第章机械振动与机械波
大学物理机械振动和机械波ppt课件

2024/1/26
12
03
驻波形成条件及其性质分析
Chapter
2024/1/26
13
驻波产生条件及特点描述
产生条件
两列沿相反方向传播、振幅相同、频 率相同的波叠加。
特点描述
波形不传播,能量在波节和波腹之间 来回传递,形成稳定的振动形态。
2024/1/26
14
驻波能量分布规律探讨
能量分布
驻波的能量主要集中在波腹处,波节处能量为零。
2024/1/26
16
04
多普勒效应原理及应用举例
Chapter
2024/1/26
17
多普勒效应定义及公式推导
2024/1/26
定义
当波源与观察者之间存在相对运动时,观察者接收到的波的频率会发生变化,这种现象 称为多普勒效应。
公式推导
设波源发射频率为f0,波速为v,观察者与波源相对运动速度为vr,则观察者接收到的 频率为f=(v±vr)/v×f0,其中“+”号表示观察者向波源靠近,“-”号表示观察者远离
Chapter
2024/1/26
25
非线性振动概念引入和分类
非线性振动定义
描述系统振动特性不满足叠加原理的振动现象。
分类
根据振动性质可分为自治、非自治、周期激励和 随机激励等类型。
与线性振动的区别
线性振动满足叠加原理,而非线性振动则不满足 。
2024/1/26
26Biblioteka 混沌理论基本概念阐述混沌定义
确定性系统中出现的内在随 机性现象。
受迫振动
物体在周期性外力作用下所发生的振动。
共振现象
当外力的频率与物体的固有频率相等时,物体的振幅达到最大的现象。
高中物理知识点之机械振动与机械波

高中物理知识点之机械振动与机械波机械振动与机械波是高中物理中的重要知识点,涉及到物理学中的振动和波动的相关理论及应用。
下面将从机械振动的基本概念、机械振动的特性、机械波的传播和机械波的特性等方面进行详细介绍。
一、机械振动的基本概念机械振动是物体在作用力的驱动下沿其中一轴向或其中一平面上来回往复运动的现象。
常见的机械振动有单摆振动、弹簧振动等。
1.单摆振动:单摆是由一根细线或细杆悬挂的可以在竖直平面内摆动的物体。
摆动过程中,单摆的重心沿圆弧形轨迹在竖直平面内来回运动。
2.弹簧振动:弹簧振动是指将一端固定,另一端悬挂质点的弹簧在作用力的驱动下做往复振动的现象。
弹簧振动有线性振动和简谐振动两种形式。
二、机械振动的特性1.幅度:振动中物体运动的最大偏离平衡位置的距离。
2.周期:振动一次所需要的时间,记为T。
3.频率:振动在单位时间内所完成的周期数,记为f。
频率和周期之间的关系为f=1/T。
4.角频率:单位时间内振动角度的增量,记为ω。
角频率和频率之间的关系为ω=2πf。
5.相位:刻画振动状态的物理量。
任何时刻振动的状态都可由物体与参照物的相对位移和相对速度来描述。
三、机械波的传播机械波是指质点或介质在空间传播的波动现象。
按传播方向的不同,机械波可以分为纵波和横波。
1.纵波:波动传播的方向与波的传播方向一致。
纵波的传播特点是质点沿着波动方向做往复运动,如声波就是一种纵波。
2.横波:波动传播的方向与波的传播方向垂直。
横波的传播特点是质点沿波动方向做往复运动,如水波就是一种横波。
四、机械波的特性1.波长:波的传播方向上,相邻两个相位相同的点之间的距离。
记为λ。
2.波速:波的传播速度。
波速和频率、波长之间的关系为v=λf。
3.频率:波动现象中,单位时间内波的传输周期数。
记为f。
4.能量传递:机械波在传播过程中,能量从一个质点传递到另一个质点,并随着传播的距离逐渐减弱。
5.反射和折射:机械波在传播过程中,遇到不同介质的边界时会发生反射和折射现象。
第十三章 机械振动与机械波1 第1讲 机械振动-2024-2025学年高考物理一轮复习课件

对点练1.(多选)如图甲所示,悬挂在 竖直方向上的弹簧振子,在C、D两点 之间做简谐运动,O点为平衡位置。振 子到达D点时开始计时,以竖直向上为 正方向,一个周期内的振动图像如图乙所示,下列说法正确的是
√A.振子在O点受到的弹簧弹力等于小球的重力
B.振子在C点和D点的回复力相同
√C.t=0.3 s时,振子的速度方向为竖直向上
√√BC..小弹球簧的振质子量的为频率F1为-2gF432t0
D.若弹簧振子的振幅为A,则从计时开始到13t0时,小球的路程为36A
由题图乙可知,t=0时刻小球所受弹力最 大,方向竖直向上,所以小球处于最低点, 故A错误;根据对称性,小球在最高点和 最低点的加速度大小相等、方向相反,根 据 F解1-得牛mf顿=g第=43t二m0 ,a定;故律解C,得正小m确球=;在F由1最-2于g高F132点,t0=,故9有BT正F+2确+34;Tm,由g=所题m以图a小;乙球小可的球知路在34T程最=为低t0s,点=T,9=·4有A1f , +3A=39A,故D错误。故选BC。
位移大小相等
对称性 (2)物体由P到O所用的时间等于由O到P′所用的时间,即tPO=tOP′
(3)物体往复过程中通过同一段路程(如OP段)所用的时间相等,即tOP
=tPO
(4)相隔
T 2
或
(2n+1)T 2
(n为正整数)的两个时刻,物体位置关于平
衡位置对称,位移、速度、加速度大小相等、方向相反
考向1 简谐运动的基本物理量 例1 如图所示,在光滑水平面上有一质量为m的小物块与左端固定的轻 质弹簧相连,构成一个水平弹簧振子,弹簧处于原长时小物块位于O点。 现使小物块在M、N两点间沿光滑水平面做简谐运动,在此过程中 A.小物块运动到M点时回复力与位移方向相同
大学物理教案-第4章 机械振动 机械波

动的时刻)。
反映 t=0 时刻的振动状态(x0、v0)。
x0 Acos0
v0 Asin0 x
m
A
0=0
o
A
X0 = A
o x
-A x
t T
0 = /2
m
A
o X0 = 0
m
-A
o
X0 = -A
o x
-A x
A
o x
-A
t T
0 = Tt
4、振幅和初位相由初始条件决定
由
x0 Acos0
v0 Asin 0
A A12 A22 2 A1A2 cos2 1 ,
tan A1 sin 1 A2 sin 2 。 A1 cos1 A2 cos2
3. 两种特殊情况
(1)若两分振动同相 2 1 2k ,则 A A1 A2 , 两分振动相互加强, 如 A1=
A2 ,则 A = 2A1
(2)若两分振动反相,2 1 2k 1 , 则 A | A1 A2 | ,两分振动相互减弱,
波动是振动的传播过程。 机械波----机械振动的传播 波动 电磁波----电磁场的传播 粒子波----与微观粒子对应的波动 虽然各种波的本质不同,但都具有一些相似的规律。
一、 弹簧振子的振动 m
o X0 = 0
§4.1
m
简谐振动的动力学特征
二、谐振动方程 f=-kx
a f k x
x
mm
令 k 2 则有 m
教学内容
备注
1
大学物理学
大学物理简明教程教案
第 4 章 机械振动 机械波
前言 1. 振动是一种重要的运动形式 2. 振动有各种不同的形式 机械振动:位移 x 随 t 变化;电磁振动;微观振动 广义振动:任一物理量(如位移、电流等)在某一数值附近反复变化。 3. 振动分类
高中物理-机械振动和机械波知识点汇总

机械振动和机械波1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动。
(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。
简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。
②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。
③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。
(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。
②特点:简谐运动的图像是正弦(或余弦)曲线。
③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。
2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。
如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。
3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。
单摆是一种理想化模型。
(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°。
(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。
①在振幅很小的条件下,单摆的振动周期跟振幅无关。
②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g 有关。
③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g‘等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。
高中物理-【机械波与机械振动】知识点总结

103(4)简谐运动的两种模型 模型弹簧振子单摆示意图简谐 运动 条件①弹簧质量可忽略 ②无摩擦等阻力 ③在弹簧弹性限度内①摆线为不可伸缩的轻细线 ②无空气等的阻力 ②最大摆角小于10° 回复力弹簧的弹力提供F=kx 摆球重力沿切向的分力 F 回=-mg sin θ=-mg lx 平衡 位置弹簧处于原长处最低点周期与振幅无关T =2πL g L 为摆长,表示从悬点到摆球重心的距离。
简谐运动的特点受力 特征 回复力F =-kx ,F (或a )的大小与x 的大小成正比,方向相反运动 特征 靠近平衡位置时,a 、F 、x 都减小,v 增大;远离平衡位置时,a 、F 、x 都增大,v 减小能量 特征振幅越大,能量越大。
在运动过程中,系统的动能和势能相互转化,机械能守恒选修3-4 周期性特征质点的位移、回复力、加速度和速度随时间做周期性变化,变化周期就是简谐运动的周期T;动能和势能也随时间做周期性变化,其变化周期为T2对称性特征关于平衡位置O对称的两点,速度的大小、动能、势能相等,相对平衡位置的位移大小相等;由对称点到平衡位置O用时相等2.简谐运动的公式和图象(1)简谐运动的表达式①动力学表达式:F=-kx,其中“-”表示回复力与位移的方向相反。
②运动学表达式:x=Asin(ωt+φ),其中A代表振幅,ω=2πf表示简谐运动的快慢,(ωt+φ)代表简谐运动的相位,φ叫做初相。
(2)简谐运动的图象①从平衡位置开始计时,函数表达式为x=Asinωt,图象如图甲所示。
②从最大位移处开始计时,函数表达式为x=Acosωt,图象如图乙所示。
(3)根据简谐运动图象可获取的信息①振幅A、周期T(或频率f)和初相位φ(如图所示)。
②某时刻振动质点离开平衡位置的位移。
③某时刻质点速度的大小和方向:曲线上各点切线的斜率的大小和正负分别表示各时刻质点的速度的大小和速度的方向,速度的方向也可根据下一时刻物体的位移的变化来确定。
机械振动和机械波知识点总结(最新整理)

机械振动和机械波一、知识结构二、重点知识回顾1机械振动(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A ”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。
振动的周期T 跟频率f 之间是倒数关系,即T=1/f 。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
(四)单摆:摆角小于5°的单摆是典型的简谐振动。
机械振动和机械波知识点总结

机械振动和机械波一、知识结构二、重点知识回顾1机械振动一机械振动物体质点在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力;回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力;产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用;b、阻力足够小;二简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动;简谐振动是最简单,最基本的振动;研究简谐振动物体的位置,常常建立以中心位置平衡位置为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移;因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反;2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用;3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能重力势能和弹性势能都随时间做周期性变化;三描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量;1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒;2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数;振动的周期T跟频率f之间是倒数关系,即T=1/f;振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率;四单摆:摆角小于5°的单摆是典型的简谐振动;细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆;单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力;单摆的周期公式是T=;由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离;g是单摆所在处的重力加速度,在有加速度的系统中如悬挂在升降机中的单摆其g应为等效加速度;五振动图象;简谐振动的图象是振子振动的位移随时间变化的函数图象;所建坐标系中横轴表示时间,纵轴表示位移;图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律;要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况;六机械振动的应用——受迫振动和共振现象的分析1物体在周期性的外力策动力作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关;2在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣;2机械波中的应用问题1. 理解机械波的形成及其概念;1机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质;2机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同;3机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移;4描述机械波的物理量关系:注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定;例1单摆的运动规律为:当摆球向平衡位置运动时位移变___,回复力变____,加速度变 ,加速度a 与速度υ的方向 ,速度变 ,摆球的运动性质为_____________________,摆球的动能变_____,势能变___;当摆球远离平衡位置运动时位移变___,回复力变___,加速度变___,加速度a 与速度υ的方向____,速度变___,摆球的运动性质为_____________________,摆球的动能变____,势能变_____、例2 如图6-1所示,一个轻弹簧竖直固定在水平地面上,将一个小球轻放在弹簧上,M 点为轻弹簧竖直放置时弹簧顶端位置,在小球下落的过程中,小球以相同的动量通过A 、B 两点,历时1s,过B 点后再经过1s,小球再一次通过B 点,小球在2s 内通过的路程为6cm,N 点为小球下落的最低点,则小球在做简谐运动的过程中:1周期为 ;2振幅为 ;3小球由M 点下落到N 点的过程中,动能E K 、重力势能E P 、弹性势能图6-1E P ’的变化为 ;4小球在最低点N 点的加速度大小 重力加速度g 填>、=、<;分析:1小球以相同动量通过A 、B 两点,由空间上的对称性可知,平衡位置O 在AB 的中点;再由时间上的对称性可知,t AO =t BO =, t BN = t NB =,所以t ON =t OB +t BN =1s,因此小球做简谐运动的周期T =4t ON =4s;2小球从A 经B 到N 再返回B 所经过的路程,与小球从B 经A 到M 再返回A 所经过的路程相等;因此小球在一个周期内所通过的路程是12cm,振幅为3cm;3小球由M 点下落到N 点的过程中,重力做正功,重力势能减少;弹力做负功,弹性势能增加;小球在振幅处速度为零,在平衡位置处速率最大,所以动能先增大后减小;4M 点为小球的振幅位置,在该点小球只受重力的作用,加速度为g ,方向竖直向下,由空间对称性可知,在另一个振幅位置N 点小球的加速度大小为g ,方向竖直向上;解答:4s ;3cm ;E K 先增大后减小,E P 减少,E P ’ 增加;=;说明:分析解决本题的关键是正确认识和利用简谐运动的对称性,其对称中心是平衡位置O ,尤其小球在最低点N 点的加速度值,是通过另一个振动最大位移的位置M 来判断的;如果小球是在离弹簧最上端一定高度处释放的,而且在整个运动过程中,弹簧始终处于弹性形变中,那么小球与弹簧接触并运动的过程可以看成是一个不完整的简谐运动;因为小球被弹簧弹起后,在弹簧处于原长时与弹簧分离,这个简谐运动有下方振动最大位移的位置,但无上方振动最大位移的位置,那么小球在运动过程中的最大加速度将大于重力加速度;例3 已知某摆长为1m 的单摆在竖直平面内做简谐运动,则:1该单摆的周期为 ;2若将该单摆移到表面重力加速度为地球表面重力加速度1/4倍的星球表面,则其振动周期为 ;3若在悬点正下方摆长中点处钉一光滑小钉,则该小球摆动的周期为 ;分析:第一问我们可以利用单摆周期公式计算出周期;第二问是通过改变当地重力加速度来改变周期的;只要找出等效重力加速度,代入周期公式即可得解;第三问的情况较为复杂,此时小球的摆动已不再是一个完整的单摆简谐运动;但我们注意到,小球在摆动过程中,摆线在与光滑小钉接触前后,分别做摆长不同的两个简谐运动,所以我们只要求出这两个摆长不同的简谐运动的周期,便可确定出摆动的周期;解答:1依据gL T π2=,可得T =2s; 2等效重力加速度为4/'g g =,则依据'2'g L T π=,可得4'=T s; 3钉钉后的等效摆长为:半周期摆长为L 1=1m,另半周期摆长为L 2=; 则该小球的摆动周期为: 222''21+=+=g L g L T ππs 说明:单摆做简谐运动的周期公式是我们学习各种简谐运动中唯一给出定量关系的周期公式;应该特别注意改变周期的因素:摆长和重力加速度;例如:双线摆没有明确给出摆长,需要你去找出等效摆长;再例如:把单摆放入有加速度的系统中,等效重力加速度将发生怎样的变化;比如把单摆放入在轨道上运行的航天器中,因为摆球完全失重,等效重力加速度为0,单摆不摆动;把单摆放入混合场中,比如摆球带电,单摆放入匀强电场中,这时就需要通过分析回复力的来源从而找出等效重力加速度;这类问题将在电学中遇到;例4一弹簧振子做简谐运动,振动图象如图6—3所示;振子依次振动到图中a 、b 、c 、d 、e 、f 、g 、h 各点对应的时刻时,1在哪些时刻,弹簧振子具有:沿x 轴正方向的最大加速度;沿x 轴正方向的最大速度;2弹簧振子由c 点对应x 轴的位置运动到e 点对应x 轴的位置,和由e 点对应x 轴的位置运动到g 点对应x 轴的位置所用时间均为;弹簧振子振动的周期是多少3弹簧振子由e 点对应时刻振动到g 点对应时刻,它在x 轴上通过的路程是6cm,求弹簧振子振动的振幅;分析:1弹簧振子振动的加速度与位移大小成正比,与位移方向相反;振子具有沿x 轴正方向最大加速度,必定是振动到沿x 轴具有负向的最大位移处,即图中f 点对应的时刻;振子振动到平衡位置时,具有最大速度,在h 点时刻,振子速度最大,再稍过一点时间,振子的位移为正值,这就说明在h 点对应的时刻,振子有沿x 轴正方向的最大速度;2图象中c 点和e 点,对应振子沿x 轴从+7cm 处振动到-7cm 处;e 、f 、g 点对应振子沿x 轴,从-7cm 处振动到负向最大位移处再返回到-7cm 处;由对称关系可以得出,振子从c 点对应x 轴位置振动到g 点对应x 轴位置,振子振动半周期,时间为,弹簧振子振动周期为T =;3在e 点、g 点对应时间内,振子从x 轴上-7cm 处振动到负向最大位移处,又返回-7cm 处行程共6cm,说明在x 轴上负向最大位移处到-7cm 处相距3cm,弹簧振子的振幅A =10cm;解答:1f 点;h 点;2T =;3A =10cm;说明:本题主要考察结合振动图象如何判断在振动过程中描述振动的各物理量及其变化;讨论振子振动方向时,可以把振子实际振动情况和图象描述放在一起对比,即在x 轴左侧画一质点做与图象描述完全相同的运动形式;当某段图线随时间的推移上扬时,对应质点的振动方向向上;同理若下降,质点振动方向向下;振动图象时间轴各点的位置也是振子振动到对应时刻平衡位置的标志,在每个时刻振子的位移方向永远背离平衡位置,而回复力和加速度方向永远指向平衡位置,这均与振动速度方向无关;因为振子在一个全振动过程中所通过的路程等于4倍振幅,所以在t 时间内振子振动n 个周期,振子通过的路程就为4nA ;例6 一弹簧振子做简谐运动,周期为T ,以下说法正确的是A. 若t 时刻和t +Δt 时刻振子运动位移的大小相等、方向相同,则Δt 一定等于T 的整数倍B. 若t 时刻和t +Δt 时刻振子运动速度的大小相等、方向相反,则Δt 一定等于T /2的整数倍图6-3C. 若Δt =T /2,则在t 时刻和t +Δt 时刻振子运动的加速度大小一定相等D. 若Δt =T /2,则在t 时刻和t +Δt 时刻弹簧的长度一定相等分析:如图6-4所示为物体做简谐运动的图象;由图象可知,在t 1、t 2两个时刻,振子在平衡位置同侧的同一位置,即位移大小相等,方向相同,而T t t t <-=∆12,所以选项A 错误;在t 1时刻振子向远离平衡位置方向振动,即具有正向速度,在t 2时刻振子向平衡位置方向振动,即具有负向速度,但它们速度大小相等;而212T t t t <-=∆;所以选项B 错误; 因为T t t t =-=∆14,振子在这两个时刻的振动情况完全相同,所以具有相同的加速度,选项C 正确; 因为213T t t t =-=∆,振子在这两个时刻位于平衡位置的两侧,即若t 1时刻弹簧处于伸长状态,则t 3时刻弹簧处于压缩状态;所以选项D 错误;解答:选项C 正确;说明:做简谐运动的物体具有周期性,即物体振动周期的整数倍后,物体的运动状态与初状态完全相同;做简谐运动的物体具有对称性,即描述振动的物理量的大小除周期和频率外在关于平衡位置对称的两点上都相等,但矢量的方向不一定相同;做简谐运动的物体具有往复性,即当物体振动回到同一点时,描述振动的物理量的大小除周期和频率外相同,但矢量的方向不一定相同;例7在某介质中,质点O 在t =0时刻由平衡位置开始向上振动;经第一次向上振动到最大位移处;同时,产生的横波水平向右传播了50cm;在O 点右侧有一点P ,与O 点相距8m;求:1这列横波的波速;2波动传播到P 点,P 点刚开始振动时的速度方向;3从O 点开始振动到P 点第一次到达波峰位置所需时间分析:由题目所给条件可知:振源在内振动了1/4周期,波对应向右传播1/4个波长,从而可以确定波长和周期,进而求出波速;因为波匀速向前传播,所以波从O 点传播到P 点所用时间=OP 距离/波速;当波传播到P 点时,O 点的振动形式也传播到了P 点,因而P 点的起振方向与O 点起振方向相同,即为竖直向上,P 点由平衡位置第一次到达波峰还在需要T 41时间;解答:1由题意知:周期T =×4=s波长λ=×4=2m∴波速(5==T v λm/s 2P 点刚开始振动时的速度方向为竖直向上;3设所求时间为t ,则 7.141=+=T v OP t s 说明:题目本身并不难,但要求对机械波的形成和传播能有一个正确的理解,在多数有关机械波的高考题目中也是这样体现的;随着波的传播,振动形式和能量在传播,所以波动涉及到的每一个质点都要把振源的振动形式向外传播,即进行完全重复的振动,其刚开始的振动方向一定与振源的起振方向相同;例8如图6-10所示,甲为某一简谐横波在t =时刻的图象,乙为参与波动的某一质点的振动图象;1两图中的AA ’、OC 各表示什么物理量量值各是多少 2说明两图中OA ’B 段图线的意义 3该波的波速为多大4画出再经过0 .25s 后的波动图象和振动图象; 5甲图中P 点此刻的振动方向;分析:依据波动图象和振动图象的物理意义来分析判断;注意振动图象和波动图象的区别与联系;解答:1甲图中的AA ’表示振幅A 和x =1m 处的质点在t =时对平衡位置的位移,振幅A =,位移y=;甲图中OC 表示波长,大小=4m;乙图中AA ’即是质点振动的振幅,又是t =时质点偏离平衡位置的位移,振幅A =,位移y =;OC 表示质点振动的周期,大小T =;2甲图中的OA ’B 段图线表示O 到B 之间的各质点在t =时相对平衡位置的位移,OA 间各质点正向着平衡位置运动,AB 间各质点正在远离平衡位置运动;乙图中的OA ’B 段图线表示该质点在t =0~时间内振动位移随时间变化的情况,在0~内该质点正远离平衡位置运动,在~内该质点正向平衡位置运动;3由v =/t 可得波速 v =14m/s= 4m/s4再过,波动图象向右平移x =vt =4m=1m=/4;振动图象在原有的基础上向后延伸T /4,图象分别如图6-11丙、丁所示5已知波的传播方向或某质点的振动方向判定图象上该时刻各质点的振动方向或波的传播方向,常用方法如下:a .带动法:根据波动过程的特点,利用靠近波源的点带动它邻近的离波源稍远的点的特性,在被判定振动方向的点P 附近图象上靠近波源一方找一点P ’,若在P 点的上方,则P ’带动P 向上运动,如图所示;若P ’在P 点的下方,则P ’带动P 向下运动;b .微平移法:将波形沿波的传播方向做微小移动x </4,根据质点P 相对平衡位置位移的变化情况判断质点P 的运动方向;图6-10’m ’ 图6-10mc .口诀法:沿波的传播方向看,“上山低头,下山抬头”,其中“低头”表示质点向下运动,“抬头” 表示质点向上运动;故P 向上振动;说明:波动图象和振动图象的形状相似,都是正弦或余弦曲线,其物理意义有本质的区别,但它们之间又有联系,因为参与波动的质点都在各自的平衡位置附近振动,质点振动的周期也等于波动的周期;例9如图6-11所示,一列在x 轴上传播的横波t 0时刻的图线用实线表示,经Δt =时,其图线用虚线表示;已知此波的波长为2m,则以下说法正确的是:A. 若波向右传播,则最大周期为2sB. 若波向左传播,则最大周期为2sC. 若波向左传播,则最小波速是9m/s D. 若波速是19m/s,则波的传播方向向左分析:首先题目中没有给出波的传播方向,因而应分为两种情况讨论;例如波向右传播,图中实线所示横波经过传播的距离可以为, +λm, +2λm ……,其波形图均为图中虚线所示;因而不论求周期最小值还是求周期的最大值,都可以先写出通式再讨论求解;解答:如果波向右传播,传播的距离为+n λm n =1,2,3……,则传播速度为2.022.0n t s v +=∆=m/s,取n =0时对应最小的波速为1m/s,根据周期vT λ=,得最大的周期为2s;因此选项A 是正确的;如果波向左传播,传播的距离为n λ- m n =1,2,3……,则传播速度为2.02.02-n t s v =∆=m/s ,取n =1时对应最小的波速为9m/s,根据周期vT λ=,得最大的周期为92s;因此选项C 是正确的,B 是错误的;在向左传播的波速表达式中,当取n =2时,计算得波速为19 m/s,因此选项D 是正确的;说明:1. 在已知两个时刻波形图研究波的传播问题时,因为波的传播方向有两种可能,一般存在两组合理的解;又由于波的传播在时间和空间上的周期性,每组解又有多种可能性;为此,这类问题的解题思路一般为:先根据波的图象写出波的传播距离的通式,再根据波速公式列出波速或时间的通式,最后由题目给出的限制条件,选择出符合条件的解;2. 本题还可以直接考虑:例如对选项A :因为波长一定,若周期最大,则波速必最小,波在相同时间内传播距离必最短,即为;由此可知最小波速为1m/s,从而依据波速公式可求出最大周期为2s;其它各选项同理考虑;这样做的主要依据是波是匀速向前传播的,紧抓波速、传播距离、传播时间三者的关系,其实波速公式也是这三者关系的一个体现;图6-11例10绳中有列正弦横波,沿x 轴传播,图中6—12中a 、b 是绳上两点,它们在x 轴方向上的距离小于一个波长;a 、b 两点的振动图象如图6-13所示;试在图6-12上a 、b 之间画出t =时的波形图;分析:首先我们先由振动图象确定t =时a 、b 两质点在波形图上的位置以及振动方向,然后在一列已经画好的常规波形图上按题意截取所需波形既可;因为题中没给波的传播方向,所以要分两种情况讨论;解答:由振动图象可知:t =时,质点a 处于正向最大位移处波峰处,质点b 处于平衡位置且向下振动;先画出一列沿x 轴正方向传播的波形图,如图6-14所示;在图左侧波峰处标出a 点;b 点在a 的右测,到a 点距离小于1个波长的平衡位置,即可能是b 1、b 2两种情况;而振动方向向下的点只有b 2;题中所求沿x 轴正方向传播的波在a 、b 之间的波形图即为图6-14中ab 2段所示;画到原题图上时波形如图6-15甲实线所示;同理可以画出波沿x 轴负方向传播在a 、b 之间的波形图,如图6-15乙虚线所示;说明:1. 分析解决本题的关键是要搞清楚振动图象和波动图象的区别和联系;振动图象详细描述了质点位移随时间的变化,但要找该质点在波中的位置,就必须关心所画波形图对应哪个时刻,进而由振动图象找到在这个时刻该质点的位置及振动方向;如果已知质点的振动方向、机械波的传播方向和机械波的波形中的任意两个,就可以对第三个进行判断,这也是贯穿整个机械波这部分内容的基本思路和方法;值得注意的是:如果已知质点的振动方向、波的传播方向,再判断机械波的波形时,由于机械波传播的周期性,可能造成波形的多解;例如本题中没有“a 、b 在x 轴方向上的距离小于一个波长”这个条件,就会造成多解现象;本题还可以利用“同侧法”来画图;“同侧法” 是来判断质点的振动方向、机械波的传播方向和机械波的波形三者关系的方法;其结论是:质点的振动方向、机械波的传播方向必在质点所在波形图线的同一侧;例如图6-16甲 所示是一列沿x 轴正方向传播的简谐波图象,若其上M 点的振动图6-12图6-14图6-16甲图6-16乙方向向下,则该点的振动方向与波的传播方向在M 点所在图线的同侧;如图6—16乙图所示,若其上M 点的振动方向向上,则该点的振动方向与波的传播方向在M 点所在图线的两侧;依据“同侧法”的判定,质点M 的振动方向向下 ;对于本题中沿x 轴正方向传播的情况,因为质点b 振动方向向下,波沿x 轴正方向传播,为保证波传播方向、质点振动方向在该点图线的“同侧”,波形图只能是图6-17中实线所示;图线若为虚线所示,则波传播方向、质点振动方向在该点图线的“两侧”;同理对沿x 轴负方向传播的情况;有时我们还可以用图像平移法画图;例19从一条弦线的两端,各发生一如图6—24所示的脉冲横波,它们均沿弦线传播,速度相等,传播方向相反;已知这两个脉冲的宽度均为L ,当左边脉冲的前端到达弦中的a 点时,右边脉冲的前端正好到达与a 相距L/2的b 点;请画出此时弦线上的脉冲波形;分析右传播到a 点,而右边的脉冲前端向左传到b 两列脉冲波有半个波长是重叠的;在a 、b 之间,而右脉冲引起质点振动的位移方向向上,移大小相等,叠加结果相互抵消,形如图6—25所示;说明:此题是依据波的叠加原理而求解的;“叠加”的核心是位移的叠加,即在叠加区域内每一质点的振动位置由合位移决定;质点振动速度由合速度决定;例20如图6-26所示,S 1、S 2是振动情况完全相同的两个机械波波源,振幅为A ,a 、b 、c 三点分别位于S 1、S 2连线的中垂线上,且ab =bc ;某时刻a 是两列波的波峰相遇点,c 是两列波的波谷相遇点,则A 、 a 处质点的位移始终为2AB 、 c 处质点的位移始终为-2AC 、 b 处质点的振幅为2AD 、 c 处质点的振幅为2A分析:因为两个波源的频率相同,振动情况也相同,而a 、b 、c 三点分别到两个波源的距离之差均为0,依判断条件可知该三个点的振动都是加强的,即各点振动的振幅均为两波振幅之和2A ;解答:选项CD 是正确的;说明:对于稳定的干涉现象中的振动始终加强的点,应理解为两列波传到该点的振动位移及振动方向完全一致,使得该点的振动剧烈,表现为该质点振动的振幅始终最大,而不是位移最大;如本题中的a 点此时刻在波峰处,但过1/4周期该点会振动到平衡位置;b 点位于ac 中点,该时刻它位于平衡位置,但过1/4周期该点会振动到波峰位置;所以a 、b 、c 所在这条线为振动加强区域; 图6-25 S 1 2对于稳定的干涉现象中的振动始终减弱的点,应理解为两列波传到该点的振动位移及振动方向相反,使得该点的振动减弱,表现为该质点振动的振幅始终最小,而不是位移最小;例22关于多普勒效应的叙述,下列说法正确的是A. 产生多普勒效应的原因是波源频率发生了变化B. 产生多普勒效应的原因是观察者和波源之间发生了相对运动C. 甲乙两车相向行驶,两车均鸣笛,且发出的笛声频率相同,乙车中的某旅客听到的甲车笛声频率低于他听到的乙车笛声频率D. 波源静止时,不论观察者是静止的还是运动的,对波长“感觉”的结果是相等的例23根据多普勒效应,我们知道当波源与观察者相互接近时,观察者接收到的频率增大;如果二者远离,观察者接收到的频率减小;由实验知道遥远的星系所生成的光谱都呈现“红移”,即谱线都向红色部分移动了一段距离,由此现象可知A、宇宙在膨胀B、宇宙在收缩C、宇宙部分静止不动D、宇宙只发出红光光谱例24声纳水声测位移向水中发出的超声波,遇到障碍物如鱼群、潜艇、礁石等后被反射,测出发出超声波到接收到反射波的时间及方向,即可算出障碍物的方位,;雷达则向空中发射电磁波,遇到障碍物后被反射,同样根据发射电磁波到接收到反射波的时间及方向,即可算出障碍物的方位;超声波与电磁波相比较,下列说法正确的是A. 超声波和电磁波在传播时,都向外传递能量,但超声波不能传递信息B. 这两种波都可以在介质中传播,也可以在真空中传播C. 在真空中传播的速度与在其他介质中传播的速度相比较,这两种波在空气中传播时具有较大的传播速度D.这两列波传播时,在一个周期内向前传播一个拨长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第章机械振动与机械波 Final revision on November 26, 2020第3章 机械振动与机械波3-1判断下列运动是否为简谐振动(1) 小球沿半径很大的水平光滑圆轨道底部小幅度摆动; (2) 活塞的往复运动;(3) 质点的运动方程为sin(/3)cos(/6)x a t b t ωπωπ=+++ (4) 质点的运动方程为cos(/3)cos(2)x a t b t ωπω=++(5) 质点摆动角度的微分方程为 2221050d dtθθ++=答:(1)是简谐振动,类似于单摆运动; (2)不是简谐振动;(3)是简谐振动,为同频率、同振动方向的两个简谐振动的合成; (4)不是简谐振动,为不同频率、同振动方向的两个简谐振动的合成; (5)不是简谐振动。
3-2物体沿x 轴作简谐振动,振幅A =m ,周期T =2s 。
当0=t 时,物体的位移x =m ,且向x 轴正方向运动。
求:(1)此简谐振动的表达式;(2)4Tt =时物体的位置、速度和加速度;(3)物体从06.0-=x m 向x 轴负方向运动第一次回到平衡位置所需的时间。
解:(1)设此简谐振动的表达式为:0cos()x A t ωϕ=+,则振动速度0sin()dxA t dtυωωϕ==-+, 振动加速度2202cos()d xa A t dtωωϕ==-+由题意可知:0.12A =m ,2T =s ,则22Tπω==(rad/s) 又因为0t =时0.06x =m 且0υ>,把初始运动状态代入有:00.060.12cos ϕ=,则03πϕ=±又因为0t =时0sin 0A υωϕ=->,所以03πϕ=-时故此简谐振动的表达式为:0.12cos()3x t ππ=- m(2) 把4Tt =代入简谐振动表达式:10.12cos()0.10423x ππ=⨯-==(m )把4Tt =代入简谐振动速度表达式: 10.12sin()0.060.1823πυπππ=-⨯⨯-=-=-(m/s)把4Tt =代入简谐振动加速度表达式:2210.12cos() 1.0323a πππ=-⨯⨯-=-=(m/s 2)(3) 由旋转矢量法可知,物体在06.0-=x m 向x 轴负方向运动时,相位为123πϕ=,而物体从06.0-=x m 向x 轴负方向运动第一次回到平衡位置时,相位为232πϕ=,旋转的角度21325236πππθϕϕ∆=-=-=, 则所需的时间为:56t θω∆∆===(s)3-3 如图示,质量为g 10的子弹以速度310=v s /m 水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动。
设弹簧的劲度系数3108⨯=k 1m N -⋅,木块的质量为kg 99.4,桌面摩擦不计,试求:(1)振动的振幅;(2)振动方程。
解:(1)子弹进入木块后,与木块一起做简谐振动,子弹与木块的作用时间短,在水平方向动量守恒且弹簧没有形变,设子弹进入木块后木块的位置为坐标原点,水平向右的方向为正方向,子弹进入木块后与木块的共同速度为0υ,则0()m M m υυ=+,0m M m υυ=+,代入数据得:02υ=(m/s),子弹与木块相互作用时,弹簧没有形变,即该简谐振动的初始位置00x =,弹簧简谐振动的圆频率ω=40ω=(rad/s),所以A =0.05A =m 。
(2) 由0t =时,00x =且向X 轴的正方向运动,所以02πϕ=-,所以振动方程为:0.05cos(40)2x t π=- m3-4一重为p 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的劲度系数标明在图上。
试求图示两种情况下,系统沿竖直方向振动的固有频率。
习题3-3 图解:a 图中两弹簧是串联的,总劲度系数1212k k k k k =+, 弹簧振子的固有频率为1212()k k g km k k pω==+。
b 图中两弹簧是并联的,总劲度系数2K k =,弹簧振子的固有频率为2K kgm pω==。
3-5 一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平轴在铅垂面内作小幅度摆动,求摆动的周期。
解:设转动轴与细圆环的交点为坐标原点,过原点的竖直轴为Y轴,由转动轴定理可知,该圆环的小幅度摆动的平衡位置为圆环的质心在Y 轴时,由平行轴定理可知,圆环对通过环上一点而与环平面垂直的水平轴的转动惯量为:把圆环沿逆时针方向拉离平衡位置转动θ,则圆环对转轴的重力矩为sin M mgR θ=,方向为θ增大的反方向,由转动轴定理:M J β=, 即22d sin 0d J mgR tθθ+=,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程22d 0d mgRt Jθθ+=, 摆动的圆频率为:mgRJω=, 周期为:2222J RT mgR gπππω=== 3-6. 横截面均匀的光滑的U 型管中有适量液体如图所示,液体的总长度为L ,求液面上下微小起伏的自由振动的圆频率。
解:如图所示建立坐标,两边液面登高时为坐标原点,向上为Y 轴正方向,左边液面上升y ,则右边液面下降y ,U 型管的横截面面积为S ,液体的密度为ρ,则左右液面的压力差为:2F gyS ρ=-,方向为Y 轴的负方向,由牛顿第二定律:F ma =可知,222d ygyS SL dtρρ-=,即2220d y g y dt L +=, 故液面上下微小起伏的运动为简谐振动,其振动的圆频率2gLω=C Rmgθ O3-7 如图一细杆AB 一端在水平槽中自由滑动,另一端与连接圆盘上,圆盘转轴通过o 点且垂直圆盘和OX 轴,当圆盘以角速度ω做匀速圆周运动时,写出槽中棒端点B 的振动方程,自行设计参数,利用mathematica 软件或matlab 软件画出振动图线。
解:在AOB 中,AB 长度不变,设为l ,圆半径OA 不变设为R ,OA 与OB 的夹角设为t θω=,则B 点的坐标x 满足关系式:上式表明,x 是时间t 的周期函数,但不是谐振动函数。
取2,1,10l R ω===,画图如下。
3-8质量为31010-⨯kg 的小球与轻弹簧组成的系统,按1.0=x )328cos(ππ+t 的规律作振动,式中t 以秒)s (计,x 以米)m (计。
求:(1)振动的圆频率、周期、振幅、初位相; (2)振动的速度、加速度的最大值;(3)最大回复力、振动能量、平均动能和平均势能;画出这振动的旋转矢量图,并在图中指明1=t 、2、10s 等各时刻的矢量位置。
解:(1)由振动的运动学方程可知:振幅0.1A =m ,圆频率8ωπ=rad/s ,周期220.258T ππωπ===(s),初相位023πϕ=。
(2)振动的速度:20.8sin(8)3dx t dt πυππ==-+,振动速度的最大值为:max 2.51υ=(m/s),振动的加速度:22226.4cos(8)3d x a t dt πππ==-+,振动加速度的最大值为:max 63.1a =(m/s 2)(3)最大回复力:max max 0.63F ma ==(N),振动能量:2222113.161022E kA m A ω-===⨯(J) 平均动能和平均势能:211.58102p k E E E -===⨯(J)3-9 质量为kg 25.0的物体,在弹性力作用下作简谐振动,劲度系数k 1m N 25-⋅=,如果开始振动时具有势能J 6.0和动能J 2.0,求:(1) 振幅多大经过平衡位置的速度。
(2) 位移为多大时,动能恰等于势能解:(1)简谐振动能量守恒,其总能等于任意时刻的动能与势能之和,即210.82k p E E E kA =+==,所以振幅0.253A =(m),在平衡位置时,弹簧为原长(假设弹簧座水平方向谐振动),此时只有动能,即210.82k E E m υ===(J),所以速度 2.53υ=(m/s).(2)要使10.42k p E E E ===(J),即210.42p E kx ==(J),则位移0.179x =±(m)。
3-10 两个质点平行于同一直线并排作同频率、同振幅简谐振动。
在振动过程中,每当它们经过振幅一半的地方时相遇,而运动方向相反。
求它们的位相差,并作旋转矢量图表示之。
解:设它们的振动方程为0cos()x A t ωϕ=+, 当2A x =时,可得位相为3πϕ=±. 由于它们在相遇时反相,可取13πϕ=-,23πϕ=它们的相差为2123πϕϕϕ∆=-=, 同理当2A x =-时,可得位相为23πϕ=±,它们的相差为43πϕ∆=矢量图如图所示.3-11 已知两个同方向简谐振动如下:130.05cos(10)5x t ππ=+,210.06cos(10)5x t ππ=+(1) 求它们合成振动的振幅和初位相; (2)另有一同方向简谐振动30.07cos(10)x t πϕ=+,问ϕ为何值时,31x x +的振幅为最大ϕ为何值时,32x x +的振幅为最小ϕ为何值时,123x x x ++的振幅最小解:(1)由同频率、同方向的简谐振动合成可知:A =1102200110220sin sin tan cos cos A A A A ϕϕϕϕϕ+=+,其中10.05A =m ,20.06A =m ,1035πϕ=,205πϕ=,25πϕ∆=,所以它们的合振动振幅为:28.9210A -=⨯m ,它们合振动的初相位:0'06813ϕ=。
(2)由同频率、同方向的简谐振动合成可知,同相位振动,其合成振幅最大;反相位振动,其合成振幅最小。
所以要使31x x +的振幅为最大,cos 1ϕ∆=则35πϕ=;要使32x x +的振幅为最小,cos 1ϕ∆=-则65πϕ=时;要使123x x x ++的振幅最小,cos 1ϕ∆=-则0'11147ϕ=-。
3-12 三个同方向,同频率的简谐振动为)6314cos(08.01π+=t x ,)2314cos(08.02π+=t x ,)65314cos(08.03π+=t x求:(1)合振动的圆频率、振幅、初相及振动表达式;(2)合振动由初始位置运动到A x 22=所需最短时间(A 为合振动振幅)。
解:(1)合振动的圆频率为314100ωπ==(rad/s),1230.08A A A ===(m),根据公式得 112233sin sin sin 0.16y A A A A ϕϕϕ=++=(m )合振幅为:A == (m),初位相为:()arctan //2y x A A ϕπ==。
合振动的方程为:0.16cos(100)2x t ππ=+(2)当/2x =时,可得cos(100/2)2t ππ+=,解得100/2/4t πππ+=或7/4π由于0t >,所以只能取第二个解,可得所需最短时间为t = (s)3-13 将频率为Hz 384的标准音叉振动和一待测频率的音叉合成,测得拍频为Hz 0.3,在待测音叉的一端加上一小块物体,则拍频将减小,求待测音叉的固有频率。