i -+D .1i +15.设复数满足(12)i z i +=,则||z =( )A .15B C D .5二、多选题16.下面是关于复数21iz =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-17.已知复数122z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+ 18.下列关于复数的说法,其中正确的是( ) A .复数(),z a bi a b R =+∈是实数的充要条件是0b = B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠ C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称 19.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限20.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限C .123z z +=D .12z z =21.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( )A .22z z = B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,122z =- D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数22.下列命题中,正确的是( ) A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数23.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限 24.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数 B .若32a bi i -=+,则3,2a b == C .若0b =,则a bi +为实数D .纯虚数z 的共轭复数是z -25.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y == B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于126.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '=27.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( )A .1B .4-C .0D .528.给出下列命题,其中是真命题的是( ) A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 29.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A.|z |=B .复数z 在复平面内对应的点在第四象限 C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.D 【分析】由复数的运算法则计算即可. 【详解】 解:, . 故选:D. 解析:D 【分析】由复数的运算法则计算即可. 【详解】 解:()2211122z i i i i =-=-+=-,()()212222(1)2222111112z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.2.C 【分析】结合复数除法运算化简复数,再由纯虚数定义求解即可 【详解】解析:因为为纯虚数,所以,解得, 故选:C.解析:C 【分析】结合复数除法运算化简复数z,再由纯虚数定义求解即可【详解】解析:因为()()22m m m iz m m mii--==--为纯虚数,所以20m mm⎧-=⎨≠⎩,解得1m=,故选:C.3.D【分析】由复数乘法运算求得,根据共轭复数定义可求得结果. 【详解】,.故选:.解析:D【分析】由复数乘法运算求得z,根据共轭复数定义可求得结果.【详解】()()2248676z i i i i i=--=-+=-,76z i∴=+.故选:D.4.D【分析】求出复数,然后由乘法法则计算.【详解】由题意,.故选:D.解析:D【分析】求出复数z,然后由乘法法则计算z z⋅.【详解】由题意12122iz ii i-==-+=--,22(2)(2)(2)5z z i i i⋅=---+=--=.故选:D.5.A【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得 【详解】由复数为纯虚数,则,解得 则 ,所以,所以 故选:A解析:A 【分析】根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a + 【详解】()()()()()()2221222121122111i a i a a i a i i a z a i a i a i a a a +-++--++====+++-+++由复数()12i z a R a i +=∈+为纯虚数,则222012101a a a a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =-则z i =- ,所以2z a i +=--,所以z a += 故选:A6.A 【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论. 【详解】 由题意,得, 其虚部为, 故选:A.解析:A 【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论. 【详解】 由题意,得()()()()()23343313343434552i i ii z i i i i i ----====-++-+, 其虚部为35, 故选:A.7.A【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】 因为, 所以,复数的共扼复数是, 故选:A解析:A 【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】因为313i z i ⋅=-, 所以()13133iz i i i i-==-=+-, 复数z 的共扼复数是3z i =-, 故选:A8.C 【分析】由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果. 【详解】 由题可得,,所以复数在复平面内对应的点为,在第三象限, 故选:C .解析:C 【分析】由已知得到2021(2)(2)i i iz -++-=,然后利用复数的乘法运算法则计算(2)(2)i i -++,利用复数n i 的周期性算出2021i 的值,最后利用复数的几何意义可得结果. 【详解】由题可得,2021(2)(2)5i z i ii -+=+-=--,所以复数z 在复平面内对应的点为(5,1)--,在第三象限, 故选:C .9.A 【分析】先由题意得到,然后分别计算和,再根据得到关于,的方程组并求解,从而可得结果.由复数在复平面内对应的点为得,则,, 根据得,得,.所以复数在复平面内对应的点恒在实轴上, 故解析:A 【分析】先由题意得到z x yi =+,然后分别计算2z 和2z ,再根据22z z =得到关于x ,y 的方程组并求解,从而可得结果. 【详解】由复数z 在复平面内对应的点为(),x y 得z x yi =+,则2222z x y xyi =-+,222z x y =+,根据22z z =得222220x y x y xy ⎧-=+⎨=⎩,得0y =,x ∈R .所以复数z 在复平面内对应的点(),x y 恒在实轴上, 故选:A .10.A 【分析】根据复数的几何意义得出坐标,由平行四边形得点坐标,即得点对应复数,从而到共轭复数. 【详解】 由题意,设,∵是平行四边形,AC 中点和BO 中点相同, ∴,即,∴点对应是,共轭复数为.解析:A 【分析】根据复数的几何意义得出,A C 坐标,由平行四边形得B 点坐标,即得B 点对应复数,从而到共轭复数. 【详解】由题意(2,5),(3,2)A C -,设(,)B x y ,∵OABC 是平行四边形,AC 中点和BO 中点相同,∴023052x y +=-+⎧⎨+=+⎩,即17x y =⎧⎨=⎩,∴B 点对应是17i +,共轭复数为17i -.故选:A . 11.B首先,再利用复数的除法运算,计算结果. 【详解】复数.故选:B解析:B【分析】首先3i i=-,再利用复数的除法运算,计算结果.【详解】3133i ii+====.故选:B12.D【分析】先化简,求出的值即得解.【详解】,所以.故选:D解析:D【分析】先化简345ia bi-+=,求出,a b的值即得解.【详解】22(2)342(2)(2)5i i ia bii i i---+===++-,所以341,,555a b a b==-∴+=-.故选:D13.C【分析】直接根据复数代数形式的乘除运算法则计算可得;【详解】解:故选:C解析:C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+12i i =+- 1i =-故选:C14.A 【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解. 【详解】因为在复平面内,复数对应的点的坐标是, 所以, 所以, 故选:A解析:A 【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解. 【详解】因为在复平面内,复数z 对应的点的坐标是(1,1), 所以1z i =+,所以11i i i z i +==-, 故选:A15.B 【分析】利用复数除法运算求得,再求得. 【详解】 依题意, 所以. 故选:B解析:B【分析】利用复数除法运算求得z ,再求得z .【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以5z == 故选:B二、多选题16.ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.17.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为11131222244z z i ⎛⎫⎛⎫-+=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,122z =+,所以2z z ≠,所以B 错误;因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()2020633644311122z z z z z ⨯+⎛⎫===⋅=-⋅=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.18.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误; 对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.19.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.20.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确.故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单. 21.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确; 对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 3322z i ππ=+=+,则122z =-,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+,取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.22.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.23.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以5z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 24.AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为当且时复数为纯虚数,此时,故A 错误,D 正确;当时,复数为实数,故C 正确;对于B :,则即,故B 错误;故错误的有AB解析:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确;当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;故选:AB【点睛】本题考查复数的代数形式及几何意义,属于基础题.25.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题.26.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 27.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.28.AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D.根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD【点睛】 本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题.29.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误.故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。

高二数学复数模拟训练

高二数学复数模拟训练

高二数学复数模拟训练一. 选择题:1. 复数-+13i 化成三角形式 :正确的是( )A. 22323(cos sin )ππ+i B. 25656(cossin )ππ+i C. 25353(cos sin )ππ+i D. 2116116(cos sin )ππ+i 2. 复数z i =-︒+︒sin cos 100100的辐角主值是( )A. 80︒B. 100︒C. 190︒D. 260︒3. 两个复数z z 12、的模与辐角分别相等 :是z z 12=成立的( )条件。

A. 充分不必要B. 必要不充分C. 充要D. 既不充分又不必要4. 若复数z 满足arg()z +=46π:则||z 的最小值为( )A. 1B. 2C. 23D. 325. 把复数a bi +()a b R ,∈在复平面内对应的向量值O 点按顺时针方向旋转90︒后所得向量对应的复数为( )A. a bi -B. -+a biC. b ai -D. -+b ai6. 复数z i =︒+︒(sin cos )25253的三角形式是( )A. cos sin 195195︒+︒iB. sin cos 7575︒+︒iC. cos sin 1515︒+︒iD. cos sin 7575︒+︒i 7. 设34+i 的辐角主值为θ :则()34+⋅i i 的辐角主值是( )A. πθ2+ B. πθ2- C. θπ-2 D. 32πθ- 8. 设z i 112=- :z i 21=+ :z i 313=-+ :则arg arg arg z z z 123++=( )A.π2 B. 32π C. 52π D. 72π二. 填空题:1. 若复数z 满足||arg()z z z z -=-=11213,π :则z =_______。

2. 若动点P 对应的复数为z :且满足||z i -=42 :则z 的辐角主值的范围为______ :|z|取得最大值时 :z =_______。

高二数学复数试题答案及解析

高二数学复数试题答案及解析

高二数学复数试题答案及解析1.已知复数,(,是虚数单位).(1)若复数在复平面上对应点落在第一象限,求实数的取值范围;(2)若虚数是实系数一元二次方程的根,求实数值.【答案】(1);(2).【解析】(1)先算出,再根据在复平面上对应的点落在第一象限,可得不等式组,从中求解即可得出的取值范围;(2)根据实系数的一元二次方程有一复数根时,则该方程的另一个根必为,且,从而可先求解出的值,进而求出的值.(1)由条件得 2分因为在复平面上对应点落在第一象限,故有 4分∴解得 6分(2)因为虚数是实系数一元二次方程的根,所以也是该方程的一个根根据二次方程根与系数的关系可得,即 10分把代入,则, 11分所以 14分.【考点】1.复数的几何意义;2.实系数的一元二次方程在复数范围内根与系数的关系;3.复数的运算.2.已知复数(),是实数,是虚数单位.(1)求复数z;(2)若复数所表示的点在第一象限,求实数m的取值范围.【答案】(1).(2) 时,复数所表示的点在第一象限.【解析】(1).又是实数,,,即.(2) ,,,又复数所表示的点在第一象限,解得,即时,复数所表示的点在第一象限.【考点】复数的相等,复数的代数运算,复数的几何意义。

点评:中档题,复数的除法,通过分子分母同乘分母的共轭复数,实现“分母实数化”。

3.设为实数,复数【答案】1+3i【解析】根据题意,由于设为实数,复数(1-2i)(-1+i)=1+3i,故可知答案为1+3i.【考点】复数的运算点评:主要是考查了复数的运算,属于基础题。

4.在复平面内,复数+(1+)2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】根据题意,由于复平面内,复数+(1+)2=,故可知实部虚部为正数,故可知对应的点在第一象限,故答案为A.【考点】复数的运算点评:主要是考查了复数的运算,属于基础题5.复数的值是()A.B.C.D.【答案】A【解析】==,故选A。

高二年级复数练习题数学

高二年级复数练习题数学

高二年级复数练习题数学1. 解方程组:a) 3x + 4y = 102x - 5y = 7b) 2x - y = 13x + 2y = 8c) 5x - 3y = 42x + y = 102. 求多项式的值:a) P(x) = 2x^3 + 4x^2 + 7x - 3,当x = 2时,求P(x)的值。

b) Q(x) = x^4 + 3x^2 - 2x + 5,当x = -1时,求Q(x)的值。

3. 解不等式:a) 2x + 3 > 7x - 1b) 3(5 - 2x) < 4(x + 1)c) 2x - 5 > 3x - 24. 求解三角形的边长:一边是其周长的三倍,另一边是第一边与它之间的线段长的四倍。

如果其周长为10cm,求这个三角形的边长。

5. 图形的面积:a) 一个矩形的长是其宽的四倍,如果其周长为20cm,求矩形的面积。

b) 一个等腰梯形的上底长为3cm,下底长为8cm,高为5cm,求其面积。

c) 一个圆的半径为3cm,求其面积。

6. 解二次方程:a) x^2 + 3x - 4 = 0b) 2x^2 - 5x + 2 = 0c) 3x^2 + 7x - 4 = 07. 求函数的反函数:a) f(x) = 3x - 4b) g(x) = 2x^2 + 5c) h(x) = 4/x8. 求函数的极限:a) lim(x->3) (x^2 - 3x + 2)b) lim(x->2) (x^3 - 4x^2 + 5x - 6)c) lim(x->1) (2x^2 + 3x + 1)9. 计算概率:a) 从一副扑克牌中随机抽取一张牌,求抽到红心的概率。

b) 从一个有标号为1至10的箱子中随机取出两个球,求它们的和为7的概率。

c) 一个包含100个黑球和200个白球的袋子,从中不放回地取出三个球,求恰好有两个球为白球的概率。

10. 解某年利润问题:某公司第一季度利润为200万元,第二季度亏损100万元,第三季度亏损50万元,第四季度利润为120万元。

高二数学 复数练习题 新人教A版

高二数学 复数练习题 新人教A版

复数单元检测题一、选择题1若()()22132i x x x -+++是纯虚数,则实数x 的值是B 1-C 1±D 以上都不对 2已知()2i i ,ia b a b +=+∈R ,其中i 为虚数单位,则=+b a A 1- B 1 C 2 D 33在复平面内,复数65i,23i +-+对应的点分别为,A B 若C 为线段AB 的中点,则点C 对应的复数是A 48i +B 82i +C 24i +D 4i +4若复数()2121i ,1i =+=-z z ,则复数12=z z z 的共轭..复数所对应的点位于复平面的 A 第一象限 B 第二象限 C 第三象限 D 第四象限 5()()22114i,m m m m m =++++-∈R z ,232i =-z ,则1=m 是12=z z 的 A 充分不必要条件 B 必要不充分条件C 充要条件D 既不充分又不必要条件6若∈C z ,且满足方程||13i =+-z z 则=zA12 B 4i - C 43i -+D 12- 7已知=z 则501001++=z z A 3 B 1 C 2i + D i 8已知12,z z 是复数,定义复数的一种运算“⊗”为:()()1212121212||||||||⎧>⎪⊗=⎨+⎪⎩z z z z z z z z z z 若12i =+z 且1234i ⊗=+z z ,则复数2=z A 2i + B 13i + C 2i +或13i + D 条件不够,无法求出 9若cos isin θθ=-z ,则使21=-z 的一个θ值是 A 0 B 2π C π D 2π 10 对任意复数i x y =+z (,x y ∈R),i 为虚数单位,则下列结论正确的是 A ||2y -=z z B 222x y =+z C ||2x -z z D ||||||x y +z二、填空题11在复平面内,若复数z 满足|1||i |+=-z z ,则z 所对应的点的集合构成的图形是12已知复数122i,13i =-=-z z ,则复数21i 5+z z = 13若复数12i =-z ,则⋅+z z z = .14.若复数z 满足i(2)=-z z i 是虚数单位,则=z .15.对于非零实数a b ,,以下四个命题都成立:① 01≠+aa ; ② 2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是 .16.设复数z 满足(23i)=6+4i -z (其中i 为虚数单位),则z 的模为_______.三、解答题17在复平面上,设点,,A B C 对应的复数分别为i,1,42i +过,,A B C 做平行四边形ABCD 求此平行四边形的对角线BD 的长18已知复数z满足||z ,2z 的虚部为2(1)求z ;(2)设22,,-z z z z 在复平面对应的点分别为,,A B C ,求ABC ∆的面积复数单元检测题参考答案一、 选择题ABCCA CDBBD二、填空题11直线x y -= 12i 13 62i - 14 1+i 15 ②④ 16 2三、解答题17由题知平行四边形三顶点坐标为()()()0,1,1,0,4,2A B C ,设D 点的坐标为(),D x y因为BA CD =,得()()1,14,2x y -=--,得4121x y -=-⎧⎨-=⎩得33x y =⎧⎨=⎩,即()3,3D , 所以()2,3BD =,则||BD =18(1)设i(,)x y x y =+∈R z由题意得2222i x y xy =-+z∴(1)22(2)xy ==⎪⎩ 化简得()20,x y x y -=∴= 将其代入(2)得222x =,∴1x =±故11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩故1i =+z 或1i =--z (2)当1i =+z 时,22i =z ,21i -=-z z 所以(1,1),(0,2),(1,1)A B C - ∴1||2,1212ABC AC S ∆==⨯⨯= 当1i =--z 时,22i =z ,213i -=--z z(1,1),(0,2),(1,3)A B C --- ∴ 1||4,1422ABC AC S ∆==⨯⨯=。

高二数学复数练习题及答案

高二数学复数练习题及答案

高二数学复数练习题及答案复数是数学中的一个重要概念,它在数学和物理等领域中有着广泛的应用。

在高二数学中,复数也是一项重要的学习内容,通过掌握复数的性质和运算规则,可以解决各种与实数无法解决的问题。

本文将为同学们提供一些高二数学复数练习题及其答案,帮助巩固复数的知识。

练习题一:1. 计算并写出结果的精确值:(3+2i)+(1-4i)2. 求复数的共轭数:(4+3i)的共轭数是多少?3. 计算并写出结果的精确值:(2-5i)(1+3i)4. 求复数的模:计算|(4-1i)|的值。

5. 求复数的幅角:计算辐角arg(2i)的值。

练习题二:1. 计算并写出结果的精确值:(1+i)^2的值是多少?2. 计算并写出结果的精确值:(1+i)^4的值是多少?3. 计算并写出结果的精确值:(1+i)^5的值是多少?4. 求复数的幂:计算(2+3i)^3的值。

5. 求复数的根:计算方程x^4+1=0的全部根。

练习题三:1. 求函数f(x) = 2x^3 - 3x^2 + x + 1的图像与坐标轴的交点。

2. 求函数f(x) = (x+1)^2 - 4的图像与坐标轴的交点。

3. 求函数f(x) = x^2 - 3x + 2的图像与坐标轴的交点。

4. 求函数f(x) = 3x^2 + 2x - 1的最小值。

5. 求函数f(x) = -2x^2 + 4x - 3的最大值。

答案及解析:练习题一:1. (3+2i)+(1-4i) = 3+2i+1-4i = 4-2i2. (4+3i)的共轭数为4-3i3. (2-5i)(1+3i) = 2+6i-5i-15i^2 = 2+6i-5i+15 = 17+i4. |(4-1i)| = √(4^2 + (-1)^2) = √175. 辐角arg(2i)的值为π/2练习题二:1. (1+i)^2 = 1^2 + 2i + i^2 = 1+2i-1 = 2i2. (1+i)^4 = (1^2 + 2i + i^2)^2 = (1+2i-1)^2 = (2i)^2 = -43. (1+i)^5 = (1+i)(1+2i-1)^2 = (1+i)(2i)^2 = (1+i)(-4) = -4-4i4. (2+3i)^3 = (2^2+2*2*3i+(3i)^2)(2+3i) = (4-9+12i)(2+3i) = (-5+12i)(2+3i) = (-34+1i)5. 方程x^4+1=0的全部根为±i,±i^3练习题三:1. 函数f(x) = 2x^3 - 3x^2 + x + 1的图像与坐标轴的交点为:x轴上的交点:令f(x) = 0,得到2x^3 - 3x^2 + x + 1 = 0的解;y轴上的交点:x = 0时,y = f(0) = 1,所以与y轴的交点为(0, 1)2. 函数f(x) = (x+1)^2 - 4的图像与坐标轴的交点为:x轴上的交点:令f(x) = 0,得到(x+1)^2 - 4 = 0的解;y轴上的交点:x = 0时,y = f(0) = -3,所以与y轴的交点为(0, -3)3. 函数f(x) = x^2 - 3x + 2的图像与坐标轴的交点为:x轴上的交点:令f(x) = 0,得到x^2 - 3x + 2 = 0的解;y轴上的交点:x = 0时,y = f(0) = 2,所以与y轴的交点为(0, 2)4. 函数f(x) = 3x^2 + 2x - 1的最小值为函数的顶点坐标的y值,顶点的横坐标为 x = -b/2a = -2/(2*3) = -1/3;将x = -1/3代入函数中,得到f(-1/3) = 3*(-1/3)^2 + 2*(-1/3) - 1 = -8/9,所以最小值为-8/9。

高二数学复数练习试题 百度文库

高二数学复数练习试题 百度文库

一、复数选择题1.已知复数2z i =-,若i 为虚数单位,则1iz+=( ) A .3155i + B .1355i + C .113i +D .13i + 2.若()211z i =-,21z i =+,则12z z 等于( ) A .1i +B .1i -+C .1i -D .1i --3.复数3(23)i +(其中i 为虚数单位)的虚部为( )A .9iB .46i -C .9D .46-4.已知复数()2m m m iz i--=为纯虚数,则实数m =( )A .-1B .0C .1D .0或15.已知i 为虚数单位,则复数23ii -+的虚部是( ) A .35B .35i -C .15-D .15i -6.已知复数31iz i-=,则z 的虚部为( ) A .1 B .1-C .iD .i -7.))5511--+=( )A .1B .-1C .2D .-2 8.满足313i z i ⋅=-的复数z 的共扼复数是( )A .3i -B .3i --C .3i +D .3i -+9.设2iz i+=,则||z =( ) ABC .2D .510.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( ) AB .2C .10D11.122ii-=+( ) A .1B .-1C .iD .-i12.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( ) A .4B .2C .0D .1-13.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限14.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( ) A .第四象限B .第三象限C .第二象限D .第一象限15.设复数满足(12)i z i +=,则||z =( )A .15B C D .5二、多选题16.下面关于复数的四个命题中,结论正确的是( ) A .若复数z R ∈,则z R ∈ B .若复数z 满足2z ∈R ,则z R ∈ C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =17.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .20zB .2z z =C .31z =D .1z =18.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点19.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( )A .第一象限B .第二象限C .第三象限D .第四象限20.下列说法正确的是( ) A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件21.已知i 为虚数单位,复数322iz i+=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z =D .z 在复平面内对应的点在第一象限22.下列关于复数的说法,其中正确的是( ) A .复数(),z a bi a b R =+∈是实数的充要条件是0b = B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称 23.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥24.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >25.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122-C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为226.下面四个命题,其中错误的命题是( ) A .0比i -大 B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数27.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =28.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y == B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于1 29.复数21iz i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i + C .z 的实部与虚部之和为2 D .z 在复平面内的对应点位于第一象限 30.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( )A .1B .4-C .0D .5【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】利用复数的除法法则可化简,即可得解. 【详解】 ,. 故选:B. 解析:B 【分析】利用复数的除法法则可化简1iz+,即可得解. 【详解】2z i =-,()()()()12111313222555i i i i i i z i i i +++++∴====+--+. 故选:B.2.D 【分析】由复数的运算法则计算即可. 【详解】 解:, . 故选:D.解析:D 【分析】由复数的运算法则计算即可. 【详解】 解:()2211122z i i i i =-=-+=-,()()212222(1)2222111112z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.3.C 【分析】应用复数相乘的运算法则计算即可. 【详解】 解:所以的虚部为9. 故选:C.解析:C 【分析】应用复数相乘的运算法则计算即可. 【详解】解:()()()32351223469i i i i +=-++=-+ 所以()323i +的虚部为9. 故选:C.4.C 【分析】结合复数除法运算化简复数,再由纯虚数定义求解即可 【详解】解析:因为为纯虚数,所以,解得, 故选:C.解析:C 【分析】结合复数除法运算化简复数z ,再由纯虚数定义求解即可 【详解】 解析:因为()()22m m m iz m m mi i--==--为纯虚数,所以200m m m ⎧-=⎨≠⎩,解得1m =,故选:C.5.A【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】因为,所以其虚部是.故选:A.解析:A 【分析】先由复数的除法运算化简复数23ii-+,再由复数的概念,即可得出其虚部. 【详解】因为22(3)26133(3)(3)1055i i i i i i i i -----===--++-,所以其虚部是35. 故选:A.6.B 【分析】化简复数,可得,结合选项得出答案. 【详解】则,的虚部为 故选:B解析:B 【分析】化简复数z ,可得z ,结合选项得出答案. 【详解】()311==11i i z i i i i i--=-=+- 则1z i =-,z 的虚部为1- 故选:B7.D 【分析】先求和的平方,再求4次方,最后求5次方,即可得结果. 【详解】 ∵,, ∴,, ∴, , ∴, 故选:D.解析:D 【分析】先求)1-和)1+的平方,再求4次方,最后求5次方,即可得结果.∵)211-=--,)2+1=-,∴)()42117-=--=-+,)()42+17=-=--,∴)()51711-=-+-=--, )()51711+=--+=-,∴))55121-+=--,故选:D.8.A 【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】 因为, 所以,复数的共扼复数是, 故选:A解析:A 【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】因为313i z i ⋅=-, 所以()13133iz i i i i-==-=+-, 复数z 的共扼复数是3z i =-, 故选:A9.B 【分析】利用复数的除法运算先求出,再求出模即可. 【详解】 , .故选:B .解析:B 【分析】利用复数的除法运算先求出z ,再求出模即可.()22212i ii z i i i ++===-,∴z ==故选:B .10.D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.解析:D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为1z i =+,所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.11.D 【分析】利用复数的除法求解. 【详解】 . 故选:D解析:D 【分析】利用复数的除法求解. 【详解】()()()()12212222i i i i i i i ---==-++-. 故选:D12.A 【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b . 【详解】 , 故选:A解析:A 【分析】先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b . 【详解】()()112i i +-1223i i i =-++=-3a bi i ∴+=+3,1a b ==,4a b +=故选:A13.A 【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论. 【详解】 ,因此,复数在复平面内对应的点位于第一象限. 故选:A.解析:A 【分析】利用复数的乘法化简复数z ,利用复数的乘法可得出结论. 【详解】()()221223243z i i i i i =-+=+-=+,因此,复数z 在复平面内对应的点位于第一象限. 故选:A.14.A 【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果. 【详解】 因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A 【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果. 【详解】因为()()()()4202050550512111121111111i i i z i iii i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限. 故选:A.15.B 【分析】利用复数除法运算求得,再求得. 【详解】 依题意, 所以. 故选:B解析:B 【分析】利用复数除法运算求得z ,再求得z . 【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以z == 故选:B二、多选题 16.AC 【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果. 【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则, 因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.17.BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】12z =-+, 221313i i=22z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.18.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.19.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.20.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.21.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.22.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.23.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 24.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等,比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.25.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围26.ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.27.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.28.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 29.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.30.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.。

高二数学复数试题

高二数学复数试题

高二数学复数试题1.复数的虚部是()A.1B.-1C.2D.【答案】C【解析】因为,所以虚部为2.【考点】复数的定义、复数的运算.2.在复平面上,点对应的复数是,线段的中点对应的复数是,则点对应的复数是()A.B.C.D.【答案】A【解析】依题意有,在复平面内,点的坐标,线段的中点坐标为,设点的坐标为,则有,解得,所以点对应的复数是,选A.【考点】1.复数的几何意义;2.中点坐标公式.3.若复数是纯虚数,则实数等于()A.B.2C.D.-2【答案】B【解析】因为,复数=是纯虚数,所以,,a=2,故选B。

【考点】复数的代数运算,复数的概念。

点评:简单题,纯虚数,实部为0,虚部不为0。

4.在复平面内,复数+(1+)2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】根据题意,由于复平面内,复数+(1+)2=,故可知实部虚部为正数,故可知对应的点在第一象限,故答案为A.【考点】复数的运算点评:主要是考查了复数的运算,属于基础题5.已知复数满足为实数(为虚数单位),且,求.【答案】或【解析】设,则,∴或∴或.【考点】复数的计算点评:主要是考查了复数的基本概念和运算,属于基础题。

6.已知复数,下列命题中:①不能比较大小;②若,则;③;④若,则.其中正确的命题是A.②③B.①③C.③④D.②④【答案】C【解析】根据题意,由于复数对于①不能比较大小;在实数的情况下可以比较,因此错误,对于②若,则;不成立,对于③;符合复数相等的定义,对于④若,则成立,故答案为③④ ,选C.【考点】复数的概念点评:主要是考查了复数的引入以及概念的运用,属于基础题。

7.已知复数z满足,其中i是虚数单位,则复数z的共轭复数为()A.B.C.D.【答案】A【解析】,共轭复数为【考点】复数及共轭复数点评:复数的共轭复数为8.已知R复数的实部和虚部相等,则b等于.【答案】【解析】,所以有【考点】复数及其运算点评:复数运算中分子分母同乘以分母的共轭复数化简,复数中实部为,虚部为9.已知复数z与(z+2)2-8i都是纯虚数,则z=___ ___.【答案】-2i【解析】根据题意,设z="bi," 复数z与(z+2)2-8i都是纯虚数,那么可知(2+bi)2-8i=4-b2-+4bi-8i,故可知复数z=-2i【考点】复数的概念点评:主要是考查了复数的运算以及基本概念的运用,属于基础题。

高二数学复数练习试题doc

高二数学复数练习试题doc

一、复数选择题1.已知复数2z i =-,若i 为虚数单位,则1iz+=( ) A .3155i + B .1355i + C .113i +D .13i + 2.已知复数1=-iz i,其中i 为虚数单位,则||z =( ) A .12B .2 C .2 D .23.复数3(23)i +(其中i 为虚数单位)的虚部为( ) A .9iB .46i -C .9D .46-4.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是1 B .z 的虚部是1C .5z =D .复数z 在复平面内对应的点在第四象限5.若复数1z i i ⋅=-+,则复数z 的虚部为( ) A .-1B .1C .-iD .i6.已知i 为虚数单位,则复数23ii -+的虚部是( ) A .35B .35i -C .15-D .15i -7.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是1z ,2z ,则12z z -=( )A 2B .2C .2D .88.已知i 为虚数单位,若复数()12iz a R a i+=∈+为纯虚数,则z a +=( ) A 5B .3C .5D .229.已知复数()211i z i-=+,则z =( )A .1i --B .1i -+C .1i +D .1i -10.复数2ii -的实部与虚部之和为( ) A .35 B .15- C .15D .3511.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( ) A .4B .2C .0D .1-12.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1-B .12-C .13D .113.在复平面内,复数z 对应的点的坐标是(1,1),则zi=( ) A .1i - B .1i --C .1i -+D .1i +14.已知i 是虚数单位,设11iz i,则复数2z +对应的点位于复平面( ) A .第一象限B .第二象限C .第三象限D .第四象限15.设复数z 满足(1)2i z -=,则z =( )A .1BC D .2二、多选题16.若复数351iz i-=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限17.已知复数z 满足220z z +=,则z 可能为( ). A .0B .2-C .2iD .2i+1-18.(多选题)已知集合{},nM m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()11i i -+B .11ii-+ C .11ii+- D .()21i -19.下面关于复数的四个命题中,结论正确的是( ) A .若复数z R ∈,则z R ∈ B .若复数z 满足2z ∈R ,则z R ∈ C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =20.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点21.下面是关于复数21iz =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1-22.若复数z 满足()1z i i +=,则( )A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =23.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( ) A .2ωω=B .31ω=-C .210ωω++=D .ωω>24.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >25.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =- D .对任意的复数z ,都有20z26.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限27.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 28.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i --29.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y ==B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于130.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】利用复数的除法法则可化简,即可得解. 【详解】 ,. 故选:B. 解析:B 【分析】利用复数的除法法则可化简1iz+,即可得解. 【详解】2z i =-,()()()()12111313222555i i i i i i z i i i +++++∴====+--+. 故选:B.2.B 【分析】先利用复数的除法运算将化简,再利用模长公式即可求解. 【详解】 由于, 则. 故选:B解析:B 【分析】先利用复数的除法运算将1=-iz i化简,再利用模长公式即可求解. 【详解】 由于()(1i)(1i)111(1i)222i i i i z i i ++====-+--+,则||2z ===. 故选:B3.C 【分析】应用复数相乘的运算法则计算即可. 【详解】 解:所以的虚部为9. 故选:C.解析:C 【分析】应用复数相乘的运算法则计算即可. 【详解】解:()()()32351223469i i i i +=-++=-+ 所以()323i +的虚部为9. 故选:C.4.C 【分析】利用复数的除法运算求出,即可判断各选项. 【详解】 , ,则的实部为2,故A 错误;的虚部是,故B 错误; ,故C 正;对应的点为在第一象限,故D 错误. 故选:C.解析:C 【分析】利用复数的除法运算求出z ,即可判断各选项. 【详解】()13i z i +=+,()()()()3132111i i i z i i i i +-+∴===-++-, 则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;z ==,故C 正;2z i =+对应的点为()2,1在第一象限,故D 错误.故选:C.5.B 【分析】 ,然后算出即可. 【详解】由题意,则复数的虚部为1 故选:B解析:B 【分析】1iz i -+=,然后算出即可. 【详解】 由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B6.A 【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】因为,所以其虚部是. 故选:A.解析:A 【分析】先由复数的除法运算化简复数23ii-+,再由复数的概念,即可得出其虚部. 【详解】 因为22(3)26133(3)(3)1055i i i i i i i i -----===--++-,所以其虚部是35. 故选:A.7.B根据复数的几何意义,求两个复数,再计算复数的模. 【详解】由图象可知,,则, 故. 故选:B.解析:B 【分析】根据复数的几何意义,求两个复数,再计算复数的模. 【详解】由图象可知1z i =,22z i =-,则1222z z i -=-+,故12|22|z z i -=-+== 故选:B .8.A 【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得 【详解】由复数为纯虚数,则,解得 则 ,所以,所以 故选:A解析:A 【分析】根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a + 【详解】()()()()()()2221222*********i a i a a i a ii a z a i a i a i a a a +-++--++====+++-+++ 由复数()12i z a R a i +=∈+为纯虚数,则222012101a a a a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =-则z i =- ,所以2z a i +=--,所以z a += 故选:A9.B根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解. 【详解】 由题意可得,则. 故答案为:B解析:B 【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解. 【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+.故答案为:B10.C 【分析】利用复数代数形式的乘除运算化简得答案. 【详解】,的实部与虚部之和为. 故选:C 【点睛】易错点睛:复数的虚部是,不是.解析:C 【分析】利用复数代数形式的乘除运算化简得答案. 【详解】()()()2+1212222+555i i i i i i i i -+===-+--,2i i ∴-的实部与虚部之和为121555-+=. 故选:C 【点睛】易错点睛:复数z a bi =+的虚部是b ,不是bi .11.A 【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b . 【详解】 ,解析:A 【分析】先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b . 【详解】()()112i i +-1223i i i =-++=-3a bi i ∴+=+ 3,1a b ==,4a b +=故选:A12.B 【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解. 【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B 【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解. 【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =-故选:B 13.A 【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解. 【详解】因为在复平面内,复数对应的点的坐标是, 所以, 所以, 故选:A解析:A 【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解. 【详解】因为在复平面内,复数z 对应的点的坐标是(1,1), 所以1z i =+,所以11i i i z i +==-, 故选:A14.A 【分析】由复数的除法求出,然后得出,由复数的几何意义得结果. 【详解】 由已知,,对应点为,在第一象限, 故选:A.解析:A 【分析】由复数的除法求出z i =-,然后得出2z +,由复数的几何意义得结果. 【详解】 由已知(1)(1)(1)(1)i i z i i i --==-+-,222z i i +=-+=+,对应点为(2,1),在第一象限, 故选:A. 15.B 【分析】由复数除法求得,再由模的运算求得模. 【详解】 由题意,∴. 故选:B .解析:B 【分析】由复数除法求得z ,再由模的运算求得模. 【详解】由题意22(1)11(1)(1)i z i i i i +===+--+,∴z == 故选:B .二、多选题 16.AD 【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正 解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD. 17.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩,所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.18.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-;选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 19.AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.20.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.21.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.22.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)11(1)(1)2i i z i i i i --====-++-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题23.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以12ω=--,∴213142422ωω=--=--=,故A 正确,32111312244ωωω⎛⎫⎛⎫⎛⎫==---=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,2111102222ωω++=---++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.24.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.25.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 26.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项.【详解】依题意1ω==,所以A 选项正确;2211312442ω⎛⎫=-+=-=- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;22111122212ω---====-⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,22⎛⎫-- ⎪ ⎪⎝⎭,在第三象限,故D 选项错误. 故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.27.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】 本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题.28.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.29.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。

高二数学复数练习试题及答案

高二数学复数练习试题及答案

⾼⼆数学复数练习试题及答案 考试是检测学⽣学习效果的重要⼿段和⽅法,考前需要做好各⽅⾯的知识储备。

下⾯是店铺为⼤家整理的⾼⼆数学复数练习试题,希望对⼤家有所帮助! ⾼⼆数学复数练习试题及答案解析 1.如果复数a+bi(a,b∈R)在复平⾯内的对应点在第⼆象限,则( ) A.a>0,b<0 B.a>0,b>0 C.a<0,b<0 D.a<0,b>0 [答案] D [解析] 复数z=a+bi在复平⾯内的对应点坐标为(a,b),该点在第⼆象限,需a<0且b>0,故应选D. 2.(2010•北京⽂,2)在复平⾯内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是( ) A.4+8i B.8+2i C.2+4i D.4+i [答案] C [解析] 由题意知A(6,5),B(-2,3),AB中点C(x,y),则x=6-22=2,y=5+32=4, ∴点C对应的复数为2+4i,故选C. 3.当23 A.第⼀象限 B.第⼆象限 C.第三象限 D.第四象限 [答案] D [解析] ∵230,m-1<0, ∴点(3m-2,m-1)在第四象限. 4.复数z=-2(sin100°-icos100°)在复平⾯内所对应的点Z位于( ) A.第⼀象限 B.第⼆象限 C.第三象限 D.第四象限 [答案] C [解析] z=-2sin100°+2icos100°. ∵-2sin100°<0,2cos100°<0, ∴Z点在第三象限.故应选C. 5.若a、b∈R,则复数(a2-6a+10)+(-b2+4b-5)i对应的点在( ) A.第⼀象限 [答案] D [解析] a2-6a+10=(a-3)2+1>0,-b2+4b-5 =-(b-2)2-1<0.所以对应点在第四象限,故应选D. 6.设z=(2t2+5t-3)+(t2+2t+2)i,t∈R,则以下结论中正确的是( ) A.z对应的点在第⼀象限 B.z⼀定不是纯虚数 C.z对应的点在实轴上⽅ D.z⼀定是实数 [答案] C [解析] ∵2t2+5t-3=(t+3)(2t-1)的值可正、可负、可为0,t2+2t+2=(t+1)2+1≥1,∴排除A、B、D,选C. 7.下列命题中假命题是( ) A.复数的模是⾮负实数 B.复数等于零的充要条件是它的模等于零 C.两个复数模相等是这两个复数相等的必要条件 D.复数z1>z2的充要条件是|z1|>|z2| [答案] D 若z1=z2,则有a1=a2,b1=b2,∴|z1|=|z2| 反之由|z1|=|z2|,推不出z1=z2, 如z1=1+3i,z2=1-3i时|z1|=|z2|,故C正确; ④不全为零的两个复数不能⽐较⼤⼩,但任意两个复数的模总能⽐较⼤⼩,∴D错. 8.已知复数z=(x-1)+(2x-1)i的模⼩于10,则实数x的取值范围是( ) A.-45 B.x<2 C.x>-45 D.x=-45或x=2 [答案] A [解析] 由题意知(x-1)2+(2x-1)2<10, 解之得-45 9.已知复数z1=a+bi(a,b∈R),z2=-1+ai,若|z1|<|z2|,则实数b适合的条件是( ) A.b<-1或b>1 B.-1 C.b>1 D.b>0 [答案] B [解析] 由|z1|<|z2|得a2+b2 ∴b2<1,则-1 10.复平⾯内向量OA→表⽰的复数为1+i,将OA→向右平移⼀个单位后得到向量O′A′→,则向量O′A′→与点A′对应的复数分别为( ) D.2+i,1+i [答案] C [解析] 由题意O′A′→=OA→,对应复数为1+i,点A′对应复数为1+(1+i)=2+i. ⼆、填空题 11.如果复数z=(m2+m-1)+(4m2-8m+3)i(m∈R)对应的点在第⼀象限,则实数m的取值范围为________________. [答案] -∞,-1-52∪32,+∞ [解析] 复数z对应的点在第⼀象限 需m2+m-1>04m2-8m+3>0解得:m<-1-52或m>32. 12.设复数z的模为17,虚部为-8,则复数z=________. [答案] ±15-8i [解析] 设复数z=a-8i,由a2+82=17, ∴a2=225,a=±15,z=±15-8i. 13.已知z=(1+i)m2-(8+i)m+15-6i(m∈R),若复数z对应点位于复平⾯上的第⼆象限,则m的取值范围是________. [答案] 3 [解析] 将复数z变形为z=(m2-8m+15)+(m2-m-6)i ∵复数z对应点位于复平⾯上的第⼆象限 ∴m2-8m+15<0m2-m-6>0解得3 14.若t∈R,t≠-1,t≠0,复数z=t1+t+1+tti的模的取值范围是________. [答案] [2,+∞) [解析] |z|2=t1+t2+1+tt2≥2t1+t•1+tt=2. ∴|z|≥2. 三、解答题 15.实数m取什么值时,复平⾯内表⽰复数z=2m+(4-m2)i的点 (1)位于虚轴上; (2)位于⼀、三象限; (3)位于以原点为圆⼼,以4为半径的圆上. [解析] (1)若复平⾯内对应点位于虚轴上,则2m=0,即m=0. (2)若复平⾯内对应点位于⼀、三象限,则2m(4-m2)>0,解得m<-2或0 (3)若对应点位于以原点为圆⼼,4为半径的圆上, 则4m2+(4-m2)2=4 即m4-4m2=0,解得m=0或m=±2. 16.已知z1=x2+x2+1i,z2=(x2+a)i,对于任意的x∈R,均有|z1|>|z2|成⽴,试求实数a的取值范围. [解析] |z1|=x4+x2+1,|z2|=|x2+a| 因为|z1|>|z2|,所以x4+x2+1>|x2+a| ⾼考数学不等式复习资料 1.不等式的基本性质: 性质1:如果a>b,b>c,那么a>c(不等式的传递性). 性质2:如果a>b,那么a+c>b+c(不等式的可加性). 性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d. 性质4:如果a>b>0,c>d>0,那么ac>bd. 性质5:如果a>b>0,n∈N,n>1,那么an>bn,且. 例1:判断下列命题的真假,并说明理由. 若a>b,c=d,则ac2>bd2;(假) 若,则a>b;(真) 若a>b且ab<0,则;(假)若a若,则a>b;(真) 若|a|b2;(充要条件) 命题A:a命题A:,命题B:0说明:本题要求学⽣完成⼀种规范的证明或解题过程,在完善解题规范的过程中完善⾃⾝逻辑思维的严密性. a,b∈R且a>b,⽐较a3-b3与ab2-a2b的⼤⼩.(≥) 说明:强调在最后⼀步中,说明等号取到的情况,为今后基本不等式求最值作思维准备. 例2:设a>b,n是偶数且n∈N*,试⽐较an+bn与an-1b+abn-1的⼤⼩. 说明:本例条件是a>b,与正值不等式乘⽅性质相⽐在于缺少了a,b为正值这⼀条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想. 练习: 1.若a≠0,⽐较(a2+1)2与a4+a2+1的⼤⼩.(>) 2.若a>0,b>0且a≠b,⽐较a3+b3与a2b+ab2的⼤⼩. (>) 3.判断下列命题的真假,并说明理由. (1)若a>b,则a2>b2;(假) (2)若a>b,则a3>b3;(真) (3)若a>b,则ac2>bc2; (假) (4)若,则a>b;(真) 若a>b,c>d,则a-d>b-c.(真). ⾼考数学易错知识点 易错点⽤错基本公式致误 错因分析:等差数列的⾸项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等⽐数列的⾸项为a1、公⽐为q,则其通项公式an=a1pn-1,当公⽐q≠1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公⽐q=1时,前n项和公式Sn=na1。

高二数学复数练习试题百度文库

高二数学复数练习试题百度文库

一、复数选择题1.复数21i =+( ) A .1i --B .1i -+C .1i -D .1i + 2.已知复数1=-i z i ,其中i 为虚数单位,则||z =( ) A .12 B .2 C .2 D .23.复数3(23)i +(其中i 为虚数单位)的虚部为( )A .9iB .46i -C .9D .46- 4.若20212zi i =+,则z =( )A .12i -+B .12i --C .12i -D .12i + 5.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是1z ,2z ,则12z z -=( )A 2B .2C .2D .87.已知i 为虚数单位,复数12i 1i z +=-,则复数z 在复平面上的对应点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 8.已知i 为虚数单位,若复数()12i z a R a i +=∈+为纯虚数,则z a +=( ) A 5B .3 C .5 D .229.已知复数512z i =+,则z =( ) A .1B 5C 5D .5 10.若复数z 满足421i z i +=+,则z =( ) A .13i + B .13i - C .3i + D .3i -11.若复数z 满足()322i z i i -+=+,则复数z 的虚部为( ) A .35 B .35i - C .35 D .35i 12.若()()324z ii =+-,则在复平面内,复数z 所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 13.复数22(1)1i i -+=-( ) A .1+i B .-1+i C .1-i D .-1-i14.在复平面内,复数z 对应的点的坐标是(1,1),则z i =( ) A .1i -B .1i --C .1i -+D .1i +15.题目文件丢失!二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =18.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 19.若复数351i z i-=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限20.已知复数z 满足220z z +=,则z 可能为( ).A .0B .2-C .2iD .2i+1- 21.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i = C .z 的共轭复数为1i + D .z 的虚部为1-22.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限C .第三象限D .第四象限 23.已知i 为虚数单位,复数322i z i +=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z =D .z 在复平面内对应的点在第一象限 24.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线25.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =26.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为227.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z =-B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++= 28.复数21i z i +=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限 29.(多选)()()321i i +-+表示( )A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模 30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题1.C【分析】根据复数的除法运算法则可得结果.【详解】.故选:C解析:C【分析】根据复数的除法运算法则可得结果.【详解】21i =+2(1)(1)(1)i i i -=+-2(1)12i i -=-. 故选:C2.B【分析】先利用复数的除法运算将化简,再利用模长公式即可求解.【详解】由于,则.故选:B解析:B【分析】先利用复数的除法运算将1=-i z i 化简,再利用模长公式即可求解. 【详解】 由于()(1i)(1i)111(1i)222i i i i z i i ++====-+--+,则||2z ===. 故选:B3.C【分析】应用复数相乘的运算法则计算即可.【详解】解:所以的虚部为9.故选:C.解析:C【分析】应用复数相乘的运算法则计算即可.【详解】解:()()()32351223469i i i i +=-++=-+所以()323i +的虚部为9.故选:C. 4.C【分析】根据复数单位的幂的周期性和复数除法的运算法则进行求解即可.【详解】由已知可得,所以.故选:C解析:C【分析】根据复数单位i 的幂的周期性和复数除法的运算法则进行求解即可.【详解】 由已知可得202150541222(2)21121i i i i i i z i i i i i i ⨯+++++⋅-======-⋅-,所以12z i =-. 故选:C 5.D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】由已知得,所以复数z 在复平面上所对应的点为,在第四象限,故选:D.解析:D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】 由已知得()()()()312317171+21+212555i i i i z i i i i ----====--, 所以复数z 在复平面上所对应的点为17,55⎛⎫-⎪⎝⎭,在第四象限, 故选:D.6.B【分析】根据复数的几何意义,求两个复数,再计算复数的模.【详解】由图象可知,,则,故.故选:B.解析:B【分析】根据复数的几何意义,求两个复数,再计算复数的模.【详解】由图象可知1z i =,22z i =-,则1222z z i -=-+,故12|22|z z i -=-+==故选:B .7.C【分析】利用复数的除法法则化简,再求的共轭复数,即可得出结果.【详解】因为,所以,所以复数在复平面上的对应点位于第三象限,故选:C.解析:C【分析】利用复数的除法法则化简z ,再求z 的共轭复数,即可得出结果.【详解】 因为212(12)(1)11i i i z i i +++==-- 1322i =-+, 所以1322z i =--, 所以复数z 在复平面上的对应点13(,)22--位于第三象限,故选:C.8.A【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得【详解】由复数为纯虚数,则,解得则 ,所以,所以故选:A解析:A【分析】根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a +【详解】()()()()()()2221222121122111i a i a a i a i i a z a i a i a i a a a +-++--++====+++-+++ 由复数()12i z a R a i +=∈+为纯虚数,则222012101a a a a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =- 则z i =- ,所以2z a i +=--,所以z a +=故选:A9.C【分析】根据模的运算可得选项.【详解】.故选:C.解析:C【分析】根据模的运算可得选项.【详解】512z i ====+ 故选:C.10.C【分析】首先根据复数的四则运算求出,然后根据共轭复数的概念求出.【详解】,故.故选:C.解析:C【分析】首先根据复数的四则运算求出z ,然后根据共轭复数的概念求出z .【详解】()()()()421426231112i i i i z i i i i +-+-====-++-,故3z i =+. 故选:C.11.A【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论.【详解】由题意,得,其虚部为,故选:A.解析:A【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论.【详解】由题意,得()()()()()23343313343434552i i ii z i i i i i ----====-++-+, 其虚部为35, 故选:A. 12.D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】,则复数对应的点的坐标为,位于第四象限.故选:D .解析:D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】()()324(2)(4)76z i i i i i =+-=--=-,则复数z 对应的点的坐标为()7,6-,位于第四象限.故选:D . 13.C【分析】直接根据复数代数形式的乘除运算法则计算可得;【详解】解:故选:C解析:C【分析】直接根据复数代数形式的乘除运算法则计算可得;【详解】解:22(1)1i i-+-()()()()2211211i i i i i +=-++-+ 12i i =+-1i =-故选:C14.A【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解.【详解】因为在复平面内,复数对应的点的坐标是,所以,所以,故选:A解析:A【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解.【详解】因为在复平面内,复数z 对应的点的坐标是(1,1),所以1z i =+, 所以11i i i z i+==-, 故选:A 15.无二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC18.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 19.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确,20.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.21.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.22.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.23.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.24.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.25.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确.故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单. 26.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围27.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.28.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误.【点睛】本小题主要考查复数的有关知识,属于基础题.。

高二数学复数练习试题

高二数学复数练习试题

一、复数选择题1.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( )A .97-B .7C .97D .7- 2.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .z 的实部是1B .z 的虚部是1C .5z =D .复数z 在复平面内对应的点在第四象限3.欧拉是瑞士著名数学家,他首先发现:e cos isin i θθθ=+(e 为自然对数的底数,i 为虚数单位),此结论被称为“欧拉公式”,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系.根据欧拉公式可知,i e π=( )A .1B .0C .-1D .1+i 4.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是1z ,2z ,则12z z -=( )A 2B .2C .2D .8 6.若复数z 满足421i z i +=+,则z =( ) A .13i +B .13i -C .3i +D .3i - 7.若复数1211i z i +=--,则z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 8.若复数2i 1i a -+(a ∈R )为纯虚数,则1i a -=( ) A 3B 5C .3 D .5 9.若复数()41i 34i z +=+,则z =( )A .45B .35C .25D .510.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( )A .22z +=B .22z i +=C .24z +=D .24z i +=11.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( )A .4B .2C .0D .1-12.在复平面内,已知平行四边形OABC 顶点O ,A ,C 分别表示25-+i ,32i +,则点B 对应的复数的共轭复数为( )A .17i -B .16i -C .16i --D .17i -- 13.设a +∈R ,复数()()()242121i i z ai ++=-,若1z =,则a =( ) A .10 B .9 C .8 D .714.复数()()212z i i =-+,则z 的共轭复数z =( )A .43i +B .34i -C .34i +D .43i -15.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( )A .第四象限B .第三象限C .第二象限D .第一象限二、多选题16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅=17.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为18.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点 19.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限20.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 21.复数z 满足233232i z i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =22.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限23.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )A .2ωω=B .31ω=-C .210ωω++=D .ωω>24.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z25.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2 26.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z += 27.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i --28.以下命题正确的是( ) A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '= 29.复数21i z i +=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限30.已知i 为虚数单位,下列命题中正确的是( )A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数【参考答案】***试卷处理标记,请不要删除一、复数选择题1.B【分析】先求出,再解不等式组即得解.【详解】依题意,,因为复数为纯虚数,故,解得.故选:B【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上. 解析:B【分析】 先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解. 【详解】 依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+,因为复数z 为纯虚数,故3210790m m -=⎧⎨+≠⎩,解得7m =. 故选:B【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.2.C【分析】利用复数的除法运算求出,即可判断各选项.【详解】,,则的实部为2,故A 错误;的虚部是,故B 错误;,故C 正;对应的点为在第一象限,故D 错误.故选:C.解析:C【分析】利用复数的除法运算求出z ,即可判断各选项.【详解】()13i z i +=+,()()()()3132111i i i z i i i i +-+∴===-++-, 则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;z ==,故C 正; 2z i =+对应的点为()2,1在第一象限,故D 错误.故选:C.3.C【分析】利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知=,故选C解析:C【分析】利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知i e π=cos sin 101i ππ+=-+=-,故选C4.B【分析】对复数进行化简,再得到在复平面内对应点所在的象限.【详解】,在复平面内对应点为,在第二象限.故选:B.解析:B【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限.【详解】21i z i =-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.5.B【分析】根据复数的几何意义,求两个复数,再计算复数的模.【详解】由图象可知,,则,故.故选:B.解析:B【分析】根据复数的几何意义,求两个复数,再计算复数的模.【详解】由图象可知1z i =,22z i =-,则1222z z i -=-+,故12|22|z z i -=-+==故选:B .6.C【分析】首先根据复数的四则运算求出,然后根据共轭复数的概念求出.【详解】,故.解析:C【分析】首先根据复数的四则运算求出z ,然后根据共轭复数的概念求出z .【详解】()()()()421426231112i i i i z i i i i +-+-====-++-,故3z i =+. 故选:C.7.B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】,所以,在复平面内的对应点为,则对应点位于第二象限故选:B解析:B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】()()12i 1i 12i 33i 33i 111i 2222z +++-+=-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫-⎪⎝⎭,则对应点位于第二象限 故选:B8.B【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.【详解】由复数()为纯虚数,则 ,则所以故选:B解析:B【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.由()()()()()()21i 2221112a i a a i a i i i i ----+-==++- 复数2i 1i a -+(a ∈R )为纯虚数,则202202a a -⎧=⎪⎪⎨+⎪≠⎪⎩ ,则2a =所以112ai i -=-=故选:B9.A【分析】首先化简复数,再计算求模.【详解】,.故选:A解析:A【分析】首先化简复数z ,再计算求模.【详解】()()()2242112434343434i i i z i i i i ⎡⎤++⎣⎦====-++++ ()()()()43443412163434252525i i i i i --=-=-=-++-,45z ∴==. 故选:A10.B【分析】利用复数模的计算公式即可判断出结论.【详解】因为复数对应的点为,所以,满足则故选:B解析:B利用复数模的计算公式即可判断出结论.【详解】因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B11.A【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b .【详解】,故选:A解析:A【分析】先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】()()112i i +-1223i i i =-++=-3a bi i ∴+=+3,1a b ==,4a b +=故选:A12.A【分析】根据复数的几何意义得出坐标,由平行四边形得点坐标,即得点对应复数,从而到共轭复数.【详解】由题意,设,∵是平行四边形,AC 中点和BO 中点相同,∴,即,∴点对应是,共轭复数为.解析:A【分析】根据复数的几何意义得出,A C 坐标,由平行四边形得B 点坐标,即得B 点对应复数,从而到共轭复数.由题意(2,5),(3,2)A C -,设(,)B x y ,∵OABC 是平行四边形,AC 中点和BO 中点相同,∴023052x y +=-+⎧⎨+=+⎩,即17x y =⎧⎨=⎩,∴B 点对应是17i +,共轭复数为17i -. 故选:A .13.D【分析】根据复数的模的性质求模,然后可解得.【详解】解:,解得.故选:D .【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数,则, 模的性质:,,.解析:D【分析】根据复数的模的性质求模,然后可解得a .【详解】 解:()()()()24242422221212501111i i i i aai ai ++++====+--,解得7a =. 故选:D .【点睛】 本题考查复数的模,掌握模的性质是解题关键.设复数(,)z a bi a b R=+∈,则z =模的性质:1212z z z z =,(*)n n z z n N =∈,1122z z z z =. 14.D【分析】由复数的四则运算求出,即可写出其共轭复数.【详解】∴,故选:D解析:D【分析】由复数的四则运算求出z ,即可写出其共轭复数z .【详解】2(2)(12)24243z i i i i i i =-+=-+-=+ ∴43z i =-,故选:D15.A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果.【详解】 因为()()()()4202050550512111121111111i i i z i i i i i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限.故选:A.二、多选题16.AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD17.ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距2=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 18.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.19.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.20.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.21.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】 解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.22.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以12ω=--,∴2131442ωω=--=--=,故A 正确,3211131222244ωωω⎛⎫⎛⎫⎛⎫==---+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,2111102222ωω++=---++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.24.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 25.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围26.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 27.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.28.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥,此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 29.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||2z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.30.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。

高二数学 复数练习题 新人教A版

高二数学 复数练习题 新人教A版

高二数学 复数练习题 新人教A 版一、选择题1.若()()22132i x x x -+++是纯虚数,则实数x 的值是A.1B. 1-C. 1±D. 以上都不对 2.已知()2i i ,ia b a b +=+∈R ,其中i 为虚数单位,则=+b a A.1- B. 1 C . 2 D. 33.在复平面内,复数65i,23i +-+对应的点分别为,A B .若C 为线段AB 的中点,则点C 对应的复数是A.48i +B.82i +C.24i +D.4i +4.若复数()2121i ,1i =+=-z z ,则复数12=z z z 的共轭..复数所对应的点位于复平面的 A.第一象限 B.第二象限 C.第三象限 D.第四象限5.()()22114i,m m m m m =++++-∈R z ,232i =-z ,则1=m 是12=z z 的A.充分不必要条件B.必要不充分条件C. 充要条件D. 既不充分又不必要条件6.若∈C z ,且满足方程||13i =+-z z .则=zA.12 B.4i - C.43i -+D.12 7.已知=z 则501001++=z z A. 3 B. 1 C.2i + D. i 8.已知12,z z 是复数,定义复数的一种运算“⊗”为:()()1212121212||||||||⎧>⎪⊗=⎨+⎪⎩z z z z z z z z z z 若12i =+z 且1234i ⊗=+z z ,则复数2=z A.2i + B.13i + C. 2i +或13i + D.条件不够,无法求出9.若cos isin θθ=-z ,则使21=-z 的一个θ值是 A. 0 B. 2π C. π D.2π 10. 对任意复数i x y =+z (,x y ∈R),i 为虚数单位,则下列结论正确的是 A. ||2y -=z z B. 222x y =+z C. ||2x -z z D. ||||||x y +z二、填空题11.在复平面内,若复数z 满足|1||i |+=-z z ,则z 所对应的点的集合构成的图形是 .12.已知复数122i,13i =-=-z z ,则复数21i 5+z z = . 13.若复数12i =-z ,则⋅+z z z = .14.若复数z 满足i(2)=-z z (i 是虚数单位),则=z .15.对于非零实数a b ,,以下四个命题都成立:① 01≠+aa ; ② 2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是 .16.设复数z 满足(23i)=6+4i -z (其中i 为虚数单位),则z 的模为_______.三、解答题17.在复平面上,设点,,A B C 对应的复数分别为i,1,42i +.过,,A B C 做平行四边形ABCD . 求此平行四边形的对角线BD 的长.18.已知复数z满足||=z ,2z 的虚部为2.(1)求z ;(2)设22,,-z z z z 在复平面对应的点分别为,,A B C ,求ABC ∆的面积.复数单元检测题参考答案一、 选择题ABCCA CDBBD二、填空题11.直线x y -= 12.i 13. 62i - 14. 1+i 15. ②④ 16. 2三、解答题17.由题知平行四边形三顶点坐标为()()()0,1,1,0,4,2A B C ,设D 点的坐标为(),D x y .因为BA CD =,得()()1,14,2x y -=--,得4121x y -=-⎧⎨-=⎩得33x y =⎧⎨=⎩,即()3,3D , 所以()2,3BD =,则||BD =18.(1)设i(,)x y x y =+∈R z .由题意得2222i x y xy =-+z∴(1)22(2)xy ==⎪⎩ 化简得()20,x y x y -=∴= 将其代入(2)得222x =,∴1x =±.故11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩故1i =+z 或1i =--z . (2)当1i =+z 时,22i =z ,21i -=-z z .所以(1,1),(0,2),(1,1)A B C - ∴1||2,1212ABC AC S ∆==⨯⨯=. 当1i =--z 时,22i =z ,213i -=--z z . (1,1),(0,2),(1,3)A B C ---. ∴ 1||4,1422ABC AC S ∆==⨯⨯=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数专题训练(一)
班级________ 姓名__________ 记分___________
一、选择:
1、设z0=1,z1=2+i Z0顺时针旋转900Z2对
应的复数是()
(A)i (B)-1+i (C)1-i (D)2-i
2、非零复数z1、z2为坐标原点),若
,则()
(A)O、Z1、Z2三点共线(B)ΔOZ1Z2是等边三角形
(C)ΔOZ1Z2是直角三角形(D)以上都不对
3、把复数2-i对应的向量,按顺时针方向旋转900,所得向量对应的复数是( )
(A)2+i (B)-2-i (C)-1-2i (D)1+2i
4、复数∈R,b≠0)所表示的图形是( )
(A)直线(B)圆(C)抛物线(D)双曲线
5、若z1、z2、z3是复数,则这三个复数相等是(z1-z2)2+(z2-z3)2=0的( )
(A)充分条件(B)必要条件
(C)不充分又不必要条件(D)充分且必要条件
6、实系数方程x2+ax+b=0有虚根x=1-i是等式a+b2=2成立的( )
(A)充分条件(B)必要条件(C)充要条件(D)既不充分也不必要条件
7、设-1<a<1,复数z满足(1+ai)z=a+i,则复数z在复平面内对应的点在( )
(A)x轴上方(B)x轴下方(C)y轴左方(D)y轴右方
8、下列命题中:(1)若argz=α,则argz2=2α;(2)形为ai(a≠0)的数一定是虚数;
(3)对任一复数,(z3恒成立;(4)z是虚数的充要条件是z+
R.
其中假命题有( )
(A)1个(B)2个(C)3个(D)4个
9、复平面上有点A、B,其所对应的复数分别为-3+i和-1-3i,O为原点,
那么ΔAOB是( )
(A)直角三角形(B)等腰三角形(C)等腰直角三角形(D)等边三角形
10、设复数2-i和3-i的辐角主值分别为α、β则α+β等于( )
(A)135°(B)315°(C)675°(D)585°
11、在复平面上复数i, 1, 4+2i所对应的点分别是A、B、C,则平行四边形ABCD的对角线BD的长为()
(A)5 (B)13(C)15(D) 17
12、在复数集中,一个数的平方恰好为这个数的共轭复数,具有这种特性的数一共有()
(A)1个(B)2个(C)3个(D)4个。

相关文档
最新文档