新课标人教版必修二立体几何知识归纳30页PPT
人教A版高中数学必修第二册教学课件:第八章8.2立体图形的直观图(共29张PPT)
知识梳理
一、 投影与直观图
1.投影的定义 由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这 种现象叫做投影.其中,我们把光线叫做投影线,把留下物体影子的屏幕叫 做投影面.
2.直观图 (1)直观图是观察者站在某一点观察一个空间几何体获得的图形. (2)立体图形的直观图通常是在平行投影下得到的平面图形.
Hale Waihona Puke ① ② ③ ④ ⑤图8-2-4
A.①② B.①②③ C.②⑤ D.③④⑤
2. C 解析:由斜二测画法知,长方形的直观图应为平行 四边形,且锐角为45°,故②⑤正确.
训练题3 如图8-2-5所示是水平放置的三角形的直观图, A′B′∥y′轴,则原图中△ABC是 ( )
下列叙述中,正确的个数为
()
斜二测画法的位置关系与2.度用量斜特征二用测口诀画简法记为画:空间几何体的直观图的具体规则
了解空间几何体的不同表现形式.
用斜二测画法画出正六棱锥P-ABCDEF的直观图,其中底面ABCDEF为正六边形,点P在底面的投影是正六边形的中心O.
九十度,画一半,横不变,纵减半,
第八章 立体几何初步
三、用斜二测画法画空间几何体的直观图
原图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,在直观图中长度变为原来的一半”的规则,确定平面图
形的关键点.
点拨:斜二测画法中“斜二测”的意思:
(1)直观图是观察者站在某一点 观 察 一个 空 间几何体获得的图形.
1
C.
① ②
训练题1.下列叙述中,正确的个数为 ( )
①相等的角,在直观图中仍相等;
②长度相等的线段,在直观图中长度仍相等;
③若两条线段平行,则在直观图中对应的线段仍平行;
新课标人教版必修二立体几何知识归纳
符号语言:
a //
a
a
a∥b.
b
b
平面与平面平行的判定定理:
平面内的两条相交直线都与另一平 面平行,则这两个平面平
(线面平行面面平行)
b
符号表示:
a
a // b //
//
a、b
平面与平面平行的性质定理: 两个平行平面同时和第三个平面相 交,那么它们的交线平行.
面面平行 线线平行
// a, a // b b
a
b
常见平面图形的线线平行关系 1.三角形的中位线
注: CF CE 或 CF CE EF // PB FP EB CP CB
2.平行四边形的对边
注: 四边形ABCD为平行四边形 AD// BC或AB// CD
常见线线平行关系
1. 2.
直线和平面垂直的判定
二面角 -l- 的平面角.
B
A
二面角的范围:[0,180 ]
平面角是直角的二面角叫直二面角.
二面角的平面角画法
(1)定义法 根据定义作出来
A
l
ቤተ መጻሕፍቲ ባይዱ
OB
(2)垂面法 作与棱垂直的平面与 两半平面的交线得到
l
O
A
B
(3)射影法
A
O B
l
备注:求线线、线面、面面所成的角步骤
作角(作出所求的角)
证明(证明它是所求的角)
常见平面图形的线线垂直关系
1.
AB AC D为BC中点 AD BC
4.
AB为圆O的直径
C为圆O上不同于A、B的点 AC BC
2.
AB2 AC2 BC2 AB AC
5.
四边形ABCD为正方形 E、F分别为AB、BC中点 CE DF
人教版高中数学必修2立体几何复习ppt课件
1
精选ppt
40
11.已知某个几何体的三视图如图2,根据图中标出的尺寸 (单位:cm),可得这个几何体的体积是_8_0_0_0_c_m__3 .
3
20
20
主视图
10 10
20
俯视图
20
侧视图
精选ppt
41
第二章 点、直线、平面之间的位置关系
• 四个公理
直线与直线位置关系 • 三类关系 直线与平面位置关系
精选ppt
12
正棱锥性质2
棱锥的高、斜高和斜高在 底面的射影组成一个直角 三角形。棱锥的高、侧棱 和侧棱在底面的射影组成 一个直角三角形
Rt⊿ SOH Rt⊿ SOB Rt⊿ SHB Rt⊿ BHO
棱台由棱锥截得而成,所以在棱台中也有类
似的直角梯精形选pp。t
13
棱台
结构特征
用一个平行于棱锥 底面的平面去截棱锥,底 面与截面之间的部分是 棱台.
//
③面面平行的性质定理:
a
a
// b
b
精选ppt
48
八个定理
④判定与证明面面平行的依据: (1)定义法;(2)判定定理及结论 1;(3)结论 2. 结论 1:一个平面内的两条相交直线分别平行于另一个平面的 两条直线,那么这两个平面互相平行
符号表述: a,b , a b O, a ',b ' , a // a ',b // b' //
A
A
H
G
Q
B
C
侧视 B
C
I
P E
图1
F
B
D
E
D
图2
F
B
B
高中数学人教版必修2空间几何体的结构 课件PPT
解析答案
(2)计算该几何体的体积与表面积. 解 由三视图中尺寸知,组合体下部是底面 直径为8 cm,高为20 cm的圆柱, 上部为底面直径为8 cm,母线长为5 cm的圆锥. 易求得圆锥高 h= 52-42=3(cm), ∴体积 V=π·42·20+13π·42·3=336π(cm3), 表面积S=π·42+2π·4·20+π·4·5=196π(cm2). ∴该几何体的体积为336π cm3,表面积为196π cm2.
以直角三角形的 母 一条直角边所在直线 线 为旋转轴,其余两边旋 转形成的曲面所围成 的几何体叫做圆锥。 A
顶点 S
轴
侧 面
O B
底面
棱柱
结构特征
棱锥
棱台
用一个平行于圆
锥底面的平面去截圆
圆柱 锥,底面与截面之间的
O’
圆锥 部分是圆台.
O
圆台
球
棱柱 棱锥 棱台 圆柱 圆锥 圆台
球
结构特征
以半圆的直径所 在直线为旋转轴,半圆 面旋转一周形成的旋 转体.
V= 1 Sh
r为底面半径,= 1
3 πr2h
h为高
3
答案
平行于圆锥底
用____________
面
___的平面去截圆
圆台
底面和截面
旋
锥,__________
转
之间的部分
体
半圆的直径
以___________所
在半直圆线面为旋转轴, 球
______旋转一周
形成的旋转体
S侧=π(r1+ V=13(S 上+S 下
C顶 点
棱柱的结构特征
2.棱柱的分类:按底面多边形的边数来分
3.棱柱的表示:用表示底面各顶点的字母表示
新人教版高中(必修2)A版立体几何复习PPT课件
50
感谢聆听
The user can demonstrate on a projector or computer, or print the presentation and make it into a film
讲师:Xቤተ መጻሕፍቲ ባይዱXX
日期:20XX.X月
51
立体几何复习
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
请将 移到相应 项目上 单击
3
问答
问题提问与解答
HERE COMES THE QUESTION AND ANSWER SESSION 49
结束语 CONCLUSION
学高一数学人教版必修二空间几何体的结构PPT课件
图形
有关 概念
如上图所示,轴为_S_O______,底面为_⊙__O_____,SA为母线 .另外,S叫做圆锥的顶__点______,OA(或OB)叫做底面⊙O的 __半__径____
表示法
圆锥用表示它的__轴____的字母表示,上图中的圆锥可记作圆 锥S_O_______
• [解析] 圆台的上确.
互动探究学案
命题方向1 ⇨旋转体的结构特征
典例 1 下列命题正确的是__④__⑥__⑧____. ①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥; ②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台; ③圆柱、圆锥、圆台的底面都是圆; ④以等腰三角形的底边上的高所在的直线为旋转轴,其余各边旋转一周形成 的曲面围成的几何体是圆锥;
• ⑤球面上四个不同的点一定不在同一平面内;
• ⑥球的半径是球面上任意一点和球心的连线段;
• ⑦球面上任意三点可能在一条直线上;
• ⑧用一个平面去截球,得到的截面是一个圆面.
• [思路分析] 准确理解旋转体的定义,在此基础上掌握各 旋转体的性质,才能更好地把握它们的结构特征,以作出 准确的判断.
• [解析] ①以直角三角形的一条直角边为轴旋转一周才可 以得到圆锥;②以直角梯形垂直于底边的一腰为轴旋转一 周可得到圆台;③它们的底面为圆面;④正确;作球的一 个截面,在截面的圆周上任意取四点,则这四点就在球面 上,故⑤错误;根据球的半径定义可知⑥正确;球面上任 意三点一定不共线,故⑦错误;用一个平面去截球,一定 截『得规一律方个法圆』面,圆柱故、⑧圆正锥、确圆.台、球都是常见的旋转体,熟练掌握它们
• [归纳总结] 圆柱的简单性质: • (1)圆柱有无数条母线,它们平行且相等. • (2)平行于底面的截面是与底面大小相同的圆,如图①所
《新课程标准高中数学必修②复习讲义》第一、二章-立体几何
一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1。
棱柱1。
1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1。
2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1。
4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。
1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。
高中数学人教A版必修2空间几何体空间几何体的结构(32张ppt)
1.构成此长方体的基本元素是什么?
2,观察长方体,你能发现长方体的顶点,棱 所在的直线,以及侧面、底面之间的位置关系吗?
D C
A
B
点、线、面
D C
A
B
2.1 空间点、直线、平面 之间的位置关系
2.1.1 平面
实例引入
观察活动室里的地面,它呈现出怎 样的形象?
观察平静的海面,它又呈现出怎样 的形象?
(1) AC
A
(2)三角形 ABC 的重心 G 在 B
C
平面 内。
公理1的作用:(1)判定直线在面内 (2)判定点在面内
生活中经常看到用三角架支撑照相机.
测量员用三角架支撑测量用的平板仪.
平面公理
存在性
公理2 过不在一条直线上的三点,有且只有一
个平面.
唯一性
B
A
C
不在一条直线上的三个点A、B、C所确定的 平面,可以记成“平面ABC”.
随堂练习
在正方体 ABCD A1B1C1D1 中,判断下列命题是否 正确,并说明理由:
①直线 AC1在平面 CC1B1B 内; 错误
C
B
D
A
高中数学人教A版必修2空间几何体 空间几何体的结构(32张ppt)
C1 D1
B1 A1
高中数学人教A版必修2空间几何体 空间几何体的结构(32张ppt)
随堂练习
高中数学人教A版必修2空间几何体 空间几何体的结构(32张ppt)
小结
1.平面的概念、特征; 2.平面的表示方法及平面的画法; 3.点、直线、平面间基本关系的文字语言,图 形语言和符号语言之间关系的转换
新疆 王新敞
奎屯
必修二立体几何知识点
必修二立体几何知识点一、引言本文档旨在概述高中必修二课程中立体几何的核心知识点,为教师和学生提供一个清晰的学习指南。
二、立体图形的基础1. 点、线、面的关系- 点的位置关系:共面、异面- 线的位置关系:平行、相交、异面- 面的位置关系:平行、相交2. 立体图形的分类- 多面体:棱柱、棱锥、圆柱、圆锥、球体- 旋转体:球面、圆锥面、圆柱面三、多面体1. 棱柱- 棱柱的结构特征- 棱柱的体积和表面积计算2. 棱锥- 棱锥的结构特征- 棱锥的体积和表面积计算3. 棱台- 棱台的结构特征- 棱台的体积计算四、旋转体1. 圆柱和圆锥- 结构特征- 体积和表面积计算- 旋转体的方程表示2. 球体- 结构特征- 体积和表面积计算五、立体图形的截面1. 截面的概念- 截面的定义- 截面的形状分类2. 截面的性质- 截面与原图形的关系- 截面的计算方法六、空间向量1. 空间向量的定义- 空间向量的基本概念- 空间向量的加法、减法和数乘2. 空间向量的应用- 点到直线的距离- 直线到平面的距离- 立体图形的体积计算七、立体角1. 立体角的定义- 立体角的概念- 立体角的度量2. 立体角的性质- 立体角与平面角的关系- 立体角的计算方法八、结语本文档提供的知识点是理解和掌握立体几何的基础。
教师应根据学生的实际情况,适当调整教学进度和深度。
文档格式说明:- 本文档应使用Word格式编写,确保所有文本清晰可读。
- 各主要部分应使用标题和子标题进行区分,以便快速导航。
- 公式和图表应使用适当的工具插入,并确保其准确性和清晰度。
- 文档应进行适当的排版,以确保整体观感良好,易于阅读和理解。
- 应提供足够的页边距和行间距,以便于打印和复制。
- 文档应保存为.docx格式,以确保可编辑性和可修改性。
请注意,这是一个教学文档的概要结构,具体内容需要根据教学大纲和实际教学需求进行填充和调整。
人教版高中数学必修二全册课件PPT优质
答案
类别
多面体
旋转体
定义
由若干个 围成的几何体
由一个平面图形绕它所在平面内的一条 旋转所形成的封闭几何体
形状
大小
空间图形
多面体
旋转体
平面多边形
定直线
答案
图形
相关概念
面:围成多面体的各个棱:相邻两个面的顶点:棱与棱的公共点
轴:形成旋转体所绕的
解析答案
反思与感悟
反思与感悟
解析 ①中的平面不一定平行于底面,故①错;②③可用反例去检验,如图所示,故②③错.
答案 A
一个棱台的基本特征是上、下底面平行且相似,侧棱延长后交于一点,这是判断几何体是否为棱台的依据.
返回
跟踪训练3 已知四棱台的上底面、下底面分别是边长为4、8的正方形,各侧棱长均相等,且侧棱长为,求四棱台的高.
A
1
2
3
4
5
解析答案
5.对棱柱而言,下列说法正确的序号是________.①有两个平面互相平行,其余各面都是平行四边形.②所有的棱长都相等.③棱柱中至少有2个面的形状完全相同.④相邻两个面的交线叫做侧棱.解析 ①正确,根据棱柱的定义可知;②错误,因为侧棱与底面上棱长不一定相等;③正确,根据棱柱的特征知,棱柱中上下两个底面一定是全等的,棱柱中至少有两个面的形状完全相同;④错误,因为底面和侧面的交线不是侧棱.
棱台
正棱台
平行且相似的两个正多边形
全等的等腰梯形
相等且延长后交于一点
与底面相似
其他棱台
平行且相似的两个多边形
梯形
延长后交于一点
与底面相似
返回
第2课时 圆柱、圆锥、圆台、球、简单组合体的结构特征
观察下面的图片, 这些图片中的物体具有怎样的形状?我们如何描述它们的形状?
人教版数学必修2立体几何初步知识点
第一章 立体几何初步1.柱、锥、台、球的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
(2)棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体(3)棱台:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分(4)圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体(5)圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体(6)圆台:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分(7)球体:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体2. 空间几何体的表面积和体积:(1)侧面积公式:① 直棱柱S ch =(c 为底面周长,h 为高)② 正棱锥'12S ch =(c 为底面周长,'h 为斜高)③ 正棱台'121()2S c c h =+(12c c 、分别为上下底面的周长,'h 为斜高)④ 圆柱2S rh π=(r 为底面半径,h 为高)⑤ 圆锥S rl π=(r 为底面半径,l 为母线长)⑥ 圆台12()S r r l π=+(12r r 、分别为上下底面半径,l 为母线长)(2)体积公式:① 棱柱V Sh =(S 为底面积,h 为高)② 棱锥13V Sh =(S 为底面积,h 为高)③ 棱台121()3V S S h =+(12S S 、分别为上下底面积,h 为高)④ 圆柱2V Sh r h π==(S 为底面积,r 为底面半径,h 为高)⑤ 圆锥21133V Sh r h π==(S 为底面积,r 为底面半径,h 为高)⑥ 圆台121()3V S S h =+(12S S 、分别为上下底面积,h 为高)(3)球:①球的表面积公式:24S R π=②球的体积公式:343V R π= (R 表示球的半径)③球的任意截面的圆心与球心的连线垂直截面,若设球的半径为R ,截面圆的半径是r ,截面圆的圆心与球心的连线长为d ,则:222d R r =-。
新课标必修2立体几何知识点总结
立体几何知识框图知识点第一章 空间几何体1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
2、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。
3、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面⑷体积公式:h S V ⋅=柱体; h S V ⋅=31锥体; ()h S S S S V 下下上上台体+⋅+=31⑸球的表面积和体积:32344R V R S ππ==球球,.第二章 空间的直线和平面1. 平面平面的三大公理:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
(实质:两点共线)图示:公理2:过不在一条直线上的三点,有且只有一个平面。
(实质:它给出了确定一个平面的依据)图示:公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
图示:(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。
(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线.(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点; 平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点。
人教A版高中数学必修第二册教学精品系列:基本立体图形PPT
2.棱锥 正棱锥
如果一个棱锥的底面是正多边 形,并且顶点在底面的射影是底 面的中心,这样的棱锥是正棱锥.
正棱锥的基本性质 E 各侧棱相等,各侧面 是全等 的等腰三角形,各等腰 三角形底 A 边上的高相等.
S
D O
B
MC
人 教 A 版 (2 019)高 中数学 必修第 二册教 学课件 :8.1 基 本立 体图形 (第一 课时) (共29 张PPT)
你能举出生活中哪些物体所对应的几何体是棱柱吗
人 教 A 版 (2 019)高 中数学 必修第 二册教 学课件 :8.1 基 本立 体图形 (第一 课时) (共29 张PPT)
棱锥的分类(1):按照底面多边形的边数分为:三 棱锥、四棱锥、五棱锥......
三棱锥(四面体) 四棱锥
五棱锥
四面体是最简单的空间几何体之一,它有什么特点?
1.有四个面,每个面都是三角形. 2.每个三角形的顶点都可以作为三棱锥的顶点. 3.每个面都可以作为三棱锥的底面.
人 教 A 版 (2 019)高 中数学 必修第 二册教 学课件 :8.1 基 本立 体图形 (第一 课时) (共29 张PPT)
人 教 A 版 (2 019)高 中数学 必修第 二册教 学课件 :8.1 基 本立 体图形 (第一 课时) (共29 张PPT)
人 教 A 版 (2 019)高 中数学 必修第 二册教 学课件 :8.1 基 本立 体图形 (第一 课时) (共29 张PPT)
1.棱柱
两个互相平行的面叫做棱柱的底面,它们是全 等的多边形;
其余各面叫做棱柱的侧面,它们都是平行四边形; 相邻侧面的公共边叫做棱柱的侧棱; 侧面与底面的公共顶点叫做棱柱的顶点.
人 教 A 版 (2 019)高 中数学 必修第 二册教 学课件 :8.1 基 本立 体图形 (第一 课时) (共29 张PPT)