2016年江苏省宿迁市中考数学试卷
2016年江苏省宿迁市中考数学试卷
18.(本题满分
6
分)解不等式
组:
2x>x 1, 3x<2(x 1).
19.(本题满分 6 分)某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、
良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取 200 名
学生的体育成绩进行统计分析.相关数据的统计图、表如下:
人数.
数学试卷 第 3 页(共 6 页)
20.(本题满分 6 分)在一只不透明的袋子中装有 2 个白球和 2 个黑球,这些球除颜色外都
相同.
(1)若先从袋子中拿走 m 个白球,这时从袋子中随机摸出一个球是黑球的事件为“必
然事件”,则 m 的值为
;
(2)若将袋子中的球搅匀后随机摸出 1 个球(不.放.回.),再从袋中余下的 3 个球中随机
A. x1 3 , x2 1 C. x1 1 , x2 3
B. x1 1 , x2 3 D. x1 3 , x2 1
()
二、填空题(本大题共 8 小题,每小题 3 分,共 24 分.)
9.因式分解: 2a2 8
.
10.计算: x2 x
.
x 1 x 1
摸出 1 个球,求两次摸到的球颜色相同的概率.
21.(本题满分 6 分)如图,已知 BD 是 △ABC 的角平分线,点 E 、 F 分别在边 AB 、 BC 上, ED∥BC , EF∥AC .求证: BE CF .
22.(本题满分 6 分)如图,大海中某灯塔 P 周围 10 海里范围内有暗礁,一艘海轮在点 A 处 观察灯塔 P 在北偏东 60 方向,该海轮向正东方向航行 8 海里到达点 B 处,这时观察灯 塔 P 恰好在北偏东 45 方向.如果海轮继续向正东方向航行,会有触角的危险吗?试 说明理由.(参考数据: 3 1.73)
2016年江苏省宿迁市中考数学试卷(解析版)
2016年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每题3分,共24分.在每题所给出的四个选项中,有且仅有一项为哪一项符合题目要求的,请将准确选项的字母代号填涂在答题卡相对应位置上)1.﹣2的绝对值是()A.﹣2 B.﹣C.D.22.以下四个几何体中,左视图为圆的几何体是()A.B.C.D.3.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1064.以下计算准确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a5 D.a5÷a2=a35.如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120°D.130°6.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.67.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B 折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.C.D.18.若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=1二、填空题(本大题共8小题,每题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相对应位置上)9.因式分解:2a2﹣8=.10.计算:=.11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是.12.若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是.13.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n 100 300 400 600 1000 2000 3000发芽的频数m 96 284 380 571 948 1902 28480.960 0.947 0.950 0.952 0.948 0.951 0.949发芽的频率那么这种油菜籽发芽的概率是(结果精确到0.01).14.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为.15.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.三、解答题(本大题共10题,共72分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:2sin30°+3﹣1+(﹣1)0﹣.18.解不等式组:.19.某校对七、八、九年级的学生实行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为理解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩实行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级 a 20 24 8八年级29 13 13 5九年级24 b 14 7根据以上信息解决以下问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.20.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.21.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.22.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.假设海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.24.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这个现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.25.已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.26.如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.2016年江苏省宿迁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每题3分,共24分.在每题所给出的四个选项中,有且仅有一项为哪一项符合题目要求的,请将准确选项的字母代号填涂在答题卡相对应位置上)1.﹣2的绝对值是()A.﹣2 B.﹣C.D.2【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.应选D.2.以下四个几何体中,左视图为圆的几何体是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据左视图是从左边看所得到的图形逐一判断可得.【解答】解:A、球的左视图是圆,应选项准确;B、正方体的左视图是正方形,应选项错误;C、圆锥的左视图是等腰三角形,应选项错误;D、圆柱的左视图是长方形,应选项错误;应选:A.3.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,因为384 000有6位,所以能够确定n=6﹣1=5.【解答】解:384 000=3.84×105.应选:C.4.以下计算准确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a5 D.a5÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项,可判断A,根据同底数幂的乘法底数不变指数相加,可判断B,根据幂的乘方底数不变指数相乘,可判断C,根据同底数幂的除法底数不变指数相减,可判断D.【解答】解:A、不是同类项不能合并,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、幂的乘方底数不变指数相乘,故C错误;D、同底数幂的除法底数不变指数相减,故D准确;应选:D.5.如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120°D.130°【考点】平行线的性质.【分析】根据邻补角的定义求出∠3,再根据两直线平行,同位角相等解答.【解答】解:如图,∠3=180°﹣∠1=180°﹣120°=60°,∵a∥b,∴∠2=∠3=60°.应选:B.6.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【考点】中位数.【分析】先将题目中数据按照从小到大排列,从而能够得到这组数据的中位数,此题得以解决.【解答】解:将题目中数据按照从小到大排列是:2,4,5,5,6,故这组数据的中位数是5,应选A.7.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B 折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.C.D.1【考点】翻折变换(折叠问题).【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM 的值.【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=,应选:B.8.若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=1【考点】抛物线与x轴的交点.【分析】直接利用抛物线与x轴交点求法以及结合二次函数对称性得出答案.【解答】解:∵二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),∴方程ax2﹣2ax+c=0一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数y=ax2﹣2ax+c的图象与x轴的另一个交点为:(3,0),∴方程ax2﹣2ax+c=0的解为:x1=﹣1,x2=3.应选:C.二、填空题(本大题共8小题,每题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相对应位置上)9.因式分解:2a2﹣8=2(a+2)(a﹣2).【考点】提公因式法与公式法的综合使用.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).10.计算:=x.【考点】分式的加减法.【分析】实行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解:===x.故答案为x.11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是1:2.【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方求出相似比,根据似三角形周长的比等于相似比得到答案.【解答】解:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:2,∴这两个相似三角形的周长比是1:2,故答案为:1:2.12.若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是k<1.【考点】根的判别式.【分析】直接利用根的判别式得出△=b2﹣4ac=4﹣4k>0进而求出答案.【解答】解:∵一元二次方程x2﹣2x+k=0有两个不相等的实数根,∴△=b2﹣4ac=4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为:k<1.13.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n 100 300 400 600 1000 2000 3000发芽的频数m 96 284 380 571 948 1902 28480.960 0.947 0.950 0.952 0.948 0.951 0.949发芽的频率那么这种油菜籽发芽的概率是0.95(结果精确到0.01).【考点】利用频率估计概率.【分析】观察表格得到这种油菜籽发芽的频率稳定在0.95附近,即可估计出这种油菜发芽的概率.【解答】解:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则这种油菜籽发芽的概率是0.95,故答案为:0.95.14.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为2.【考点】垂径定理.【分析】如图,作CE⊥AB于E,在RT△BCE中利用30度性质即可求出BE,再根据垂径定理能够求出BD.【解答】解:如图,作CE⊥AB于E.∵∠B=180°﹣∠A﹣∠ACB=180°﹣20°﹣130°=30°,在RT△BCE中,∵∠CEB=90°,∠B=30°,BC=2,∴CE=BC=1,BE=CE=,∵CE⊥BD,∴DE=EB,∴BD=2EB=2.故答案为2.15.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.【考点】反比例函数系数k的几何意义.【分析】根据点A、B在反比例函数y=(x>0)的图象上,可设出点B坐标为(,m),再根据B为线段AC的中点可用m表示出来A点的坐标,由AD∥x轴、BE∥x轴,即可用m表示出来点D、E的坐标,结合梯形的面积公式即可得出结论.【解答】解:∵点A、B在反比例函数y=(x>0)的图象上,设点B的坐标为(,m),∵点B为线段AC的中点,且点C在x轴上,∴点A的坐标为(,2m).∵AD∥x轴、BE∥x轴,且点D、E在反比例函数y=(x>0)的图象上,∴点D的坐标为(,2m),点E的坐标为(,m).∴S=(+)×(2m﹣m)=.梯形ABED故答案为:.16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为4.【考点】矩形的性质;等腰三角形的性质;勾股定理.【分析】如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个.【解答】解:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4,故答案为4.三、解答题(本大题共10题,共72分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:2sin30°+3﹣1+(﹣1)0﹣.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值结合零指数幂的性质以及负整数指数幂的性质分别化简进而求出答案.【解答】解:2sin30°+3﹣1+(﹣1)0﹣=2×++1﹣2=.18.解不等式组:.【考点】解一元一次不等式组.【分析】根据解不等式组的方法能够求得不等式组的解集,从而能够解答此题.【解答】解:由①得,x>1,由②得,x<2,由①②可得,原不等式组的解集是:1<x<2.19.某校对七、八、九年级的学生实行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为理解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩实行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级 a 20 24 8八年级29 13 13 5九年级24 b 14 7根据以上信息解决以下问题:(1)在统计表中,a的值为28,b的值为15;(2)在扇形统计图中,八年级所对应的扇形圆心角为108度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.【考点】扇形统计图;用样本估计总体.【分析】(1)根据学校从三个年级随机抽取200名学生的体育成绩实行统计分析和扇形统计图能够求得七年级抽取的学生数,从而能够求得a的值,也能够求得九年级抽取的学生数,进而得到b的值;(2)根据扇形统计图能够求得八年级所对应的扇形圆心角的度数;(3)根据表格中的数据能够估计该校学生体育成绩不合格的人数.【解答】解:(1)由题意和扇形统计图可得,a=200×40%﹣20﹣24﹣8=80﹣20﹣24﹣8=28,b=200×30%﹣24﹣14﹣7=60﹣24﹣14﹣7=15,故答案为:28,15;(2)由扇形统计图可得,八年级所对应的扇形圆心角为:360°×(1﹣40%﹣30%)=360°×30%=108°,故答案为:108;(3)由题意可得,2000×=200人,即该校三个年级共有2000名学生参加考试,该校学生体育成绩不合格的有200人.20.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为2;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.【考点】列表法与树状图法;随机事件.【分析】(1)由必然事件的定义可知:透明的袋子中装的都是黑球,从袋子中随机摸出一个球是黑球的事件为“必然事件”才能成立,所以m的值即可求出;(2)列表得出所有等可能的情况数,找出两次摸到的球颜色相同的情况数,即可求出所求的概率.【解答】解:(1)∵在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同,从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,∴透明的袋子中装的都是黑球,∴m=2,故答案为:2;(2)设红球分别为H1、H2,黑球分别为B1、B2,列表得:第二球H1H2B1B2第一球H1(H1,H2)(H1,B1)(H1,B2)H2(H2,H1)(H2,B1)(H2,B2)B1(B1,H1)(B1,H2)(B1,B2)B2(B2,H1)(B2,H2)(B2,B1)总共有12种结果,每种结果的可能性相同,两次都摸到球颜色相同结果有4种,所以两次摸到的球颜色相同的概率==.21.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.【考点】平行四边形的判定与性质.【分析】先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.【解答】证明:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.22.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.假设海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)【考点】解直角三角形的应用-方向角问题.【分析】作PC⊥AB于C,如图,∠PAC=30°,∠PBC=45°,AB=8,设PC=x,先判断△PBC 为等腰直角三角形得到BC=PC=x,再在Rt△PAC中利用正切的定义得到8+x=,解得x=4(+1)≈10.92,即AC≈10.92,然后比较AC与10的大小即可判断海轮继续向正东方向航行,是否有触礁的危险.【解答】解:没有触礁的危险.理由如下:作PC⊥AB于C,如图,∠PAC=30°,∠PBC=45°,AB=8,设PC=x,在Rt△PBC中,∵∠PBC=45°,∴△PBC为等腰直角三角形,∴BC=PC=x,在Rt△PAC中,∵tan∠PAC=,∴AC=,即8+x=,解得x=4(+1)≈10.92,即AC≈10.92,∵10.92>10,∴海轮继续向正东方向航行,没有触礁的危险.23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.【考点】切线的判定;圆周角定理;三角形的外接圆与外心.【分析】(1)连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,由已知条件得出∠ABC=∠CAD,由圆周角定理得出∠ADE=90°,证出∠AED=∠ABC=∠CAD,求出EA⊥AC,即可得出结论;(2)由圆周角定理得出∠BAD=90°,由角的关系和已知条件得出∠ABC=22.5°,由(1)知:∠ABC=∠CAD,即可得出结果.【解答】(1)证明:连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,如下列图:∵∠ABC:∠ACB:∠ADB=1:2:3,∠ADB=∠ACB+∠CAD,∴∠ABC=∠CAD,∵AE为⊙O的直径,∴∠ADE=90°,∴∠EAD=90°﹣∠AED,∵∠AED=∠ABD,∴∠AED=∠ABC=∠CAD,∴∠EAD=90°﹣∠CAD,即∠EAD+∠CAD=90°,∴EA⊥AC,∴AC是⊙O的切线;(2)解:∵BD是⊙O的直径,∴∠BAD=90°,∴∠ABC+∠ADB=90°,∵∠ABC:∠ACB:∠ADB=1:2:3,∴4∠ABC=90°,∴∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5°.24.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这个现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.【考点】二次函数的应用;分段函数.【分析】(1)根据收费标准,分0<x≤30,30<x≤m,m<x≤100分别求出y与x的关系即可.(2)由(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加,30<x≤m 时,y=﹣x2+150x=﹣(x﹣75)2+5625,根据二次函数的性质即可解决问题.【解答】解:(1)y=.(2)由(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加,当30<x≤m时,y=﹣x2+150x=﹣(x﹣75)2+5625,∵a=﹣1<0,∴x≤75时,y随着x增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m≤75.25.已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.【考点】几何变换综合题.【分析】(1)欲证明GF∥AC,只要证明∠A=∠FGB即可解决问题.(2)①先证明A、D、M、C四点共圆,得到∠CMF=∠CAD=45°,即可解决问题.②利用①的结论可知,点M在以AC为直径的⊙O上,运动路径是弧CD,利用弧长公式即可解决问题.【解答】解:(1)如图1中,∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∵△CEF是由△CAD旋转逆时针α得到,α=90°,∴CB与CE重合,∴∠CBE=∠A=45°,∴∠ABF=∠ABC+∠CBF=90°,∵BG=AD=BF,∴∠BGF=∠BFG=45°,∴∠A=∠BGF=45°,∴GF∥AC.(2)①如图2中,∵CA=CE,CD=CF,∴∠CAE=∠CEA,∠CDF=∠CFD,∵∠ACD=∠ECF,∴∠ACE=∠CDF,∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45°,∴∠CMD=180°﹣∠CMF=135°.②如图3中,O是AC中点,连接OD、CM.∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90°,由①可知A、D、M、C四点共圆,∴当α从90°变化到180°时,点M在以AC为直径的⊙O上,运动路径是弧CD,∵OA=OC,CD=DA,∴DO⊥AC,∴∠DOC=90°,∴的长==.∴当α从90°变化到180°时,点M运动的路径长为.26.如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.【考点】二次函数综合题.【分析】(1)根据二次函数N的图象是由二次函数M翻折、平移得到所以a=﹣1,求出二次函数N的顶点坐标即可解决问题.(2)由PA2+PB2=(m+1)2+n2+(m﹣1)2+n2=2(m2+n2)+2=2•PO2+2可知OP最大时,PA2+PB2最大,求出OP的最大值即可解决问题.(3)画出函数图象即可解决问题.【解答】(1)解:二次函数y=x2﹣1的图象M沿x轴翻折得到函数的解析式为y=﹣x2+1,此时顶点坐标(0,1),将此图象向右平移2个单位长度后再向上平移8个单位长度得到二次函数图象N的顶点为(2,9),故N的函数表达式y=﹣(x﹣2)2+9=﹣x2+4x+5.(2)∵A(﹣1,0),B(1,0),∴PA2+PB2=(m+1)2+n2+(m﹣1)2+n2=2(m2+n2)+2=2•PO2+2,∴当PO最大时PA2+PB2最大.如图,延长OC与⊙O交于点P,此时OP最大,∴OP的最大值=OC+PO=+1,∴PA2+PB2最大值=2(+1)2+2=38+4.(3)M与N所围成封闭图形如下列图,由图象可知,M与N所围成封闭图形内(包括边界)整点的个数为25个.。
宿迁市2016年中考数学试卷及答案解析
第 26 题图
2016 年江苏省宿迁市初中毕业暨升学考试答案
一、选择题
1. D 【解析】依据负数的绝对值是它的相反数求解.∵-2 是负数,∴-2 的相反数是 2,∴-2 的绝
对值是 2.
2. A 【解析】球的左视图为圆,正方体的左视图为正方形,圆锥的左视图为三角形,圆柱的左视图为
矩形.
3. C 【解析】一个大于 10 的数用科学记数法可以表示为 a×10n 的形式,其中 1≤a<10,n 为原数的 整数位减 1,故 384000=3.84×105.
-2).
10. x 【解析】原式= x(x -1)=x. x -1
11. 1∶2 【解析】依据“周长之比等于相似比,面积之比等于相似比的平方”即可求解.∴周长之比 的平方等于面积之比,∴周长之比为 1∶2.
12. k<1 【解析】∵方程有两个不相等的实数根,所以Δ=(-2)2-4×1×k =4-4k>0.∴k<1. 13. 0.95 【解析】∵经过 7 次试验,油菜籽发芽的频率都在 0.95 左右波动,∴可估计这种油菜籽发芽 的概率为 0.95. 14. 2 3 【解析】如解图,过点 C 作 CE⊥AB 于点 E,∵∠ACB=130°,∠BAC=20°,∴∠CBD=30°, ∵BC=2,∴根据“30°角所对直角边是斜边的一半”得 CE=1,∴BE= BC2-CE2= 3,由垂径定理可得 BD=2BE=2 3.
江苏省宿迁市中考数学试卷
江苏省宿迁市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2016七下·黄冈期中) 9的算术平方根是()A . ±3B . 3C .D .2. (2分)(2016·内江) 2016年“五一”假期期间,某市接待旅游总人数达到了9 180 000人次,将9 180 000用科学记数法表示应为()A . 918×104B . 9.18×105C . 9.18×106D . 9.18×1073. (2分)(2019·辽阳) 如图是由6个大小相同的小正方体搭成的几何体,这个几何体的左视图是()A .B .C .D .4. (2分) (2017八下·石景山期末) 关于x的一元二次方程有两个实数根,则m的取值范围是()A .B .C . 且D . 且5. (2分)(2019·从化模拟) 如图,直线,直线与直线、都相交,,则()A . 125°B . 115°C . 65°D . 25°6. (2分)九年级某班在一次考试中对某道单选题的答题情况如下图所示:根据以上统计图,下列判断中错误的是()A . 选A的人有8人B . 选B的人有4人C . 选C的人有26人D . 该班共有50人参加考试7. (2分) (2017八上·杭州期中) 如图,在长方形纸片ABCD中,△EDC沿着折痕EC对折,点D的落点为F,再将△AGE沿着折痕GE对折,得到△GHE,H、F、E在同一直线上;作PH⊥AD于P,若ED=AG=3,CD=4,则PH的长为()A .B . 5C .D .8. (2分)如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是()A . m= n,k>hB . m=n ,k<hC . m>n,k=hD . m<n,k=h二、填空题 (共8题;共8分)9. (1分)(2017·襄州模拟) 分解因式:m3﹣4m=________.10. (1分) (2019九上·温岭月考) 平面直角坐标系内一点P(3,-1)关于原点对称的坐标为________11. (1分)(2017·泾川模拟) 如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是________.12. (1分) (2017九上·海淀月考) 如图,将绕点按顺时针方向旋转某个角度得到,使,,的线相交于点,如果,那么 ________.13. (1分)若不等式ax<﹣1的解集是x>2,则a的值是________.14. (1分)校生物小组有一块长32m,宽20m的矩形实验田,为了管理方便,准备沿平行于两边的方向纵、横个开辟一条等宽的小道,要使种植面积为540m2 ,小道的宽应是________ 米.15. (1分)(2017·全椒模拟) 如图,边长为2的正方形ABCD内接于⊙O,点E是上一点(不与A、B 重合),点F是上一点,连接OE,OF,分别与AB,BC交于点G,H,有下列结论:① = ;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④若BG=1﹣,则BG,GE,围成的面积是 + .其中正确的是________(把所有正确结论的序号都填上)16. (1分) (2017九上·鄞州竞赛) 如图,四边形是平行四边形,点在轴上,反比例函数的图象经过点,且与边交于点,若,则点的坐标为________.三、解答题 (共8题;共70分)17. (5分)(2017·碑林模拟) 计算: +(π﹣2015)0+()﹣1﹣6tan30°.18. (5分) (2016八上·泸县期末) 已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.19. (10分) (2015九上·宁波月考) 第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2、3、4、5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.20. (5分)某公司生产的甲、乙两种商品分别赢利400万元、300万元,已知两种商品的总产量超过20吨,且生产的甲种商品比乙种商品的产量多1吨,生产的甲种商品比乙种商品的赢利每吨多5万元.求该公司生产的甲种商品的产量.21. (5分)如图,一条细绳系着一个小球在平面内摆动.已知细绳从悬挂点O到球心的长度为50厘米,小球在A、B两个位置时达到最高点,且最高点高度相同(不计空气阻力),在C点位置时达到最低点.达到左侧最高点时与最低点时细绳相应所成的角度为37°,细绳在右侧达到最高点时与一个水平放置的挡板DE所成的角度为30°.(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)(1)求小球达到最高点位置与最低点位置时的高度差.(2)求OD这段细绳的长度.22. (15分)(2017·游仙模拟) 如图,直线y=﹣x+b与反比例函数y= 的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△PAC= S△AOB?若存在请求出点P坐标,若不存在请说明理由.23. (10分)(2017·十堰模拟) 如图,△ABC中,∠ACB=90°,点E在BC上,以CE为直径的⊙O交AB于点F,AO∥EF(1)求证:AB是⊙O的切线;(2)如图2,连结CF交AO于点G,交AE于点P,若BE=2,BF=4,求的值.24. (15分) (2019九上·临沧期末) 如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y 轴交于C点,直线BD交抛物线于点D,并且D(2,3),B(﹣4,0).(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C,求△BMC面积的最大值;(3)在(2)中△BMC面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共70分)17-1、18-1、19-1、19-2、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、第11 页共12 页24-3、第12 页共12 页。
2016年江苏省宿迁市中考试题 精编
江苏省宿迁市2016年初中毕业暨升学考试数 学一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且仅有一项是符合题目要求的,请将正确选项的字母代填涂在答题卡相应位置上) 1.-2的绝对值是A .-2B .21-C .21 D .22.下列四个几何体中,左视图为圆的几何体是A .B .C .D .3.地球与月球的平均距离为384 000 km ,将384 000这个数用科学计数法表示为A .31084.3⨯B .41084.3⨯C .51084.3⨯D .61084.3⨯4.下列计算正确的是A .532a a a=+ B .632a a a =⋅ C .532a (a =) D .325a a a=÷5.如图,已知直线a 、b 被直线c 所截.若a ∥b ,∠1=120°,则∠2的度数为 A .50° B .60° C .120° D .130°baNMFE D CBA(第5题图) (第7题图) 6.一组数据5,4,2,5,6的中位数是 A .5 B .4 C .2 D .67.如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE .若AB 的长为2,则FM 的长为A .2B .3C .2D .18.若二次函数c 2ax ax y 2+-=的图像经过点(-1,0),则方程0c 2ax ax 2=+-的解为A .1,3-=-=21x xB .3,1==21x xC .3,1=-=21x xD .1,3=-=21x x二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 9.因式分解:=-822a▲ .10.计算:=---1x x1x x 2 ▲ . 11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是 ▲ . 12.若一元二次方程0k 2x x2=+-有两个不相等的实数根,则k 的取值范围是 ▲ .13.某种油菜籽在相同条件下发芽试验的结果如下表:15.如图,在平面直角坐标系中,一条直线与反比例函数)0(>=x y x8的图像交于两点A 、B ,与x 轴交于点C ,且点B 是AC 的中点,分别过两点A 、B 作x 轴的平行线,与反比例函数)0(>=x y x2的图像交于两点D 、E ,连接DE ,则四边形ABED 的面积为 ▲ . 16.如图,在矩形ABCD 中,AD=4,点P 是直线AD 上一动点,若满足△PBC 是等腰三角形的点P 有且只有3个,则AB 的长为 ▲ .三、解答题(本大题共10题,共72分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:41)2(32sin300-1--++︒18.(本题满分6分)解不等式组:⎩⎨⎧+<+>1)2(x 3x 1x 2x19.(本题满分6分) 某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表 各年级学生人数统计图八年级九年级 30%七年级40%(1)在统计表中,a 的值为 ▲ ,b 的值为 ▲ ;(2)在扇形统计图中,八年级所对应的扇形圆心角为 ▲ 度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数. 20.(本题满分6分)在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m 个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m 的值为 ▲ ; (2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率. 21.(本题满分6分)如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED ∥BC ,EF ∥AC .求证:BE=CFAB(第21题图)22.(本题满分6分) 如图,大海中某灯塔P 周围10海里范围内有暗礁,一艘海轮在点A 处观察灯塔P 在北偏东60°方向,该海轮向正东方向航行8海里到达点B 处,这时观察灯塔P 恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触角的危险吗?试说明理由.(参考数据:73.13 )23.(本题满分8分)如图1,在△ABC 中,点D 在边BC 上,∠ABC :∠ACB :∠ADB=1:2:3,⊙O 是△ABD 的外接圆.(1)求证:AC 是⊙O 的切线(2)当BD 是⊙O 的直径时(如图2),求∠CAD 的度数.C(第23题图1) (第23题图2) 24.(本题满分8分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m ≤100)人时,每增加1人,人均收费降低1元;超过m 人时,人均收费都按照m 人时的标准.设景点接待有x 名游客的某团队,收取总费用为y 元. (1)求y 关于x 的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围. 25.(本题满分10分)已知△ABC 是等腰直角三角形,AC=BC=2,D 是边AB 上一动点(A 、B 两点除外),将△CAD 绕点C 按逆时针方向旋转角α得到△CEF ,其中点E 是点A 的对应点,点F 是点D 的对应点. (1)如图1,当α=90°时,G 是边AB 上一点,且BG=AD ,连接GF .求证:GF ∥AC ; (2)如图2,当90°≤α≤180°时,AE 与DF 相交于点M .①当点M 与点C 、D 不重合时,连接CM ,求∠CMD 的度数;②设D 为边AB 的中点,当α从90°变化到180°时,求点M 运动的路径长.GFDCB(E)AMFEDCBA(第25题图1) (第25题图2)26.(本题满分10分)如图,在平面直角坐标系xOy 中,将二次函数1x y 2-=的图像M 沿x 轴翻折,把所得到的图像向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图像N . (1)求N 的函数表达式;(2)设点P (m, n )是以点C (1,4)为圆心、1为半径的圆上一动点,二次函数的图像M 与x 轴相交于两点A 、B ,求22PB PA +的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M 与N 所围成封闭图形内(包括边界)整点的个数.。
宿迁市泗阳XX中学2016届中考数学一模试卷含答案解析
2016年江苏省宿迁市泗阳XX中学中考数学一模试卷一、选择题:(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项填涂在答题纸相应位置上)1.﹣5的倒数是()A. B.C.﹣5 D.52.下列计算正确的是()A.a6÷a2=a3B.(﹣2)﹣1=2C.(﹣3x2)•2x3=﹣6x6D.(π﹣3)0=13.如图所示几何体的俯视图是()A.B.C.D.4.如图,∠1、∠2、∠3、∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110°B.108°C.105°D.100°5.如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2 B.0<x<3 C.2<x<3 D.x<0或x>36.如图,若△ABC和△DEF的面积分别为S1、S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S27.对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣18.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:=S△ABF,其中正①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四边形CDEF确的结论有()A.5个B.4个C.3个D.2个二、填空题:(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)9.使有意义的x的取值范围是.10.2015年我市人均GDP约为34800元,34800用科学记数法表示为.11.若ab=3,a﹣2b=5,则a2b﹣2ab2的值是.12.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是.13.如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.14.已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tanB 为.15.如图,等边△ABC中,BC=6,D、E分别在BC、AC上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为.16.如图,已知点A1,A2,…,A n均在直线y=x﹣1上,点B1,B2,…,B n均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y轴,…,记点A n的横坐标为a n(n为正整数).若a1=﹣1,则a2016=.三、解答题(本题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°.18.解不等式组:.19.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m=,n=,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.20.如图,在▱ABCD中,E、F分别是AB、CD的中点.(1)求证:四边形EBFD为平行四边形;(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.21.一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.22.如图,码头A在码头B的正东方向,两个码头之间的距离为20海里,今有一货船由码头A出发,沿北偏西60°方向航行到达小岛C处,此时测得码头B在南偏东45°方向,求码头A与小岛C的距离.(≈1.732,结果精确到0.1海里)23.兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)24.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.25.如图,平面直角坐标系的单位是厘米,直线AB的解析式为y=x﹣6分别与x轴、y轴相交于A、B两点.点C沿射线BA以3厘米/秒的速度运动,以点C为圆心作半径为1厘米的⊙C.点P以2厘米/秒的速度在线段OA上来回运动,运动时间为t(t>0),过点P作直线l垂直于x轴.(1)求A,B两点的坐标;(2)若点C与点P同时从点B,点O开始运动,求直线l与⊙C第二次相切时点P的坐标;(3)在整个运动过程中,直线l与⊙C相交时t的范围是.26.如图1,对于平面上小于等于90°的∠MON,我们给出如下定义:若点P在∠MON的内部或边上,作PE⊥OM于点E,PF⊥ON于点F,则将PE+PF称为点P与∠MON的“点角距”,记作d(∠MON,P).如图2,在平面直角坐标系xOy中,x、y正半轴所组成的角为∠xOy.(1)已知点A(5,0)、点B(3,2),则d(∠xOy,A)=,d(∠xOy,B)=.(2)若点P为∠xOy内部或边上的动点,且满足d(∠xOy,P)=5,画出点P运动所形成的图形.(3)如图3与图4,在平面直角坐标系xOy中,射线OT的函数关系式为y=x(x≥0).①在图3中,点C的坐标为(4,1),试求d(∠xOT,C)的值;②在图4中,抛物线y=﹣x2+2x+经过A(5,0)与点D(3,4)两点,点Q是A,D两点之间的抛物线上的动点(点Q可与A,D两点重合),求当d(∠xOT,Q)取最大值时点Q 的坐标.2016年江苏省宿迁市泗阳XX中学中考数学一模试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项填涂在答题纸相应位置上)1.﹣5的倒数是()A. B.C.﹣5 D.5【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣5)×(﹣)=1,∴﹣5的倒数是﹣.故选:A.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.下列计算正确的是()A.a6÷a2=a3B.(﹣2)﹣1=2C.(﹣3x2)•2x3=﹣6x6D.(π﹣3)0=1【考点】负整数指数幂;同底数幂的乘法;同底数幂的除法;零指数幂.【分析】根据同底数幂的乘法与除法,负整数指数幂与零指数幂的运算法则分析各个选项.【解答】解:A、a6÷a2=a4,故A错误;B、(﹣2)﹣1=﹣,故B错误;C、(﹣3x2)•2x3=﹣6x5,故C错;D、(π﹣3)0=1,故D正确.故选D.【点评】本题综合考查了整式运算的多个考点,包括同底数幂的乘法与除法,负整数指数幂与零指数幂的运算,需熟练掌握且区分清楚.3.如图所示几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个圆与矩形的左边相切,故选:B.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.4.如图,∠1、∠2、∠3、∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110°B.108°C.105°D.100°【考点】多边形内角与外角.【分析】利用邻补角的定义,先求出∠ADE的外角,再利用多边形的内角和公式求∠AED的度数即可.【解答】解:根据五边形的内角和公式可知,五边形ABCDE的内角和为(5﹣2)×180°=540°,根据邻补角的定义可得∠EAB=∠ABC=∠BCD=∠CDE=180°﹣70°=110°,所以∠AED=540°﹣110°×4=100°.故选D.【点评】本题考查了多边形的内角和公式和邻补角的定义.多边形的内角和为:180°(n﹣2).5.如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2 B.0<x<3 C.2<x<3 D.x<0或x>3【考点】二次函数与不等式(组).【分析】直接利用已知函数图象得出y1在y2下方时,x的取值范围即可.【解答】解:如图所示:若y1<y2,则二次函数图象在一次函数图象的下面,此时x的取值范围是:0<x<3.故选:B.【点评】此题主要考查了二次函数与不等式,正确利用数形结合求出是解题关键.6.如图,若△ABC和△DEF的面积分别为S1、S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S2【考点】解直角三角形;三角形的面积.【专题】计算题.【分析】过A点作AG⊥BC于G,过D点作DH⊥EF于H.在Rt△ABG中,根据三角函数可求AG,在Rt△ABG中,根据三角函数可求DH,根据三角形面积公式可得S1,S2,依此即可作出选择.【解答】解:过A点作AG⊥BC于G,过D点作DH⊥EF于H.在Rt△ABG中,AG=AB•sin40°=5sin40°,∠DEH=180°﹣140°=40°,在Rt△DHE中,DH=DE•sin40°=8sin40°,S1=8×5sin40°÷2=20sin40°,S2=5×8sin40°÷2=20sin40°.则S1=S2.故选:C.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,关键是作出高线构造直角三角形.7.对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣1【考点】解分式方程.【专题】新定义.【分析】根据x与﹣x的大小关系,取x与﹣x中的最大值化简所求方程,求出解即可.【解答】解:当x<﹣x,即x<0时,所求方程变形得:﹣x=,去分母得:x2+2x+1=0,即x=﹣1;当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解.故选D.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:=S△ABF,其中正①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四边形CDEF确的结论有()A .5个B .4个C .3个D .2个【考点】相似三角形的判定与性质;矩形的性质.【专题】压轴题.【分析】①四边形ABCD 是矩形,BE ⊥AC ,则∠ABC=∠AFB=90°,又∠BAF=∠CAB ,于是△AEF ∽△CAB ,故①正确;②由AE=AD=BC ,又AD ∥BC ,所以,故②正确;③过D 作DM ∥BE 交AC 于N ,得到四边形BMDE 是平行四边形,求出BM=DE=BC ,得到CN=NF ,根据线段的垂直平分线的性质可得结论,故③正确;④而CD 与AD 的大小不知道,于是tan ∠CAD 的值无法判断,故④错误;⑤根据△AEF ∽△CBF 得到,求出S △AEF =S △ABF ,S △ABF =S 矩形ABCD S 四边形CDEF =S △ACD﹣S △AEF =S 矩形ABCD ﹣S 矩形ABCD =S 矩形ABCD ,即可得到S 四边形CDEF =S △ABF ,故⑤正确.【解答】解:过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF ,∴,∵AE=AD=BC ,∴=,∴CF=2AF ,故②正确,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM=DE=BC ,∴BM=CM ,∴CN=NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DF=DC ,故③正确;设AD=a ,AB=b 由△BAE ∽△ADC ,有.∵tan ∠CAD==,∴tan ∠CAD=,故④错误;∵△AEF ∽△CBF ,∴,∴S △AEF =S △ABF ,S △ABF =S 矩形ABCD∴S △AEF =S 矩形ABCD ,又∵S 四边形CDEF =S △ACD ﹣S △AEF =S 矩形ABCD ﹣S 矩形ABCD =S 矩形ABCD ,∴S 四边形CDEF =S △ABF ,故⑤正确;故选B .【点评】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.二、填空题:(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)9.使有意义的x 的取值范围是 x ≥1 .【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.【解答】解:∵有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.10.2015年我市人均GDP约为34800元,34800用科学记数法表示为 3.48×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:34800用科学记数法表示为3.48×104.故答案为:3.48×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.若ab=3,a﹣2b=5,则a2b﹣2ab2的值是15.【考点】因式分解-提公因式法.【专题】整体思想.【分析】直接提取公因式ab,进而将已知代入求出即可.【解答】解:∵ab=3,a﹣2b=5,则a2b﹣2ab2=ab(a﹣2b)=3×5=15.故答案为:15.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.12.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是5.【考点】频数与频率.【分析】一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数.【解答】解:∵一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第五组的频数是0.2×50=10,∴第六组的频数是50﹣6﹣8﹣9﹣10﹣12=5.故答案为:5.【点评】此题考查频数与频率问题,关键是利用频数、频率和样本容量三者之间的关系进行分析.13.如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为15π.【考点】圆锥的计算.【分析】根据已知和勾股定理求出AB的长,根据扇形面积公式求出侧面展开图的面积.【解答】解:∵OB=BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:×6π×5=15π.故答案为:15π.【点评】本题考查的是圆锥的计算,理解圆锥的侧面展开图是扇形,掌握扇形的面积的计算公式是解题的关键.14.已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tanB为.【考点】反比例函数综合题.【专题】计算题;压轴题.【分析】过A作AC垂直于y轴,过B作BD垂直于y轴,利用垂直的定义可得出一对直角相等,再由OA与OB垂直,利用平角的定义得到一对角互余,在直角三角形AOC中,两锐角互余,利用同角的余角相等得到一对角相等,利用两对对应角相等的三角形相似得到三角形AOC与三角形OBD 相似,利用反比例函数k的几何意义求出两三角形的面积,得出面积比,利用面积比等于相似比的平方求出相似比,即为OA与OB的比值,在直角三角形AOB中,利用锐角三角函数定义即可求出tan∠ABO的值.【解答】解:过A作AC⊥y轴,过B作BD⊥y轴,可得∠ACO=∠BDO=90°,∴∠AOC+∠OAC=90°,∵OA⊥OB,∴∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△AOC∽△OBD,∵点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,∴S△AOC=1,S△OBD=4,∴S△AOC:S△OBD=1:4,即OA:OB=1:2,则在Rt△AOB中,tan∠ABO=.故答案为:【点评】此题属于反比例综合题,涉及的知识有:相似三角形的判定与性质,锐角三角函数定义,以及反比例函数k的几何意义,熟练掌握相似三角形的判定与性质是解本题的关键.15.如图,等边△ABC中,BC=6,D、E分别在BC、AC上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为2.【考点】轨迹.【分析】因为MN是三角形EMN的中位线,所以MN∥BD,所以在运动过程中线段MN所扫过的区域为梯形,然后分别求得梯形的上底、下底和高,然后利用公式计算即可.【解答】解:在运动过程中线段MN所扫过的区域面积如图阴影所示:∵MN是△BDE的中位线.∴MN===1,且MN∥BD.同理:M′N′=3,且M′N′∥BD∴四边形MNN′M′为梯形.MG=MB•sin30°=1×=,N′F=N′C•sin30°=3×=.∴梯形MNN′M′的高==.∴梯形MNN′M′的面积=(FN﹣MG)=×=2.故答案为:2.【点评】本题主要考查轨迹的问题,由三角形中位线的性质判断出MN扫过的区域的形状是解题的关键.16.如图,已知点A1,A2,…,A n均在直线y=x﹣1上,点B1,B2,…,B n均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y轴,…,记点A n的横坐标为a n(n为正整数).若a1=﹣1,则a2016=.【考点】一次函数图象上点的坐标特征.【专题】规律型.【分析】首先根据a1=﹣1,求出a2=2,a3=,a4=﹣1,a5=2,…,所以a1,a2,a3,a4,a5,…,每3个数一个循环,分别是﹣1、2、;然后用2015除以3,根据商和余数的情况,判断出a2016是第几个循环的第几个数,进而求出它的值是多少即可.【解答】解:∵a1=﹣1,∴B1的坐标是(﹣1,1),∴A2的坐标是(2,1),即a2=2,∵a2=2,∴B2的坐标是(2,﹣),∴A3的坐标是(,﹣),即a3=,∵a3=,∴B3的坐标是(,﹣2),∴A4的坐标是(﹣1,﹣2),即a4=﹣1,∵a4=﹣1,∴B4的坐标是(﹣1,1),∴A5的坐标是(2,1),即a5=2,…,∴a1,a2,a3,a4,a5,…,每3个数一个循环,分别是﹣1、2、,∵2016÷3=672,∴a2016是第672个循环的第3个数,∴a2016=.故答案为:.【点评】(1)此题主要考查了反比例函数图象上点的坐标的特征,要熟练掌握,解答此题的关键是要明确:①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.(2)此题还考查了一次函数图象上的点的坐标特征,要熟练掌握,解答此题的关键是要明确:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.三、解答题(本题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别根据0指数幂及负整数指数幂的计算法则、绝对值的性质及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=﹣+1﹣(2﹣)﹣2×=﹣+1﹣2+﹣=﹣.【点评】本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.18.解不等式组:.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.【解答】解:,解①得x≥3,解②得x<8.则不等式组的解集是:3≤x<8.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m=30,n=20,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是90°;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.【分析】(1)根据条形图和扇形图确定B组的人数环绕所占的百分比求出样本容量,求出m、n的值;(2)求出C组”所占的百分比,得到所对应的圆心角的度数;(3)求出不合格人数所占的百分比,求出该校本次听写比赛不合格的学生人数.【解答】解:(1)从条形图可知,B组有15人,从扇形图可知,B组所占的百分比是15%,D组所占的百分比是30%,E组所占的百分比是20%,15÷15%=100,100×30%=30,100×20%=20,∴m=30,n=20;(2)“C组”所对应的圆心角的度数是25÷100×360°=90°;(3)估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人.【点评】本题考查的是频数分布表、条形图和扇形图的知识,利用统计图获取正确信息是解题的关键.注意频数、频率和样本容量之间的关系的应用.20.如图,在▱ABCD中,E、F分别是AB、CD的中点.(1)求证:四边形EBFD为平行四边形;(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.【考点】平行四边形的判定与性质;全等三角形的判定.【专题】证明题.【分析】(1)根据平行四边形的性质:平行四边的对边相等,可得AB∥CD,AB=CD;根据一组对边平行且相等的四边形是平行四边形,可得答案;(2)根据平行四边的性质:平行四边形的对边相等,可得AB∥CD,AB=CD,∠CDM=∠CFN;根据全等三角形的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵E、F分别是AB、CD的中点,∴BE=DF,∵BE∥DF,∴四边形EBFD为平行四边形;(2)证明:∵四边形EBFD为平行四边形,∴DE∥BF,∴∠CDM=∠CFN.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠BAC=∠DCA,∠ABN=∠CFN,∴∠ABN=∠CDM,在△ABN与△CDM中,,∴△ABN≌△CDM (ASA).【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,全等三角形的判定,根据条件选择适当的判定方法是解题关键.21.一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.【考点】列表法与树状图法.【专题】压轴题;图表型.【分析】(1)根据概率的意义列式即可;(2)画出树状图,然后根据概率公式列式计算即可得解. 【解答】解:(1)∵共有3个球,2个白球,∴随机摸出一个球是白球的概率为;(2)根据题意画出树状图如下:一共有6种等可能的情况,两次摸出的球都是白球的情况有2种,所以,P (两次摸出的球都是白球)==.【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.如图,码头A 在码头B 的正东方向,两个码头之间的距离为20海里,今有一货船由码头A 出发,沿北偏西60°方向航行到达小岛C 处,此时测得码头B 在南偏东45°方向,求码头A 与小岛C的距离.(≈1.732,结果精确到0.1海里)【考点】解直角三角形的应用-方向角问题.【分析】根据正切函数,可得CD 的长,根据直角三角形的性质,可得答案. 【解答】解:作CD ⊥AB 交AB 延长线于点D ,则∠D=90°, 由题意,得∠DCB=45°,∠CAD=90°﹣60°=30°,AB=20海里,设CD=x 海里,在Rt △DCB 中,tan ∠DCB=,tan45°==1,BD=x ,AD=AB+BD=20+x ,tan30°==,解得:x=10+10,∵∠CAD=30°,∠CDA=90°,∴AC=2CD=20+20≈54.6(海里).答:码头A与小岛C的距离约为54.6海里.【点评】本题考查了解直角三角形,利用了锐角三角函数,直角三角形的性质,画出直角三角形得出CD的长是解题关键.23.兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;(2)设剩余的T恤衫每件售价y元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解.【解答】解:(1)设第一批T恤衫每件进价是x元,由题意,得=,解得x=90,经检验x=90是分式方程的解,符合题意.答:第一批T恤衫每件的进价是90元;(2)设剩余的T恤衫每件售价y元.由(1)知,第二批购进=50(件).由题意,得120×50×+y×50×﹣4950≥650,解得y≥80.答:剩余的T恤衫每件售价至少要80元.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.24.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【考点】几何变换综合题.【专题】压轴题.【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=+2,此时α=315°.【解答】解:(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=OG=OG′,∴在Rt△OAG′中,sin∠AG′O==,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°﹣30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=,∵OG=2OD,∴OG′=OG=,∴OF′=2,∴AF′=AO+OF′=+2,∵∠COE′=45°,∴此时α=315°.【点评】本题主要考查了正方形的性质、全等三角形的判定与性质、锐角三角函数、旋转变换的性质的综合运用,有一定的综合性,分类讨论当∠OAG′是直角时,求α的度数是本题的难点.25.如图,平面直角坐标系的单位是厘米,直线AB的解析式为y=x﹣6分别与x轴、y轴相交于A、B两点.点C沿射线BA以3厘米/秒的速度运动,以点C为圆心作半径为1厘米的⊙C.点P以2厘米/秒的速度在线段OA上来回运动,运动时间为t(t>0),过点P作直线l垂直于x轴.(1)求A,B两点的坐标;(2)若点C与点P同时从点B,点O开始运动,求直线l与⊙C第二次相切时点P的坐标;(3)在整个运动过程中,直线l与⊙C相交时t的范围是0≤t<2或<t<.。
2016年中考真题精品解析 数学(江苏宿迁卷)
2016年中考真题精品解析 数学(江苏宿迁卷)精编word 版一、选择题(共8小题)1.﹣2的绝对值是( ) A .﹣2 B .12-C .12D .2 2.下列四个几何体中,左视图为圆的几何体是( )A .B .C .D .3.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×106 4.下列计算正确的是( )A .235a a a +=B .236a a a ⋅=C .235()a a = D .523a a a ÷=5.如图,已知直线a 、b 被直线c 所截.若a ∥b ,∠1=120°,则∠2的度数为( )A .50°B .60°C .120°D .130° 6.一组数据5,4,2,5,6的中位数是( )A .5B .4C .2D .67.如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE .若AB 的长为2,则FM 的长为( )A .2B .3C .2 D .18.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =,21x =-二、填空题(共8小题)9.因式分解:228a -= .10.计算:211x xx x ---= . 11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是 . 12.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 . 13.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n 100 300 400 600 1000 2000 3000 发芽的频数m 96 284 380 571 948 1902 2848 发芽的频率 0.960 0.947 0.950 0.952 0.948 0.951 0.949那么这种油菜籽发芽的概率是 (结果精确到0.01).14.如图,在△ABC 中,已知∠ACB =130°,∠BAC =20°,BC =2,以点C 为圆心,CB 为半径的圆交AB 于点D ,则BD 的长为 .15.如图,在平面直角坐标系中,一条直线与反比例函数8y x=(x >0)的图象交于两点A 、B ,与x 轴交于点C ,且点B 是AC 的中点,分别过两点A 、B 作x 轴的平行线,与反比例函数2y x=(x >0)的图象交于两点D 、E ,连接DE ,则四边形ABED 的面积为 .16.如图,在矩形ABCD 中,AD =4,点P 是直线AD 上一动点,若满足△PBC 是等腰三角形的点P 有且只有3个,则AB 的长为 .三、解答题(共10小题)17.计算:102sin 303(21)4-++--.18.解不等式组:2132(1)x x x x >+⎧⎨<+⎩.19.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表 优秀 良好 合格 不合格 七年级 a 20 24 8 八年级 29 13 13 5 九年级 24 b 14 7根据以上信息解决下列问题:(1)在统计表中,a 的值为 ,b 的值为 ;(2)在扇形统计图中,八年级所对应的扇形圆心角为 度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.20.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.21.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:B E=CF.22.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:3≈1.73)23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:A C 是⊙O 的切线;(2)当BD 是⊙O 的直径时(如图2),求∠CAD 的度数.24.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m (30<m ≤100)人时,每增加1人,人均收费降低1元;超过m 人时,人均收费都按照m 人时的标准.设景点接待有x 名游客的某团队,收取总费用为y 元. (1)求y 关于x 的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.25.已知△ABC 是等腰直角三角形,AC =BC =2,D 是边AB 上一动点(A 、B 两点除外),将△CAD 绕点C 按逆时针方向旋转角α得到△CEF ,其中点E 是点A 的对应点,点F 是点D 的对应点.(1)如图1,当α=90°时,G 是边AB 上一点,且BG =AD ,连接GF .求证:GF ∥AC ; (2)如图2,当90°≤α≤180°时,AE 与DF 相交于点M . ①当点M 与点C 、D 不重合时,连接CM ,求∠CMD 的度数;②设D 为边AB 的中点,当α从90°变化到180°时,求点M 运动的路径长.26.如图,在平面直角坐标系xOy 中,将二次函数21y x =-的图象M 沿x 轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N . (1)求N 的函数表达式;(2)设点P (m ,n )是以点C (1,4)为圆心、1为半径的圆上一动点,二次函数的图象M 与x 轴相交于两点A 、B ,求22PA PB 的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M 与N 所围成封闭图形内(包括边界)整点的个数.一、选择题(共8小题)1.﹣2的绝对值是()A.﹣2B.12C.12D.2【答案】D.【解析】试题分析:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选D.考点:绝对值.2.下列四个几何体中,左视图为圆的几何体是()A.B.C.D.【答案】A.考点:简单几何体的三视图.3.地球与月球的平均距离为384000km,将384000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【答案】C.【解析】试题分析:384000=3.84×105.故选C.考点:科学记数法—表示较大的数.4.下列计算正确的是()A .235a a a +=B .236a a a ⋅=C .235()a a = D .523a a a ÷=【答案】D .考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 5.如图,已知直线a 、b 被直线c 所截.若a ∥b ,∠1=120°,则∠2的度数为( )A .50°B .60°C .120°D .130° 【答案】B . 【解析】试题分析:如图,∠3=180°﹣∠1=180°﹣120°=60°,∵a ∥b ,∴∠2=∠3=60°.故选B .考点:平行线的性质.6.一组数据5,4,2,5,6的中位数是( )A .5B .4C .2D .6 【答案】A . 【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A . 考点:中位数;统计与概率.7.如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE .若AB 的长为2,则FM 的长为( )A .2B .3C .2D .1 【答案】B .考点:翻折变换(折叠问题).8.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =,21x =- 【答案】C . 【解析】试题分析:∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x =﹣1,∵抛物线的对称轴为:直线x =1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.二、填空题(共8小题)9.因式分解:228a -= . 【答案】2(a +2)(a ﹣2). 【解析】试题分析:228a -=22(4)a -=2(a +2)(a ﹣2).故答案为:2(a +2)(a ﹣2).考点:提公因式法与公式法的综合运用.10.计算:211x xx x ---= . 【答案】x . 【解析】试题分析:211x x x x ---=21x x x --=(1)1x x x --=x .故答案为:x . 考点:分式的加减法.11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是 . 【答案】1:2.考点:相似三角形的性质.12.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 . 【答案】:k <1. 【解析】试题分析:∵一元二次方程220x x k -+=有两个不相等的实数根,∴△=24b ac -=4﹣4k >0,解得:k <1,则k 的取值范围是:k <1.故答案为:k <1. 考点:根的判别式.13.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n100 300 400 600 1000 2000 3000 发芽的频数m 96 284 380 571 948 1902 2848 发芽的频率 0.960 0.947 0.950 0.952 0.948 0.951 0.949那么这种油菜籽发芽的概率是 (结果精确到0.01). 【答案】0.95.【解析】试题分析:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则这种油菜籽发芽的概率是0.95,故答案为:0.95.考点:利用频率估计概率.14.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB 于点D,则BD的长为.【答案】23.考点:垂径定理.15.如图,在平面直角坐标系中,一条直线与反比例函数8yx=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数2yx=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.【答案】92.考点:反比例函数系数k的几何意义.16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.【答案】4.【解析】试题分析:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4,故答案为:4.考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论.三、解答题(共10小题)17.计算:102sin 303(21)4-++--.【答案】13.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 18.解不等式组:2132(1)x x x x >+⎧⎨<+⎩.【答案】1<x <2. 【解析】试题分析:根据解不等式组的方法可以求得不等式组的解集,从而可以解答本题. 试题解析:2 1 32(1)x x x x >+⎧⎨<+⎩①②,由①得,x >1,由②得,x <2,由①②可得,原不等式组的解集是:1<x <2.考点:解一元一次不等式组;方程与不等式.19.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级 a 20 24 8八年级29 13 13 5九年级24 b 14 7根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.【答案】(1)28,15;(2)108;(3)200.【解析】试题分析:(1)根据学校从三个年级随机抽取200名学生的体育成绩进行统计分析和扇形统计图可以求得七年级抽取的学生数,从而可以求得a的值,也可以求得九年级抽取的学生数,进而得到b的值;(2)根据扇形统计图可以求得八年级所对应的扇形圆心角的度数;绩不合格的有200人.考点:扇形统计图;用样本估计总体;统计与概率.20.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.【答案】(1)2;(2)13.【解析】试题分析:(1)由必然事件的定义可知:透明的袋子中装的都是黑球,从袋子中随机摸出一个球是黑球的案为:2;(2)设红球分别为H1、H2,黑球分别为B1、B2,列表得:第二球第一球H1H2B1B2H1(H1,H2)(H1,B1)(H1,B2)H2(H2,H1)(H2,B1)(H2,B2)B1(B1,H1)(B1,H2)(B1,B2)B2(B2,H1)(B2,H2)(B2,B1)总共有12种结果,每种结果的可能性相同,两次都摸到球颜色相同结果有4种,所以两次摸到的球颜色相同的概率=412=13.考点:列表法与树状图法;随机事件.21.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:B E=CF.【答案】证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考点:平行四边形的判定与性质.22.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:3≈1.73)【答案】没有触礁的危险.【解析】试题分析:作PC⊥AB于C,如图,∠P AC=30°,∠PBC=45°,AB=8,设PC=x,先判断△PBC为等腰直角三角形得到BC=PC=x,再在Rt△P AC中利用正切的定义列方程,求出x的值,即得到AC的值,然后比较AC与10的大小即可判断海轮继续向正东方向航行,是否有触礁的危险.试题解析:没有触礁的危险.理由如下:考点:解直角三角形的应用-方向角问题;应用题.23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:A C是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.【答案】(1)证明见解析;(2)22.5°.【解析】(1)连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,由已知条件得出∠ABC=∠CAD,试题分析:由圆周角定理得出∠ADE=90°,证出∠AED=∠ABC=∠CAD,求出EA⊥AC,即可得出结论;(2)由圆周角定理得出∠BAD=90°,由角的关系和已知条件得出∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴4∠ABC=90°,∴∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5°.考点:切线的判定;圆周角定理;三角形的外接圆与外心.24.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.【答案】(1)y=120 (030)[120(30)] (30)[120(30)] (100)x xx x x mm x m x<≤⎧⎪--<≤⎨⎪--<≤⎩;(2)30<m≤75.【解析】试题分析:(1)根据收费标准,分0<x≤30,30<x≤m,m<x≤100分别求出y与x的关系即可.考点:二次函数的应用;分段函数;最值问题;二次函数的最值.25.已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C 按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.【答案】(1)证明见解析;(2)①135°;②2π. 【解析】试题分析:(1)欲证明GF ∥AC ,只要证明∠A =∠FGB 即可解决问题.(2)①先证明A 、D 、M 、C 四点共圆,得到∠CMF =∠CAD =45°,即可解决问题.∵2∠CAE +∠ACE =180°,2∠CDF +∠DCF =180°,∴∠CAE =∠CDF ,∴A 、D 、M 、C 四点共圆,∴∠CMF =∠CAD =45°,∴∠CMD =180°﹣∠CMF =135°.②如图3中,O 是AC 中点,连接OD 、CM .∵AD =DB ,CA =CB ,∴CD ⊥AB ,∴∠ADC =90°,由①可知A 、D 、M 、C 四点共圆,∴当α从90°变化到180°时,点M 在以AC 为直径的⊙O 上,运动路径是弧CD ,∵OA =OC ,CD =DA ,∴DO ⊥AC ,∴∠DOC =90°,∴CD 的长=901180π⨯=2π,∴当α从90°变化到180°时,点M 运动的路径长为2π.考点:几何变换综合题.26.如图,在平面直角坐标系xOy 中,将二次函数21y x =-的图象M 沿x 轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N . (1)求N 的函数表达式;(2)设点P (m ,n )是以点C (1,4)为圆心、1为半径的圆上一动点,二次函数的图象M 与x 轴相交于两点A 、B ,求22PA PB +的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M 与N 所围成封闭图形内(包括边界)整点的个数.【答案】(1)245y x x =-++;(2)38417+;(3)25.【解析】试题分析:(1)根据二次函数N 的图象是由二次函数M 翻折、平移得到所以a =﹣1,求出二次函数N 的顶点坐标即可解决问题.(2)由22PA PB +=222OP +可知OP 最大时,22PA PB +最大,求出OP 的最大值即可解决问题.(3)画出函数图象即可解决问题.最大,∴OP 的最大值=OC +PO =171+,∴22PA PB +最大值=22(171)2++=38417+.(3)M 与N 所围成封闭图形如图所示:由图象可知,M与N所围成封闭图形内(包括边界)整点的个数为25个.考点:二次函数综合题;最值问题;压轴题;几何变换综合题.。
宿迁市中考数学试卷
宿迁市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)我们用[a]表示不大于a的最大整数,例如[2.5]=2,[3]=3,[-2.5]=-3,则[4.5]=()A . 3B . 4C . 5D . 62. (2分)(2016·宜昌) 把0.22×105改成科学记数法的形式,正确的是()A . 2.2×103B . 2.2×104C . 2.2×105D . 2.2×1063. (2分)若m·23=26 ,则m等于()A . 2B . 4C . 6D . 84. (2分) (2018八上·句容月考) 如图,在2×2 的正方形网格中,有一个格点△ABC(阴影部分),则网格中所有与△ABC成轴对称的格点三角形的个数为()A . 2B . 3C . 4D . 55. (2分)长为9,6,5,3的四根木条,选其中三根,共可以组成三角形()A . 4个B . 3个C . 2个D . 1个6. (2分)(2017·河南模拟) 在函数y= 中,自变量x的取值范围是()A . x>2B . x≥2C . x<2D . x≤27. (2分)(2020·绵阳) 如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A . 1B . 2C . 3D . 48. (2分) (2016九上·临海期末) 小洋用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A . 120πcm2B . 240πcm2C . 260πcm2D . 480πcm29. (2分)一辆汽车由江门匀速驶往广州,下列图象中大致能反映汽车距离广州的路程S(千米)和行驶时间t(小时)的关系的是()A .B .C .D .10. (2分)(2019·广阳模拟) 如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC 于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)从点A(﹣2,3)、B(1,﹣6)、C(﹣2,﹣4)中任取一个点,在y=﹣的图象上的概率是________12. (1分)如图,OC⊥AB于点O,∠1=∠2,则图中互余的角有________对.13. (1分)(2019·陇南模拟) 如图是一个几何体的三视图,这个几何体的全面积为________.(π取3.14)14. (1分)如图,将∠AOB放在边长为1的小正方形组成的网格中,则tan∠AOB=________.15. (1分)甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8;=8,则这两人5次射击命中的环数的方差S甲2________S乙2(填“>”“<”或“=”).16. (1分)已知直线y=x-2与y=-x+2相交于点(2,0),则不等式x-2≥-x+2的解集是________.17. (1分)如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是________.18. (1分)二次函数的图象如图所示,给出下列说法:①ac>0;②2a+b=0;③a+b+c=0;④当时,函数y随x的增大而增大;⑤当时,.其中,正确的说法有________ .(请写出所有正确说法的序号)三、解答题 (共10题;共91分)19. (10分) (2019七下·昭平期中) 计算(1)(2)20. (10分)(2014·连云港) 为了考察冰川的融化状况,一支科考队在某冰川上设定一个以大本营O为圆心,半径为4km的圆形考察区域,线段P1P2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动,若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为正整数)的关系是s= n2﹣ n+ .以O为原点,建立如图所示的平面直角坐标系,其中P1、P2的坐标分别为(﹣4,9)、(﹣13、﹣3).(1)求线段P1P2所在直线对应的函数关系式;(2)求冰川边界线移动到考察区域所需的最短时间.21. (8分)(2018·陕西) 对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表依据以上统计信息,解答下列问题:(1)求得m=________,n=________;(2)这次测试成绩的中位数落在________组;(3)求本次全部测试成绩的平均数.22. (8分) (2019九上·顺德月考) 为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表。
江苏省宿迁市中考数学试题(WORD版-含答案)
、选择题(本大题共 1、 2、 3、江苏省宿迁市 8小题,每小题 若等腰三角形中有两边长分别为 、12 计算(a 3)2的结果是 a 5 a 5 2015年初中毕业暨升学考试数学3分,共24分)5,1、 --2则这个三角形的周长为 D 、9 或 12a 6 D a 6C 所截,如图所示,直线a 、b 被直线4、 、邻补角A x 2B 、X 2C 、X 2D 6、已知一个多边形的内角和等于它的外角和, 则这个多边形的边数为 7、在平面直角坐标系中, 若直线 y kx b 经过第一、三、四象限,则直线 y bx k 不经过的象限是 A 、第一象限 B 、第二象限 、第三象限 D 、第四象限&在平面直角坐标系中,点A B 的坐标分别为(-3,20)、( 3,0),点P 在反比例函数y 的x图像上,若△ PAB为直角三角形,则满足条件的点P的个数为A 2个B 、4个C 、5个D 、6个二、填空题(本大题共8小题,每小题3分,共24分)9、某市今年参加中考的学生大约为45000人,将数45000用科学计数法可以表示为。
2x1310、关于x的不等式组的解集为1 x 3,则a的值为。
a x 111、因式分解:x3 4x 。
3 212、方程30的解为。
x x 213、如图,四边形ABCD是O O的内接四边形,若 C 130,贝U BOD 度。
第1殖第14题第址题14、如图,在Rt ABC中,ACB 90,点D E、F分别为AB AC BC的中点,若CD=5贝U EF的长为。
315、如图,在平面直角坐标系中,点P的坐标为(0,4 ),直线y x 3与x轴、y轴分别交于A、4B,点M是直线AB上的一个动点,则PM长的最小值为。
16、当x m或x n (m n)时,代数式x22x 3的值相等,则x m n时,代数式x22x 3的值为。
(1) 这次抽样调查的样本容量是 ,并不全频数分布直方图;(2) C 组学生的频率为 ,在扇形统计图中 D 组的圆心角是度;三、解答题(本大题共 10分,共72分)17、(本题满分6分)计算 cos60 2 1、(2)2 (3)018、(本题满分6分)(1 )解方程:X 2x 3 ;(2)解方程组:x 2y 3 3x 4y 119、(本题满分6分)某校为了解初三年级 1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们 按体重(均为整数,单位:kg )分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制(3) 请你估计该校初三年级体重超过60kg的学生大约有多少名?20、(本题满分6分)一只不透明的袋子中装有1个白球、1个蓝球和2个红球,这些球除颜色外都相同。
2016年江苏省宿迁市中考数学试卷
2016年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且仅有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. −2的绝对值是()A.−2B.−12C.12D.2【答案】D【考点】绝对值【解析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵−2<0,∴|−2|=−(−2)=2.故选D.2. 下列四个几何体中,左视图为圆的几何体是()A. B. C. D.【答案】A【考点】简单几何体的三视图【解析】根据左视图是从左边看所得到的图形逐一判断可得.【解答】B、正方体的左视图是正方形,故选项错误(1)C、圆锥的左视图是等腰三角形,故选项错误(2)D、圆柱的左视图是长方形,故选项错误(3)故选:A.3. 地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 000有6位,所以可以确定n=6−1=5.【解答】384 000=3.84×105.4. 下列计算正确的是()A.a2+a3=a5B.a2⋅a3=a6C.(a2)3=a5D.a5÷a2=a3【答案】D【考点】同底数幂的除法合并同类项同底数幂的乘法幂的乘方与积的乘方【解析】根据合并同类项,可判断A,根据同底数幂的乘法底数不变指数相加,可判断B,根据幂的乘方底数不变指数相乘,可判断C,根据同底数幂的除法底数不变指数相减,可判断D.【解答】解:A、不是同类项不能合并,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、幂的乘方底数不变指数相乘,故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.5. 如图,已知直线a,b被直线c所截.若a // b,∠1=120∘,则∠2的度数为()A.50∘B.60∘C.120∘D.130∘【答案】B【考点】平行线的判定与性质【解析】根据邻补角的定义求出∠3,再根据两直线平行,同位角相等解答.【解答】解:如图,∠3=180∘−∠1=180∘−120∘=60∘.∵a // b,∴∠2=∠3=60∘.故选B.6. 一组数据5,4,2,5,6的中位数是()A.5B.4C.2D.6【答案】A【考点】中位数【解析】先将题目中数据按照从小到大排列,从而可以得到这组数据的中位数,本题得以解决.【解答】将题目中数据按照从小到大排列是:2,4,5,5,6,故这组数据的中位数是5,7. 如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为( )A.2B.√3C.√2D.1【答案】B【考点】勾股定理翻折变换(折叠问题)【解析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM的值.【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=√BF2−BM2=√22−12=√3.故选B.8. 若二次函数y=ax2−2ax+c的图象经过点(−1, 0),则方程ax2−2ax+c=0的解为( )A.x1=−3,x2=−1B.x1=1,x2=3C.x1=−1,x2=3D.x1=−3,x2=1【答案】C【考点】抛物线与x轴的交点待定系数法求二次函数解析式【解析】直接利用抛物线与x轴交点求法以及结合二次函数对称性得出答案.【解答】解:∵二次函数y=ax2−2ax+c的图象经过点(−1, 0),∴方程ax2−2ax+c=0一定有一个解为:x=−1,∵抛物线的对称轴为:直线x=1,∴二次函数y=ax2−2ax+c的图象与x轴的另一个交点为:(3, 0),∴方程ax2−2ax+c=0的解为:x1=−1,x2=3.故选C.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)因式分解:2a2−8=________.【答案】2(a+2)(a−2)【考点】提公因式法与公式法的综合运用【解析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2−8=2(a2−4)=2(a+2)(a−2).故答案为:2(a+2)(a−2).计算:x2x−1−xx−1=________.【答案】x【考点】分式的加减运算【解析】进行同分母分式加减运算,最后要注意将结果化为最简分式.解:x 2x−1−xx−1=x2−xx−1=x(x−1)x−1=x.故答案为x.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是________.【答案】1:2【考点】相似三角形的性质【解析】根据相似三角形面积的比等于相似比的平方求出相似比,根据似三角形周长的比等于相似比得到答案.【解答】∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:2,∴这两个相似三角形的周长比是1:2,若一元二次方程x2−2x+k=0有两个不相等的实数根,则k的取值范围是________.【答案】k<1【考点】根的判别式【解析】直接利用根的判别式得出△=b2−4ac=4−4k>0进而求出答案.【解答】解:∵一元二次方程x2−2x+k=0有两个不相等的实数根,∴Δ=b2−4ac=4−4k>0,解得:k<1,则k的取值范围是:k<1.故答案为:k<1.某种油菜籽在相同条件下发芽试验的结果如表:那么这种油菜籽发芽的概率是________(结果精确到0.01).【答案】0.95【考点】利用频率估计概率【解析】观察表格得到这种油菜籽发芽的频率稳定在0.95附近,即可估计出这种油菜发芽的概率.观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则这种油菜籽发芽的概率是0.95,如图,在△ABC中,已知∠ACB=130∘,∠BAC=20∘,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为________.【答案】2√3【考点】垂径定理【解析】如图,作CE⊥AB于E,在RT△BCE中利用30度性质即可求出BE,再根据垂径定理可以求出BD.【解答】解:如图,作CE⊥于E.∵∠ABC=180∘−∠BAC−∠ACB=180∘−20∘−130∘=30∘,在Rt△BCE中,∵∠CEB=90∘,∠B=30∘,BC=2,∴CE=1BC=1,BE=√3CE=√3.2∵CE⊥BD,∴DE=EB,∴BD=2EB=2√3.故答案为:2√3.(x>0)的图象交于两点A、如图,在平面直角坐标系中,一条直线与反比例函数y=8xB,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为函数y=2x________.【答案】92【考点】反比例函数系数k的几何意义【解析】根据点A、B在反比例函数y=8x (x>0)的图象上,可设出点B坐标为(8m, m),再根据B为线段AC的中点可用m表示出来A点的坐标,由AD // x轴、BE // x轴,即可用m表示出来点D、E的坐标,结合梯形的面积公式即可得出结论.【解答】解:∵点A、B在反比例函数y=8x(x>0)的图象上,设点B的坐标为(8m, m),∵点B为线段AC的中点,且点C在x轴上,∴点A的坐标为(4m, 2m).∵AD // x轴、BE // x轴,且点D、E在反比例函数y=2x(x>0)的图象上,∴点D的坐标为(1m , 2m),点E的坐标为(2m, m).∴S梯形ABED =12(4m−1m+8m−2m)×(2m−m)=92.故答案为:92.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为________.【答案】4或2√3【考点】等腰三角形的性质勾股定理矩形的性质【解析】要求直线AD上满足△PBC是等腰三角形的点P有且只有3个时的AB长,则需要分类讨论:①当AB=AD时;②当AB<AD时,③当AB>AD时.【解答】①如图,当AB=AD时满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4.②当AB<AD,且满足△PBC是等腰三角形的点P有且只有3个时,如图,易知P2是AD的中点,∵△P1BC是等腰三角形,∴BP1=BC,同理:BC=CP3,只有△P2BC是等边三角形时,△PBC是等腰三角形的点P有且只有3个,∴BC=BP1=BP2=CP2=CP3∴BP2=√22+AB2=√4+AB2,又∵BP1=BC,∴√4+AB2=4∴AB=2√3.③当AB>AD时,直线AD上只有一个点P满足△PBC是等腰三角形.三、解答题(本大题共10题,共72分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)计算:2sin30∘+3−1+(√2−1)0−√4.【答案】解:2sin30∘+3−1+(√2−1)0−√4=2×12+13+1−2=13.【考点】实数的运算零指数幂、负整数指数幂负整数指数幂特殊角的三角函数值【解析】直接利用特殊角的三角函数值结合零指数幂的性质以及负整数指数幂的性质分别化简进而求出答案.【解答】解:2sin30∘+3−1+(√2−1)0−√4=2×12+13+1−2=13.解不等式组:{2x>x+13x<2(x+1).【答案】解:{2x>x+1①3x<2(x+1)②由①得,x>1,由②得,x<2,由①②可得,原不等式组的解集是:1<x<2.【考点】解一元一次不等式组【解析】根据解不等式组的方法可以求得不等式组的解集,从而可以解答本题.【解答】解:{2x>x+1①3x<2(x+1)②由①得,x>1,由②得,x<2,由①②可得,原不等式组的解集是:1<x<2.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:根据以上信息解决下列问题:(1)在统计表中,________的值为________,________的值为________;(2)在扇形统计图中,八年级所对应的扇形圆心角为________度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.【答案】a,28,b,15108由题意可得,=200人,2000×8+5+7200即该校三个年级共有2000名学生参加考试,该校学生体育成绩不合格的有200人.【考点】用样本估计总体扇形统计图【解析】(1)根据学校从三个年级随机抽取200名学生的体育成绩进行统计分析和扇形统计图可以求得七年级抽取的学生数,从而可以求得a的值,也可以求得九年级抽取的学生数,进而得到b的值;(2)根据扇形统计图可以求得八年级所对应的扇形圆心角的度数;(3)根据表格中的数据可以估计该校学生体育成绩不合格的人数.【解答】由题意和扇形统计图可得,a=200×40%−20−24−8=80−20−24−8=28,b=200×30%−24−14−7=60−24−14−7=15,故答案为:28,15;由扇形统计图可得,八年级所对应的扇形圆心角为:360∘×(1−40%−30%)=360∘×30%=108∘,故答案为:108;由题意可得,2000×8+5+7200=200人,即该校三个年级共有2000名学生参加考试,该校学生体育成绩不合格的有200人.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为________;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.【答案】2设红球分别为H1、H2,黑球分别为B1、B2,列表得:总共有12种结果,每种结果的可能性相同,两次都摸到球颜色相同结果有4种,所以两次摸到的球颜色相同的概率=412=13.【考点】列表法与树状图法随机事件【解析】(1)由必然事件的定义可知:透明的袋子中装的都是黑球,从袋子中随机摸出一个球是黑球的事件为“必然事件”才能成立,所以m的值即可求出;(2)列表得出所有等可能的情况数,找出两次摸到的球颜色相同的情况数,即可求出所求的概率.【解答】∵在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同,从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,∴透明的袋子中装的都是黑球,∴m=2,故答案为:2;设红球分别为H1、H2,黑球分别为B1、B2,列表得:总共有12种结果,每种结果的可能性相同,两次都摸到球颜色相同结果有4种,所以两次摸到的球颜色相同的概率=412=13.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED // BC,EF // AC.求证:BE=CF.【答案】证明:∵ED // BC,EF // AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE // BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.【考点】平行四边形的判定平行四边形的性质角平分线的性质【解析】先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.【解答】证明:∵ED // BC,EF // AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE // BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60∘方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45∘方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:√3≈1.73)【答案】解:没有触礁的危险.理由如下:作PC⊥AB于C,如图,∠PAC=30∘,∠PBC=45∘,AB=8,设BC=x,在Rt△PBC中,∵∠PBC=45∘,∴△PBC为等腰直角三角形,∴BC=PC=x,在Rt△PAC中,∵tan∠PAC=PCAC,∴AC=PCtan30∘,即8+x=√33,解得x=4(√3+1)≈10.92,即PC≈10.92,∵10.92>10,∴海轮继续向正东方向航行,没有触礁的危险.【考点】解直角三角形的应用-方向角问题【解析】作PC⊥AB于C,如图,∠PAC=30∘,∠PBC=45∘,AB=8,设BC=x,先判断△PBC 为等腰直角三角形得到BC=PC=x,再在Rt△PAC中利用正切的定义得到8+x=√33解得x=4(√3+1)≈10.92,即PC≈10.92,然后比较AC与10的大小即可判断海轮继续向正东方向航行,是否有触礁的危险.【解答】解:没有触礁的危险.理由如下:作PC⊥AB于C,如图,∠PAC=30∘,∠PBC=45∘,AB=8,设BC=x,在Rt△PBC中,∵∠PBC=45∘,∴△PBC为等腰直角三角形,∴BC=PC=x,在Rt△PAC中,∵tan∠PAC=PCAC,∴AC=PCtan30∘,即8+x=x√33,解得x=4(√3+1)≈10.92,即PC≈10.92,∵10.92>10,∴海轮继续向正东方向航行,没有触礁的危险.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.【答案】(1)证明:连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,如图所示:∵∠ABC:∠ACB:∠ADB=1:2:3,∠ADB=∠ACB+∠CAD,∴∠ABC=∠CAD,∵AE为⊙O的直径,∴∠ADE=90∘,∴∠EAD=90∘−∠AED,∵∠AED=∠ABD,∴∠AED=∠ABC=∠CAD,∴∠EAD=90∘−∠CAD,即∠EAD+∠CAD=90∘,∴EA⊥AC,∴AC是⊙O的切线;(2)解:∵BD是⊙O的直径,∴∠BAD=90∘,∴∠ABC+∠ADB=90∘,∵∠ABC:∠ACB:∠ADB=1:2:3,∴4∠ABC=90∘,∴∠ABC=22.5∘,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5∘.【考点】切线的判定圆周角定理三角形的外接圆与外心【解析】(1)连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,由已知条件得出∠ABC=∠CAD,由圆周角定理得出∠ADE=90∘,证出∠AED=∠ABC=∠CAD,求出EA⊥AC,即可得出结论;(2)由圆周角定理得出∠BAD=90∘,由角的关系和已知条件得出∠ABC=22.5∘,由(1)知:∠ABC=∠CAD,即可得出结果.【解答】(1)证明:连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,如图所示:∵∠ABC:∠ACB:∠ADB=1:2:3,∠ADB=∠ACB+∠CAD,∴∠ABC=∠CAD,∵AE为⊙O的直径,∴∠ADE=90∘,∴∠EAD=90∘−∠AED,∵∠AED=∠ABD,∴∠AED=∠ABC=∠CAD,∴∠EAD=90∘−∠CAD,即∠EAD+∠CAD=90∘,∴EA⊥AC,∴AC是⊙O的切线;(2)解:∵BD是⊙O的直径,∴∠BAD=90∘,∴∠ABC+∠ADB=90∘,∵∠ABC:∠ACB:∠ADB=1:2:3,∴4∠ABC=90∘,∴∠ABC=22.5∘,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5∘.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.【答案】解:(1)y={120x(0<x≤30) [120−(x−30)]x(30<x≤m)[120−(m−30)]x(m<x≤100).(2)由(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加,当30<x≤m时,y=−x2+150x=−(x−75)2+5625,∵a=−1<0,∴x≤75时,y随着x增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m≤75.【考点】二次函数的应用分段函数【解析】(1)根据收费标准,分0<x≤30,30<x≤m,m<x≤100分别求出y与x的关系即可.(2)由(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加,30<x≤m时,y=−x2+150x=−(x−75)2+5625,根据二次函数的性质即可解决问题.【解答】解:(1)y={120x(0<x≤30) [120−(x−30)]x(30<x≤m)[120−(m−30)]x(m<x≤100).(2)由(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加,当30<x≤m时,y=−x2+150x=−(x−75)2+5625,∵a=−1<0,∴x≤75时,y随着x增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m≤75.已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D 的对应点.(1)如图1,当α=90∘时,G是边AB上一点,且BG=AD,连接GF.求证:GF // AC;(2)如图2,当90∘≤α≤180∘时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90∘变化到180∘时,求点M运动的路径长.【答案】解:(1)如图1中,∵CA= CB,∠ACB=90∘,∴∠A=∠ABC=45∘,∵△CEF是由△CAD旋转逆时针α得到,α=90∘,∴CB与CE重合,∴∠CBE=∠A=45∘,∴∠ABF=∠ABC+∠CBF=90∘,∵BG=AD=BF,∴∠BGF=∠BFG=45∘,∴∠A=∠BGF=45∘,∴GF // AC.(2)①如图2中,∵CA= CE,CD=CF,∴∠CAE=∠CEA,∠CDF=∠CFD,∵∠ACD=∠ECF,∴∠ACE=∠CDF,∵2∠CAE+∠ACE=180∘,2∠CDF+∠DCF=180∘,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45∘,∴∠CMD=180∘−∠CMF=135∘.②如图3中,O是AC中点,连接OD、CM.∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90∘,由①可知A、D、M、C四点共圆,∴当α从90∘变化到180∘时,点M在以AC为直径的⊙O上,运动路径是弧CD,∵OA=OC,CD=DA,∴DO⊥AC,∴∠DOC=90∘,∴CD̂的长=90π⋅1180=π2.∴当α从90∘变化到180∘时,点M运动的路径长为π2.【考点】几何变换综合题【解析】(1)欲证明GF // AC,只要证明∠A=∠FGB即可解决问题.(2)①先证明A、D、M、C四点共圆,得到∠CMF=∠CAD=45∘,即可解决问题.②利用①的结论可知,点M在以AC为直径的⊙O上,运动路径是弧CD,利用弧长公式即可解决问题.【解答】解:(1)如图1中,∵CA= CB,∠ACB=90∘,∴∠A=∠ABC=45∘,∵△CEF是由△CAD旋转逆时针α得到,α=90∘,∴CB与CE重合,∴∠CBE=∠A=45∘,∴∠ABF=∠ABC+∠CBF=90∘,∵BG=AD=BF,∴∠BGF=∠BFG=45∘,∴∠A=∠BGF=45∘,∴GF // AC.(2)①如图2中,∵CA= CE,CD=CF,∴∠CAE=∠CEA,∠CDF=∠CFD,∵∠ACD=∠ECF,∴∠ACE=∠CDF,∵2∠CAE+∠ACE=180∘,2∠CDF+∠DCF=180∘,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45∘,∴∠CMD=180∘−∠CMF=135∘.②如图3中,O是AC中点,连接OD、CM.∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90∘,由①可知A、D、M、C四点共圆,∴当α从90∘变化到180∘时,点M在以AC为直径的⊙O上,运动路径是弧CD,∵OA=OC,CD=DA,∴DO⊥AC,∴∠DOC=90∘,∴CD̂的长=90π⋅1180=π2.∴当α从90∘变化到180∘时,点M运动的路径长为π2.如图,在平面直角坐标系xOy中,将二次函数y=x2−1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m, n)是以点C(1, 4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.【答案】(1)解:二次函数y=x2−1的图象M沿x轴翻折得到函数的解析式为y=−x2+1,此时顶点坐标(0, 1),将此图象向右平移2个单位长度后再向上平移8个单位长度得到二次函数图象N的顶点为(2, 9),故N的函数表达式y=−(x−2)2+9=−x2+4x+5.(2)∵A(−1, 0),B(1, 0),∴PA2+PB2=(m+1)2+n2+(m−1)2+n2=2(m2+n2)+2=2⋅PO2+2,∴当PO最大时PA2+PB2最大.如图,延长OC与⊙O交于点P,此时OP最大,∴OP的最大值=OC+PO=√17+1,∴PA2+PB2最大值=2(√17+1)2+2=38+4√17.(3)M与N所围成封闭图形如图所示,由图象可知,M与N所围成封闭图形内(包括边界)整点的个数为25个.【考点】二次函数综合题【解析】(1)根据二次函数N的图象是由二次函数M翻折、平移得到所以a=−1,求出二次函数N的顶点坐标即可解决问题.(2)由PA2+PB2=(m+1)2+n2+(m−1)2+n2=2(m2+n2)+2=2⋅PO2+2可知OP最大时,PA2+PB2最大,求出OP的最大值即可解决问题.(3)画出函数图象即可解决问题.【解答】(1)解:二次函数y=x2−1的图象M沿x轴翻折得到函数的解析式为y=−x2+1,此时顶点坐标(0, 1),将此图象向右平移2个单位长度后再向上平移8个单位长度得到二次函数图象N的顶点为(2, 9),故N的函数表达式y=−(x−2)2+9=−x2+4x+5.(2)∵A(−1, 0),B(1, 0),∴PA2+PB2=(m+1)2+n2+(m−1)2+n2=2(m2+n2)+2=2⋅PO2+2,∴当PO最大时PA2+PB2最大.如图,延长OC与⊙O交于点P,此时OP最大,∴OP的最大值=OC+PO=√17+1,∴PA2+PB2最大值=2(√17+1)2+2=38+4√17.(3)M与N所围成封闭图形如图所示,由图象可知,M与N所围成封闭图形内(包括边界)整点的个数为25个.。
历年中考数学试题(含答案解析) (78)
江苏省宿迁市2016年初中毕业暨升学考试数 学一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且仅有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.-2的绝对值是A .-2B .21-C .21 D .22.下列四个几何体中,左视图为圆的几何体是A .B .C .D .3.地球与月球的平均距离为384 000 km ,将384 000这个数用科学计数法表示为A .31084.3⨯B .41084.3⨯C .51084.3⨯D .61084.3⨯4.下列计算正确的是 A .532a a a =+ B .632a a a =⋅ C .532a (a =)D .325a a a=÷5.如图,已知直线a 、b 被直线c 所截.若a ∥b ,∠1=120°,则∠2的度数为 A .50° B .60° C .120° D .130°baNMFE D CBA(第5题图) (第7题图)6.一组数据5,4,2,5,6的中位数是 A .5 B .4 C .2 D .67.如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE .若AB 的长为2,则FM 的长为A .2B .3C .2D .18.若二次函数c 2ax ax y 2+-=的图像经过点(-1,0),则方程0c 2ax ax 2=+-的解为 A .1,3-=-=21x x B .3,1==21x xC .3,1=-=21x xD .1,3=-=21x x二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 9.因式分解:=-822a▲ .10.计算:=---1x x1x x 2 ▲ . 11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是 ▲ . 12.若一元二次方程0k 2x x 2=+-有两个不相等的实数根,则k 的取值范围是▲ .13.某种油菜籽在相同条件下发芽试验的结果如下表:那么这种油菜籽发芽的概率是 ▲ (结果精确到0.01).14.如图,在△ABC 中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C 为圆心,CB 为半径的圆交AB 于点D ,则BD 的长为 ▲ .BCADB AC(第14题图) (第15题图) (第16题图)15.如图,在平面直角坐标系中,一条直线与反比例函数)0(>=x y x8的图像交于两点A 、B ,与x 轴交于点C ,且点B 是AC 的中点,分别过两点A 、B 作x 轴的平行线,与反比例函数)0(>=x y x2的图像交于两点D 、E ,连接DE ,则四边形ABED 的面积为 ▲ .16.如图,在矩形ABCD 中,AD=4,点P 是直线AD 上一动点,若满足△PBC 是等腰三角形的点P 有且只有3个,则AB 的长为 ▲ .三、解答题(本大题共10题,共72分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:41)2(32sin300-1--++︒18.(本题满分6分)解不等式组:⎩⎨⎧+<+>1)2(x 3x 1x 2x19.(本题满分6分)某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表各年级学生人数统计图八年级九年级 30%七年级 40%(1)在统计表中,a 的值为 ▲ ,b 的值为 ▲ ;(2)在扇形统计图中,八年级所对应的扇形圆心角为 ▲ 度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数. 20.(本题满分6分)在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m 个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m 的值为 ▲ ;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率. 21.(本题满分6分) 如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED ∥BC ,EF ∥AC .求证:BE=CFABC(第21题图)22.(本题满分6分)如图,大海中某灯塔P 周围10海里范围内有暗礁,一艘海轮在点A 处观察灯塔P 在北偏东60°方向,该海轮向正东方向航行8海里到达点B 处,这时观察灯塔P 恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触角的危险吗?试说明理由.(参考数据:73.13 )23.(本题满分8分)如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD 的外接圆.(1)求证:AC是⊙O的切线(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.C(第23题图1)(第23题图2)24.(本题满分8分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.25.(本题满分10分)已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M 与点C 、D 不重合时,连接CM ,求∠CMD 的度数;②设D 为边AB 的中点,当α从90°变化到180°时,求点M 运动的路径长.GFDCB(E)AMFEDCBA(第25题图1) (第25题图2)26.(本题满分10分)如图,在平面直角坐标系xOy 中,将二次函数1x y 2-=的图像M 沿x 轴翻折,把所得到的图像向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图像N . (1)求N 的函数表达式;(2)设点P (m, n )是以点C (1,4)为圆心、1为半径的圆上一动点,二次函数的图像M 与x 轴相交于两点A 、B ,求22PB PA +的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M 与N 所围成封闭图形内(包括边界)整点的个数.。
江苏省宿迁市中考试题(数学)(word版含答案)
江苏省宿迁市初中暨升学考试数学试题答题注意事项1.本试卷共6页,满分150分.考试时间1. 2.答案全部写在答题卡上,写在试卷上无效.3.答题使用0.5mm 黑色签字笔,在答题卡上对应题号的答题区域书写答案.注意不要答错位置,也不要超界.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8个小题,每小题3分,共24分.在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.下列各数中,比0小的数是(▲)A .-1B .1C .2D .π 2.在平面直角坐标中,点M(-2,3)在(▲)A .第一象限B .第二象限C .第三象限D .第四象限 3.下列所给的几何体中,主视图是三角形的是(▲)4.计算(-a3)2的结果是(▲)A .-a5B .a5C .a6D .-a65.方程11112+=-+x x x 的解是(▲) A .-1 B .2 C .1 D .06.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是(▲)A .1B .21C .31D .417.如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是(▲) A .AB =AC B .BD =CD C .∠B =∠C D .∠ BDA =∠CDA正面A .B .C .D .8.已知二次函数y =ax2+bx +c (a ≠0)的图象如图,则下列结论中正确的是(▲) A .a >0 B .当x >1时,y 随x 的增大而增大 C .c <0 D .3是方程ax2+bx +c =0的一个根二、填空题(本大题共有10个题,每小题3分,共30分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.实数21的倒数是 ▲ .10.函数21-=x y 中自变量x 的取值范围是 ▲ .11.将一块直角三角形纸片ABC 折叠,使点A 与点C 重合,展开后平铺在桌面上(如图所示).若∠C =90°,BC = 8cm ,则折痕DE 的长度是 ▲ cm .12.某校为鼓励学生课外阅读,制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形统计图.若该校有1000名学生,则赞成该方案的学生约有 ▲ 人.13.如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是 ▲ cm .14.在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O重(第6题)(第7题)21DCBAED CBA(第11题)(第13题)弃权赞成反对20%10%(第12题)合,则B 平移后的坐标是 ▲ .15.如图,在梯形ABCD 中,AB ∥DC ,∠ADC 的平分线与∠BDC 的平分线的交点E 恰在AB 上.若AD =7cm ,BC =8cm ,则AB 的长度是 ▲ cm .16.如图,邻边不等的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6m .若矩形的面积为4m2,则AB 的长度是 ▲ m (可利用的围墙长度超过6m ).17.如图,从⊙O 外一点A 引圆的切线AB ,切点为B ,连接AO 并延长交圆于点C ,连接BC .若∠A =26°,则∠ACB 的度数为 ▲ .18.一个边长为16m 的正方形展厅,准备用边长分别为1m 和0.5m 的两种正方形地板砖铺设其地面.要求正中心一块是边长为1m 的大地板砖,然后从内到外一圈小地板砖、一圈大地板砖相间镶嵌(如图所示),则铺好整个展厅地面共需要边长为1m 的大地板砖 ▲ 块.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:︒+-+-30sin 2)2(20.解:原式=2+1+2×21=3+1=4.本题满分8分)解不等式组⎪⎩⎪⎨⎧<+>+.221,12x x解:不等式①的解集为x >-1;不等式②的解集为x +1<4 x <3故原不等式组的解集为-1<x <3.ED CBA (第15题)围墙D CBA(第16题)(第17题)(第18题)21.(本题满分8分)已知实数a 、b 满足ab =1,a +b =2,求代数式a2b +ab2的值. 解:当ab =1,a +b =2时,原式=ab(a +b)=1×2=2.22.(本题满分8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):(1)根据表格中的数据,计算出甲的平均成绩是 ▲ 环,乙的平均成绩是 ▲ 环; (2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.(计算方差的公式:s2=n 1[22221)()()(x x x x x x n -++-+- ])解:(1)9;9.(2)s2甲=[]222222)99()910()98()99()98()910(61-+-+-+-+-+-=)011011(61+++++=32;s2乙=[]222222)98()99()910()910()97()910(61-+-+-+-+-+-=)101141(61+++++=34.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.23.(本题满分10分)如图,为了测量某建筑物CD 的高度,先在地面上用测角仪自A 处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m ,此时自B 处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m ,请你计算出该建筑物的高度.(取3=1.732,结果精确到1m )解:设CE =xm ,则由题意可知BE 在Rt △AEC 中,tan ∠CAE =AE ,即tan30°=100+x(第23题)∴33100=+x x ,3x =3(x +100) 解得x =50+503=136.6∴CD =CE +ED =(136.6+1.5)=138.1≈138(m) 答:该建筑物的高度约为138m .24.(本题满分10分)在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M 的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M 的纵坐标. (1)写出点M 坐标的所有可能的结果; (2)求点M 在直线y =x 上的概率;(3)求点M 的横坐标与纵坐标之和是偶数的概率. 解:(1)∵∴点M 坐标的所有可能的结果有九个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3).(2)P (点M 在直线y =x 上)=P (点M 的横、纵坐标相等)=93=31.(3)∵∴P (点M 的横坐标与纵坐标之和是偶数)=95.25.(本题满分10分)某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x (分钟)与收费y (元)之间的函数关系如图所示.(1)有月租费的收费方式是 ▲ (填①或②),月租费是 ▲ 元;(2)分别求出①、②两种收费方式中y 与自变量x 之间的函数关系式; (3)请你根据用户通讯时间的多少,给出经济实惠的选择建议. 解:(1)①;30;(2)设y 有=k1x +30,y 无=k2x ,由题意得⎩⎨⎧==+100500803050021k k ,解得⎩⎨⎧==2.01.021k k故所求的解析式为y 有=0.1x +30; y 无=0.2x .(3)由y 有=y 无,得0.2x =0.1x +30,解得x =300;当x =300时,y =60.故由图可知当通话时间在300分钟内,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间在300分钟时,选择通话方式①、②一样实惠.26.(本题满分10分)如图,在平面直角坐标系中,O 为坐标原点,P 是反比例函数y =x 6(x >0)图象上的任意一点,以P 为圆心,PO 为半径的圆与x 、y 轴分别交于点A 、B . (1)判断P 是否在线段AB 上,并说明理由; (2)求△AOB 的面积;(3)Q 是反比例函数y =x 6(x >0)图象上异于点P 的另一点,请以Q 为圆心,QO半径画圆与x 、y 轴分别交于点M 、N ,连接AN 、MB .求证:AN ∥MB .解:(1)点P 在线段AB 上,理由如下: ∵点O 在⊙P 上,且∠AOB =90°∴AB 是⊙P 的直径 ∴点P 在线段AB 上.(2)过点P 作PP1⊥x 轴,PP2⊥y 轴,由题意可知PP1、PP2是△AOB 的中位线,故S △AOB =21OA ×OB =21×2 PP1×PP2 ∵P 是反比例函数y =x 6(x >0)图象上的任意一点∴S △AOB =21OA ×OB =21×2 PP1×2PP2=2 PP1×PP2=12.(第25题)分钟)(3)如图,连接MN ,则MN 过点Q ,且S △MON =S △AOB =12.∴OA ·OB =OM ·ON∴OB ONOM OA = ∵∠AON =∠MOB ∴△AON ∽△MOB∴∠OAN =∠OMB ∴AN ∥MB .27.(本题满分12分)如图,在边长为2的正方形ABCD 中,P 为AB 的中点,Q 为边CD 上一动点,设DQ =t (0≤t ≤2),线段PQ 的垂直平分线分别交边AD 、BC 于点M 、N ,过Q 作QE ⊥AB 于点E ,过M 作MF ⊥BC 于点F .(1)当t ≠1时,求证:△PEQ ≌△NFM ;(2)顺次连接P 、M 、Q 、N ,设四边形PMQN 的面积为S ,求出S 与自变量t 之间的函数关系式,并求S 的最小值.解:(1)∵四边形ABCD 是正方形∴∠A =∠B =∠D =90°,AD =AB ∵QE ⊥AB ,MF ⊥BC∴∠AEQ =∠MFB =90°∴四边形ABFM 、AEQD 都是矩形 ∴MF =AB ,QE =AD ,MF ⊥QE 又∵PQ ⊥MN∴∠EQP =∠FMN 又∵∠QEP =∠MFN =90° ∴△PEQ ≌△NFM .(2)∵点P 是边AB 的中点,AB =2,DQ =AE =t∴PA =1,PE =1-t ,QE =2由勾股定理,得PQ =22PE QE +=4)1(2+-t∵△PEQ ≌△NFM∴MN =PQ =4)1(2+-t又∵PQ ⊥MNQPNMFE DC BA(第27题)∴S =MN PQ ⋅21=[]4)1(212+-t =21t2-t +25∵0≤t ≤2∴当t =1时,S 最小值=2.综上:S =21t2-t +25,S 的最小值为2.28.(本题满分12分)如图,在Rt △ABC 中,∠B =90°,AB =1,BC =21,以点C 为圆心,CB 为半径的弧交CA 于点D ;以点A 为圆心,AD 为半径的弧交AB 于点E . (1)求AE 的长度;(2)分别以点A 、E 为圆心,AB 长为半径画弧,两弧交于点F (F 与C 在AB 两侧),连接AF 、EF ,设EF 交弧DE 所在的圆于点G ,连接AG ,试猜想∠EAG 的大小,并说明理由.解:(1)在Rt △ABC 中,由AB =1,BC =21得 AC =22)21(1+=25∵BC =CD ,AE =AD∴AE =AC -AD =215-.(2)∠EAG =36°,理由如下:∵FA =FE =AB =1,AE =215-∴FA AE=215-∴△FAE 是黄金三角形 ∴∠F =36°,∠AEF =72° ∵AE =AG ,FA =FE ∴∠FAE =∠FEA =∠AGE ∴△AEG ∽△FEA ∴∠EAG =∠F =36°.GFE DCBA(第28题)江苏省宿迁市初中暨升学考试数学试题参考答案一、选择题: 1.A2.B3.B4.C5.B6.D7.B8.D二、填空题: 9.210.x ≠211.4 12.70013.4 14.(4,2)15.15 16.117.32 18.181 三、解答题:19.解:原式=2+1+2×21=3+1=4.:不等式①的解集为x >-1;不等式②的解集为x +1<4 x <3故原不等式组的解集为-1<x <3.21.解:当ab =1,a +b =2时,原式=ab(a +b)=1×2=2. 22.解:(1)9;9.(2)s2甲=[]222222)99()910()98()99()98()910(61-+-+-+-+-+-=)011011(61+++++=32;s2乙=[]222222)98()99()910()910()97()910(61-+-+-+-+-+-=)101141(61+++++=34.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适. 23.解:设CE =xm ,则由题意可知BE =xm ,AE =(x +100)m .在Rt △AEC 中,tan ∠CAE =AE CE,即tan30°=100+x x∴33100=+x x ,3x =3(x +100) 解得x =50+503=136.6∴CD =CE +ED =(136.6+1.5)=138.1≈138(m)答:该建筑物的高度约为138m . 24.解:(1)∵∴点M 坐标的所有可能的结果有九个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3).(2)P (点M 在直线y =x 上)=P (点M 的横、纵坐标相等)=93=31.(3)∵∴P (点M 的横坐标与纵坐标之和是偶数)=95.25.解:(1)①;30;(2)设y 有=k1x +30,y 无=k2x ,由题意得⎩⎨⎧==+100500803050021k k ,解得⎩⎨⎧==2.01.021k k故所求的解析式为y 有=0.1x +30; y 无=0.2x .(3)由y 有=y 无,得0.2x =0.1x +30,解得x =300;当x =300时,y =60.故由图可知当通话时间在300分钟内,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间在300分钟时,选择通话方式①、②一样实惠. 26.解:(1)点P 在线段AB 上,理由如下: ∵点O 在⊙P 上,且∠AOB =90°∴AB 是⊙P 的直径 ∴点P 在线段AB 上.(2)过点P 作PP1⊥x 轴,PP2⊥y 轴,由题意可知PP1、PP2是△AOB 的中位线,故S △AOB =21OA ×OB =21×2 PP1×PP2 ∵P 是反比例函数y =x 6(x >0)图象上的任意一点∴S △AOB =21OA ×OB =21×2 PP1×2PP2=2 PP1×PP2=12.(3)如图,连接MN ,则MN 过点Q ,且S △MON =S △AOB =12.∴OA ·OB =OM ·ON∴OB ONOM OA = ∵∠AON =∠MOB ∴△AON ∽△MOB ∴∠OAN =∠OMB ∴AN ∥MB .27.解:(1)∵四边形ABCD 是正方形∴∠A =∠B =∠D =90°,AD =AB ∵QE ⊥AB ,MF ⊥BC ∴∠AEQ =∠MFB =90°∴四边形ABFM 、AEQD 都是矩形 ∴MF =AB ,QE =AD ,MF ⊥QE 又∵PQ ⊥MN∴∠EQP =∠FMN 又∵∠QEP =∠MFN =90° ∴△PEQ ≌△NFM .(2)∵点P 是边AB 的中点,AB =2,DQ =AE =t∴PA =1,PE =1-t ,QE =2由勾股定理,得PQ =22PE QE +=4)1(2+-t∵△PEQ ≌△NFM ∴MN =PQ =4)1(2+-t又∵PQ ⊥MNQPNM FE DC BA(第27题)∴S =MN PQ ⋅21=[]4)1(212+-t =21t2-t +25∵0≤t ≤2∴当t =1时,S 最小值=2.综上:S =21t2-t +25,S 的最小值为2.28.解:(1)在Rt △ABC 中,由AB =1,BC =21得 AC =22)21(1+=25∵BC =CD ,AE =AD∴AE =AC -AD =215-.(2)∠EAG =36°,理由如下:∵FA =FE =AB =1,AE =215-∴FA AE=215-∴△FAE 是黄金三角形 ∴∠F =36°,∠AEF =72° ∵AE =AG ,FA =FE ∴∠FAE =∠FEA =∠AGE ∴△AEG ∽△FEA ∴∠EAG =∠F =36°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且仅有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的绝对值是()A.﹣2 B.﹣ C.D.22.(3分)下列四个几何体中,左视图为圆的几何体是()A.B.C.D.3.(3分)地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1064.(3分)下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a5D.a5÷a2=a35.(3分)如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120° D.130°6.(3分)一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.67.(3分)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.C.D.18.(3分)若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=1二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)因式分解:2a2﹣8=.10.(3分)计算:=.11.(3分)若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是.12.(3分)若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是.13.(3分)某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n100300400600100020003000发芽的频数m9628438057194819022848发芽的频率0.9600.9470.9500.9520.9480.9510.949那么这种油菜籽发芽的概率是(结果精确到0.01).14.(3分)如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为.15.(3分)如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.16.(3分)如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.三、解答题(本大题共10题,共72分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:2sin30°+3﹣1+(﹣1)0﹣.18.(6分)解不等式组:.19.(6分)某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级a20248八年级2913135九年级24b147根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.20.(6分)在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.21.(6分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.22.(6分)如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A 处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)23.(8分)如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.24.(8分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.25.(10分)已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF ∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.26.(10分)如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.2016年江苏省宿迁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且仅有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)(2016•宿迁)﹣2的绝对值是()A.﹣2 B.﹣ C.D.2【解答】解:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选D.2.(3分)(2016•宿迁)下列四个几何体中,左视图为圆的几何体是()A.B.C.D.【解答】解:A、球的左视图是圆,故选项正确;B、正方体的左视图是正方形,故选项错误;C、圆锥的左视图是等腰三角形,故选项错误;D、圆柱的左视图是长方形,故选项错误;故选:A.3.(3分)(2016•宿迁)地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【解答】解:384 000=3.84×105.故选:C.4.(3分)(2016•宿迁)下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a5D.a5÷a2=a3【解答】解:A、不是同类项不能合并,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、幂的乘方底数不变指数相乘,故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.5.(3分)(2016•宿迁)如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120° D.130°【解答】解:如图,∠3=180°﹣∠1=180°﹣120°=60°,∵a∥b,∴∠2=∠3=60°.故选:B.6.(3分)(2016•宿迁)一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【解答】解:将题目中数据按照从小到大排列是:2,4,5,5,6,故这组数据的中位数是5,故选A.7.(3分)(2016•宿迁)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.C.D.1【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=,故选:B.8.(3分)(2016•宿迁)若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=1【解答】解:∵二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),∴方程ax2﹣2ax+c=0一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数y=ax2﹣2ax+c的图象与x轴的另一个交点为:(3,0),∴方程ax2﹣2ax+c=0的解为:x1=﹣1,x2=3.故选:C.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)(2016•临夏州)因式分解:2a2﹣8=2(a+2)(a﹣2).【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).10.(3分)(2016•宿迁)计算:=x.【解答】解:===x.故答案为x.11.(3分)(2016•宿迁)若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是1:2.【解答】解:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:2,∴这两个相似三角形的周长比是1:2,故答案为:1:2.12.(3分)(2016•宿迁)若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是k<1.【解答】解:∵一元二次方程x2﹣2x+k=0有两个不相等的实数根,∴△=b2﹣4ac=4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为:k<1.13.(3分)(2016•宿迁)某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n100300400600100020003000发芽的频数m9628438057194819022848发芽的频率0.9600.9470.9500.9520.9480.9510.949那么这种油菜籽发芽的概率是0.95(结果精确到0.01).【解答】解:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则这种油菜籽发芽的概率是0.95,故答案为:0.95.14.(3分)(2016•宿迁)如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为2.【解答】解:如图,作CE⊥AB于E.∵∠B=180°﹣∠A﹣∠ACB=180°﹣20°﹣130°=30°,在Rt△BCE中,∵∠CEB=90°,∠B=30°,BC=2,∴CE=BC=1,BE=CE=,∵CE⊥BD,∴DE=EB,∴BD=2EB=2.故答案为2.15.(3分)(2016•宿迁)如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.【解答】解:∵点A、B在反比例函数y=(x>0)的图象上,设点B的坐标为(,m),∵点B为线段AC的中点,且点C在x轴上,∴点A的坐标为(,2m).∵AD∥x轴、BE∥x轴,且点D、E在反比例函数y=(x>0)的图象上,∴点D的坐标为(,2m),点E的坐标为(,m).∴S=(+)×(2m﹣m)=.梯形ABED故答案为:.16.(3分)(2016•宿迁)如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为4或2.【解答】解:①如图,当AB=AD时满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4.②当AB<AD,且满足△PBC是等腰三角形的点P有且只有3个时,如图,∵P2是AD的中点,∴BP2==,易证得BP1=BP2,又∵BP1=BC,∴=4∴AB=2.③当AB>AD时,直线AD上只有一个点P满足△PBC是等腰三角形.故答案为:4或2.三、解答题(本大题共10题,共72分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)(2016•宿迁)计算:2sin30°+3﹣1+(﹣1)0﹣.【解答】解:2sin30°+3﹣1+(﹣1)0﹣=2×++1﹣2=.18.(6分)(2016•宿迁)解不等式组:.【解答】解:由①得,x>1,由②得,x<2,由①②可得,原不等式组的解集是:1<x<2.19.(6分)(2016•宿迁)某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级a20248八年级2913135九年级24b147根据以上信息解决下列问题:(1)在统计表中,a的值为28,b的值为15;(2)在扇形统计图中,八年级所对应的扇形圆心角为108度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.【解答】解:(1)由题意和扇形统计图可得,a=200×40%﹣20﹣24﹣8=80﹣20﹣24﹣8=28,b=200×30%﹣24﹣14﹣7=60﹣24﹣14﹣7=15,故答案为:28,15;(2)由扇形统计图可得,八年级所对应的扇形圆心角为:360°×(1﹣40%﹣30%)=360°×30%=108°,故答案为:108;(3)由题意可得,2000×=200人,即该校三个年级共有2000名学生参加考试,该校学生体育成绩不合格的有200人.20.(6分)(2016•宿迁)在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为2;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.【解答】解:(1)∵在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同,从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,∴透明的袋子中装的都是黑球,∴m=2,故答案为:2;(2)设红球分别为H1、H2,黑球分别为B1、B2,列表得:H1H2B1B2第二球第一球H1(H1,H2)(H1,B1)(H1,B2)H2(H2,H1)(H2,B1)(H2,B2)B1(B1,H1)(B1,H2)(B1,B2)B2(B2,H1)(B2,H2)(B2,B1)总共有12种结果,每种结果的可能性相同,两次都摸到球颜色相同结果有4种,所以两次摸到的球颜色相同的概率==.21.(6分)(2016•宿迁)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.【解答】证明:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.22.(6分)(2016•宿迁)如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)【解答】解:没有触礁的危险.理由如下:作PC⊥AB于C,如图,∠PAC=30°,∠PBC=45°,AB=8,设BC=x,在Rt△PBC中,∵∠PBC=45°,∴△PBC为等腰直角三角形,∴BC=BC=x,在Rt△PAC中,∵tan∠PAC=,∴AC=,即8+x=,解得x=4(+1)≈10.92,即AC≈10.92,∵10.92>10,∴海轮继续向正东方向航行,没有触礁的危险.23.(8分)(2016•宿迁)如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.【解答】(1)证明:连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,如图所示:∵∠ABC:∠ACB:∠ADB=1:2:3,∠ADB=∠ACB+∠CAD,∴∠ABC=∠CAD,∵AE为⊙O的直径,∴∠ADE=90°,∴∠EAD=90°﹣∠AED,∵∠AED=∠ABD,∴∠AED=∠ABC=∠CAD,∴∠EAD=90°﹣∠CAD,即∠EAD+∠CAD=90°,∴EA⊥AC,∴AC是⊙O的切线;(2)解:∵BD是⊙O的直径,∴∠BAD=90°,∴∠ABC+∠ADB=90°,∵∠ABC:∠ACB:∠ADB=1:2:3,∴4∠ABC=90°,∴∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5°.24.(8分)(2016•宿迁)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.【解答】解:(1)y=,其中(30<m≤100).(2)由(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加,当30<x≤m时,y=﹣x2+150x=﹣(x﹣75)2+5625,∵a=﹣1<0,∴x≤75时,y随着x增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m≤75.25.(10分)(2016•宿迁)已知△ABC是等腰直角三角形,AC=BC=2,D是边AB 上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF ∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.【解答】解:(1)如图1中,∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∵△CEF是由△CAD旋转逆时针α得到,α=90°,∴CB与CE重合,∴∠CBE=∠A=45°,∴∠ABF=∠ABC+∠CBF=90°,∵BG=AD=BF,∴∠BGF=∠BFG=45°,∴∠A=∠BGF=45°,∴GF∥AC.(2)①如图2中,∵CA=CE,CD=CF,∴∠CAE=∠CEA,∠CDF=∠CFD,∵∠ACD=∠ECF,∴∠ACE=∠DCF,∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45°,∴∠CMD=180°﹣∠CMF=135°.②如图3中,O是AC中点,连接OD、CM.∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90°,由①可知A、D、M、C四点共圆,∴当α从90°变化到180°时,点M在以AC为直径的⊙O上,运动路径是弧CD,∵OA=OC,CD=DA,∴DO⊥AC,∴∠DOC=90°,∴的长==.∴当α从90°变化到180°时,点M运动的路径长为.26.(10分)(2016•宿迁)如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.【解答】(1)解:二次函数y=x2﹣1的图象M沿x轴翻折得到函数的解析式为y=﹣x2+1,此时顶点坐标(0,1),将此图象向右平移2个单位长度后再向上平移8个单位长度得到二次函数图象N 的顶点为(2,9),故N的函数表达式y=﹣(x﹣2)2+9=﹣x2+4x+5.(2)∵A(﹣1,0),B(1,0),∴PA2+PB2=(m+1)2+n2+(m﹣1)2+n2=2(m2+n2)+2=2•PO2+2,∴当PO最大时PA2+PB2最大.如图,延长OC与⊙O交于点P,此时OP最大,∴OP的最大值=OC+PC=+1,∴PA2+PB2最大值=2(+1)2+2=38+4.(3)M与N所围成封闭图形如图所示,由图象可知,M与N所围成封闭图形内(包括边界)整点的个数为25个.。