2019新人教版必修二复习(立体几何)必背知识点
高中数学 必修二-第一章 立体几何初步 知识点整理
底面为三角形、四边形、五边形„„的棱锥分别叫做三棱锥、四棱锥、五棱锥„„,
其中三棱锥又叫四面体。
4
必修二
正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心, 这样的棱锥叫做正棱锥。
正棱锥的性质: ①各侧棱相等,各侧面都是全等的等腰三角形; ②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形,棱锥的高、侧棱和侧 棱在底面上的射影也组成一个直角三角形。 (4)棱台的结构特征 用一个平行于棱锥底面的平面去截棱 锥,底面与截面之间的部分叫做棱台。 原棱锥的底面和截面分别叫做棱台的 下底面和上底面;其它各面叫做棱台的侧 面;相邻侧面的公共边叫做棱台的侧棱; 底面与侧面的公共顶点叫做棱台的顶点; 当棱台的底面水平放置时,铅垂线与两底 面交点间的线段叫做棱台的高。 由正棱锥截得的棱台叫做正棱台。正棱台的性质: ①各侧棱相等,侧面是全等的等腰梯形;②两底面以及平行于底面的截面是相似多边 形;③两底面中心连线、相应的边心距和斜高组成一个直角梯形;④两底面中心连线、侧 棱和两底面外接圆相应半径组成一个直角梯形;⑤正棱台的上下底面中心的连线是棱台的 一条高;⑥正四棱台的对角面是等腰梯形。
8
必修二
②在已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x′轴或 y′ 轴的线段。
③在已知图形中平行于 x 轴的线段,在直观图中保持原长度不变,平行于 y 轴的线段, 长度变为原来的一半。
用斜二测法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放 置的平面图形的关键是确定多边形的顶点。因为多边形顶点的位置一旦确定,依次连接这 些顶点就可画出多边形。
在一束平行光线照射下形成的投影,叫做平行投影。平行投影的投影线是平行的。在 平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。
必修二数学知识点整理
必修二数学知识点整理一、立体几何初步。
(一)空间几何体。
1. 结构特征。
- 棱柱。
- 有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
- 棱柱的底面、侧面、侧棱、顶点等概念。
按底面多边形的边数可分为三棱柱、四棱柱、五棱柱等。
- 棱锥。
- 有一个面是多边形,其余各面都是有一个公共顶点的三角形。
- 棱锥的底面、侧面、侧棱、顶点等概念。
按底面多边形的边数可分为三棱锥(四面体)、四棱锥等。
- 棱台。
- 用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
- 棱台的上底面、下底面、侧面、侧棱、顶点等概念。
- 圆柱。
- 以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
- 圆柱的轴、底面、侧面、母线等概念。
- 圆锥。
- 以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体。
- 圆锥的轴、底面、侧面、母线等概念。
- 圆台。
- 用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
- 圆台的上底面、下底面、侧面、母线等概念。
- 球。
- 以半圆的直径所在直线为轴,半圆面旋转一周形成的几何体。
- 球心、半径、直径等概念。
2. 三视图和直观图。
- 三视图。
- 正视图(主视图)、侧视图(左视图)、俯视图的概念。
- 画三视图的规则:长对正、高平齐、宽相等。
- 通过三视图还原空间几何体的方法:先根据视图的轮廓想象出基本的几何体形状,再根据视图中的线段长度等确定几何体的具体尺寸。
- 直观图。
- 斜二测画法的步骤:- 在已知图形中取互相垂直的x轴和y轴,两轴相交于点O。
画直观图时,把它们画成对应的x'轴和y'轴,两轴相交于点O',且∠x'O'y' = 45°(或135°)。
- 已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段。
- 已知图形中平行于x轴的线段,在直观图中长度不变;平行于y轴的线段,长度变为原来的一半。
新课标人教版必修二立体几何知识归纳共32页文档
55、 为 中 华 之 崛起而 读书。 ——周 恩来
新课标人教版必修二立体几 何知识归纳
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生ห้องสมุดไป่ตู้命是活 动。——卢 梭
(完整版)高中数学必修二立体几何知识点总结,推荐文档
3V 圆台 5(S ,礙 S)h 1 (r2 rR R 2)h (4) 球体的表面积和体积公式: V 球 =4 3 R 3 ; S 球面=4 R 2驚一 1章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 1平面含义:平面是无限延展的—2三个公理: (1) 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A € L= B € L=i IA €aB €a -公理1作用:判断直线是否在平面内•(2) 公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线=> 有且只有一个平面a, 使 A €a 、B €a 、C €a 。
公理2作用:确定一个平面的依据。
(3) 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
第一早立体几何初步s 直棱柱侧面积 ch s 正棱锥侧面积 1 c h' 2s 正棱台侧面积2 C 2)h ' S 圆柱侧2rhS 圆柱表 S 圆锥侧面积 rl S 圆锥表特殊几何体表面积公式( (r R) IS 圆台表 rl Rl R 2 柱体、锥体、台体的体积公式 V 柱 ShV 锥 】Sh 3 V 台 1(S ' S 'S S)h V 圆柱 S h r 2h V 圆锥 1 2 r 3h S 圆台侧面积 c 为底面周长,h 为高,h 为斜高,I 为母线)符号表示为:P€aQB => aA3 =L,且P€ L 公理3作用:判定两个平面是否相交的依据•2.1.2空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:共面直线 J"相交直线:同一平面内,有且只有一个公共点;共面直线 丫平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。
2公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设 a 、b 、c 是三条直线强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
(完整版)高中数学必修2立体几何知识点
高中数学必修 2 知识点第一章空间几何体1.1 柱、锥、台、球的构造特色(略)棱柱:棱锥:棱台:圆柱:圆锥:圆台:球:1.2 空间几何体的三视图和直观图1三视图:正视图:以前去后侧视图:从左往右俯视图:从上往下2画三视图的原则:长对齐、高对齐、宽相等3直观图:斜二测画法4斜二测画法的步骤:(1).平行于坐标轴的线依旧平行于坐标轴;(2).平行于 y 轴的线长度变半,平行于x,z 轴的线长度不变;(3).画法要写好。
5用斜二测画法画出长方体的步骤:(1)画轴( 2)画底面( 3)画侧棱( 4)成图1.3 空间几何体的表面积与体积(一)空间几何体的表面积1 棱柱、棱锥的表面积:各个面面积之和2圆柱的表面积4圆台的表面积S 2 rl2r 2 3 圆锥的表面积S rlr 2 S rl r 2Rl R2 5 球的表面积S 4R26扇形的面积公式S扇形n R21lr (此中l表示弧长,r表示半径)3602(二)空间几何体的体积1柱体的体积 V S底h 2 锥体的体积1S底h V33台体的体积V1S上h4 球体的体积V4R3(下下3S上 SS )3第二章直线与平面的地点关系2.1 空间点、直线、平面之间的地点关系1平面含义:平面是无穷延展的 , 无大小,无厚薄。
2平面的画法及表示450,且横边画成邻边的(1)平面的画法:水平搁置的平面往常画成一个平行四边形,锐角画成 2 倍长(2)平面往常用希腊字母α、β、γ等表示,如平面α、平面β等,也能够用表示平面的平行四边形的四个极点或许相对的两个极点的大写字母来表示,如平面AC、平面 ABCD等。
3三个公义:(1)公义 1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内A l符号表示为B ll AB公义 1 作用:判断直线能否在平面内(2)公义 2:过不在一条直线上的三点,有且只有一个平面。
符号表示为: A、B、C 三点不共线有且只有一个平面α,使A∈α、 B∈α、 C∈α。
第8章 立体几何初步(复习课件)高一数学(人教A版2019必修第二册)
81 C. 4 π
D.16π
(1)如图,设 PE 为正四棱锥 P-ABCD 的高,则正四棱锥 P-ABCD 的 外接球的球心 O 必在其高 PE 所在的直线上,延长 PE 交球面于一点 F,连接 AE,AF.
由球的性质可知△PAF为直角三角形且AE⊥PF,
又底面边长为4, 所以AE=2 2 , PE=6, 所以侧棱长PA=
3
在Rt△CDE中,
故二面角B-AP-C的正切值为2.
tanCED CD 2 3 2, DE 3
归纳总结
(1)求异面直线所成的角常用平移转化法(转化为相交直线的 夹角). (2)求直线与平面所成的角常用射影转化法(即作垂线、找射影). (3)二面角的平面角的作法常有三种:①定义法;②三垂线法; ③垂面法.
的表面积为 16π,则 O 到平面 ABC 的距离为
A. 3
3 B.2
√C.1
3 D. 2
解析 如图所示,过球心O作OO1⊥平面ABC, 则O1为等边三角形ABC的外心. 设△ABC的边长为a, 则 43a2=943,解得 a=3, ∴O1A=23× 23×3= 3. 设球O的半径为r,则由4πr2=16π,得r=2,即OA=2. 在 Rt△OO1A 中,OO1= OA2-O1A2=1,
五、直线、平面平行的判定与性质
1.直线与平面平行
(1)判定定理:平面外一条直线与这个平面内的一条直线平行, 则该直线与此平面平行(线线平行⇒线面平行).
(2)性质定理:一条直线与一个平面平行,则过这条直线的任 一平面与此平面的交线与该直线平行(简记为“线面平行⇒线 线平行”).
2.平面与平面平行
则直线 PB 与 AD1 所成的角为( )
A.
2
高中数学必修二第一章立体几何初步知识点
高中数学必修二第一章立体几何初步知识点立体几何初步是高中数学必修二第一章的内容,有哪些知识点需要掌握的呢?下面是店铺给大家带来的高中数学必修二立体几何初步知识点,希望对你有帮助。
高中数学必修二第一章立体几何初步棱柱表面积A=L*H+2*S,体积V=S*H(L--底面周长,H--柱高,S--底面面积)圆柱表面积A=L*H+2*S=2π*R*H+2π*R^2,体积V=S*H=π*R^2*H(L--底面周长,H--柱高,S--底面面积,R--底面圆半径)球体表面积A=4π*R^2,体积V=4/3π*R^3(R-球体半径)圆锥表面积A=1/2*s*L+π*R^2,体积V=1/3*S*H=1/3π*R^2*H (s--圆锥母线长,L--底面周长,R--底面圆半径,H--圆锥高)棱锥表面积A=1/2*s*L+S,体积V=1/3*S*H(s--侧面三角形的高,L--底面周长,S--底面面积,H--棱锥高)长方形的周长=(长+宽)×2 正方形 a—边长 C=4aS=a2 长方形 a和b-边长 C=2(a+b)S=ab 三角形 a,b,c-三边长 h-a边上的高s-周长的一半 A,B,C-内角其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC [s(s-a)(s-b)(s-c)]1/2a2sinBsinC/(2sinA) 四边形d,D-对角线长α-对角线夹角S=dD/2·sinα 平行四边形 a,b-边长 h-a边的高α-两边夹角S=ah =absinα =菱形 a-边长α-夹角 D-长对角线长 d-短对角线长 S=Dd/2=a2sinα 梯形 a和b-上、下底长 h-高m-中位线长 S=(a+b)h/2 =mh d-直径C=πd=2πrS=πr2 =πd2/4 扇形 r—扇形半径正方形的周长=边长×4 长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高÷2 平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积 =长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S a—圆心角度数C=2r+2πr×(a/360) S=πr2×(a/360)弓形l-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] -(r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3 圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R2-r2)=π(D2-d2)/4 椭圆 D-长轴 d-短轴S=πDd/4立方图形名称符号面积S和体积V 正方体 a-边长 S=6a2 V=a3 长方体 a-长 b-宽 c-高 S=2(ab+ac+bc)V=abc 棱柱 S-底面积 h-高 V=Sh 棱锥 S-底面积h-高V=Sh/3 棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3拟柱体 S1-上底面积 S2-下底面积S0-中截面积 h-高 V=h(S1+S2+4S0)/6圆柱 r-底半径 h-高 C—底面周长S底—底面积 S侧—侧面积 S表—表面积C=2πr S底=πr2S侧=Ch S表=Ch+2S底 V=S底h =πr2h空心圆柱 R-外圆半径 r-内圆半径h-高V=πh(R2-r2) 直圆锥 r-底半径 h-高V=πr2h/3圆台 r-上底半径 R-下底半径h-高V=πh(R2+Rr+r2)/3 球 r-半径d-直径V=4/3πr3=πd2/6 球缺 h-球缺高 r-球半径a-球缺底半径V=πh(3a2+h2)/6 =πh2(3r-h)/3 a2=h(2r-h) 球台r1和r2-球台上、下底半径 h-高V=πh[3(r12+r22)+h2]/6 圆环体 R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2 =π2Dd2/4桶状体 D-桶腹直径 d-桶底直径 h-桶高V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)三视图的投影规则是:主视、俯视长对正主视、左视高平齐左视、俯视宽相等点线面位置关系公理一:如果一条线上的两个点在平面上则该线在平面上公理二:如果两个平面有一个公共点则它们有一条公共直线且所有的公共点都在这条直线上公理三:三个不共线的点确定一个平面推论一:直线及直线外一点确定一个平面推论二:两相交直线确定一个平面推论三:两平行直线确定一个平面公理四:和同一条直线平行的直线平行异面直线定义:不平行也不相交的两条直线判定定理:经过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线。
高中数学必修二第八章立体几何初步知识点总结全面整理(带答案)
高中数学必修二第八章立体几何初步知识点总结全面整理单选题1、设m,n是两条不同的直线,α,β是两个不同的平面,则下列说法错误的是()A.若m⊥n,m⊥α,n⊥β,则α⊥βB.若m//n,m⊥α,n//β,则α⊥βC.若m⊥n,m//α,n//β,则α//βD.若m//n,m⊥α,n⊥β,则α//β答案:C分析:利用线面垂直的判定性质、面面垂直的判定推理判断A,B;举例说明判断C;利用线面垂直的判定性质判断D作答.对于A,因m⊥n,m⊥α,当n⊂α时,而n⊥β,则α⊥β,当n⊄α时,在直线m上取点P,过P作直线n′//n,则m⊥n′,过直线m,n′的平面γ∩α=l,如图,由m⊥α得m⊥l,于是得l//n′//n,而n⊥β,则l⊥β,而l⊂α,所以α⊥β,A正确;对于B,若m//n,m⊥α,则n⊥α,又n//β,则存在过直线n的平面δ,使得δ∩β=c,则有直线c//n,即有c⊥α,所以α⊥β,B正确;对于C,如图,在长方体ABCD−A1B1C1D1中,平面ABCD为平面α,直线A1B1为直线m,平面ADD1A1为平面β,直线B1C1为直线n,满足m⊥n,m//α,n//β,而α∩β=AD,C不正确;对于D,若m//n,m⊥α,则n⊥α,又n⊥β,于是得α//β,D正确.故选:C2、已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是()A.2πR2B.94πR2C.83πR2D.πR2答案:B分析:根据圆柱的表面积公式以及二次函数的性质即可解出.设圆柱的底面半径为r,圆柱的高为ℎ,所以在轴截面三角形中,如图所示:由相似可得,rR =3R−ℎ3R,所以,ℎ=3R−3r,即圆柱的全面积为S=2πr2+2πrℎ=2πr2+2πr(3R−3r)=2π(−2r2+3rR)=2π[−2(r−34R)2+98R2]≤9π4R2,当且仅当r=34R时取等号.故选:B.3、如图所示的是平行四边形ABCD所在的平面,有下列表示方法:①平面ABCD;②平面BD;③平面AD;④平面ABC;⑤AC;⑥平面α.其中不正确的是()A.④⑤B.③④⑤C.②③④⑤D.③⑤答案:D解析:根据平面的表示方法判断.③中AD不为对角线,故错误;⑤中漏掉“平面”两字,故错误.故选:D.4、如图,PA 垂直于矩形ABCD 所在的平面,则图中与平面PCD 垂直的平面是( )A .平面ABCDB .平面PBCC .平面PAD D .平面PCD答案:C分析:由线面垂直得到线线垂直,进而证明出线面垂直,面面垂直.因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD ,由四边形ABCD 为矩形得CD ⊥AD ,因为PA ∩AD =A ,所以CD ⊥平面PAD .又CD ⊂平面PCD ,所以平面PCD ⊥平面PAD .故选:C5、在正方体ABCD −A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( )A .π2B .π3C .π4D .π6 答案:D分析:平移直线AD 1至BC 1,将直线PB 与AD 1所成的角转化为PB 与BC 1所成的角,解三角形即可.如图,连接BC1,PC1,PB,因为AD1∥BC1,所以∠PBC1或其补角为直线PB与AD1所成的角,因为BB1⊥平面A1B1C1D1,所以BB1⊥PC1,又PC1⊥B1D1,BB1∩B1D1=B1,所以PC1⊥平面PBB1,所以PC1⊥PB,设正方体棱长为2,则BC1=2√2,PC1=12D1B1=√2,sin∠PBC1=PC1BC1=12,所以∠PBC1=π6.故选:D6、圆台的上、下底面的面积分别是π,4π,侧面积是6π,则这个圆台的体积是()A.2√33πB.2√3πC.7√36πD.7√33π答案:D分析:求出圆台的高,再利用圆台的体积公式进行计算.设圆台的上、下底面的半径分别为r,R,母线长为l,高为h.,由圆台的上、下底面的面积分别是π,4π,得{πr2=π,πR2=4π,所以r=1,R=2,由圆台侧面积公式可得π×(2+1)l=6π,所以l=2,所以ℎ=√22−(2−1)2=√3,所以该圆台的体积V=13πℎ(R2+r2+Rr)=13π×√3×(4+1+2)=7√33π.故选:D.7、下面四个选项中一定能得出平面α/⁄平面β的是()A.存在一条直线a,a//α,a//βB.存在一条直线a,a⊂α,a//βC.存在两条平行直线a,b,a⊂α,b⊂β,a//β,b//αD.存在两条异面直线a,b,a⊂α,b⊂β,a//β,b//α答案:D分析:对于A,B,C,举出符合条件的特例即可判断;对于D,过直线a作平面γ∩β=c,再证c//α即可. 如图,ABCD−A1B1C1D1是长方体,平面ABCD为平面α,平面ABB1A1为平面β,对于A,直线C1D1为直线a,显然a//α,a//β,而α与β相交,A不正确;对于B,直线CD为直线a,显然a⊂α,a//β,而α与β相交,B不正确;对于C,直线CD为直线a,直线A1B1为直线b,显然a⊂α,b⊂β,a//β,b//α,而α与β相交,C不正确;对于D,因a,b是异面直线,且a⊂α,b⊂β,过直线a作平面γ∩β=c,如图,则c//a,并且直线c与b必相交,而c⊄α,于是得c//α,又b//α,即β内有两条相交直线都平行于平面α,⁄平面β.因此,平面α/故选:D8、紫砂壶是中国特有的手工陶土工艺品,经典的有西施壶,石瓢壶,潘壶等,其中石瓢壶的壶体可以近似看成一个圆台,如图给了一个石瓢壶的相关数据(单位:cm),那么该壶的容积约为()A.100cm3B.200cm3C.300cm3D.400cm3答案:B分析:根据题意可知圆台上底面半径为3,下底面半径为5,高为4,由圆台的结构可知该壶的容积为大圆锥的体积减去小圆锥的体积,设大圆锥的高为ℎ,所以ℎ−4ℎ=610,求出ℎ的值,最后利用圆锥的体积公式进行运算,即可求出结果.解:根据题意,可知石瓢壶的壶体可以近似看成一个圆台,圆台上底面半径为3,下底面半径为5,高为4,可知该壶的容积为大圆锥的体积减去小圆锥的体积,设大圆锥的高为ℎ,所以ℎ−4ℎ=610,解得:ℎ=10,则大圆锥的底面半径为5,高为10,小圆锥的底面半径为3,高为6,所以该壶的容积V=13×π×52×10−13×π×32×6=1963π≈200cm3.故选:B.多选题9、如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,则下列结论正确的是()A.圆柱的体积为4πR3B.圆锥的侧面积为√5πR2C.圆柱的侧面积与圆锥的表面积相等D.圆柱、圆锥、球的体积之比为3:1:2答案:BD分析:依次判断每个选项:圆柱的体积为2πR3,A错误;圆锥的侧面积为√5πR2,B正确;圆柱的侧面积为4πR2,C错误;计算体积之比为3:1:2,D正确,得到答案.依题意圆柱的底面半径为R,则圆柱的高为2R,圆柱的体积为πR2×2R=2πR3,∴A错误;圆锥的母线长为√5R,圆锥的侧面积为πR×√5R=√5πR2,∴B正确;∵圆柱的侧面积为4πR2,圆锥表面积为√5πR2+πR2,∴C错误;∵V圆柱=πR2⋅2R=2πR3,V圆锥=13πR2⋅2R=23πR3,V球=43πR3∴V圆柱:V圆锥:V球=2πR3:23πR3:43πR3=3:1:2,∴D正确.故选:BD.10、在棱长为2的正方体ABCD−A1B1C1D1中,E,F分别为AB,A1D1的中点,则()A.BD⊥B1CB.EF//平面DB1BC.AC1⊥平面B1D1CD.过直线EF且与直线BD1平行的平面截该正方体所得截面面积为√2答案:BC解析:(1)求出BD,B1C所成的角,不为90∘(2)通过证明面面平行,再到线面平行.即先证面FGE//面DBB1D1,再可以说明EF//平面DB1B(3)先证B1C⊥面ABC1,则可说明B1C⊥AC1,同理可得B1D1⊥AC1,则证明了AC1垂直于平面内两条相交直线,故AC1⊥平面B1D1C(4)找到过直线EF且与直线BD1平行的平面即平面FGEQ,求出面积即可A. 由图易知BD//B1D1,又有B1D1=D1C=B1C=2√2,故△B1D1C为等边三角形,故B1D1与B1C所成的角为60∘BD,B1C所成的角为60∘,故A错.B. 记AD中点为G,易知FG//D1D,GE//DB,则可知FG//面DBB1D1,GE//面DBB1D1故面FGE//面DBB1D1FE⊂面FGE,故EF//平面DB1B.C. 四边形BCB1C1为正方形,B1C⊥BC1,又AB⊥面B1BCC1,故AB⊥B1C则B1C⊥面ABC1故B1C⊥AC1同理B1D1⊥AC1故AC1⊥平面B1D1C.D.记A1B1中点为Q,由B项可知,面FGEQ//面DBB1D1,故BD1//面FGEQ,又EF⊂面FGEQ,故过EF且与直线BD1平行的平面为如图所示的平面FGEQ,面积为S=FQ⋅FG=2⋅√2=2√2.故选:BC小提示:本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.11、如图直角梯形ABCD中,AB//CD,AB⊥BC,BC=CD=12AB=2,E为AB中点.以DE为折痕把△ADE折起,使点A到达点P的位置,且PC=2√3则()A.平面PED⊥平面PCD B.PC⊥BDC.二面角P−DC−B的大小为π4D.PC与平面PED所成角的正切值为√2答案:ABC解析:先证明PE⊥平面DEBC,得PE⊥DC,再结合DC⊥DE,即证DC⊥平面PED,所以平面PED⊥平面PCD,判断A正确;利用投影判断PC⊥BD,判断B正确;先判断∠PDE即为二面角P−DC−B的平面角,再等腰直角三角形判断∠PDE=π4,即C正确;先判断∠CPD为PC与平面PED所成的角,再求正切tan∠CPD=CDPD,即知D错误.由题易知EC=2√2,又PE=2,PC=2√3,所以PE2+EC2=PC2,所以PE⊥EC,又PE⊥ED,ED∩EC=E,所以PE⊥平面DEBC,所以PE⊥DC,又DC⊥DE,PE∩DE=E,所以DC⊥平面PED,又DC⊂平面PCD,所以平面PED⊥平面PCD,故A正确;PC在平面EBCD内的射影为EC,又EBCD为正方形,所以BD⊥EC,PC⊥BD,故B正确;易知∠PDE即为二面角P−DC−B的平面角,又PE⊥ED,PE=ED,所以∠PDE=π4,故C正确;易知∠CPD为PC与平面PED所成的角,又PD=2√2,CD=2,CD⊥PD,所以tan∠CPD=CDPD =2√2=√22,故D错误.小提示:求空间中直线与平面所成角的常见方法为:(1)定义法:直接作平面的垂线,找到线面成角;(2)等体积法:不作垂线,通过等体积法间接求点到面的距离,距离与斜线长的比值即线面成角的正弦值;(3)向量法:利用平面法向量与斜线方向向量所成的余弦值的绝对值,即是线面成角的正弦值.本题使用了定义法.填空题12、我国古代数学名著《九章算术》对立体几何也有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的“堑堵”即三棱柱ABC−A1B1C1,其中AC⊥BC,若AA1=AB=1,当“阳马”即四棱锥B−A1ACC1,体积最大时,“堑堵”即三棱柱ABC−A1B1C1的表面积为_______.答案:3+2√22分析:依据均值定理去求四棱锥B−A1ACC1取体积最大值时AB的长度,再去求三棱柱ABC−A1B1C1的表面积即可.四棱锥B−A1ACC1的体积是三棱柱体积的23,V ABC−A1B1C1=12AC⋅BC⋅AA1=12AC⋅BC≤14(AC2+BC2)=14AB2=14,当且仅当AB=BC=√22时,取等号.所以三棱柱ABC−A1B1C1的表面积为S=2×12×√22×√22+(√22+√22+1)×1=3+2√22.所以答案是:3+2√2213、如图,平面OAB⊥平面α,OA⊂α,OA=AB,∠OAB=120°.平面α内一点P满足PA⊥PB,记直线OP 与平面OAB所成角为θ,则tanθ的最大值是_________.答案:√612分析:作出图形,找出直线OP与平面OAB所成的角θ,证出PA⊥平面PBH,得出PA⊥PH,得出点P的轨迹就是平面α内以线段AH为直径的圆(A点除外),转化成与圆有关的最值问题,即可求出结果.如图,过点B作BH⊥OA,交OA的延长线于点H,连接PH,OP,取AH的中点为E,连接PE,过点P作PF⊥OA,垂足为F,∵平面OAB⊥平面α,且平面OAB∩平面α=OA,BH⊂平面OAB,PF⊂α,∴BH⊥α,PF⊥平面OAB,∴OP在平面OAB上的射影就是直线OA,故∠AOP就是直线OP与平面OAB所成的角θ,即∠AOP=θ,∵AP⊂α,∴AP⊥BH,又∵PA⊥PB,PB∩BH=B,PB,BH⊂平面PBH,∴PA⊥平面PBH,∵PH⊂平面PBH,∴PA⊥PH,故点P的轨迹就是平面α内以线段AH为直径的圆(A点除外),∵OA=AB,且∠OAB=120∘,∴∠BAH=60∘,设OA=a(a>0),则AB=a,从而AH=AB⋅cos60∘=a2,∴PE=12AH=a4,如图,当且仅当PE⊥OP,即OP是圆E的切线时,角θ有最大值,tanθ有最大值,tanθ取得最大值为:PEOP =√OE2−PE2=a4√(a+4)2−(4)2=√612.所以答案是:√612.14、如果一个水平放置的图形用斜二测画法画出的直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是______.答案:2+√2##√2+2分析:求出直观图中梯形的下底长,作出原图形,结合梯形的面积公式可求得结果.直观图中,梯形的下底长为1+2×1×cos45∘=1+√2,作出原图形如下图所示:由图可知,原图形为直角梯形ABCD,且该梯形的上底长为CD=1,下底长为AB=1+√2,高为AD=2,=2+√2.因此,原图形的面积为S=(AB+CD)⋅AD2所以答案是:2+√2.解答题15、如图,在正方体ABCD−A1B1C1D1中,A1C1与B1D1交于点O1,求证:(1)直线A1B∥平面ACD1;(2)直线BO1∥平面ACD1.答案:(1)证明见解析(2)证明见解析分析:(1)根据题意,先证得四边形A1D1CB是平行四边形,从而证得A1B∥D1C,即可证得线面垂直;(2)连接BD,交AC于O,连接D1O,只需证明O1B∥D1O,即可证得线面垂直;(1)证明:直线A1B在平面ACD1外,因为A1D1∥BC,A1D1=BC,所以四边形A1D1CB是平行四边形,所以A1B∥D1C,而D1C是平面ACD1内的直线,根据判定定理可知,直线A1B∥平面ACD1.(2)证明:如图,连接BD,交AC于O,连接D1O,易知D1O1∥OB,D1O1=OB,则四边形D1O1BO是平行四边形,所以O1B∥D1O,所以D1O在平面ACD1上,根据判定定理可知,O1B∥平面ACD1.。
(完整版)高中数学必修二立体几何知识点总结
第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积 rh S π2=圆柱侧 ()l r r S +=π2圆柱表rl S π=圆锥侧面积 ()l r r S +=π圆锥表 lR r S π)(+=圆台侧面积 ()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式 V Sh =柱13V Sh =锥'1()3V S S h =台 2V Sh r h π==圆柱h r V 231π=圆锥 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理(3公理 L A · α C · B · A · α2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
高中数学必修二立体几何知识点总结(供参考)
第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈α B ∈α(2符号表示为:A 、B 、C 三点不共线=> 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。
公理(3公理1 异面直线: 不同在任何一个平面内,没有公共点。
2 符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
3 4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 —— 有无数个公共点(2)直线与平面相交 —— 有且只有一个公共点L A · α C · B· A · α =>a ∥c2π(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
必修二立体几何初步知识点整理(可编辑修改word版)
A1DB1C四棱柱 ⎪ 其他棱柱 ⎪⎩ ⎨ −棱−垂−直于−底面−→ 直棱柱 1 1一、基础知识(理解去记) 必修二立体几何初步知识点整理(一)空间几何体的结构特征 (1) 多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2) 柱,锥,台,球的结构特征1. 棱柱1.1 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体叫做棱柱。
1.2 相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:⎧斜棱柱 棱柱⎪ ⎧⎪ −底−面−是正−多形−→正棱柱 ⎨ ⎩② 底面为平行四边形侧棱垂直于底面底面为矩形底面为正方形 1.3 棱柱的性质:①侧棱都相等,侧面是平行四边形;侧棱与底面边长相等 ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
补充知识点 长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如D1C1图】 AC 2 = AB 2 + AD 2 + AA 2②(了解)长方体的一条对角线 AC 1 与过顶点 A 的三条棱所成的角AB分别是,,,那么cos 2+ cos 2 + cos 2 = 1, sin 2+ sin 2 + sin 2 = 2 ;③ ( 了解) 长方体的一条对角线 AC 1 与过顶点 A 的相邻三个面所成的角分别是,,, 则cos 2+ cos 2 + cos 2 = 2 , sin 2+ sin 2 + sin 2 = 1.1.4 侧面展开图:正 n 棱柱的侧面展开图是由 n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.正方体正四棱柱 长方体 直平行六面体 平行六面体①S 直棱柱侧 = c ⋅ h 1.5 面积、体积公式:(其中 c 为底面周长,h 为棱柱的高)S= c ⋅ h + 2S ,V= S ⋅ h2. 圆柱直棱柱全底棱柱底2.1 圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2 圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.2.3 侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.2.4 面积、体积公式: S 圆柱侧= 2rh ;S 圆柱全= 2rh + 2r 2 ,V 圆柱=S 底 h=r 2h (其中 r 为底面半径,h 为圆柱高)3. 棱锥3.1 棱锥——有一个面是多边形,其余各面是有一个公共顶点的 三角形,由这些面所围成的几何体叫做棱锥。
必修二数学必背公式知识点
必修二数学必背公式知识点必修二数学必背公式知识点空间几何一、立体几何常用公式S(圆柱全面积)=2πr(r+L);V(圆柱体积)=Sh;S(圆锥全面积)=πr(r+L);V(圆锥体积)=1/3Sh;S(圆台全面积)=π(r^2+R^2+rL+RL);V(圆台体积)=1/3[s+S+√(s+S)]h;S(球面积)=4πR^2;V(球体积)=4/3πR^3。
二、立体几何常用定理(1)用一个平面去截一个球,截面是圆面。
(2)球心和截面圆心的连线垂直于截面。
(3)球心到截面的距离d与球的半径R及截面半径r有下面关系:r=√(R^2—d^2)。
(4)球面被经过球心的平面载得的圆叫做大圆,被不经过球心的载面截得的圆叫做小圆。
(5)在球面上两点之间连线的最短长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,这个弧长叫做两点间的球面距离。
高二必修二数学复习知识点1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a 对称,高中数学;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;高二数学必修二重要知识归纳空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
高中数学必修2知识点总结归纳(人教版最全)
高中数学必修2知识点总结归纳(人教版最全)高中数学必修二知识点汇总第一章:立体几何初步1、柱、锥、台、球的结构特征1) 棱柱:是由两个平行的多边形底面和若干个侧面组成的几何体。
根据底面多边形的边数不同,可以分为三棱柱、四棱柱、五棱柱等。
棱柱的侧面和对角面都是平行四边形,侧棱平行且相等,平行于底面的截面是与底面全等的多边形。
2) 棱锥:是由一个多边形底面和若干个三角形侧面组成的几何体。
根据底面多边形的边数不同,可以分为三棱锥、四棱锥、五棱锥等。
棱锥的侧面和对角面都是三角形,平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3) 棱台:是由一个平行于棱锥底面的平面截取棱锥,截面和底面之间的部分组成的几何体。
根据底面多边形的边数不同,可以分为三棱台、四棱台、五棱台等。
棱台的上下底面是相似的平行多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱:是由一个圆形底面和一个平行于底面的圆柱面组成的几何体。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥:是由一个圆形底面和一个以底面圆心为顶点的锥面组成的几何体。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台:是由一个圆形底面和一个平行于底面的圆台面组成的几何体。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个弓形。
7) 球体:是由一个半圆面绕其直径旋转一周所形成的几何体。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图三视图是指正视图(光线从几何体的前面向后面正投影)、侧视图(从左向右)和俯视图(从上向下)组成的视图。
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度。
俯视图和侧视图是用来反映物体在不同方向上的位置关系的,前者反映长度和宽度,后者反映高度和宽度。
斜二测画法是一种直观的图示方法,它的特点是原来与x轴平行的线段仍然与x轴平行且长度不变,原来与y轴平行的线段仍然与y轴平行,但长度为原来的一半。
高中数学必修二知识点总结(精选.)
必修二复习(立体几何)第一章柱、锥、台、球的结构特征一、柱、锥、台、球的结构特征1、棱柱(1)结构特征:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体。
注意:有两个面互相平行,其余各面都是平行四边形的几何体一定是棱柱吗?答:不一定是.如图所示,不是棱柱(2)棱柱的性质1.侧棱都相等,侧面都是平行四边形;2.两个底面与平行于底面的截面都是全等的多边形;3.平行于侧棱的截面都是平行四边形;(3)棱柱的分类按侧棱是否和底面垂直分类:按边数分:三棱柱四棱柱五棱柱按侧棱是否与底面垂直分:斜棱柱直棱柱正棱柱2、棱锥(1)结构特征:有一个面是多边形,其余各面都是有一个公共顶点的三角形(2)棱锥的分类按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、……正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心的棱锥。
定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥。
如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心,这样的棱锥叫做正棱锥。
性质Ⅰ、正棱锥的性质(1)各侧棱相等,各侧面都是全等的等腰三角形。
(2)棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
正棱锥性质2:棱锥的高、斜高和斜高在底面的射影组成一个直角三角形。
棱锥的高、侧棱和侧棱在底面的射影组成一个直角三角形棱台由棱锥截得而成,所以在棱台中也有类似的直角梯形。
3棱台结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台.4圆柱结构特征:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱。
5圆锥结构特征:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥6圆台结构特征:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.7球结构特征:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体.8空间几何体的表面积和体积练习题1.设棱锥的底面面积为8cm2,那么这个棱锥的中截面(过棱锥的中点且平行于底面的截面)的面积是( )2.若一个锥体被平行于底面的平面所截,若截面面积是底面面积的四分之一,则锥体被截面截得的一个小锥与原棱锥体积之比为( )(A)1 : 4 (B) 1 : 3(C) 1 : 8 (D) 1 : 76.如图,等边圆柱(轴截面为正方形ABCD)一只蚂蚁在A处,想吃C1处的蜜糖,怎么走才最快,并求最短路线的长?二、空间几何体的三视图和直观图平行投影法投影线相互平行的投影法.(1)斜投影法投影线倾斜于投影面的平行投影法称为斜投影法.(2)正投影法投影线垂直于投影面的平行投影法称为正投影法.有关概念:物体向投影面投影所得到的图形称为视图。
空间点、直线、平面之间的位置关系(人教A版2019必修二)
(二)空间点、直线、平面的位置关系
知识点二 空间两条直线的位置关系
【探究2】分别在两个平面内的两条直线是否一定异面?
位置关系
特点
相交
同一平面内,有且只有 一个 公 共点
第八章 立体几何初步
8.4.2 空间点、直线、平面之间的位置关系
教材分析
本小节内容选自《普通高中数学必修第二册》人教A版(2019)第八章《立体几何初步》的第四节《空间点、 直线、平面之间的位置关系》。以下是本节的课时安排:
课时内容 所在位置 新教材内 容分析
核心素养 培养
教学主线
8.4 空间点、直线、平面之间的位置关系
答案:(1)× (2)× (3)√ (4)× (5)×
(三)典型例题
1.空间直线与直线的位置关系
例1.如图,已知正方体ABCDA1B1C1D1,判断下列直线的位置关系:
①直线A1B与直线D1C的位置关系是 ②直线A1B与直线B1C的位置关系是 ③直线D1D与直线D1C的位置关系是 ④直线AB与直线B1C的位置关系是
重点、难点
1.重点:了解直线与平面的三种位置关系,并会用图形语言和符号语言表示 2.难点:了解空间中两条直线的三种位置关系, 理解两异面直线的定义,会用平面衬托来画异面直线。
(一)新知导入
观察你所在的教室.
【问题】 (1)教室内同一列的灯管所在的直线是什么位置关系? (2)教室内某灯管所在的直线和地面是什么位置关系? (3)教室内某灯管所在的直线和黑板左右两侧所在的直线是什么位置关系? (4)教室内黑板面和教室的后墙面是什么位置关系? 提示 (1)平行. (2)平行. (3)二者是异面直线. (4)平行.
必修二立体几何初步知识点整理doc
必修二立体几何初步知识点整理一、基础知识(理解去记) (一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体、围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1、棱柱1、1棱柱——有两个面互相平行,其余各面都就是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1、2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱侧棱垂直于底面侧棱与底面边长相等①侧棱都相等,侧面就是平行四边形;②两个底面与平行于底面的截面就是全等的多边形; ③过不相邻的两条侧棱的截面就是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面就是矩形。
补充知识点 长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方与;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角 分别就是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别就是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=、1、4侧面展开图:正n 棱柱的侧面展开图就是由n 个全等矩形组成的以底面周长与侧棱长为邻边的矩形、1、5面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2、圆柱 2、1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱、2、2圆柱的性质:上、下底及平行于底面的截面都就是等圆;过轴的截面(轴截面)就是全等的矩形、2、3侧面展开图:圆柱的侧面展开图就是以底面周长与母线长为邻边的矩形、2、4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高)3、棱锥3、1棱锥——有一个面就是多边形,其余各面就是有一个公共:,,,SOB SOH SBH OBH 为3、3侧面展开图:正n 棱锥的侧面展开图就是有n 个全等的等腰三角形组成的。
立体几何之所成角知识点(人教A版2019必修第二册)
立体几何之所成角屾一1异面直线所成的角@范围co o , 900] ;@作异面直线所成的角:平移法。
如图,在空间任取一点0,过O作a'II a, b'I I b,则a',b ,所成的0角为异面直线a,b所成的角。
特别地,找异面直线所成的角时,经常把一条异面直线平移到另一条异面直线的特殊点(如线段中点,端点等)上,形成异面直线所成的角。
. ,b2线面所成的角O定义如下图,平面的一条斜线(直线l)和它在平面上的射影(AO)所成的角,叫做这条直线和这个平面所成的角。
产一条直线垂直平面,则0= 90°;一条直线和平面平行或在平面内,则0= 0° 0 @范围[0° I 90°]3二面角@定义从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角的棱l上任取一点0,以点0为垂足,在半平面a和fJ内分别作垂直于棱l的射线OA和OB,则射线OA和OB 构成的LAOB叫做二面角的平面角。
@范围[0°,180°]。
硌)_【题型一】异面直线所成的角【典题1】如图,正方体ABCD—A1凡C1D1中,点E,F分别是AA i,AD的中点,则CD1与EF所成角为() AEcAA.0°B.45°C.60°D.90°【解析】连结A1D、BD、A1B,·:正方体ABCD—A1B1C1趴中,点E,F分别是AA1,AD的中点,EF II A1D,·: A1B II D1C, :. L DA1B是CD1与EF所成角,•: A1D = A1B = BD 1 :. L DA1B = 60° a :. CD1与EF所成角为60°a故选C。
AEcA【点拨】O找异面直线所成的角,主要是把两条异面直线通过平移使得它们共面,可平移一条直线也可以同时平移两条直线;@平移时常利用中位线、平行四边形的性质;【典题2】如图所示,在棱长为2的正方体ABCD—A1B1C1D1中,0是底面ABCD的中心,E、F分别是CC1,AD 的中点,那么异面直线OE和FD1所成角的余弦值等千——°D,A IB【解析】取BC的中点G。
高中数学必修二第八章立体几何初步必考知识点归纳(带答案)
高中数学必修二第八章立体几何初步必考知识点归纳单选题1、如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1答案:A分析:由正方体间的垂直、平行关系,可证MN//AB,A1D⊥平面ABD1,即可得出结论.连AD1,在正方体ABCD−A1B1C1D1中,M是A1D的中点,所以M为AD1中点,又N是D1B的中点,所以MN//AB,MN⊄平面ABCD,AB⊂平面ABCD,所以MN//平面ABCD.因为AB不垂直BD,所以MN不垂直BD则MN不垂直平面BDD1B1,所以选项B,D不正确;在正方体ABCD−A1B1C1D1中,AD1⊥A1D,AB⊥平面AA1D1D,所以AB⊥A1D,AD1∩AB=A,所以A1D⊥平面ABD1,D1B⊂平面ABD1,所以A1D⊥D1B,且直线A1D,D1B是异面直线,所以选项C错误,选项A正确.故选:A.小提示:关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.2、在正方体ABCD−A1B1C1D1中,三棱锥A−B1CD1的表面积为4√3,则正方体外接球的体积为()A.4√3πB.√6πC.32√3πD.8√6π答案:B解析:根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果.解:设正方体的棱长为a,则B1D1=AC=AB1=AD1=B1C=D1C=√2a,由于三棱锥A−B1CD1的表面积为4√3,所以S=4S△AB1C =4×12×√32(√2a)2=4√3所以a=√2所以正方体的外接球的半径为√(√2)2+(√2)2+(√2)22=√62, 所以正方体的外接球的体积为43π·(√62)3=√6π故选:B .小提示:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.3、已知直三棱柱ABC −A 1B 1C 1的各顶点都在同一球面上,且该棱柱的体积为√3,AB =2,AC =1,∠BAC =60°,则该球的表面积为( ) A .4πB .4√2πC .8πD .32π 答案:C解析:利用三棱柱ABC −A 1B 1C 1的侧棱垂直于底面,棱柱的体积为√3,AB =2,AC =1,∠BAC =60°,求出AA 1,再求出ΔABC 外接圆的半径,即可求得球的半径,从而可求球的表面积. ∵三棱柱ABC −A 1B 1C 1的侧棱垂直于底面, 棱柱的体积为√3,AB =2,AC =1,∠BAC =60°, ∴12×2×1×sin60°×AA 1=√3,∴AA 1=2∵BC 2=AB 2+AC 2−2AB ⋅ACcos60°=4+1−2=3,∴BC =√3. 设ΔABC 外接圆的半径为R ,则BCsin60°=2R ,∴R =1.∴外接球的半径为√1+1=√2,∴球的表面积等于4π×(√2)2=8π. 故选:C.小提示:本小题主要考查根据柱体体积求棱长,考查几何体外接球有关计算,属于基础题.4、牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为V 牟V 球=4π,并且推理出了“牟合方盖”的八分之一的体积计算公式,即V 牟8=r 3−V 方盖差,从而计算出V 球=43πr 3.如果记所有棱长都为r 的正四棱锥的体积为V ,则V 方差盖:V =( ) A .√22B .1C .√2D .2√2 答案:C分析:计算出V 方盖差,V ,即可得出结论.由题意,V 方盖差=r 3−18V 牟=r 3−18×4π×43×π×r 3=13r 3, 所有棱长都为r 的正四棱锥的体积为V 正=13×r ×r ×r 2−(√2r 2)2=√26r 3, ∴V 方盖差V 正=13r 3√2r 36=√2,故选:C .5、已知一个圆锥的体积为3π,其侧面积是底面积的2倍,则其底面半径为( ) A .2√3B .3C .√3D .√33答案:C分析:根据圆锥的侧面展开图和圆锥体积公式以及侧面积公式,即可求出结果. 设底面半径为r ,高为ℎ,母线为l ,如图所示:则圆锥的体积V =13πr 2ℎ=3π,所以r 2ℎ=9,即ℎ=9r 2, S 侧=12⋅2πrl =2πr 2,则l =2r ,又ℎ=√l 2−r 2=√3r ,所以√3r 3=9,故r =√3.故选:C.6、如图所示的是平行四边形ABCD所在的平面,有下列表示方法:①平面ABCD;②平面BD;③平面AD;④平面ABC;⑤AC;⑥平面α.其中不正确的是()A.④⑤B.③④⑤C.②③④⑤D.③⑤答案:D解析:根据平面的表示方法判断.③中AD不为对角线,故错误;⑤中漏掉“平面”两字,故错误.故选:D.7、如图,PA垂直于矩形ABCD所在的平面,则图中与平面PCD垂直的平面是()A.平面ABCD B.平面PBCC.平面PAD D.平面PCD答案:C分析:由线面垂直得到线线垂直,进而证明出线面垂直,面面垂直.因为PA⊥平面ABCD,CD⊂平面ABCD,所以PA⊥CD,由四边形ABCD为矩形得CD⊥AD,因为PA∩AD=A,所以CD⊥平面PAD.又CD⊂平面PCD,所以平面PCD⊥平面PAD.故选:C8、如图,矩形BDEF所在平面与正方形ABCD所在平面互相垂直,BD=2,DE=1,点P在线段EF上.给出下列命题:①存在点P,使得直线DP//平面ACF;②存在点P,使得直线DP⊥平面ACF;,1];③直线DP与平面ABCD所成角的正弦值的取值范围是[√55④三棱锥A−CDE的外接球被平面ACF所截得的截面面积是9π.8其中所有真命题的序号()A.①③B.①④C.①②④D.①③④答案:D分析:当点P是线段EF中点时判断①;假定存在点P,使得直线DP⊥平面ACF,推理导出矛盾判断②;利用线面角的定义转化列式计算判断③;求出△ACF外接圆面积判断④作答.取EF中点G,连DG,令AC∩BD=O,连FO,如图,在正方形ABCD中,O为BD中点,而BDEF是矩形,则DO//GF且DO=GF,即四边形DGFO是平行四边形,即有DG//FO,而FO⊂平面ACF,DG⊄平面ACF,于是得DG//平面ACF,当点P与G重合时,直线DP//平面ACF,①正确;假定存在点P,使得直线DP⊥平面ACF,而FO⊂平面ACF,则DP⊥FO,又DG//FO,从而有DP⊥DG,在Rt△DEF中,∠DEF=90∘,DG是直角边EF上的中线,显然在线段EF上不存在点与D连线垂直于DG,因此,假设是错的,即②不正确;因平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,则线段EF上的动点P在平面ABCD上的射影在直线BD上,于是得∠PDB是直线DP与平面ABCD所成角的,在矩形BDEF中,当P与E不重合时,∠PDB=∠DPE,sin∠PDB=sin∠DPE=DEDP =√DE2+EP2=√1+EP2,而0<EP≤2,则√55≤sin∠PDB<1,当P与E重合时,∠PDB=π2,sin∠PDB=1,因此,√55≤sin∠PDB≤1,③正确;因平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,BF⊥BD,BF⊂平面BDEF,则BF⊥平面ABCD,BC=√2,在△ACF中,AF=CF=√BC2+BF2=√3,显然有FO⊥AC,sin∠FAC=FOAF =√BO2+BF2AF=√2√3,由正弦定理得△ACF外接圆直径2R=CFsin∠FAC =√2,R=2√2,三棱锥A−CDE的外接球被平面ACF所截得的截面是△ACF的外接圆,其面积为πR2=9π8,④正确,所以所给命题中正确命题的序号是①③④.故选:D小提示:名师点评两个平面互相垂直,则一个平面内任意一点在另一个平面上的射影都在这两个平面的交线上.多选题9、在棱长为1的正方体ABCD−A1B1C1D1中,M是线段A1C1上一个动点,则下列结论正确的有()A.存在M点使得异面直线BM与AC所成角为90°B.存在M点使得异面直线BM与AC所成角为45°C.存在M点使得二面角M−BD−C的平面角为45°D.当4A1M=A1C1时,平面BDM截正方体所得的截面面积为98答案:AD分析:对于A,由正方体的性质可将异面直线BM与AC所成的角可转化为直线BM与A1C1所成角,而当M为A1C1的中点时,可得BM⊥A1C1,从而可判断;对于B,M与A1或C1重合时,直线BM与AC所成的角最小;对于C,当M与C1重合时,二面角M−BD−C的平面角最小,通过计算可判断;对于D,过M作EF//D1B1,交A1B1于F,交A1D1于E点,由题意可得四边形EFBD即为平面BDM截正方体所得的截面,且四边形EFBD是等腰梯形,然后利用已知数据计算即可解:异面直线BM与AC所成的角可转化为直线BM与A1C1所成角,当M为A1C1的中点时,BM⊥A1C1,此时BM与AC所成的角为90°,所以A正确;当M与A1或C1重合时,直线BM与AC所成的角最小,为60°,所以B错误;当M与C1重合时,二面角M−BD−C的平面角最小,tan∠C1OC=√2>1,所以∠C1OC>45°,所以C错误;对于D,过M作EF//D1B1,交A1B1于F,交A1D1于E点,因为4A1M=A1C1,所以E、F分别是A1D1、A1B1的中点,又B1D1//BD,所以EF//DB,四边形EFBD即为平面BDM截正方体所得的截面,因为EF=12D1B1=√22,且BF=DE=√BB12+B1F2=√52,所以四边形EFBD是等腰梯形,作FG⊥DB交BD于G点,所以BG=1 2(BD−EF)=√24,FG=√FB2−BG2=3√24,所以梯形的面积为12(BD+EF)×FG=98,所以D正确.故选:AD.10、给出以下关于斜二测直观图的结论,其中正确的是()A.水平放置的角的直观图一定是角B.相等的角在直观图中仍然相等C.相等的线段在直观图中仍然相等D.两条平行线段在直观图中仍是平行线段答案:AD分析:根据直观图和斜二测画法的规则,判断选项.水平放置的角的直观图一定是角,故A正确;角的大小在直观图中都会发生改变,有的线段在直观图中也会改变,比如正方形的直方图中,故BC错误;由斜二测画法规则可知,直观图保持线段的平行性,所以D正确.故选:AD11、(多选题)下列说法中,正确的结论有()A.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等B.如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等C.如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补D.如果两条直线同时平行于第三条直线,那么这两条直线互相平行答案:BD分析:由等角定理可判断A的真假;根据直线夹角的定义可判断B的真假;举反例可判断C的真假;由平行公理可判断D的真假.对于选项A:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故选项A错误;对于选项B:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角或直角相等,故选项B正确;对于选项C:如果一个角的两边和另一个角的两边分别垂直,这两个角的关系不确定,既可能相等也可能互补,也可能既不相等,也不互补.反例如图,在立方体中,∠A1D1C1与∠A1BC1满足A1D1⊥A1B,C1D1⊥C1B,但是∠A1D1C1=π2,∠A1BC1=π3,二者不相等也不互补.故选项C错误;对于选项D:如果两条直线同时平行于第三条直线,那么这两条直线平行,故选项D正确. 故选:BD.填空题12、3个不同的平面最多将空间分成a部分,最少将空间分成b部分,则b−a=__.答案:−4分析:对平面的位置关系分类讨论,即可得到答案.当三个不同的平面互相平行时,最少将空间分成4部分,即b =4,当三个平面三维放置时,最多将空间分成8部分,即a =8,所以b −a =4−8=−4.所以答案是:−4小提示:方法点睛:对平面分空间为几个部分问题,要有画图的意识,结合空间想象能力全方位、多角度地去考虑问题,作出判断.13、设地球半径为R ,地球上北纬30°圈上有A ,B 两点,点A 在西经10°,点B 在东经110°,则点A 和B 两点东西方向的距离是___________.答案:√3πR 3分析:求出O ′A,O ′B 的长度,确定∠AO ′B 的大小,再由弧长公式求得A,B 两地的东西方向的距离.如图示,设O ′为北纬30°圈的圆心,地球球心为O ,则∠AOO ′=60∘ ,故AO ′=√32R ,即北纬30°圈的圆的半径为√32R , 由题意可知∠AO ′B =120∘=2π3,故点A 和B 两点东西方向的距离即为北纬30°圈上的AB⌢的长, 故AB ⌢的长为2π3×√32R =√3πR 3, 所以答案是:√3πR 314、若将两个半径为1的铁球熔化后铸成一个球,则该球的半径为______.答案:√23分析:根据球的体积等于两个半径为1的球的体积之和即可求其半径.设大球的半径为r ,则根据体积相同,可知43π+43π=43πr3,则r3=2,解得r=√23.所以答案是:√23.解答题15、已知△ABC的内角A,B,C的对边分别为a,b,c,若asinC=√3ccosA.(1)求角A.(2)若a=√7,c=2求△ABC的面积.答案:(1)A=π3;(2)3√32.分析:(1)由正弦定理边角关系,结合三角形内角性质得sinA=√3cosA,进而求角A.(2)由余弦定理得b2−2b−3=0求b,再利用三角形面积公式求△ABC的面积.(1)由正弦定理,sinAsinC=√3sinCcosA,又sinC≠0,∴sinA=√3cosA,即tanA=√3,由A∈(0,π),得A=π3.(2)由余弦定理知:a2=b2+c2−2bccosA,∴b2−2b−3=0,解得b=3,∴S△ABC=12bcsinA=3√32.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019新人教版必修二复习(立体几何)必背知识点第一章柱、锥、台、球的结构特征一、柱、锥、台、球的结构特征1、棱柱(1)结构特征:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体。
注意:有两个面互相平行,其余各面都是平行四边形的几何体一定是棱柱吗?答:不一定是.如图所示,不是棱柱(2)棱柱的性质1.侧棱都相等,侧面都是平行四边形;2.两个底面与平行于底面的截面都是全等的多边形;3.平行于侧棱的截面都是平行四边形;(3)棱柱的分类按侧棱是否和底面垂直分类:按边数分:三棱柱四棱柱五棱柱按侧棱是否与底面垂直分:斜棱柱直棱柱正棱柱2、棱锥(1)结构特征:有一个面是多边形,其余各面都是有一个公共顶点的三角形(2)棱锥的分类按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、……正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心的棱锥。
定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥。
如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心,这样的棱锥叫做正棱锥。
性质Ⅰ、正棱锥的性质(1)各侧棱相等,各侧面都是全等的等腰三角形。
(2)棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
正棱锥性质2:棱锥的高、斜高和斜高在底面的射影组成一个直角三角形。
棱锥的高、侧棱和侧棱在底面的射影组成一个直角三角形棱台由棱锥截得而成,所以在棱台中也有类似的直角梯形。
3棱台结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台.4圆柱结构特征:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱。
5圆锥结构特征:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥6圆台结构特征:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.7球结构特征:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体.8空间几何体的表面积和体积练习题1.设棱锥的底面面积为8cm2,那么这个棱锥的中截面(过棱锥的中点且平行于底面的截面)的面积是( )2.若一个锥体被平行于底面的平面所截,若截面面积是底面面积的四分之一,则锥体被截面截得的一个小锥与原棱锥体积之比为( )(A)1 : 4 (B) 1 : 3(C) 1 : 8 (D) 1 : 76.如图,等边圆柱(轴截面为正方形ABCD)一只蚂蚁在A处,想吃C1处的蜜糖,怎么走才最快,并求最短路线的长?二、空间几何体的三视图和直观图平行投影法投影线相互平行的投影法.(1)斜投影法投影线倾斜于投影面的平行投影法称为斜投影法.(2)正投影法投影线垂直于投影面的平行投影法称为正投影法.有关概念:物体向投影面投影所得到的图形称为视图。
如果物体向三个互相垂直的投影面分别投影,所得到的三个图形摊平在一个平面上,则就是三视图。
三视图的作图步骤1.确定视图方向2.先画出能反映物体真实形状的一个视图3.运用长对正、高平齐、宽相等的原则画出其它视图4.检查,加深,加粗。
斜二测画法步骤是:(1)在已知图形中取互相垂直的x轴和y 轴,两轴相交于点O。
画直观图时,把它们画成对应的x’轴和y’轴,两轴交于点O’,且使∠x’O’y’=45°(或135 °),它们确定的平面表示水平面。
(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x’轴或y’轴的线段。
(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半。
练1:圆柱的正视图、侧视图都是,俯视图是;(矩形、圆)圆锥的正视图、侧视图都是,俯视图是;(三角形、圆及圆心)圆台的正视图、侧视图都是,俯视图是。
(梯形、圆环)练2:利用斜二测画法可以得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形。
以上结论正确的是()A(A)①②(B)①(C)③④(D)①②③④练3:根据三视图可以描述物体的形状,其中根据左视图可以判断物体的;根据俯视图可以判断物体的;根据正视图可以判断物体的(宽度和高度、长度和宽度、长度和高度)练4:某生画出了图中实物的正视图与俯视图,则下列判断正确的是()A.正视图正确,俯视图正确B.正视图正确,俯视图错误C.正视图错误,俯视图正确D.正视图错误,俯视图错误练5:下图中三视图所表示物体的形状为()(答案:一个倒放着的圆锥)主视图左视图俯视图6.一平面图形的直观图如图所示,它原来的面积是()7.如图所示,△ABC的直观图△A’B’C’,这里△A’B’ C’是边长为2的正三角形,作出△ABC的平面图,并求△ABC的面积.8、正三棱柱的侧棱为2,底面是边长为2的正三角形,则侧视图的面积为9将正三棱柱截去三个角(如图1所示分别是三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为()10如图是一个空间几何体的三视图,如果直角三角形的直角边长均为1,那么几何体的体积为11.已知某个几何体的三视图如图2,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是________.第二章点、直线、平面之间的位置关系•四个公理直线与直线位置关系•三类关系直线与平面位置关系平面与平面位置关系线线角• 三种角 线面角二面角线面平行的判定定理与性质定理 线面垂直的判定定理与性质定理 • 八个定理 面面平行的判定定理与性质定理面面垂直的判定定理与性质定理1、四个公理公理1:如果一条直线上有两点在一个平面内,那么直线在平面内.(常用于证明直线在平面内)公理2:不共线的三点确定一个平面. (用于确定平面). 推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面.推论3:两条平行直线确定一个平面.公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线).平行公理:平行于同一条直线的两条直线互相平行.2、三类关系(1)线线关系:⎧⎨⎩共面:a b=A,a//b 异面:a 与b 异面异面直线:(1)定义:不同在任何一个平面内的两条直线——异面直线;(2)判定定理:连平面内的一点与平面外一点的直线与这个平面内不过此点的直线是异面直线。
异面直线所成的角:(1)范围:(]0,90θ∈︒︒; (2)作异面直线所成的角:平移法(2)线面关系 //l l A l l αααα⊂⎧⎪=⎧⎨⊄⎨⎪⎩⎩直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。
(3)面面关系αβαβαβ⎧⎪⎧⎨⎨⎪⊥⎩⎩平行://斜交:=a 相交垂直: ①二面角:(1)定义:【如图】;范围:[0,180]AOB ∠∈︒︒,OB l OA l AOB l αβ⊥⊥⇒∠-是二面角-的平面角 ②作二面角的平面角的方法:(1)定义法;(2)三垂线法(常用);(3)垂面法.3、八个定理 1.线面平行:①定义:直线与平面无公共点.②判定定理:////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭(线线平行⇒线面平行)③性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭(线面平行⇒线线平行)2.面面平行: ①定义://αβαβ=∅⇒;②判定定理:如果一个平面内的两条相交直线都平行于 另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b ab O a b ααααβ⊂=⇒③面面平行的性质定理: ////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭④判定与证明面面平行的依据:(1)定义法;(2)判定定理及结论1;(3)结论2.结论1:一个平面内的两条相交直线分别平行于另一个平面的 两条直线,那么这两个平面互相平行 符号表述:,,,',',//',//'//a b ab O a b a a b b αβαβ⊂=⊂⇒结论2:垂直于同一条直线的两个平面互相平行. 符号表述:,//a a αβαβ⊥⊥⇒.【如右图】3.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。
符号表述:若任意,a α⊂都有l a ⊥,且l α⊄,则l α⊥.②判定定理:,a b a b O l l l al b ααα⊂⎫⎪=⎪⎪⊄⇒⊥⎬⎪⊥⎪⊥⎪⎭(线线垂直⇒线面垂直)③性质定理:,//a b a b αα⊥⊥⇒(线面垂直⇒线线平行); 另:,l a l a αα⊥⊂⇒⊥(线面垂直⇒线线垂直); 证明或判定线面垂直的依据:(1)定义(反证);(2)判定定理(常用);(3)//a b b a αα⎫⇒⊥⎬⊥⎭(较常用); (4)//a a αββα⎫⇒⊥⎬⊥⎭;(5)a b a a a bαβββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭(面面垂直⇒线面垂直)4.面面垂直(1)定义:若二面角l αβ--的平面角为90︒,则αβ⊥;(2)判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.a a ααββ⊂⎫⇒⊥⎬⊥⎭(线面垂直⇒面面垂直)(3)性质定理:a AB a a a ABαβββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭(面面垂直⇒线面垂直);基础知识网络:立体几何解题中的转化策略位置关系的相互转化:大策略:空间到平面小策略:①平行转化:线线平行线面平行面面平行②垂直转化:线线垂直线面垂直面面垂直③平行关系垂直关系策略:线面平行转化成线线平行(空间转化平面)1)求该多面体的表面积与体积(策略:空间几何体的相互转化可考虑将该多面体补图成正方体策略:利用中位线将线面平行转化成线线平行策略:将二面角转化成平面角, 先找后求策略:将点面距离转化成点线距离第三章直线与直线方程两直线平行的判定: 方法:两直线相交的判定:两直线垂直的判定:4.点到直线的距离,平行线的距离题型一求直线的方程例1、求适合下列条件的直线方程:(1)经过点P(3,2),且在两坐标轴上的截距相等;(2)经过点A(-1,-3),且倾斜角等于直线y= 3x的倾斜角的2倍.选择适当的直线方程形式,把所需要的条件求出即可.解(1)方法一设直线l在x,y轴上的截距均为a,若a=0,即l过点(0,0)和(3,2),∴l的方程为y= x,即2x-3y=0.若a≠0,则设l的方程为∵l过点(3,2),∴∴a=5,∴l的方程为x+y-5=0,综上可知,直线l的方程为2x-3y=0或x+y-5=0. 方法二由题意知,所求直线的斜率k存在且k≠0, 设直线方程为y-2=k(x-3),令y=0,得x=3- ,令x=0,得y=2-3k,由已知3- =2-3k,解得k=-1或k= ,∴直线l的方程为y-2=-(x-3)或y-2= (x-3),即x+y-5=0或2x-3y=0.(2)由已知:设直线y=3x的倾斜角为,则所求直线的倾斜角为2 .∵tan =3,∴tan 2 =又直线经过点A(-1,-3),因此所求直线方程为y+3=- (x+1),即3x+4y+15=0.探究提高:方法一运用了数形结合思想.当直线的倾斜角由锐角变到直角及由直角变到钝角时,需根据正切函数y=tana的单调性求k的范围,数形结合是解析几何中的重要方法.解题时,借助图形及图形性质直观判断,明确解题思路,达到快捷解题的目的.方法二则巧妙利用了不等式所表示的平面区域的性质使问题得以解决.题型三两直线的位置关系例 3:已知直线方程为(2+λ)x+(1-2λ)y+9-3λ=0.(1)求证不论λ取何实数值,此直线必过定点;(2)过这定点引一直线,使它夹在两坐标轴间的线段被这点平分,求这条直线方程.解:把直线方程整理为 2x+y+9+λ(x-2y-3)=0.所以,不论λ取何实数值,直线(2+λ)x+(1-2λ)y+9-3λ=0 必过定点(-3,-3).(2)设经过点(-3,-3)的直线与两坐标轴分别交于A(a,0),B(0,b).9、(1)求A(-2,3)关于直线对称点B的坐标;(2)光线自A(-3,3)射出,经x轴反射以后经过点B(2,5),求入射光线和反射光线的直线方程;(3)已知M(-3,5),N(2,15),在直线上找一点P,使|PM|+|PN|最小,并求出最小值第四章圆与方程1.(全国)圆心为(1,2)且与直线5x-12y-7=0相切的圆的方程为2.圆心在直线2x-y-7=0上的圆C 与y 轴交于两点A(0,-4),B(0,-2),求圆C 的方程.3.△ABC 的三个顶点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.直线与圆的位置关系:-+==-例2、求经过A(2,1),和直线x y 1相切,且圆心在直线y 2x 上的圆的方程。