4.2.1线段、射线、直线(1)练习题

合集下载

4.2直线、射线、线段 第1课时 直线、射线、线段的概念(优秀经典训练作业及答案详解)

4.2直线、射线、线段  第1课时 直线、射线、线段的概念(优秀经典训练作业及答案详解)
3 条直线; 第①组最多可以画____
第②组最多可以画____ 6 条直如果平面上有 n(n≥3)个点, 且每 3 个点均不在 1 条直线上, 那么
n(n-1)/2 条直线(用含 n 的式子表示); 最多可以画__________
(3)解决问题: 某班 45 名同学在毕业后的一次聚会中,若每两人握 1 次手问好, 那么共握_______ 990 次手.
平面图形的认识
一、选择题(每小题 4 分,共 20 分) 8.经过 A,B,C 三点可连接直线的条数为( C A.只能一条 B.只能三条 C.一条或三条 D.不能确定 )
9.如图,下列说法正确的是( A ) A.直线 OM 与直线 MN 是同一条直线 B.射线 MO 与射线 MN 是同一条射线 C.线段 OM 与线段 ON 是同一条线段 D.射线 NO 与射线 MO 是同一条射线
10.下列说法正确的是( D ) ①直线 L,M 相交于 N;②直线 a,b 相交于 M;③直线 ab,cd 相交于 M;④直线 a,b 相交于 m;⑤直线 AB,CD 相交于 M. A.①② C.④⑤ B.②③ D.②⑤
11.下列说法中,错误的是( C ) A.经过一点的直线可以有无数条 B.经过两点的直线只有一条 C.一条直线只能用一个字母表示 D.线段 CD 和线段 DC 是同一条线段
12.下列关于作图的语句中正确的是( D ) A.画直线 AB=10 厘米 B.画射线 OB=10 厘米 C.已知 A,B,C 三点,过这三点画一条直线 D.过直线 AB 外一点画一条直线和直线 AB 相交
二、填空题(每小题 4 分,共 8 分)
6 个交点. 13.平面上四条直线,最多能有____ OB ,线段 CD 向 14.如图,将射线 OA 反向延长得射线________ 两端 延长得直线 CD. ________

4.2 直线、射线、线段同步练习测试卷

4.2  直线、射线、线段同步练习测试卷

4.2 直线、射线、线段第1课时直线、射线、线段【课前预习】1.直线的性质:经过两点有条直线,并且只有条直线.即两点确定条直线.2.当两条不同的直线有一个公共点时,我们就称这两条直线,这个公共点叫做它们的.线段射线直线图例端点个端点个端点个端点字母表示的位置个端点个端点和射线上任一点直线上任意点读法线段AB,线段BA,线段a射线(端点字母放前面)直线AB,直线BA,直线l延伸方向没有延伸向方无限延伸向方无限延伸【当堂演练】1.手电筒射出的光线,给我们的形象是()A.直线B.射线C.点D.折线2.如图,能相交的图形是()3.如图,图中线段和射线的条数分别为()A.一条,两条B.两条,三条C.三条,六条D.四条,三条4.如图,下列语句表达错误的是()A.直线l经过点A、点BB.点A、点B在直线l上C.点C在直线l外D.直线AB和直线l不是同一条直线5.下列说法正确的是()A.直线AB和直线BA是两条直线B.射线AB和射线BA是两条射线C.线段AB和线段BA是两条线段D.直线AB和直线a不可能是同一条直线6.经过一点可以画条直线,经过两点可以画条直线.7.如图,在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,喜羊羊同学认为是两点确定一条直线,懒羊羊同学认为是两点之间线段最短.你认为同学的说法是正确的.8.如图,已知A,B,C,D是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.(1)画线段AB;(2)画直线AC;(3)过点D画AC的垂线,垂足为E;(4)在直线AC上找一点P,使得PB+PD最小.【课后巩固】一、选择题1.如图,小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间线段最短D.经过两点有且仅有一条直线2.下列叙述不正确的是()A.点O不在直线AC上B.图中共有5条线段C.射线AB与射线BC是指同一条射线D.直线AB与直线CA是指同一条直线3.下列有关作图的叙述中正确的是()A.延长射线OAB.延长直线ABC.画直线AB=3 cmD.以上都不对4.在碧波荡漾的湖面上,有三只美丽的天鹅正在水中嬉戏,这三只天鹅可以确定的直线有()A.3条B.0条或1条C.1条或3条D.0条5.平面上不重合的两个点确定一条直线,不同的三个点最多可确定3条直线,若平面上不同的n个点最多可确定28条直线,则n的值是()A.6B.7C.8D.9二、填空题6.如图,线段AB上有C,D两点,则图中共有线段条,分别是___________________.7.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段条.三、解答题8.在如图的“金鱼”中,含有哪些可以用图中字母表示的线段、射线和直线?试写出来.9.如图,已知平面内有四个点A,B,C,D,根据下列语句画图:(1)画直线AB;(2)画射线DC;(3)直线AD,BC相交于点E;(4)连接AC,BD相交于点F.10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”应写在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2 017”在哪条射线上?第2课时比较线段的长短【课前预习】1.在数学中,我们常限定用和作图,这就是尺规作图.2.比较线段的长短的方法:(1)直接观察法;(2);(3).3.把一条线段分成的两条线段的点叫做线段的中点.4.线段的性质:两点的所有连线中,线段.简单说成:两点之间,线段.连接两点间的线段的长度,叫做这两点的.【当堂演练】1.如图,小张和小李同时以相同的速度从A村庄到B村庄办事,不过小张是从A村庄直接到B村庄,小李则从A村庄经过C村庄到B村庄,则()A.小张先到B.小李先到C.他们同时到D.不能确定谁先到2.如图,下列各式中错误的是()A.AB=AD+DBB.CB=AB-ACC.CB-DB=CDD.CB-DB=AC3.A,B,C三点在同一条直线上,M,N分别为AB,BC的中点,且AB=60,BC=40,则MN的长为()A.30B.30或10C.50D.50或104.两根木条,一根长6 cm,一根长8 cm,将它们的一端重合,放在同一条直线上,此时两根木条的中点间的距离是cm.5.某公司员工分别住在A,B,C三个住宅区,A区有30人,B区有30人,C区有10人,三个区在同一条直线上,如图所示.该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,停靠点的位置应设在区.6.如图,已知线段a,b,用圆规和直尺作线段,使它等于2a-2b.7.已知A,B,C三点在同一直线上,若线段AB=60,其中点为M;线段BC=20,其中点为N,求MN的长.【课后巩固】一、选择题1.如图,若B 是AC 的中点,C 是AD 的中点,则下列说法错误的是( )A.AB =BCB.AC =CDC.AB =12CDD.AB =13AD2.已知线段AB ,延长AB 到C ,使BC =2AB ,又延长BA 到D ,使DA =12AB ,那么( )A.BD =34BCB.DC =52ABC.DA =12BCD.BD =43AB3.如图,一根长12 cm 的木棒,棒上有两个刻度,把它作为尺子,量一次要量出一个长度,能量出的长度有( )A.7个B.6个C.5个D.4个 二、填空题4.如图,点C 分AB 为2∶3,点D 分AB 为1∶4,若AB 为5 cm ,则AC = cm ,BD = cm ,CD = cm.5.已知线段AB =8 cm ,C 是AB 上任意一点,其中M 是BC 的中点,N 是AC 的中点,则AN +BM = cm.6.在数轴上,点A 表示-16,线段AB 在数轴上,点B 表示数 时,使得线段AB =2 017.三、解答题7.当一条铁路铺设到崇山峻岭之中,往往是开凿隧道,而不是从山的旁边绕过去,你知道这是什么原因吗?请你用所学的数学知识解释一下.8.如图,已知线段a ,b ,c ,用圆规和直尺作线段,使它等于2a +b -c.9.如图,已知线段AB=8 cm,延长AB到点C,使AC=15 cm,D是AB的中点,E是AC 的中点,求DE.10.已知:A,B,C三点在同一直线上,点M,N分别是线段AC,BC的中点.(1)如图,点C是线段AB上一点,①当AC=8 cm,CB=6 cm时,则线段MN的长度为cm;②当AB=a cm时,求线段MN的长度,并用一句简洁的话描述你的发现;(2)若C为线段AB延长线上的一点,则第(1)题第②小题中的结论是否仍然成立?请你画出图形,并说明理由.。

《4.2.1直线、射线、线段》练习题1

《4.2.1直线、射线、线段》练习题1

4.2线段、射线、直线一、选择题(每小题4分,共12分)1.如图,林林的爸爸只用两枚钉子就把一根木条固定在墙上,下列语句能解释这个原理的是()A.木条是直的B.两点确定一条直线C.过一点可以画无数条直线D.一个点不能确定一条直线2.下列语句正确的是()A.画直线AB=10cmB.确定O为直线l的中点C.画射线OB=3cmD.延长线段AB到点C,使得BC=AB3.三条互不重合的直线的交点个数可能是()A.0,1,3 B.2,3 C.0,1,2,3 D.0,1,2二、填空题(每小题4分,共12分)4.如图,写出其中能用P,A,B,C中的两个字母表示的不同射线.5.如图,将射线OA反向延长得射线,线段CD向延长得直线CD.6.京石高铁运行途中停靠的车站依次是:北京西站、涿州东站、固城东站、保定东站、定州东站、石家庄机场站、新石家庄站,那么要为这列火车制作的火车票有种.三、解答题(共26分)7.(8分)数一数,图中共有多少条线段?并分别写出这些线段.8.(8分)A,B,C,D四点如图所示,读下列语句,按要求作出图形(不写画法): (1)连接AD,并延长线段DA.(2)连接BC,并反向延长线段BC.(3)连接AC,BD,它们相交于点O.(4)DA延长线与BC反向延长线交于点P.【拓展延伸】9.(10分)动手画一画,再数一数.(1)过一点A能画几条直线?(2)过两点A,B能画几条直线?(3)已知平面上共有三个点A,B,C,过其中任意两点画直线,可画几条?(4)已知平面上共有n个点(n为不小于3的整数),其中任意三个点都不在同一直线上,那么连接任意两点,可画多少条直线?答案解析1.【解析】选B.根据两点确定一条直线,故选B.2.【解析】选D.A,直线无限长;B,直线不能度量,没有中点;C,射线可向一方无限延长;D,延长线段AB到点C,使得BC=AB,正确.3.【解析】选C.分四种情况:1.三条直线平行,有0个交点;2.三条直线相交于同一点,有1个交点;3.一条直线截两条平行线有2个交点;4.三条直线两两相交有3个交点.4.【解析】图形中能用P,A,B,C中的两个字母表示的不同射线有:射线PA 、射线PB 、射线PC 、射线AB 、射线BC 、射线BA 、射线CB .答案:射线PA 、射线PB 、射线PC 、射线AB 、射线BC 、射线BA 、射线CB5.【解析】将射线OA 反向延长得射线OB,线段CD 向两方延长得直线CD .答案:OB 两方6.【解析】画一条直线,在直线上依次取A,B,C,D,E,F,G 七个点,它们依次表示北京西站、涿州东站、固城东站、保定东站、定州东站、石家庄机场站、新石家庄站.点A 分别与B,C,D,E,F,G 形成6条线段;点B 分别与C,D,E,F,G 形成5条线段;点C 分别与D,E,F,G 形成4条线段;点D 分别与E,F,G 形成3条线段;点E 分别与F,G 形成2条线段;点F 与G 形成1条线段,所以直线上共有线段的条数是6+5+4+3+2+1=21,考虑往返情况,所以应制作火车票21×2=42(种).答案:42【知识拓展】若一条直线上有n 个点,那么以这n 个点中的任意两点为端点的线段共有(n-1)+(n-2)+…+2+1=21n (n-1)(条). 7.【解析】由图形得:共有10条线段,分别为:线段AB 、线段BC 、线段CD 、线段DA 、线段AC 、线段AO 、线段CO 、线段BD 、线段BO 、线段DO .8.【解析】如图所示.9.【解析】(1)过一点A 能画无数条直线.(2)过两点A,B 只能画一条直线.(3)①若三点共线则可画一条,②若三点不共线则可画三条.故可画1条或3条.(4)根据过两点的直线有1条,过不在同一直线上的三点的直线有3条,过任意三点都不在一条直线上的四点的直线有6条,按此规律由特殊到一般可得过任意三个点都不在同一直线上的n 个点共能画21n (n-1)条直线.。

人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案

人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案

人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案一、单选题1.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A.线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线2.M、N两点的距离是20厘米,有一点P,如果PM+PN=30厘米,那么下面结论正确的是 ( ) A.点P必在线段MN上B.点P必在直线MN外C.点P必在直线MN上D.点P可能在直线MN上,也可能在直线 MN外3.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm4.如图,在数轴上,点A、B分别表示a、b,且,若,则点A表示的数为()A.B.0 C.3 D.5.杭衢高铁线上,要保证衢州、金华、义乌、诸暨、杭州每两个城市之间都有高铁可乘,需要印制不同的火车票()A.20种B.15种C.10种D.5种6.如图,点A、B在数轴上所表示的数分别是2和5,若点C与A、B在同一条数轴上且AC-AB=m(m >0),则点C所表示的数为()A.B.C.或D.或7.已知数轴上的三点A,B,C所对应的数a,b,c满足,和,那么线段AB与BC的大小关系是()A.B.C.D.不能确定8.数轴上,点对应的数是,点对应的数是,点对应的数是0.动点、从、同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是()A.B.C.D.二、填空题9.一条直线上有n个不同的点,则该直线上共有线段条.10.已知线段AB=3cm,点C在直线AB上,AC= AB,则BC的长为.11.数轴上,如果点 A所表示的数是 ,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是.12.如图,点C,D为线段AB上两点,AC+BD=a,若AD+BC= AB,用含a代数式表示CD的长为.13.体育课上,小聪、小明、小智、小慧分别在点O处进行了一次铅球试投,若铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是三、解答题14.已知,点A、B、C在同一直线上,且,点、分别是线段、的中点,求线段的长.15.如图,C,D两点将线段AB分成2:3:4三部分,E为线段AB的中点,AD=10cm.求:(1)线段AB的长;(2)线段DE的长.16.如图,点C在线段AB上,点M,N分别是AC,BC的中点.(1)若AC=24cm,CB=16cm,求线段MN的长.(2)若C为线段AB上任一点,且满足AC+BC=x(cm),其他条件不变,你能猜想MN的长度吗?请说明理由.(3)若点C在线段AB的延长线上,且满足AC﹣BC=y(cm),点M,N分别为AC,BC的中点,请画出图形,并求MN的长度.17.我们知道,若有理数、表示在数轴上得到点、且,则点点与点之间的距离为,现已知数轴上三点A、B、C,其中A表示的数为,B表示的数为3,C与A的距离等于m,C与B的距离等于n,请解答下列问题:(1)若点C在数轴上表示的数为,求的值(2)若,请你写出点C表示的数。

人教版七年级数学上册 4.2《直线、射线、线段》 一课一练 (含答案)

人教版七年级数学上册   4.2《直线、射线、线段》  一课一练 (含答案)

4.2《直线、射线、线段》习题一、选择题1.下列说法中,正确的是( ) A .延长射线OAB .作直线AB 的延长线C .延长线段AB 到C ,使BC=ABD .画直线AB=3cm2.下列说法正确的是( )A .经过三点中的每两个,共可以画三条直线B .射线AP 和射线PA 是同一条射线C .联结两点的线段,叫做这两点间的距离D .两条直线相交,只有一个交点 3.下列画图的画法语句正确的是( ) A .画直线5MN =厘米B .画射线4OA =厘米C .在射线OA 上截取2AB =厘米D .延长线段AB 到点C ,使BC AB = 4.根据下图,下列说法中不正确的是( )A .图①中直线l 经过点AB .图②中直线a ,b 相交于点AC .图③中点C 在线段AB 上D .图④中射线CD 与线段AB 有公共点5.A 、B 、C 是平面内任意三点、经过任意两点画直线,可以画出的直线有( ) A .1条B .3条C .1条或3条D .2条或3条6.如图,点C 是线段AB 的中点,点D 是线段BC 的中点,下列等式正确的是( )A .CD =AC -DB B .CD =AB -DBC .AD = AC -DBD .AD =AB -BC7.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是( ) ①把笔尖看成一个点,当这个点运动时便得到一条线; ②把弯曲的公路改直,就能缩短路程;③植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上. A .①B .②C .③D .②③8.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-ABD .AD=(CD+AB) 9.如图,点C 在线段AB 上,点E 是AC 中点,点D 是BC 中点.若ED =6,则线段AB 的长为( )A .6B .9C .12D .1810.已知线段 AB ,延长 AB 到 C ,使 BC =2AB ,又延长 BA 到 D ,使DA= AB ,那么( )A .DA =BCB .DC =AB C .BD=AB D .BD=BC 11.观察下列图形,并阅读图形下面的相关文字,如图所示:两条直线相交,三条直线相交,四条直线相交,最多有一个交点,最多有三个交点;最多有6个交点,像这样,10条直线相交,最多交点的个数是( )A .40个B .45个C .50个D .55个12.数轴上点所表示的数是整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为18厘米的线段AB ,则线段AB 盖住的整点数是( ) A .17个或18个 B .17个或19个 C .18个或19个 D .18个或20个13.已知线段AB =4cm ,点C 是直线AB 上一点(不同于点A 、B ).下列说法:①若点C 为线段AB 的中点,则AC =2cm ;②若AC =1cm ,则点C 为线段AB 的四等分点;③若AC +BC =4cm ,则点C 一定在线段AB 上;④若AC +BC >4cm ,则点C 一定在线段AB 的延长线上;⑤若AC +BC =8cm ,则AC =2cm .其中正确的个数有()12121212124334A .1个B .2个C .3个D .4个14.如图,数轴上的点和点分别表示0和10,点是线段上一动点.点沿以每秒2个单位的速度往返运动1次,是线段的中点,设点运动时间为秒(不超过10秒).若点在运动过程中,当时,则运动时间的值为( )A .秒或秒B .秒或秒或或秒 C .3秒或7秒 D .3秒或或7秒或秒二、填空题15.如图所示,建筑工人砌墙时,经常在两个墙角的位置分别插一根小桩,然后拉一条直的参照线,可以这样做的数学道理_____________.16.将线段移到线段,使端点与重合,线段与叠合,如果点落在的延长线上,那么______.(填“”、“”或“”).17.如图,点A ,B ,C ,D ,E ,F 都在同一直线上,点B 是线段AD 的中点,点E 是线段CF 的中点,有下列结论:①AE =(AC +AF ),②BE =AF ,③BE =(AF ﹣CD ),④BC =(AC ﹣CD ).其中正确的结论是_____(只填相应的序号).18.点分线段为两部分,点分线段为两部分,已知,则的长为_______. 三、解答题 19.作图题(1)已知如图,平面上四点A 、B 、C 、D , ①画直线AD ;②画射线BC ,与AD 相交于O ;O A P OA P O A O →→B OA P t t P 2PB =t 32723272132172132172AB CD A C AB CD B CD AB CD ><=121212121P AB 5:72P AB 5:111210cm PP =AB cm③连接AC、BD相交于点F .(2)如图,已知线段a,b,用尺规作一条线段,使它等于2a-b .(不要求写作法,保留作图痕迹)20.小明同学对平面图形进行了自主探究;图形的顶点数A,被分成的区域数B,线段数C三者之间是否存在确定的数量关系.如图是他在探究时画出的5个图形.(1)根据图完成表格:之间的数量关系是;(3)计算:已知一个平面图形有24条线段,被分成9个区域,则这个平面图形的顶点有个.21.如图:(1)图中共有几条直线?请表示出来.(2)图中共有几条线段?写出以点B 为端点的所有线段.22.如图所示,A 、B 、C 三棵树在同一直线上,量得树A 与树B 的距离为4m ,树B 与树C 的距离为3m ,小亮正好在A 、C 两树的正中间O 处,请你计算一下小亮距离树B 多远?23.如图,点在线段上,点分别是的中点. (1)若,求线段MN 的长;(2)若为线段上任一点,满足,其它条件不变,你能求出的长度吗?请说明理由.(3)若在线段的延长线上,且满足分别为 AC 、BC 的中点,你能求出的长度吗?请画出图形,写出你的结论,并说明理由.24.如图所示,把一根细线绳对折成两条重合的线段,点在线段上,且.C AB ,M N AC BC 、9,6AC cm CB cm ==C AB AC CB acm +=MN C AB ,,AC BC bcm M N -=MN AB P AB :2:3AP BP=(l)若细线绳的长度是,求图中线段的长;(2)从点处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为,求原来细线绳的长.25.如图,点在线段上,是线段的中点.(1)在线段上,求作点,使. (要求:尺规作图,不写作法保留作图痕迹) (2)在(1)的条件下,, ①若,求的长;②若点在线段上,且,请你判断点是哪条线段的中点,并说明理由.26.如图,线段AB 上有一点O ,AO =6㎝,BO =8㎝,圆O 的半径为1.5㎝,P 点在圆周上,且∠POB =30°.点C 从A 出发以m cm/s 的速度向B 运动,点D 从B 出发以n cm/s 的速度向A 运动,点E 从P 点出发绕O 逆时针方向在圆周上旋转一周,每秒旋转角度为60°,C 、D 、E 三点同时开始运动.(1)若m =2,n =3,则经过多少时间点C 、D 相遇;(2)在(1)的条件下,求OE 与AB 垂直时,点C 、D 之间的距离;(3)能否出现C 、D 、E 三点重合的情形?若能,求出m 、n 的值;若不能,说明理由.100cm AP P 60cm C AB OBC CO E 2CE AC =12AB =2BO EO =AC D BO 2912OD AC =-E答案一、选择题1.C.2.D.3.D.4.C.5.C.6.A.7.C.8.D.9.C.10.D11.B 12.C13.C14.B二、填空题15.两点确定一条直线16.>.17.①③④18.96.三、解答题19.解:(1)①②③作图如图所示:(2)依据分析,作图,如图所示:则线段OC=2a-b,20.(1)观察图形可知:平面图形(1)中顶点数A为4平面图形(2)中区域数B为4平面图形(3)中线段数C为15故答案为4、4、15;(2)由题(1)得到的结果,观察表格数据可知:+-=平面图形(1)中顶点数、区域数、线段数满足:4361平面图形(2)中顶点数、区域数、线段数满足: 平面图形(3)中顶点数、区域数、线段数满足:猜想:一个平面图形中顶点数A ,区域数B ,线段数C 之间的数量关系为 故答案为:;(3)已知一个平面图形有24条线段,被分成9个区域, 即,代入中 解得:则这个平面图形的顶点有16个 故答案为16.21.解:(1)图中共有4条直线;直线AB 直线AC 直线AD 直线BF ; (2)图中共有13条线段;其中以点B 为端点的线段有BA 、线段BE 、线段BF 、线段BC 、线段BD . 22.AC =AB +BC =7.设A ,C 两点的中点为O ,即AO =AC =3.5,则OB =AB ﹣AO =4﹣3.5=0.5.答:小亮与树B 的距离为0.5m .23.解:(1)点M 、N 分别是AC 、BC 的中点,∴CM=AC=4.5cm ,CN=BC=3cm , ∴MN=CM+CN=4.5+3=7.5cm . 所以线段MN 的长为7.5cm . (2)MN 的长度等于a , 根据图形和题意可得:MN=MC+CN=AC+BC=(AC+BC)=a ;(3)MN 的长度等于b , 5481+-=106151+-=1A B C +-=1A B C +-=24,9C B ==1A B C +-=16A =121212121212121212根据图形和题意可得: MN=MC-NC=AC-BC=(AC-BC)=b .24.解:(1)由题意得,所以图中线段的长为.(2)如图,当点A 为对折点时,最长的一段为PAP 段,,所以细线长为;如图,当点B 为对折点时,最长的一段为PBP 段,,所以细线长为,综合上述,原来细线绳的长为或. 25.(1)如图121212121100502AB cm =⨯=:2:3,AP BP AP BP AB =+=22023ABAP cm ∴=⨯=+AP 20cm 260,30AP cm AP cm ∴=∴=:2:3AP BP =303452BP cm ∴=⨯=304575AB AP BP cm ∴=+=+=2275150AB cm =⨯=260,30BP cm BP cm ∴=∴=:2:3AP BP =302203AP cm ∴=⨯=203050AB AP BP cm ∴=+=+=2250100AB cm =⨯=150cm 100cm(2)①∵是线段的中点 ∴∵, ∴ ∴ ∴ ∴ ∴ ②E 是线段CD 的中点,理由如下:∵ ∴ ∵ ∴ 即 ∵∴2()OD CE CE OE CE OE =-+=- ∴ 即∴E 是线段CD 的中点26.解:(1)设经过秒C 、D 相遇, 则有,, 解得:; 答:经过秒C 、D 相遇;O BC OB OC =2BO EO =2CE AC =22EO AC OE =+2EO AC =4OB OC AC ==912AB AC ==43AC=2912OD AC =-962OD AC =-12AB =9122OD AC AC OC =--4OD AC OC =-2CE AC =OD OE CE +=ED CE =x 23=14x x +14=5x 145(2)①当OE 在线段AB 上方且垂直于AB 时,运动了1秒, 此时,,②当OE 在线段AB 下方且垂直于AB 时,运动了4秒, 此时,;(3)能出现三点重合的情形;①当点E 运动到AB 上且在点O 左侧时,点E 运动的时间, ∴,; ②当点E 运动到AB 上且在点O 右侧时,点E 运动时间, ∴,.1421319CD cm =-⨯-⨯=1424346CD cm =-⨯-⨯=18030 2.560t -==6 1.592.55m -==8 1.5192.55n +==36030 5.560t -==6 1.5155.511m +==8 1.5135.511n -==。

《4.2 直线、射线、线段》测试卷(1)

《4.2 直线、射线、线段》测试卷(1)

《4.2 直线、射线、线段》测试卷(1)一.选择题(共10小题)1.下列各图中所给的线段、射线、直线能相交的是()A.B.C.D.2.如图两条直线相交,最多有一个交点,三条直线相交,最多有三个交点,四条直线相交最多有()个交点,如果是100条直线相交最多有()个交点.A.4,4950B.4,5050C.6,4950D.6,50503.在下列现象中,体现了基本事实“两点确定一条直线”的有()A.1个B.2个C.3个D.4个4.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山5.如图,在公路MN两侧分别有A1,A2…A7,七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③6.如图,已知线段AB=10cm,点C是AB上任一点,点M、N分别是AC和CB的中点,则MN的长度为()A.6cm B.5cm C.4cm D.3cm7.在开会前,工作人员进行会场布置,他们在主席台上拉了一条绳子,然后以“准绳”为参考摆放整齐的茶杯,这样做的数学原理是()A.拉紧的绳子是直的B.过一点可以画无数条直线C.两点确定一条直线D.一个点不能确定一条直线8.如图,C、D是线段AB上两点,且CD=3AD﹣2BC,则AC与BD的关系是()A.AC=BD B.2AC=BD C.3AC=2BD D.4AC=3BD 9.如图,小华的家在A处,书店在B处,星期日小华到书店买书,他想尽快地赶到书店,则最近的路线是()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B 10.如图,体育课上,四名同学从同一起点起跳,点A,B,C,D分别是小阳、小月、小红、小常的落点,则表现最好的同学是()A.小阳B.小月C.小红D.小常二.填空题(共5小题)11.如图,四点A、B、C、D在一直线上,若AC=12cm,BD=8cm,且AD=3BC,则AB =cm,BC=cm,CD=cm.12.如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如果MC比NC长2cm,AC比BC长.13.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有(只填写序号).14.经过平面上的4个点,可以画条直线.15.用一根钉子钉木条时,木条会来回晃动,用数学知识说明理由;;用两根钉子钉木条时,木条会被固定不动,用数学知识说明理由;;“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是.三.解答题(共5小题)16.如图,DB=3,AC=18,D为线段AC的中点,求线段BC的长度.17.已知线段AB=12,CD=6,线段CD在直线AB上运动(A在B、C左侧,C在D左侧).(1)M、N分别是线段AC、BD的中点,若BC=4,求MN;(2)当CD运动到D点与B点重合时,P是线段AB延长线上一点,下列两个结论:①是定值;②是定值,请作出正确的选择,并求出其定值.18.(1)如图1,从A到C有两条路,你会选择哪条?请说明理由.(2)如图2,从A到C还是有两条路,这次你会选择哪条,请说明理由.19.按要求作图,如图,在同一平面内有四个点A、B、C、D.①画射线CD②画直线AD③连接AB④直线BD与直线AC相交于点O.20.平面上有五个点,过其中任意两点画一条直线,最多能得到多少条直线?请画出图形.分析:五个点有四种不同的关系:①五个点在同一条直线上;②有四个点在同一条直线上;③有三个点在同一条直线上;④五个点中任意三个点都不在同一条直线上.。

4.2.1直线射线线段(1)

4.2.1直线射线线段(1)

m
实战演练
往返温州、宁波两地的火车,中途需要停靠 雁荡、台州、奉化三个站点,根据你所学的知 识回答: 需要制定多少种不同的票价?
答:10种
温A州 雁B荡 C台州 O
D 奉化 E 宁波
实际问题
转化为
数学问题
ABCFra bibliotek射线BA与射线AB是同一条射线吗?
概念对比
1.如图,若射线AB上有一点C,下列与射线AB是同一
条射线的是( B )
(A)射线BA (C)射线BC
(B)射线AC
(D)射线CB A B C
2.如图,下列语句表述错误的是( C )
A.点A在直线m上
n
B.直线n经过点A
C.点B在直线n上
B
A
D.直线m不经过B点
概念对比
已知线段AB,你能由线段AB得到射线AB和直线 AB吗?
线段AB
A
B
线段和射线都是直线的一部分.
概念对比
类型 线段 射线 直线
端点
延伸方向
有2个端点 不向任何一方延伸
可不可度量 可度量
有1个端点 向一个方向无限延伸 不可度量
无端点 向两个方向无限延伸 不可度量
例题讲解
如图,共有几条直线?几条线段?几条射线?以B 为端点的射线有几条?分别写出来。
相交
b
交点
A
F
点A在直线b外
点A不在直线b上
直线b不经过点A
B
C E
点E在直线b上 直线b经过点E
小试牛刀
按下列语句画出图形 1.直线AB经过点C 2.点A在直线m外 3.直线c与直线b相交于点D
射线 b
射线EF 射线b
F

4.2.1 直线、射线、线段(分层作业)【原卷版】

4.2.1 直线、射线、线段(分层作业)【原卷版】

4.2.1 直线、射线、线段分层作业1.如图,下列说法正确的是()A.点O在射线BA上B.点B是直线AB的端点C.直线AO比直线BO长D.经过A,B两点的直线有且只有一条2.下列说法中正确的是()A.延长直线ABB.反向延长射线ABC.线段AB与线段BA不是同一条线段D.射线AB与射线BA是同一条射线3.如图,下列说法错误的是()A.点A在直线AC上,点B在直线m外B.射线AC与射线CA不是同一条射线C.直线AC还可以表示为直线CA或直线m D.图中有直线3条,射线2条,线段1条4.如图,王伟同学根据图形写出了四个结论:①图中共有4条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC与射线CD是同一条射线;其中结论错误的有()A.1个B.2个C.3个D.4个5.下面说法与几何图形相符的是()A.点P在直线n上B.直线OA与OB都经过点OC.1∠D.直线OA和直线m表示同一条直线∠可以表示成O6.如图,小轩同学根据图形写出了四个结论:①图中共有2条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BD与射线CD是同一条射线.其中结论错误的是()A.①③④B.①②③C.②③④D.①②④+等于()7.平面内两两相交的4条直线,其交点个数最少为m个,最多为n个,则m nA.6 B.11 C.7 D.17个端点.9.如图,点P在直线AB ;点Q在直线AB ,也在射线AB ,但在线段AB的上.10.下列说法:①两点确定一条直线;②射线OA和射线AO是同一条射线;③对顶角相等;④三角形任意两边和大于第三边的理由是两点之间线段最短.正确的序号是.11.有下列语句:①在所有连接两点的线中,直线最短;②线段AB是点A与点B的距离;③取直线AB的中点;④反向延长线段AB,得到射线BA,其中正确的是.12.如图所示,共有直线条,射线条,线段条.13.如图,(1)点B在直线AD ,点F在直线上;(2)点C在直线AD ,点E是直线和的交点;(3)经过点C的直线共有条,它们分别是.14.判断下列说法是否正确:(1)线段AB和射线AB都是直线AB的一部分(2)直线AB和直线BA是同一条直线;(3)射线AB和射线BA是同一条射线;(4)把线段向一个方向无限延伸可得到射线,向两个方向无限延伸可得到直线.15.根据下列语句画出图形.(1)点A在直线l上,点B在直线l外;(2)过点N画射线MN;(3)画一条与线段AB相交的直线CA.16.如图,已知A,B,C、D四个点,按要求画出图形.(1)画直线AB,CD相交于点P;(2)画射线AC;(3)连接BD;(4)图中共有几条线段?17.(尺规作图,保留作图痕迹)如图,已知四点A,B,C,D,(1)作线段AB,直线CD,射线CB;(2)反向延长线段AB到E,使AE BC;(3)在图中确定点O,使点O到A,B,C,D距离之和最小.18.往返于甲、乙两市的列车,中途需停靠4个站,如果每两站的路程都不相同,这两地之间有多少种不同的票价()A.15 B.30 C.20 D.1019.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2017厘米的线段AB,则线段AB盖住的整点共有()个A.2018或2019 B.2017或2018 C.2016或2017 D.2015或201620.如图,在线段MN上有P、Q两点,PQ长度为2cm,MN长为整数,则以M、P、Q、N为端点的所有线段长度和可能为()A.19cm B.20cm C.21cm D.22cm车票.22.同一平面内有四点A,B,C,D,经过每两点作一条直线,则可以作条直线.23.平面上有n条直线,其中没有两条直线互相平行(即每两条直线都相交),也没有三条或三条以上的直线通过同一点.试求:(1)这n条直线共有多少个交点?(2)这n条直线把平面分割为多少块区域?24.如图,如果直线l上依次有3个点A、B、C,那么(1)在直线l上共有多少射线?多少条线段?(2)在直线l上增加一个点,共增加了多少条射线?多少条线段?(3)如果在直线l上增加到n个点,则共有多少条射线?多少条线段?。

《4.2 直线、射线、线段》同步训练卷(1)

《4.2 直线、射线、线段》同步训练卷(1)

《4.2 直线、射线、线段》同步训练卷(1)一、选择题1.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.2.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段3.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚4.A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不对5.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段6.如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个7.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是()①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.①③B.②④C.①④D.②③8.下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM等于线段BM,则点M是线段AB的中点;⑤连接两点的线段叫做这两点之间的距离.其中正确的个数为()A.1个B.2个C.3个D.4个9.如图,从A地到B地有四条路线,由上到下依次记为路线①、②、③、④,则从A地到B地的最短路线是路线()A.①B.②C.③D.④10.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm二、填空题11.已知点B在直线AC上,AB=8cm,AC=18cm,P、Q分别是AB、AC的中点,则PQ 为cm.12.如图,点C、D在线段AB上,点C为AB中点,若AC=5cm,BD=2cm,则CD=cm.13.如图,用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是.14.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.15.开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为.三、解答题16.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.17.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.18.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE=AB+BC;(4)在线段BD上取点P,使P A+PC的值最小.19.已知平面上点A,B,C,D(每三点都不在一条直线上).(1)经过这四点最多能确定条直线.(2)如图这四点表示公园四个地方,如果点B,C在公园里湖对岸两处,A,D在湖面上,要从B到C筑桥,从节省材料的角度考虑,应选择图中两条路中的哪一条?如果有人想在桥上较长时间观赏湖面风光,应选择哪一条?为什么?20.如图,在四边形ABCD内找一点O,使它到四边形四个顶点的距离的和(OA+OB+OC+OD)最小,并说出理由.。

射线直线线段练习题

射线直线线段练习题

射线、直线、线段练习题一、选择题1. 下列说法正确的是:A. 射线有一个端点,无限长B. 直线有两个端点,有限长C. 线段有一个端点,有限长D. 射线与直线长度相等2. 在下列图形中,哪个是线段?A. 两条平行线B. 一个端点,向一方无限延伸C. 两个端点,有限长D. 一个端点,向两边无限延伸A. 两个端点,有限长B. 一个端点,向一方无限延伸C. 两个端点,无限长D. 无端点,无限长二、填空题1. 线段是由两个______和它们之间的______组成的。

2. 射线有一个______,向一方______延伸。

3. 直线无______,______延伸。

三、判断题1. 射线的长度大于线段的长度。

()2. 直线比射线更长。

()3. 线段有两个端点,有限长。

()四、连线题请将下列射线、直线、线段的定义与相应的图形连线:1. 直线:______2. 射线:______3. 线段:______五、作图题1. 画出一条线段,长度为5厘米。

2. 画出一条射线,从一个端点出发,经过点A。

3. 画出一条直线,使它与线段AB平行。

六、简答题1. 请简要说明射线、直线和线段的特点。

2. 如何用直尺和三角板画出一条指定长度的线段?3. 在日常生活中,你能找到哪些射线、直线和线段的例子?请分别列举。

七、应用题1. 在平面直角坐标系中,点A(2,3)和点B(5,3)是线段AB的两个端点,求线段AB的长度。

2. 已知射线OC从点O(0,0)出发,经过点C(4,0),求射线OC上距离点O 6个单位长度的点D的坐标。

3. 在直角坐标系中,直线l经过点P(1,2)和点Q(4,6),请写出直线l的方程。

八、拓展题1. 如果一条射线逆时针旋转90度,它变成了什么?2. 在平面上,两条直线相交,形成的四个角中,有几个角是相等的?3. 有一根无限长的直线,你在上面任意取两点,这两点之间的是什么?九、探究题1. 如何证明两条平行线之间的距离处处相等?2. 在同一平面内,如果两条直线不相交,那么它们一定是平行的吗?3. 请设计一个实验,证明线段的长度是可以通过测量得到的。

4.2.1直线、射线、线段(一)

4.2.1直线、射线、线段(一)

射线、线段都是直线的一部分。
类型 端点数
延伸
度量
线段
2个

可度量
射线
1个
向一个方向 无限延伸
不可度量
直线
无端点
向两个方向无限 延伸
不可度量
联系:线段向一端无限延长形成射线,向两端无限延长形成直线
生活中有哪些事物可以作为线段、 射线、直线的原型?试举例说明.
线段:灯管、桌子的边沿……. 射线:把灯泡看成一点,光线射向远方…….. 直线:笔直的公路、数轴…….
经过两点有一条直线,并且只有一条直 线可以用来说明生活中的哪些现象?
两点确定一条直线的应用:
1、植树时,只要定出两个树坑的位 置就能确定同一行的树坑所在的直线。
1.你知道吗?56根民族团结柱将永久矗立在天安 门广场。这些团结柱在放置时,只要确定2根团 结柱的位置,就能确定所有团结柱所在的直线!
①画直线AB ②画线段AC ③画射线AD、DC、CB
随堂练习一
1. 按下列语句画出图形.
(1)直线EF经过点C (2)经过点O的三条线段a、b、c (3)线段AB、CD相交于点B
E
FC
随堂练习一
(2)经过点O的三条线段a、b、c c a o b
随堂练习一 (3)线段AB、CD相交于点B
D A
B C
2.建筑工人在砌墙时会在墙的两头分别 固定两枚钉子,然后在钉子之间拉一条 绳子,定出一条直的参照线,这样砌出 的墙就是直的。
3.经过刨平的木板上的两个点,能弹出一条笔直 的墨线,而且只能弹出一条这样的墨线(如图), 请说明理由。
2、射击的时候,你知道是如何瞄准目标的吗?
直线的表示法
直线
A
B

人教版数学七年级上册 第4章 4.2直线、射线、线段同步练习试题(一)

人教版数学七年级上册 第4章 4.2直线、射线、线段同步练习试题(一)

直线、射线、线段同步练习试题(一)一.选择题1.平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外2.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直3.有下列生活、生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设.②用两个钉子就可以把木条固定在墙上.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①④B.②④C.①②D.③④4.已知点A,B,C在同一直线上,若AB=20cm,AC=30cm,点M、N分别是线段AB、AC中点,求线段MN的长是()A.5cm B.5cm或15cm C.25cm D.5cm或25cm 5.已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC=BC =AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③6.如图,点C是AB的中点,点D是BC的中点,下列结论:①CD=AC﹣DB,②CD=AB,③CD=AD﹣BC,④BD=2AD﹣AB,正确的有()A.1个B.2个C.3个D.4个7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因()A.两点之间,线段最短B.过一点有无数条直线C.两点确定一条直线D.两点之间线段的长度,叫做这两点之间的距离8.如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处9.老爷爷从家到超市有甲、乙、丙三条路可以选择,在不考虑其它因素的情况下,他选择了乙路前往,则其中蕴含着的数学道理是()A.两点确定一条直线B.两点之间线段最短C.连结直线外一点与直线上各点的所有线段中,垂线段最短D.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线10.如图所示,某公司员工住在A,B,C三个住宅区,已知A区有2人,B区有7人,C 区有12人,三个住宅区在同一条直线上,且AB=150m,BC=300m,D是AC的中点.为方便员工,公司计划开设通勤车免费接送员工上下班,但因为停车位紧张,在A,B,C,D四处只能设一个通勤车停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠站应设在()A.A处B.B处C.C处D.D处二.填空题11.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.12.点A到原点的距离为4,且位于原点的左侧,若一个点从A处向右移动2个单位长度,再向左移动7个单位长度,此时终点所表示的数为.13.如图,AE⊥AB于A点,DB⊥AB于B点,点P为线段AB上任意一点,若AE=2,DB =4,AB=8,则PE+PD的最小值是.14.曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好的观赏风光,如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是.15.如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是.三.解答题16.如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.17.如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP =2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.18.已知平面上点A,B,C,D(每三点都不在一条直线上).(1)经过这四点最多能确定条直线.(2)如图这四点表示公园四个地方,如果点B,C在公园里湖对岸两处,A,D在湖面上,要从B到C筑桥,从节省材料的角度考虑,应选择图中两条路中的哪一条?如果有人想在桥上较长时间观赏湖面风光,应选择哪一条?为什么?19.已知如图,A,B,C三点在同一直线上,AB=6,BC=2.(1)已知点C在直线AB上,根据条件,请补充完整图形,并求AC的长;(2)已知点C在直线AB上,M,N分别是AB,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AC的长存在的数量关系;(3)已知点C在直线AB上,M,N分别是AC,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AB的长存在的数量关系.参考答案与试题解析一.选择题1.【解答】解:如图,在平面内,AB=10,∵AC=7,BC=3,∴点C为以A为圆心,7为半径,与以B为圆心,3为半径的两个圆的交点,由于AB=10=7+3=AC+BC,所以,点C在线段AB上,故选:A.2.【解答】解:A、根据两点确定一条直线,故本选项不符合题意;B、确定树之间的距离,即得到相互的坐标关系,故本选项不符合题意;C、根据两点确定一条直线,故本选项不符合题意;D、根据两点之间,线段最短,故本选项符合题意.故选:D.3.【解答】解:根据两点之间,线段最短,得到的是:①④;②③的依据是两点确定一条直线.故选:A.4.【解答】解:(1)当点C位于点B的右边时,MN=(AC﹣AB)=5cm,(2)当点C位于点A的左边时,MN=(AC+AB)=25cm故线段MN的长为5cm或25cm.故选:D.5.【解答】解:①点C在线段AB上,且AC=BC,则C是线段AB中点故①不符合题意;②AB=2BC,C不一定是线段AB中点故②不符合题意;③AC=BC=AB,则C是线段AB中点,故③符合题意.故选:B.6.【解答】解:∵点C是AB的中点,点D是BC的中点,∴AC=BC=AB,CD=BD=BC=AC,∴①CD=BC﹣DB=AC﹣DB,正确;②CD=BC=AB,正确;③CD=AD﹣AC=AD﹣BC,正确;④BD=AB﹣AD≠2AD﹣AB,错误.所以正确的有①②③3个.故选:C.7.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因是两点之间,线段最短,故选:A.8.【解答】解:当停靠点在A区时,所有员工步行到停靠点路程和是:20×1500+45×2500=142500m;当停靠点在B区时,所有员工步行到停靠点路程和是:15×1500+45×1000=67500m;当停靠点在C区时,所有员工步行到停靠点路程和是:15×2500+20×1000=57500m;当停靠点在D区时,设距离B区x米,所有员工步行到停靠点路程和是:15×(1500+x)+20x+45(1000﹣x)=﹣10x+67500,由于k=﹣10,所以,x越大,路程之和越小,∴当停靠点在C区时,所有员工步行到停靠点路程和最小.故选:C.9.【解答】解:图中三条路线,甲和丙是曲线,乙是线段,由两点间线段最短,∴乙最短,故选:B.10.【解答】解:BD=(150+300)÷2﹣150=75(m),以点A为停靠点,则所有人的路程的和=7×150+12×(150+300)=6450m,以点B为停靠点,则所有人的路程的和=2×150+12×300=3900m,以点C为停靠点,则所有人的路程的和=2×(150+300)+7×300=3000m,以点D为停靠点,则所有人的路程的和=2×(150+300)÷2+7×75+12×(150+300)÷2=3675m.故停靠点的位置应设在点C.故选:C.二.填空题11.【解答】解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE 共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.12.【解答】解:∵点A到原点的距离为4,且位于原点的左侧,∴点A表示的数为﹣4,∵一个点从A处向右移动2个单位长度,再向左移动7个单位长度,∴﹣4+2﹣7=﹣9,故答案为:﹣9.13.【解答】解:过点D作DT⊥EA交EA的延长线于T,连接DE.∵AE⊥AB,DB⊥AB,DT⊥ET,∴∠B=∠T=∠BAT=90°,∴四边形ABDT是矩形,∴BD=AT=4,AB=DT=8,∴ET=AE+AT=2+4=6,∴DE===10,∵PE+PD≥DE,∴PE+PD≥10,∴PE+PD的最小值为10.14.【解答】解:其中蕴含的数学道理是两点之间线段最短,故答案为:两点之间线段最短.15.【解答】解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.三.解答题16.【解答】解:(1)∵AB=16cm,CD=6cm,∴AC+BD=AB﹣CD=10cm,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=16﹣5=11(cm);(2)∵AB=m,CD=n,∴AC+BD=AB﹣CD=m﹣n,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=m﹣(m﹣n)=.17.【解答】解:(1)∵AB=100=50,AP:BP=2:3,∴AP=20;(2)∵AP:BP=2:3,∴设AP=2x,BP=3x,若一根绳子沿B点对折成线段AB,则剪断后的三段绳子中分别为2x,2x,6x,∴6x=60,解得x=10,∴绳子的原长=2x+2x+6x=10x=100(cm);若一根绳子沿A点对折成线段AB,则剪断后的三段绳子中分别为4x,3x,3x,∴4x=60,解得x=15,∴绳子的原长=4x+3x+3x=10x=150(cm);综上所述,绳子的原长为100cm或150cm.故答案为100cm或150cm.18.【解答】解:(1)经过这四点最多能确定6条直线:直线AB,直线AD,直线BC,直线CD,直线AC,直线BD,(2)从节省材料的角度考虑,应选择图中路线2;如果有人想在桥上较长时间观赏湖面风光,应选择路线1,因为两点之间,线段最短,路线2比路线1短,可以节省材料;而路线1较长,可以在桥上较长时间观赏湖面风光.19.【解答】解:(1)如图,如图1,∵AB=6,BC=2.∴AC=AB+BC=8;如备用图1,AC=AB﹣BC=4.答:AC的长为8或4;(2)如图,∵M,N分别是AB,BC的中点,∴BM=AB=3,BN=BC=1,∴MN=BM+BN=3+1=4,或MN=BM﹣BN=3﹣1=2.答:MN的长为4或2;(3)如图,∵M,N分别是AC,BC的中点,∴MC=AC=4,NC=BC=1,∴MN=MC﹣NC=4﹣1=3。

人教版数学七年级上册:4.2 直线、射线、线段 同步练习(附答案)

人教版数学七年级上册:4.2 直线、射线、线段  同步练习(附答案)

4.2直线、射线、线段第1课时直线、射线、线段1.可近似看作直线的是()A.绷紧的琴弦B.探照灯射出的光线C.孙悟空的金箍棒D.太阳光线2.下列对于如图所示直线的表示,其中正确的是()①直线A;②直线b;③直线AB;④直线Ab;⑤直线Bb.A.①③B.②③C.③④D.②⑤3.下列说法中,正确的是()A.点A在直线M上B.直线AB,CD相交于点MC.直线ab,cd相交于点MD.延长直线AB4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明;用两个钉子把细木条钉在木板上,就能固定细木条,这说明 .5.如图,完成下列填空:(1)直线a经过点,但不经过点;(2)点B在直线上,在直线外;(3)点A既在直线上,又在直线上.6.生活中我们看到手电筒的光线类似于()A.点B.直线C.线段D.射线7.如图所示,A,B,C是同一直线上的三点,下面说法正确的是()A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线8.如图,能用O,A,B,C中的两个字母表示的不同射线有条.9.如图,在直线l上有A,B,C三点,则图中线段共有()A.1条B.2条C.3条D.4条10.如图所示,下列表述正确的是()A.射线ABB.延长线段ABC.延长线段BAD.反向延长线段BA11.经过任意三点中的两点共可以画出()A.一条直线B.一条或三条直线C.两条直线D.三条直线12.如图,对于直线AB,线段CD,射线EF,其中能相交的是()13.下列关于作图的语句中,正确的是()A.画直线AB=10 cmB.画射线OB=10 cmC.已知A,B,C三点,过这三点画一条直线D.画线段OB=10 cm14.直线a上有5个不同的点A,B,C,D,E,则该直线上共有条线段.15.已知平面上四点A,B,C,D,如图:(1)画直线AB,射线CD;(2)直线AB与射线CD相交于点E;(3)画射线AD,连接BC;(4)连接AC,BD相交于点F.16.如图,已知数轴上的原点为O,点A表示3,点B表示-1,回答下列问题:(1)数轴在原点O左边的部分(包括原点)是一条什么线?怎样表示?(2)射线OB上的点表示什么数?(3)数轴上表示不大于3且不小于-1的部分的数是什么图形?怎样表示?17.往返于甲、乙两地的客车,中途有三个站.其中每两站的票价不同.问:(1)要有多少种不同的票价?(2)要准备多少种车票?18.如图:(1)试验观察:如果每过两点可以画一条直线,那么:第①组最多可以画条直线;第②组最多可以画条直线;第③组最多可以画条直线;(2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画条直线;(用含n的代数式表示)(3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握次手.第2课时比较线段的长短1.尺规作图的工具是()A.刻度尺和圆规B.三角板和量角器C.直尺和量角器D.没有刻度的直尺和圆规2.作图:已知线段a,b,画一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)3.为了比较线段AB,CD的大小,小明将点A与点C重合使两条线段在一条直线上,结果点B在CD的延长线上,则()A.AB<CDB.AB>CDC.AB=CDD.无法确定4.已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上5.如图,C是线段AB上的一点,M是线段AC的中点,若AB=8 cm,MC=3 cm,则BC的长是( )A.2 cmB.3 cmC.4 cmD.6 cm 6.如图所示,则:(1)AC =BC + ; (2)CD =AD - ; (3)CD = -BC ; (4)AB +BC = -CD.7.在直线上顺次取A ,B ,C 三点,使得AB =5 cm ,BC =3 cm.如果O 是线段AC 的中点,那么线段OC 的长度是 .8.如图,AB =2,AC =5,延长BC 到D ,使BD =3BC ,则AD 的长为 .9.如图,已知O 是线段AB 的中点,C 是AB 的三等分点,AB =12 cm ,则OC = cm.10.如图,已知线段AB ,反向延长AB 到点C ,使AC =12AB ,D 是AC 的中点,若CD =2,求AB的长.11.已知A,B,C是直线MN上的点,若AC=8 cm,BC=6 cm,点D是AC的中点,则BD的长等于 .12.已知线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD=2AB,则线段DC 的长为()A.4 cmB.5 cmC.6 cmD.2 cm13.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3,1,若BC=2,则AC等于()A.3B.2C.3或5D.2或614.已知线段AB=10 cm,点C是直线AB上一点,BC=4 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7 cmB.3 cmC.7 cm或3 cmD.5 cm15.如图,点C,D,E都在线段AB上,已知AD=BC,E是线段AB的中点,则CE DE.(填“>”“<”或“=”)16.如图,已知线段a,b,c,用圆规和直尺画线段,使它等于2a+b-c.17.如图所示,点C,D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB 的长度.18.线段AB上有两点P,Q,点P将AB分成两部分,AP∶PB=2∶3;点Q将AB也分成两部分,AQ∶QB=4∶1,且PQ=3 cm.求AP,QB的长.19.已知:如图,点C在线段AB上,且AC=6 cm,BC=14 cm,点M,N分别是AC,BC 的中点.(1)求线段MN的长度;(2)在(1)中,如果AC=a cm,BC=b cm,其他条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.第3课时关于线段的基本事实及两点的距离1.如图,为抄近路践踏草坪是一种不文明的现象.请你用数学知识解释出现这一现象的原因: .2.如图,我们可以把弯曲的河道改直,这样做的数学依据是 .改直后A,B两地间的河道长度会 .(填“变短”“变长”或“不变”),其原因是 .3.如图,A,B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站P,使它到A,B两村的距离之和最小,试在l上标注出点P的位置,并说明理由.4.下列说法正确的是()A.连接两点的直线的长度叫做这两点的距离B.画出A,B两点间的距离C.连接点A与点B的线段,叫A,B两点间的距离D.两点之间的距离是一个数,不是指线段本身5.若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为()A.2+(-2)B.2-(-2)C.(-2)+2D.(-2)-26.如图,线段AB=8 cm,延长AB到C,若线段BC的长是AB长的一半,则A,C两点的距离为()A.4 cmB.6 cmC.8 cmD.12 cm7.若A,O,B三点在同一条直线上,OA=3,OB=5,则A,B两点的距离为()A.2B.8C.3D.8或28.如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B9.如图,平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.10.如图,一只壁虎要从圆柱体A点沿着表面爬到B点,因为B点处有它想吃的一只蚊子,而它饿得快不行了,怎样爬行路线最短?参考答案:4.2直线、射线、线段第1课时直线、射线、线段1.D2.B3.B4. 经过一点可以画无数条直线;明两点确定一条直线.5.(1)直线a经过点A,C,但不经过点B,D;(2)点B在直线b上,在直线a外;(3)点A既在直线a上,又在直线b上.6.D7.C8. 有7条.9.C10.C11.B12.B13.D14. 10.15.解:如图所示.16.解:(1)是一条射线,表示为射线OB. (2)负数和零(非正数). (3)线段,线段AB.17.解:根据线段的定义:可知图中线段有AC ,AD ,AE ,AB ,CD ,CE ,CB ,DE ,DB ,EB ,共10条.(1)有10种不同的票价.(2)因车票需要考虑方向性,如“A→C”与“C→A”票价相同,但方向不同,故需要准备20种车票.18.(1)试验观察:如果每过两点可以画一条直线,那么: 第①组最多可以画3条直线; 第②组最多可以画6条直线; 第③组最多可以画10条直线; (2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画n (n -1)2条直线;(用含n 的代数式表示) (3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握990次手.第2课时比较线段的长短1.D2.解:如图,AC即为所求线段.3.B4.B5.A6.(1)AC=BC+AB;(2)CD=AD-AC;(3)CD=BD-BC;(4)AB+BC=AD-CD.7.4__cm.8.11.9.210.解:因为D是AC的中点,所以AC=2CD.因为CD=2,所以AC=4.因为AC =12AB ,所以AB =2AC. 所以AB =2×4=8. 11.10__cm 或2__cm. 12. C 13.D 14.D 15.=16.解:(1)作射线AF ;(2)在射线AF 上顺次截取AB =BC =a ,CD =b ; (3)在线段AD 上截取DE =c.线段AE 即为所求.17.解:因为C ,D 为线段AB 的三等分点, 所以AC =CD =DB. 又因为点E 为AC 的中点, 所以AE =EC =12AC.所以CD +EC =DB +AE. 因为ED =EC +CD =9, 所以DB +AE =EC +CD =ED =9. 所以AB =2ED =18.18.解:画出图形,如图:设AP =2x cm ,PB =3x cm ,则AB =5x cm. 因为AQ∶QB=4∶1, 所以AQ =4x cm ,QB =x cm. 所以PQ =PB -QB =2x cm. 因为PQ =3 cm , 所以2x =3. 所以x =1.5.所以AP =3 cm ,QB =1.5 cm.19.解:(1)因为AC =6 cm ,BC =14 cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =3 cm ,CN =7 cm. 所以MN =MC +CN =10 cm. (2)MN =12(a +b)cm.理由:因为AC =a cm ,BC =b cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =12a cm ,CN =12b cm.所以MN =MC +CN =12(a +b)cm.第3课时 关于线段的基本事实及两点的距离1.两点之间,线段最短.2.两点确定一条直线. 变短. 两点之间,线段最短.3.解:点P的位置如图所示.作法:连接AB交l于点P,则P点即为汽车站位置.理由:两点之间,线段最短.4.D5.B6.D7.D8.B9.解:连接AC,BD,AC与BD的交点即为P点的位置,图略.10.解:将圆柱体的侧面展开,如图所示,连接AB,则线段AB是壁虎爬行的最短路线.。

4.2.1直线射线线段(1)

4.2.1直线射线线段(1)

②平面上有三个点,过其中任意两个点画直线, 最多可以画几条直线?
③平面上有四个点,最多可画几条直线 ?
④有n个点呢?最多可以画多少条直线?
同一平面上有n个点,过其中任意两个点 n ( n 1 ) 画直线,最多可画 条线段。
2
探究与思考
两条直线相交,有一个交点。 三条直线相交,最多有多少个交点?四条直线呢? 你能发现什么规律?
2、直线a、b相交于点A 3、延长线段AB,反向延长线段AB
画一画
如图,已知A、B、C、D四点,分别按下列 A 要求画出图形。
C
(1)连接BD (2)画射线AB (3)画直线AD、BC相交于点O;
B
D
1.画直线BC射线AB,线段AC 2.连接AD与直线BC相交于点E 3.连接CD,BD延长CD及反向延长BD
1、直线EF经过点C;
E
C
F
2、点A在直线a外;
A
a
3、经过点O的三条线段a、b、c;
a O b c
4、线段AB、CD相交于点B。
C
A B
D
两条不同的直线,能有几个公共点? a O
b 当两条不同的直线有一个公共点时,我 们就称这两条直线相交,这个公共点就 叫做它们的交点。
直线a、b相交于点O,点O是它们的交点。
2
点与直线的位置关系:
O
A l
点O在直线l上,或者说直线l经过点O; 点A不在直线l上,或者说直线l不过点A .
点和直线的位置关系:
点在直线上,(线经过点);
点不在直线 上,(直线不经过点).
选一选
l
如图下列说法错误的是( C
A、点A在直线m上
B

A

专训4.2.1 直线、射线、线段的辨析+画图-七年级上册考点专训(解析版)(人教版)

专训4.2.1 直线、射线、线段的辨析+画图-七年级上册考点专训(解析版)(人教版)

直线、射线、线段的辨析+画图一、单选题1.(2021·全国七年级课时练习)平面内两两相交的6条直线,交点个数最少为m 个,最多为n 个,则m n +等于( )A .12B .16C .20D .22【答案】B【分析】根据直线相交的情况判断出m 和n 的值后,代入运算即可.【详解】解:当六条直线相交于一点时,交点最少,则1m =当任意两条直线相交都产生一个交点时交点最多,∵且任意三条直线不过同一点∴此时交点为:6(61)215⨯-÷=∴15n =∴11516m n +=+=故选:B2.(2021·福建省漳州第一中学七年级开学考试)如图所示,两条直线两两相交有一个交点,三条直线两两相交最多有3个交点,平面内n 条直线两两相交最多有( )个交点.A .nB .1n +C .()12n n + D .()12n n - 【答案】D【分析】分别求出2条直线、3条直线、4条直线、5条直线…的交点个数,找出规律即可解答.【详解】解:2条直线相交有1个交点;3条直线相交有1+2个交点;4条直线相交有1+2+3个交点;5条直线相交有1+2+3+4个交点;6条直线相交有1+2+3+4+5个交点;…n 条直线相交有1+2+3+4+5+…+(n -1)=()12n n -个交点. 故选D .3.(2021·东平县实验中学课时练习),,a b c 是平面上任意三条直线,交点可能有( ) A .1个或2个或3个B .0个或1个或3个C .0个或1个或2个D .0个或1个或2个或3个 【答案】D【详解】解:三条直线两两平行,没有交点;三条直线交于一点,有一个交点;两条直线平行与第三条直线相交,有两个交点;三条直线两两相交不交于同一点,有三个交点,故答案为:0,1,2,3.故选:D4.(2021·浙江七年级期末)若两直线相交,最多1个交点;三条直线相交最多有3个交点;四条直线相交最多有6个交点,像这样的十条直线相交最多的交点个数为( ) A .36个B .45个C .50个D .55个 【答案】B【分析】根据题意,结合图形,发现:3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,故可猜想,n 条直线相交,最多有1+2+3+…+(n -1)=()112n n -个交点,从而计算.【详解】解:∵3条直线相交最多有3个交点,13232=⨯⨯,4条直线相交最多有6个交点,16342=⨯⨯,5条直线相交最多有10个交点,110452=⨯⨯,∴10条直线相交最多有交点的个数是:()1119104522n n -=⨯⨯=,故选:B .二、填空题5.(2021·全国七年级课时练习)如图是小刚家与学校附近的主要街道分布示意图,小刚上学放学一般都走②号路线,用几何知识解释其道理应是:________.【答案】两点之间,线段最短【分析】根据两点之间线段最短解答.【详解】解:根据线段的性质:两点之间线段最短可得,小刚上学放学一般都走②号路线,其道理用几何知识解释应是两点之间线段最短.故答案为:两点之间,线段最短.6.(2021·全国七年级课时练习)如图,(1)点B在直线AD________,点F在直线________上;(2)点C在直线AD________,点E是直线________和________的交点;(3)经过点C的直线共有________条,它们分别是________.【答案】上BC和AE外AE CD 3 直线AC、BC、DC【分析】根据图形即可直接作出解答.【详解】解:(1)点B在直线AD上,点F在直线BC和AE上,故答案为:上;BC和AE;(2)点C在直线AD外,点E是直线AE和CD的交点,故答案为:外;AE;CD;(3)经过点C的直线共有三条,它们分别是:直线AC、BC、DC,故答案为:3;直线AC、BC、DC.7.(2021·全国七年级课时练习)如图,2条直线相交只有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有_______个交点,…,20条直线相交最多有_______个交点.【答案】10 190【分析】根据n条直线相交,最多有1(1)2n n-个交点,代入公式计算即可.【详解】解:由题意知,n条直线相交,最多有1(1)2n n-个交点,所以,5条直线两两相交,交点个数最多为154102⨯⨯=(个),20条直线两两相交,交点个数最多为120191902⨯⨯=(个).故答案为:10,190.三、多选题8.(2021·全国七年级专题练习)下列有四个生活、生产现象:其中可用基本事实“两点之间,线段最短”来解释的现象有()A.植树时,只要定出两棵树的位置,就能确定同一行所在的直线B.有两个钉子就可以把木条固定在墙上C.把弯曲的公路改直,就能缩短路程D.从A地到B地架设电线,总是尽可能沿着线段AB架设【答案】CD【分析】分别利用直线的性质以及线段的性质分析得出答案.【详解】解:A、植树时,只要定出两棵树的位置,就能确定同一行所在的直线,原理:两点确定一条直线,不符合题意;B、有两个钉子就可以把木条固定在墙上,原理:两点确定一条直线,不符合题意;C、把弯曲的公路改直,就能缩短路程,原理:两点之间,线段最短,符合题意;D、从A地到B地架设电线,总是尽可能沿着线段AB架设,原理:两点之间,线段最短,符合题意;故选:CD.9.(2021·全国七年级专题练习)下列四个生活、生产现象,其中可用“两点确定一条直线”来解释的现象有()A.用两个钉子就可以把木条固定在墙上;B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;C.从A地到B地架设电线,总是尽可能沿着线段AB架设;D.把弯曲的公路改直,就能缩短路程.【答案】AB【分析】根据两点确定一条直线和线段的性质:两点之间,线段最短(与距离有关),结合生活实际解题.【详解】解:AB现象可以用“两点确定一条直线”来解释;CD现象可以用“两点之间,线段最短”来解释,故符合题意的是AB,故选:AB.10.(2021·全国七年级专题练习)下列说法中,错误的是()A.过两点有且只有一条直线B.连接两点的线段叫做两点间的距离C.两点之间,直线最短D.到线段两个端点距离相等的点叫做线段的中点【答案】BCD【分析】根据两点确定一条直线的公理、连接两点间的线段的长度叫两点间的距离、线段的性质两点之间,线段最短以及线段的中点的定义进行分析即可.【详解】A、经过两点有且只有一条直线,是直线公理,该选项正确;B、连结两点的线段的长度叫做这两点间的距离,距离是长度,不是线段,故该选项错误;C、两点之间线段最短,不是直线,故该选项错误;D、少了在线段上这一条件,本选项错误.故选:BCD.11.(2021·全国七年级专题练习)如图给出的分别有射线、直线、线段,其中能相交的图形有()A.B.C.D.【答案】AC【分析】根据直线是向两方无限延伸的,射线是向一方无限延伸的,线段不能向任何一方无限延伸进行画图可得答案.【详解】解:A.由图中直线AB和射线CD的位置以及直线、射线的意义可得,直线AB与射线CD能相交,故A正确;B.由图中线段AB和线段CD的位置以及线段的意义可知,线段AB与线段CD不相交,故B不正确;C.由图中直线a和直线b的位置以及直线的意义可得,直线a与直线b能相交,故C正确;D.由图中射线AB和直线CD的位置以及射线、直线的意义可得,射线AB与直线CD不能相交,因此D不正确;故选:AC.12.(2021·全国七年级专题练习)已知如图,则下列叙述正确的有()A.点O不在直线AC上B.图中共有5条线段C.射线AB与射线BC是指同一条射线D.直线AB与直线CA是指同一条直线【答案】ABD【分析】根据点与直线的关系、直线、射线、线段间的关系以及相关知识逐项进行分析判断即可.【详解】解:A、点O不在直线AC上,故A说法正确,符合题意;B、图中有线段AB、AC、BC、OB、OC,共5条,故B说法正确,符合题意;C、射线AB与射线BC不是指同一条射线,故C错误,不符合题意;D、直线AB与直线CA是指同一条直线,故D正确,符合题意.故选ABD.四、解答题13.(2021·全国七年级课时练习)如图,将甲、乙两个尺子拼在一起,两端重合,如果甲尺经校订是直的,那么乙尺是直的吗?为什么?【答案】见解析【分析】根据经过两点有且只有一条直线分析即可.【详解】乙尺不是直的,因为如果乙尺是直的,那么过两点A,B就有两条直线了,这是不可能的,所以乙尺不是直的.14.(2021·全国七年级课时练习)建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,你能说出这是什么道理吗?【答案】两点确定一条直线【分析】根据两点确定一条直线解答【详解】解:这样做的道理是:两点确定一条直线.15.(2021·全国七年级课时练习)(1)如图,把原来弯曲的河道改直,A,B两地间的河道长度有什么变化?(2)如图,公园里修建了曲折迂回的桥,这与修一座直的桥相比,对游人观赏湖面风光能起什么作用?用你所学数学知识说明其中的道理.【答案】(1)河道的长度变小了;(2)由于“两点之间,线段最短”,这样做增加桥的长度,一方面使这桥能容纳更多的游人来观光,另一方面也增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光.【分析】(1)根据两点之间线段最短可知,当把弯曲的河道改直时,河道的长度是会变小的;(2)根据两点之间线段最短可知,公园里修建了曲折迂回的桥,这与修一座直的桥相比,长度边长了,但是能更好的欣赏风景.【详解】解:(1)把弯曲的河道改直时,河道的长度变小了;(2)由于“两点之间,线段最短”,这样做增加桥的长度,一方面使这桥能容纳更多的游人来观光,另一方面也增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光.AB ,回答下面的问题:16.(2021·全国七年级课时练习)已知线段6cm(1)是否存在点C,使它到A,B两点的距离之和等于5cm?为什么?(2)是否存在点C,使它到,A B两点的距离之和等于6cm?如果点C存在,点C的位置应该在哪里?为什么?这样的点C有多少个?(3)是否存在点C,使它到A,B两点的距离之和大于6cm?如果点C存在,点C的位置应该在哪里?为什么?这样的点C有多少个?【答案】(1)不存在,理由见解析;(2)存在,线段AB上的任何一点到,A B两点的距离之和都等于6cm,无数个,理由见解析;(3)存在,线段AB外的任何一点到,A B两点的距离之和都大于6cm,无数个,理由见解析【分析】两点之间线段最短逐个回答即可.【详解】解:(1)不存在;因为两点之间线段最短,AB之间最短距离为6cm,6cm>5cm,所以不可能存在;(2)存在;在线段AB上;因为AB之间的距离为6cm,线段AB上任意一点到A和B的距离都等于6cm,这样的点有无数个;(3)存在,点C的位置在线段AB的外部;因为点C的位置在线段AB的外部时,根据两点之间线段最短,到A和B的距离都大于6cm,这样的点C有无数个.,,.17.(2021·全国七年级课时练习)如图,已知平面上三点A B C(1)画直线AC;(2)画射线BA;(3)画线段BC.【答案】见解析.【分析】根据直线,线段,射线的概念求解即可.【详解】(1)如图所示,画直线AC;(2)如图所示,画射线BA;(3)如图所示,画线段BC.18.(2021·全国七年级课时练习)按下列语句画出图形:(1)直线EF经过点C;(2)点A在直线l外;AB CD相交于点B.(3)经过点O的三条线段a,b,c;(4)线段,【答案】见解析【分析】根据直线、线段的概念,结合各选项的表述作图即可.【详解】解:(1)如图所示:;(2)如图所示:;(3)如图所示:;(4)如图所示:.19.(2021·全国七年级课时练习)读下列语句,并分别画出图形:(1)直线l经过A,B,C三点,并且点C在点A与B之间;(2)两条线段m与n相交于点P;(3)P是直线a外一点,过点P有一条直线b与直线a相交于点Q;(4)直线l,m,n相交于点Q.【答案】见解析.【分析】(1)先画一条直线l,然后再直线上取三个点,A、B、C,且C在A、B之间即可;(2)画两条相交的线段m、n,令它们的交点为P即可;(3)先画出P点和直线a,然后令直线b经过P且与直线a相交于O点即可;(4)画出三条直线令它们相交于一点即可.【详解】解:(1)如图所示,即为所求;(2)如图所示,即为所求;(3)如图所示,即为所求;(4)如图所示,即为所求.20.(2021·全国七年级课时练习)用适当的语句表述图中点与直线的关系:【答案】见解析.【分析】(1)根据直线的位置关系以及点与直线的位置关系即可解答;(2)直线a、b、c两两相交,再说明交点即可【详解】解:(1)点A,B在直线l上,点P不在直线l上.(2)直线a,b,c两两相交,直线b,c相交于点A,直线a,b相交于点B,直线b,c相交于点C.21.(2021·哈尔滨市第四十九中学校期中)如图,平面上有四个点A、B、C、D,读下列语句,并画出符合下列所有要求的图形;(1)画射线AD;(2)连接B、C与射线AD相交于点E;(3)延长线段AB和CD相交于点M.【答案】(1)画图见解析;(2)画图见解析;(3)画图见解析【分析】(1)过A、D作射线,向D点方向延伸,A点方向不延伸;(2)连接BC,与射线AD交点标注为E;(3)画线段AB和CD并延长,交点标注为M.【详解】(1)如图1,过A、D作射线,向D点方向延伸,A点方向不延伸;(2)如图2,连接BC,与射线AD交点标注为E;(3)画线段AB和CD并延长,交点标注为M.22.(2021·全国七年级课前预习)按下面的语句画图①直线m经过点O②点P在直线mn外③经过点A的三条直线a、b、c④线段AB、CD相交于点C【答案】①见解析;②见解析;③见解析;④见解析【详解】23.(2021·安徽瑶海·合肥38中七年级月考)已知:如图,不在同一条直线上的四个点A、B、C、D,请按下列要求画图(不写画法)(1)画直线AD;(2)画射线AB;(3)画直线BD,在BD上求作点P到A、C两点的距离之和最小,理由是.【答案】(1)见解析;(2)见解析;(3)图见解析,两点之间,线段最短【分析】(1)画直线AD即可;(2)画射线AB即可;(3)画直线BD,在BD上求作点P,使点P到A、C两点的距离之和最小即可.【详解】解:如图所示:(1)直线AD即为所求作的图形;(2)射线AB即为所求作的图形;(3)画直线BD,连接AC,与BD交于点P,点P为所求.理由是:两点之间,线段最短.故答案为:两点之间,线段最短.24.(2021·全国七年级课时练习)按下列要求分别画出图形.(1)直线AB外有一点C;(2)P是直线a外一点,经过点P有一条直线b与直线a相交于点Q.【答案】(1)见解析;(2)见解析【分析】(1)根据点与直线的关系进行作图即可;(2)根据点与直线的关系进行作图即可.【详解】解:(1)如图所示(画法不唯一);(2)如图所示(画法不唯一).25.(2021·全国七年级课时练习)两条直线相交,有一个交点,三条直线相交,最多有多少个交点?四条直线呢?你能发现什么规律吗?【答案】两条直线相交,最多有1个交点,三条直线相交,最多有3个交点,四条直线相交,最多有6个交点,…,规律:n条直线相交,最多有(1)2n n-个交点.【分析】根据两直线相交,最多有1个交点,三直线相交最多有1+2=3个交点,四条直线相交,最多有1+2+3=6个交点,由此可以发现最多交点个数就是从1开始的连续的正整数相加,最后一个加数比直线的条数少1,由此进行求解即可【详解】解:两条直线相交,最多有1个交点,三条直线相交,最多有1+2=3个交点,四条直线相交,最多有1+2+3=6个交点……由此可以发现最多交点个数就是从1开始的连续的正整数相加,最后一个加数比直线的条数少1,一般地,n条直线相交,最多有()112341=2n nn-+++++-(首尾相加和为n,第二和倒数第二个的和也为n,由此即可推出此式子)个交点.26.(2021·全国七年级课时练习)观察下列图形,阅读下面相关文字并填空:(1)在同一平面内,两条直线相交最多有1个交点,3条直线相交最多有______个交点,4条直线相交最多有______个交点,……,像这样,8条直线相交最多有______个交点,n条直线相交最多有______个交点:(2)在同一平面内,1条直线把平面分成2部分,两条直线最多把平面分成4部分,3条直线最多把平面分成______部分,4条直线最多把平面分成______部分,……,像这样,8条直线最多把平面分成______部分,n条直线最多把平面分成______部分.【答案】(1)3,6,28,(1)2n n -;(2)7,11,37,(1)12n n ++ 【分析】 (1)根据图形求出两条直线相交、三条直线相交、四条直线相交时最多交点个数,总结出规律即可得出n 条直线相交最多有交点的个数;(2)根据图形求出两条直线相交、三条直线相交、四条直线相交时最多把平面分成几部分,总结出规律即可n 条直线最多把平面分成几部分.【详解】解:(1)2条直线相交有1个交点;3条直线相交最多有1+2=3个交点;4条直线相交最多有1+2+3=6个交点;5条直线相交最多有1+2+3+4=10个交点;6条直线相交最多有1+2+3+4+5=15个交点;7条直线相交,最多有1+2+3+4+5+6=21个交点,8条直线相交,最多有1+2+3+4+5+6+7=28个交点,…n 条直线相交最多有(1)123(1)2n n n -+++⋯+-=个交点; (2)1条直线最多把平面分成1+1=2部分;2条直线最多把平面分成1+1+2=4部分;3条直线最多把平面分成1+1+2+3=7部分;4条直线最多把平面分成1+1+2+3+4=11部分;5条直线最多把平面分成1+1+2+3+4+5=16部分;6条直线最多把平面分成1+1+2+3+4+5+6=22部分;7条直线最多把平面分成1+1+2+3+4+5+6+7=29部分;8条直线最多把平面分成1+1+2+3+4+5+6+7+8=37部分;…n 条直线最多把平面分成(1)11(1)12+=++⋯+-+=+n n n n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、2 线段、射线、直线(1)
一、选择题:
1、数轴是一条:()(A)射线(B)直线(C)线段(D)以上都是
2、下列说法中,正确的个数有()(1)射线AB与射线BA一定不是同一条射线;
(2)直线AB与直线BA一定是同一条直线;
(3)线段AB与线段BA一定是同一条线段。

(A)0个(B)1个(C)2个(D)3个
3、任意画3条直线,则交点的个数是()(A)1个(B)1个或3个
(C)1个或2个或3个(D)0个或1个或2个或3个
4、在直线上取两点A、B则这条直线上共有射线()(A)1条(B)2条(C)3条(D)4条
5、下列说法正确的是()(A)线段没有长度;(B)射线上有无数个端点;(C)两条相同端点的射线连结在一起就是一条直线;(D)直线没有端点。

6、下列写法正确的是()(A)直线A、B相交于点M (B)过A、B、C三点画直线L (C)直线a、b相交于点M (D)直线a、b相交于点n
7、如图,下列说法正确的是()(A)点A在线段BO上;
(B)点A在射线BO上;
A B O
(C)点A在线段BO的延长线上;
(D)点A在线段BO的反向延长线上。

8、在同一平面内有4个点,过每两点画一条直线,则直线的条数是 ( )
(A )1条 (B )4条 (C )6条 (D )
1条或4条或6条
二、填空题
9、如图,以0为端点的射线有 条,它们分别是
图中线段有 条。

10、同一平面内三条线直线两两相交,最少有 个交点,最多有 个交点。

11、如图,以A 、B 、C 、D 为端点的射线有 条,
线段有 条。

12、观察自己身边的物品,举出几种常见的线段 。

13、看图写话,用语言描述下列图形: (1)
(2)
描述: 描述:
14、经过平面上三点可以画 条直线。

笔直的窗帘轨,至少需要 个钉子才能将它固定,理由是
三、解答题:
15、根据下列要求画图:
(1)连接线段AB ; (2)画射线OA ,射线OB ;
(3)在线段AB 上取一点C ,在射线OA 上取一点D (点C 、D 不与点A 重合),画直线CD ,使直线CD 与射线OB 交于点E 。

16,数线段,找规律:
下列各图中,线段上的点依次增加,请你填写图中相应的线段数,
A ·
B · O · D
C E B C B A B A C B A A
条线段;条线段;条线段;条线段;(1) 请猜想,当线段AB上有10个点时(含A、B两点),有几条线段?
(2)n个点呢(n≧2)
2、学校里运来7棵树,想栽在操场两边的空地上,为了美观,要求栽成4排,每排都有3棵,你能栽吗?如果能栽,请画出设计图,如果不能栽,请说明理由。

相关文档
最新文档