立体角

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体角
维基百科,自由的百科全书
跳转到:导航, 搜索
Steradian
立体角,Ω,是一个物体对特定点的三维空间的角度。

它是站在那一点的观察者测量物体大小的尺度。

例如,一个附近的小物体可以与一个远处的大物体对于一个点有相同的立体角。

立体角是物体在一个以观测点为圆心的球的投影面积与球半径的比。

(Ω =S/r)这正像平面角是圆的弧长与半径的比。

立体角的国际制单位是steradian(球面度)。

更严密的,立体角是面S对点P的面积分:
[编辑]圆锥,球冠
Section of cone (1) and spherical cap (2) inside a sphere. In this figure θ = a/2 and r = 1.
顶角为2θ的圆锥的立体角为一个单位球的球冠。

(上面结果由下式得到,参见surface element in spherical polars)
应该注意阿基米德在2200年前不用微积分证明了球冠的表面积与半径为球冠边沿到球冠最低点的距离的圆的面积相等。

球冠边沿到球冠最低点的距离为
显然,在单位圆中球冠立体角为
相关的维基共享资源:
立体角
当θ = π/2, 球冠变为有着立体角 2π的半球.
当θ = π, 立体角涵盖整个球体,球冠变为有着立体角 4π的球,我们将4π称为全方位立体角。

相关文档
最新文档