函数单调性的教学的设计
函数的单调性教案(优秀)
课题:函数的单调性授课教师:王青【教学目标】1.知识与技能:使学生从形与数两方面理解函数的单调性概念,初步掌握利用函数图象和单调性定义判断、证明函数的单调性的方法,了解函数单调区间的概念。
2.过程与方法:通过对函数单调性定义的探究,渗透数形结合的数学思想方法,培养学生的观察、归纳、抽象思维能力。
3.情感态度与价值观:在参与的过程中体验成功的喜悦,感受学习数学的乐趣。
【教学重点】函数单调性的概念、判断及证明.【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲授,学生探究学习.【使用教具】多媒体教学【教学过程】一、创设情境,引入课题1、下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考.问题:(1)当天的最高温度、最低温度以及何时达到;(3)哪些时段温度升高?哪些时段温度降低?在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.〖设计意图〗由生活情境引入新课,激发兴趣.二、归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是系统地学习这块内容.1.借助图象,直观感知问题1:分别作出函数1+=x y ,1+-=x y ,2)(x x f =的图象,并且思考 (1)函数1+=x y 的图象从左至右是上升还是下降,在区间_____上)(x f 的值随x 的增大而_______(2)函数1+-=x y 的图象从左至右是上升还是下降,在区间_____上)(x f 的值随x 的增大而_______(3) 函数2)(x x f =在区间_____上,)(x f 的值随x 的增大而增大 (4)函数2)(x x f =在区间_____上,)(x f 的值随x 的增大而减小〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.抽象思维,形成概念问题:你能用数学符号语言描述第(3)(4)题吗?任取2121),,0[,x x x x <+∞∈且,因为0))((21212221<-+=-x x x x x x ,即2221x x <,所以()()21x f x f >任意的x 1,x 2∈(0-,∞),x 1<x 2,则()()21x f x f > 任意的x 1,x 2∈(0-,∞),x 1<x 2,则()()21x f x f < 师生共同探究,得出增函数和减函数的定义: 增函数定义:如果函数y=f(x)在数集I 上满足:随着自变量x 的增大,因变量y 也增大,那么称y=f(x)在数集I 上单调增,也称y=f(x)在数集I 上是增函数数学语言描述:如果函数y=f(x)在数集I 上满足:对于任意的x 1,x 2∈I,当x 1<x 2时,f(x 1)<f(x 2),则称y=f(x)在数集I 上单调增,也称y=f(x)在数集I 上是增函数。
《函数单调性教案》
《函数单调性教案》一、教学目标:1. 理解函数单调性的概念,掌握函数单调增和单调减的定义。
2. 学会利用单调性判断函数的性质,如极值、最值等。
3. 能够运用单调性解决实际问题,如求函数的极值、最值等。
二、教学内容:1. 函数单调性的概念及单调增、单调减的定义。
2. 单调性的判断方法及应用。
3. 实际问题中的单调性应用。
三、教学重点与难点:1. 函数单调性的概念及判断方法。
2. 单调性在实际问题中的应用。
四、教学方法:1. 讲授法:讲解函数单调性的概念、判断方法及应用。
2. 案例分析法:分析实际问题,引导学生运用单调性解决问题。
3. 互动教学法:提问、讨论,激发学生的思考。
五、教学过程:1. 导入:复习函数的概念,引导学生思考函数的性质。
2. 讲解:讲解函数单调性的概念,引导学生理解单调增、单调减的定义。
3. 举例:分析具体函数的单调性,让学生学会判断。
4. 练习:布置练习题,让学生巩固单调性的判断方法。
5. 案例分析:分析实际问题,引导学生运用单调性解决问题。
6. 总结:回顾本节课的内容,强调单调性的重要性。
7. 作业布置:布置课后作业,巩固所学内容。
六、教学评估:1. 课堂提问:通过提问了解学生对函数单调性的理解和掌握程度。
2. 练习题:收集学生练习题的答案,评估学生对单调性判断方法的掌握。
3. 案例分析:评估学生在实际问题中运用单调性的能力。
七、教学拓展:1. 引导学生思考函数单调性在实际生活中的应用,如经济学中的需求曲线、供给曲线等。
2. 介绍函数单调性在数学其他领域的应用,如微分、积分等。
八、教学资源:1. 教材:提供相关教材,为学生提供系统性的学习材料。
2. 课件:制作课件,辅助教学,提高课堂效果。
3. 练习题:准备练习题,巩固所学内容。
4. 实际问题案例:收集实际问题案例,用于教学实践。
九、教学建议:1. 注重概念的理解:在教学过程中,要强调函数单调性概念的理解,让学生明白单调性是什么。
《函数的单调性》教学设计
《函数的单调性》教学设计一、教学内容1. 函数单调性的定义:函数单调递增和单调递减的定义及其性质。
2. 单调性的判断方法:利用导数、图像以及定义法判断函数的单调性。
3. 单调性在实际问题中的应用:求解最值问题、不等式问题等。
二、教学目标1. 理解函数单调性的定义,掌握单调递增和单调递减的概念。
2. 学会利用导数、图像以及定义法判断函数的单调性。
3. 能够运用单调性解决实际问题,提高解决问题的能力。
三、教学难点与重点1. 教学难点:单调性的判断方法,特别是利用导数判断单调性。
2. 教学重点:函数单调性的定义,单调性的判断方法以及单调性在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:笔记本、彩笔、函数图像绘制工具。
五、教学过程1. 实践情景引入:通过一个实际问题,引发学生对函数单调性的思考。
例题:某商品的价格随销售量的增加而减少,问销售量为多少时,商品的价格最低?3. 单调性的判断方法:(1)利用导数:讲解导数与函数单调性的关系,引导学生学会利用导数判断函数的单调性。
(2)利用图像:引导学生观察函数图像,判断函数的单调性。
(3)利用定义法:讲解如何利用定义法判断函数的单调性。
4. 单调性在实际问题中的应用:通过例题,讲解单调性在求解最值问题、不等式问题等方面的应用。
5. 随堂练习:让学生通过实际问题,运用所学知识解决,巩固所学内容。
六、板书设计1. 函数单调性的定义。
2. 单调性的判断方法:导数法、图像法、定义法。
3. 单调性在实际问题中的应用。
七、作业设计(1)y = x^2(2)y = x^2(3)y = 2x + 3某商品的价格随销售量的增加而减少,已知销售量为100时,价格为5000元,销售量为200时,价格为4000元。
求销售量为多少时,商品的价格最低?八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解了函数单调性的概念及其应用,通过讲解和练习,使学生掌握了单调性的判断方法。
函数的单调性教案(获奖)
函数的单调性教案(获奖)第一章:函数单调性的概念及意义1.1 函数单调性的定义引入函数单调性的概念,让学生理解函数单调性的含义。
举例说明函数单调性的两种类型:单调递增和单调递减。
1.2 函数单调性的意义解释函数单调性在数学分析中的重要性,如在求解极值、最值等问题中的应用。
通过实际例子展示函数单调性在现实生活中的应用,如经济学中的需求函数等。
第二章:函数单调性的判断方法2.1 图像法教授如何通过观察函数图像来判断函数的单调性。
引导学生学会识别函数图像中的单调区间。
2.2 导数法介绍导数与函数单调性的关系。
教授如何利用导数的正负来判断函数的单调性。
第三章:函数单调性的应用3.1 求函数的极值讲解如何利用函数单调性来求解函数的极值。
通过例题让学生掌握求解极值的方法。
3.2 求函数的最值介绍如何利用函数单调性来求解函数的最值。
通过例题让学生理解最值的求解过程。
第四章:函数单调性的进一步探讨4.1 单调区间与导数的关系讲解单调区间与导数之间的关系,让学生理解导数在单调性判断中的作用。
通过例题展示导数在单调区间判断中的应用。
4.2 单调性在实际问题中的应用介绍单调性在实际问题中的应用,如优化问题、经济问题等。
通过实际例子让学生学会如何运用单调性解决实际问题。
第五章:综合练习与拓展5.1 综合练习题提供综合练习题,让学生巩固函数单调性的概念、判断方法和应用。
引导学生学会如何运用所学知识来解决问题。
5.2 拓展与应用引导学生思考函数单调性在其他数学领域的应用,如微分方程、线性代数等。
提供一些拓展问题,激发学生的学习兴趣和思考能力。
第六章:函数单调性的高级应用6.1 函数的单调性与其他数学概念的联系探讨函数单调性与其他数学概念的联系,如微分、积分、极限等。
通过例题展示函数单调性在其他数学领域的应用。
6.2 函数单调性在优化问题中的应用介绍函数单调性在优化问题中的应用,如求解最大值、最小值等。
通过实际例子让学生学会如何运用函数单调性来解决优化问题。
《函数单调性》的说课稿
《函数单调性》的说课稿《函数单调性》的说课稿作为一名优秀的教育工作者,总不可避免地需要编写说课稿,认真拟定说课稿,我们该怎么去写说课稿呢?下面是小编整理的《函数单调性》的说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
《函数单调性》的说课稿1今天我要说课的课题是人教版《数学》(基础模块上册)第三章第一节的内容《函数的单调性》。
我将从教材分析;学情分析;教法学法分析;教学过程设计;板书设计五个方面来陈述我对本节课的设计方案。
恳请各位评委老师批评指正。
一、教材分析1、教材的地位和作用①、函数单调性是高中数学中相当重要的一个基础知识点,是已学习过的函数的概念、图象、表示方法等知识的延续和拓展,同时又为后面学习指数函数、对数函数、三角函数奠定了理论基础。
②、是培养学生逻辑推理能力和渗透数形结合思想的重要素材,在整个高中数学中起着承前启后的重要作用。
③、本节中利用函数图象研究函数性质的数形结合思想将贯穿于整个高中数学教学。
④、本节是历年高考的热点,难点问题。
2、教学目标(1)知识目标①、理解函数单调性的概念。
②、掌握判断一些简单函数的单调性的方法;(2)能力目标通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,严密的逻辑思维能力;让学生体会数形结合、类比的数学思想。
(3)情感目标培养学生细心观察、认真分析、严谨论证的良好思维习惯;培养学生勇于探索的精神和善于合作的意识。
3、教学重点和难点教学重点:(1)函数单调性概念的形成,领会函数单调性的实质与应用明确单调性是一个局部的概念。
(2)判断并证明函数的单调性。
教学难点:(1)引导学生归纳并抽象出函数单调性的定义,在学生已有知识的基础上,从学生的学习心理和认知结构出发,教师讲清楚概念的形成过程;(2)根据定义证明简单函数的单调性,学生通过认真观察思考,并通过小组合作探究的办法来实现突破。
二、学情分析在知识准备上学生已经学习了函数的概念,对函数图象的上升和下降已经有了初步的感性认识;掌握了比较大小关系的方法。
《函数的单调性》教学设计与反思
《函数的单调性》教学设计与反思《函数的单调性》教学设计与反思一、主题本篇文章的主题为《函数的单调性》的教学设计与反思。
我们将探讨如何通过合理的教学设计,使学生更好地理解和掌握函数的单调性,以及在教学过程中遇到的问题和解决方法。
二、引入函数的单调性是中学数学中一个重要的概念。
它不仅是解决许多数学问题的关键,也在其他学科和实际生活中有着广泛的应用。
因此,设计一个有效的教学方案,使学生深入理解和掌握这一概念,具有重要意义。
三、教学设计1、引入阶段:通过展示一些具有代表性的函数图像,引导学生观察并理解什么是函数的单调性。
2、呈现阶段:通过具体的函数例子,讲解单调性的概念和应用,并引出单调性的证明方法。
3、讲解阶段:针对学生在理解过程中可能遇到的困难,进行详细的讲解和演示,帮助学生掌握单调性的概念和证明方法。
4、练习阶段:设计一系列的练习题,让学生在课堂上进行练习,以巩固所学的知识。
5、总结阶段:对本节课的内容进行总结,并引导学生回顾所学的主要知识点。
四、反思在教学过程中,我发现以下问题:部分学生在练习阶段遇到困难,需要对单个学生进行针对性的辅导;部分学生对单调性的概念理解不深,需要改进教学方法,使学生更好地理解这一概念。
针对以上问题,我提出以下改进建议:在练习阶段,增加对学生的辅导时间,帮助学生解决遇到的问题;在概念讲解阶段,引入更多的实例和图示,帮助学生更好地理解单调性的概念。
五、总结本篇文章对《函数的单调性》的教学设计进行了详细的描述,并对教学过程中遇到的问题进行了反思和提出改进建议。
通过合理的教学设计,可以使学生更好地理解和掌握函数的单调性,为后续的学习打下坚实的基础。
在教学过程中不断进行反思和改进,可以提高教学质量,更好地满足学生的学习需求。
函数的单调性教案
函数的单调性教案函数的单调性教案一、基本概念函数的单调性是指函数在定义域上的增减性质。
如果对于任意的 x1 和 x2,当 x1<x2 时,f(x1)<f(x2),则函数 f(x) 称为递增函数;如果对于任意的 x1 和 x2,当 x1<x2 时,f(x1)>f(x2),则函数 f(x) 称为递减函数。
二、学习目标1. 掌握函数的单调性的概念和判断方法。
2. 能够分析函数的图象,判断其单调性。
三、教学过程1. 导入新知识(1)老师出示一张包含递增函数和递减函数图象的海报,要求学生观察,并思考这两种函数的特点和区别。
(2)学生回答后,老师引导学生总结递增函数和递减函数的定义,并引入函数的单调性的概念。
2. 问题探究(1)老师出示一个函数的曲线图,让学生观察,并思考这个函数在哪个区间上递增,在哪个区间上递减。
(2)学生回答后,老师引导学生思考判断函数在定义域上的单调性的方法。
(3)学生讨论后,老师引导学生总结判断函数单调性的方法:①分析函数在定义域上的导数的正负性。
如果导数大于0,则函数在该区间上递增;如果导数小于0,则函数在该区间上递减。
②分析函数的图象。
如果函数的图象呈现上升趋势,则函数在该区间上递增;如果函数的图象呈现下降趋势,则函数在该区间上递减。
3. 解决问题(1)老师出示几个有关函数的问题,让学生分析函数的单调性,并给出解答:①已知函数 y=x^2-2x+1,判断函数的单调性。
②已知函数 y=2x^3-3x^2+6,判断函数的单调性。
③已知函数 y=e^x-x,判断函数的单调性。
(2)学生上台讲解解题思路和答案,并与全班一起讨论和纠正。
4. 拓展练习(1)学生自行从教材中选择几道题目,进行解答,并相互交流。
5. 归纳总结(1)老师带领学生回顾所学内容并进行总结,强调函数的单调性的判断方法。
(2)学生进行笔记的整理和归纳。
四、教学反思通过本节课的教学,学生能够清楚地理解了函数的单调性的概念和判断方法,掌握了判断函数单调性的基本技巧。
高中《数学》函数的单调性教学设计学情分析教材分析课后反思
《函数的单调性》教学设计一、教学内容解析1. 教材内容及地位本节课是人教版版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.2. 教学重点函数单调性的概念,判断和证明简单函数的单调性.3. 教学难点函数单调性概念的生成,证明单调性的代数推理论证.二、学生学情分析1. 教学有利因素学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“V随X的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.2. 教学不利因素本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.三、课堂教学目标1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.四、教学策略分析在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随x 的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:1. 指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随x 的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.4. 在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.五、教学过程(一)通过问题,引入课题分别作出函数y=x+1,y=-x+1,y=x²的图像,并且观察自变量变化时,函数图像有什么变化趋势?y=-x+10 1X1y=x²1问题一问题二如何描述函数图像的上升或下降?图像上升,y 随着x的增大而增大图像上升,y随着x的增大而减小向题三如何用符号化的数学语言来描述y 随着x 的增大而增大呢?(二)引导探究,生成概念探究在函数y=f(x)的给定区间上任取x₁,x₂,当x₁<x₂时,有f(x)<f(x₂),这时我们就说函数y=f(x)在给定区间上是增函数.单调性的定义一般的,设函数f(x) 的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有_f(x)<f(x₂),那么就说函数f(x) 在区间D上是增函数;如果对于定义域I内某个区间D 上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有f(x)>f(x),那么就说函数f(x) 在区间D上是减函数;如果函数y=f(x) 在区间D上是增函数或是减函数,就说这个函数在这个区间上具有(严格的)单调性;区间D 叫做函数y=f(x)的单调区间(三)学以致用,理解感悟概念理解( 1 ) 已知,因为f(-1)<f(2), 所以函数f(x)是增函数.(2)能不能说y= (x≠0)定义域(-∝,0)∪(0,+∝)上是单调减函数?(3)对于函数f(x),x∈D,若x,x₂∈D,(x₂-x) [f(x₂)-f(x₁)]>0 ,则函数f(x)在D上是增函数.(4)y=f(x) 在区间D上是减函数,若x,x₂∈D,且x₁<x₂,则f(x)>f(x₂).- 用于比较函数值的大小(5)y=f(x) 在区间D上是减函数,若x,x₂∈D,且f(x₁)>f(x₂),则x₁<x₂…用于比较自变量值的大小概念升华:(1)x,x₂具有任意性;(2)单调性是相对区间而言的,在一点处不具有单调性,单调区间之间用“,”隔开(不可用“U”符号连接)(3)定义的等价变形;(4)“知二推一”的应用典型例题—根据图像,指出函数的单调区间,并指明函数在这些区间上的增减性。
函数的单调性优秀教案
函数的单调性优秀教案一、教学目标1、知识与技能目标理解函数单调性的概念,能够根据函数的图象判断函数的单调性。
掌握函数单调性的证明方法,能运用定义证明函数的单调性。
2、过程与方法目标通过观察函数图象,引导学生发现函数单调性的特征,培养学生的观察能力和归纳能力。
通过函数单调性的证明,让学生体会从特殊到一般、从具体到抽象的思维方法,提高学生的逻辑推理能力。
3、情感态度与价值观目标让学生在自主探究中体验成功的喜悦,增强学习数学的信心。
通过函数单调性的应用,让学生感受数学与实际生活的紧密联系,提高学生学习数学的兴趣。
二、教学重难点1、教学重点函数单调性的概念。
运用定义证明函数的单调性。
2、教学难点函数单调性定义的理解。
利用定义证明函数的单调性。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课展示函数图象,如一次函数 y = 2x + 1,二次函数 y = x²的图象。
引导学生观察图象的上升和下降趋势,提问:“从图象中,你能发现函数值随着自变量的变化有什么规律吗?”2、讲授新课给出函数单调性的定义:设函数 f(x) 的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x) 在区间 D 上是增函数(或减函数)。
强调定义中的关键词:定义域、区间、任意、都有。
通过具体例子,如 f(x) = x²在区间 0, +∞)上是增函数,在区间(∞, 0 上是减函数,帮助学生理解函数单调性的概念。
3、例题讲解例 1:判断函数 f(x) = 2x 1 在区间(∞,+∞)上的单调性。
分析:设 x₁,x₂是区间(∞,+∞)上的任意两个实数,且 x₁< x₂,计算 f(x₂) f(x₁),判断其符号。
解:f(x₂) f(x₁) =(2x₂ 1) (2x₁ 1) = 2(x₂ x₁)因为 x₁< x₂,所以 x₂ x₁> 0,所以 2(x₂ x₁) > 0,即 f(x₂) f(x₁) > 0,所以 f(x) = 2x 1 在区间(∞,+∞)上是增函数。
“函数的单调性”教案
函数的单调性教案一、教学目标1. 理解函数单调性的概念,掌握函数单调增和单调减的定义。
2. 学会运用单调性判断函数的单调性,并能应用于实际问题中。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 函数单调性的概念及其定义。
2. 函数单调增和单调减的性质及判定方法。
3. 单调性在实际问题中的应用。
三、教学重点与难点1. 函数单调性的概念及其定义。
2. 函数单调增和单调减的性质及判定方法。
四、教学方法1. 采用讲解、案例分析、讨论相结合的教学方法。
2. 利用数形结合的思想,引导学生直观理解函数的单调性。
3. 鼓励学生参与课堂讨论,提高学生的思维能力。
五、教学过程1. 引入新课:通过回顾初中阶段的反比例函数、二次函数等图像,引导学生关注函数的单调性。
2. 讲解函数单调性的概念:定义域内单调递增或递减的函数。
3. 讲解函数单调增和单调减的性质:自变量增大,函数值增大(减小)。
4. 判定方法:利用导数或图像判断函数的单调性。
5. 案例分析:分析具体函数的单调性,如f(x)=x^2、f(x)=-x^2等。
6. 练习:让学生独立判断给定函数的单调性,并解释原因。
7. 课堂小结:总结本节课的主要内容和知识点。
8. 作业布置:巩固函数单调性的理解和应用。
六、教学拓展1. 探讨函数单调性与极值的关系:函数在极值点附近单调性发生变化。
2. 引入“局部单调性”概念:函数在某个区间内单调递增或递减。
3. 举例说明局部单调性在实际问题中的应用:优化问题、经济领域等。
七、课堂互动1. 提问:请问同学们认为函数的单调性在实际生活中有哪些应用?2. 学生分享:结合实际例子,如商品价格变动、经济增长等。
3. 教师点评:总结同学们的观点,并强调函数单调性的实际意义。
八、单调性在实际问题中的应用1. 举例说明:商品打折问题、利润最大化问题等。
2. 引导学生运用单调性解决实际问题:分析问题、建立模型、求解。
3. 课堂练习:让学生自主解决一个实际问题,如温度变化、速度与时间等。
函数的单调性优秀教案(教学设计)(公开课比赛优秀教案)
函数的单调性优秀教案(教学设计)(公开课比赛优秀教案)教学目标:知识目标:让学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法。
能力目标:通过探究函数单调性定义,培养学生观察、归纳、抽象的能力和语言表达能力;通过证明函数单调性,提高学生的推理论证能力。
德育目标:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维惯,让学生经历从具体到抽象、从特殊到一般、从感性到理性的认知过程。
教学重点:函数单调性的概念、判断及证明。
教学难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性。
教材分析:函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起。
本节课在教材中的作用如下:1)函数的单调性在初中数学中有广泛的应用。
它与前一节内容函数的概念和图像知识的延续有密切的联系,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。
2)函数的单调性是培养学生数学能力的良好题材。
本节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确定义,明确指出函数的增减性是相对于某个区间来说的。
教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格证明方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系。
同时还要综合利用前面的知识解决函数单调性的一些问题,有利于学生数学能力的提高。
3)函数的单调性有着广泛的实际应用。
在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个数学教学。
函数的单调性在中学数学中扮演着十分重要的角色,因为它反映了函数的变化趋势和特点。
在解决问题时,利用函数单调性的观点是十分重要的,这为培养创新意识和实践能力提供了重要的途径和方式。
“函数的单调性”教案
“函数的单调性”教案一、教学目标1. 理解函数单调性的概念,掌握判断函数单调性的方法。
2. 能够运用函数单调性解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力,提高学生对函数知识的兴趣。
二、教学内容1. 函数单调性的定义与性质2. 判断函数单调性的方法3. 函数单调性在实际问题中的应用三、教学重点与难点1. 函数单调性的定义与性质2. 判断函数单调性的方法3. 函数单调性在实际问题中的应用四、教学方法1. 采用启发式教学,引导学生主动探究函数单调性的定义与性质。
2. 通过例题讲解,让学生掌握判断函数单调性的方法。
3. 结合实际问题,培养学生运用函数单调性解决问题的能力。
五、教学过程1. 导入新课:回顾上一节课的内容,引导学生思考函数的单调性。
2. 讲解函数单调性的定义与性质:详细讲解函数单调性的概念,引导学生理解并掌握函数单调性的性质。
3. 判断函数单调性的方法:讲解如何判断函数的单调性,引导学生通过实例分析来掌握判断方法。
4. 运用函数单调性解决实际问题:给出实际问题,引导学生运用函数单调性进行解决,培养学生的应用能力。
5. 课堂小结:对本节课的内容进行总结,强调函数单调性的重要性。
6. 布置作业:设计具有针对性的作业,巩固学生对函数单调性的理解和掌握。
六、教学评估1. 课堂提问:通过提问了解学生对函数单调性的理解程度,及时发现并解决学生在学习过程中遇到的困惑。
2. 作业批改:重点关注学生对函数单调性概念的掌握和判断方法的运用,及时给予反馈和指导。
3. 课堂练习:设计一些具有代表性的练习题,让学生在课堂上独立完成,检验学生对函数单调性的掌握情况。
七、教学拓展1. 引导学生思考函数单调性与其他数学概念的联系,如导数、极限等。
2. 介绍函数单调性在实际应用中的重要作用,如经济学、物理学等领域。
3. 鼓励学生进行课外阅读,了解函数单调性的更多相关知识,提高学生的知识面。
八、教学反思1. 反思教学过程中的优点和不足,总结经验教训,为今后的教学提供参考。
《函数的单调性》教学设计与反思
《函数的单调性》教学设计与反思一、教学内容本节课的教学内容选自人教A版高中数学必修1第三章函数的单调性。
具体包括:函数单调性的定义,单调增函数和单调减函数的性质,以及利用单调性解决实际问题。
二、教学目标1. 理解函数单调性的概念,掌握单调增函数和单调减函数的性质。
2. 能够运用函数单调性解决简单的实际问题。
3. 培养学生的逻辑思维能力和数学建模能力。
三、教学难点与重点1. 教学难点:函数单调性的证明和应用。
2. 教学重点:函数单调性的定义和性质。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:笔记本、笔、计算器。
五、教学过程1. 实践情景引入:通过生活中常见的物价变化现象,引导学生思考函数的单调性。
2. 概念讲解:介绍函数单调性的定义,并通过示例进行讲解。
3. 性质探讨:引导学生探究单调增函数和单调减函数的性质,并通过示例进行验证。
4. 例题讲解:讲解利用函数单调性解决实际问题的例题,引导学生学会运用单调性分析问题。
5. 随堂练习:布置随堂练习题,让学生巩固所学知识。
六、板书设计1. 函数单调性的定义。
2. 单调增函数和单调减函数的性质。
3. 利用函数单调性解决实际问题的方法。
七、作业设计1. 题目:判断下列函数的单调性,并给出证明。
函数1:y = x^2函数2:y = x^2答案:函数1单调增,函数2单调减。
2. 题目:利用函数单调性解决实际问题。
问题:某商品原价为100元,商家进行两次折扣促销,第一次折扣为8折,第二次折扣为7折,求最终成交价。
答案:最终成交价为84元。
八、课后反思及拓展延伸1. 课后反思:本节课通过生活实例引入函数单调性,让学生能够更好地理解概念。
在讲解性质时,通过示例进行验证,增强了学生的理解。
在例题讲解环节,培养了学生的实际应用能力。
2. 拓展延伸:引导学生思考函数单调性在其他数学领域的应用,如微积分中的极值问题。
重点和难点解析一、函数单调性的定义函数单调性是函数性质的重要组成部分,它反映了函数值随着自变量变化的大致趋势。
函数单调性教学设计与反思
函数单调性教学设计与反思一、引言函数单调性是高中数学中的一个重要概念,它描述了函数在定义域上的增减性质。
掌握了函数单调性的概念和判断方法,能够帮助学生更好地理解函数的变化规律和解决实际问题。
本文将介绍一个针对函数单调性的教学设计,并对教学实施进行反思和总结。
二、教学目标1. 知识目标:掌握函数单调性的概念和判断方法,了解单调递增和单调递减函数的特点。
2. 技能目标:能够判断给定函数在定义域上的单调性。
3. 情感目标:培养学生对数学的兴趣和思维能力,提高解决问题的能力。
三、教学内容1. 函数单调性的定义和判断方法2. 单调递增函数和单调递减函数的特点3. 解决实际问题中的函数单调性应用四、教学步骤1. 导入与激发兴趣(5分钟)通过举例子、提问等方式引导学生回顾函数的概念和性质,激发学生对函数单调性的兴趣。
2. 概念讲解与示例分析(15分钟)讲解函数单调性的定义和判断方法,并通过几个简单的示例进行分析和讨论。
3. 综合练习与答疑(15分钟)提供一些综合练习题,让学生在教师的指导下进行独立思考和解答,并对解题过程中出现的疑惑进行解答。
4. 实际问题应用(20分钟)提供一些与实际问题相关的函数单调性应用题,引导学生运用所学知识解决问题,并让学生展示解题过程和答案。
5. 总结与反思(10分钟)教师对本节课的教学进行总结和反思,引导学生回顾课上的内容,并提出问题让学生进行思考和总结。
六、教学反思通过本节课的教学实施,学生对函数单调性的概念和判断方法有了初步的了解。
但同时也发现了一些问题。
首先,有部分学生在判断函数单调性时容易出现混淆和错误,需要加强相关练习和巩固。
其次,教学过程中缺少足够的互动与讨论的机会,导致学生的思维能力和解决问题的能力得不到充分的发展。
针对这些问题,我计划在以后的教学中加强练习和巩固环节,提供更多的情景模拟和实际问题,同时注重学生的互动和思维能力的培养。
七、结语函数单调性是高中数学中的一个重要概念,对学生的数学思维能力和解决实际问题的能力有着重要的影响。
函数单调性优秀教案
函数单调性优秀教案【篇一:《函数单调性》教学设计】《函数单调性》教学设计【设计思路】有效的概念教学必须建立在学生已有的知识结构基础之上顺应学生的思维发展,因此在教学设计中注意在学生已有知识结构和新概念间寻找“最近发展区”,呈现知识的发生和形成过程,使学生始终处于问题探索研究状态之中。
为达到本节课的教学目标,突出重点,突破难点,在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,使得学生对概念的认识不断深入.在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.考虑到学生数学思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔。
在教学设计中发挥好多媒体教学的优势,注意结合图形,由浅入深,采用数形结合方法,从感知发展到理性思维,让学生经历“创设情境——探究概念——理解反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。
【教学目标】1.理解函数单调性的概念,初步掌握判断、证明函数单调性的方法. 2.通过观察、归纳、抽象、概括自主建构函数单调性概念的过程,体会数形结合的思想方法,提高发现、分析、解决问题的能力;通过对函数单调性的证明,体会数学的严谨性,提高学生的推理论证能力.3.在学习中体会数学的科学价值和应用价值,培养学生细心观察、认真分析、严谨论证、勇于探索的良好习惯和严谨的科学态度,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【背景分析】1、教材分析本节是高中数学新教材必修1第1章第1.3.1节第一课时,主要学习函数单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
他是高中数学中相当重要的一个基础知识点。
是高中数学中起着承上启下作用的核心知识之一.是函数概念的延续和拓展,又是后续研究指数函数、对数函数单调性的基础.在比较数的大小、解方程或不等式、求函数的值域或最值、函数的定性分析以及相关的数学综合问题中也有广泛的应用。
《函数单调性教案》
《函数单调性教案》教案章节:一、函数单调性的概念教学目标:1. 了解函数单调性的概念;2. 学会判断函数的单调性;3. 能够应用函数单调性解决实际问题。
教学内容:1. 引入函数单调性的概念;2. 讲解函数单调性的判断方法;3. 举例说明函数单调性在实际问题中的应用。
教学步骤:1. 引入实例,引导学生思考函数的单调性;2. 给出函数单调性的定义,解释单调递增和单调递减的概念;3. 讲解函数单调性的判断方法,引导学生进行判断;4. 举例说明函数单调性在实际问题中的应用,如最优化问题、经济问题等;5. 总结本节课的重点内容,布置作业。
教案章节:二、函数单调性的判断方法教学目标:1. 学会判断函数的单调性;2. 掌握函数单调性的判断方法;3. 能够应用函数单调性解决实际问题。
教学内容:1. 回顾函数单调性的概念;2. 讲解函数单调性的判断方法;3. 举例说明函数单调性在实际问题中的应用。
教学步骤:1. 复习函数单调性的概念,引导学生回顾上一节课的内容;2. 讲解函数单调性的判断方法,如导数法、图像法等;3. 举例说明函数单调性在实际问题中的应用,如最优化问题、经济问题等;4. 练习判断函数的单调性,让学生巩固所学知识;5. 总结本节课的重点内容,布置作业。
教案章节:三、函数单调性与最优化问题教学目标:1. 了解函数单调性与最优化问题的关系;2. 学会应用函数单调性解决最优化问题;3. 能够应用函数单调性解决实际问题。
教学内容:1. 引入函数单调性与最优化问题的关系;2. 讲解函数单调性在解决最优化问题中的应用;3. 举例说明函数单调性在实际问题中的应用。
教学步骤:1. 引入实例,引导学生思考函数单调性与最优化问题的关系;2. 讲解函数单调性在解决最优化问题中的应用,如求函数的最大值、最小值等;3. 举例说明函数单调性在实际问题中的应用,如成本最小化问题、收益最大化问题等;4. 练习解决最优化问题,让学生巩固所学知识;5. 总结本节课的重点内容,布置作业。
函数单调性教案函数单调性教学设计(6篇)
函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。
《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。
把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。
从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。
从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。
函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。
【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数单调性的教学的设计一、教学内容的分析函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念。
从函数单调性知识本身来讲,学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性。
高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础。
在初中学习函数时,已经重点研究了一些函数的增减性,只是当时的研究较为粗略,既未明确给出有关函数增减性的定义,对于函数增减性的判断也主要根据观察图像得出。
而本小节内容,正是初中有关内容的深化和提高,有承上启下的作用。
学生对函数单调性概念的认识,要经历直观感受、文字描述和严格定义三个阶段,即从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程。
因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据。
二、教学目标的确定对于函数的单调性,学生的认知困难主要在两个方面:首先,要求用准确的数学符号语言去刻画图象的上升与下降,把对单调性直观感性的认识上升到理性的高度, 这种由形到数的翻译,从直观到抽象的转变对高一的学生来说比较困难。
其次,单调性的证明是学生在函数学习中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的。
基于以上原因,从三个方面确定了以下教学目标:1.知识目标:使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.2.能力目标:通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.3.情感目标:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.三、教学方法的选择本节课采用教师启发引导,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法。
本节课利用多媒体辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,增大师生互动频率密度,有助于学生对问题的理解和认识。
采用“导学法”,学生在教师的引导下,发挥主体性,积极参与,勇于思考,发现规律,勤于应用.让学生在学习中交流,在交流中学习。
四、教学过程的设计为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:创设情境,引入课题;归纳探索,形成概念;掌握证法,适当延展;归纳小结,提高认识.具体过程如下:(一)创设情境,引入课题概念的形成主要依靠对感性材料的抽象概括,只有学生对学习对象有了丰富具体经验以后,才能使学生对学习对象进行主动的、充分的理解,因此在本阶段的教学中,我从具体材料——有关奥运会天气的例子出发,而不是从抽象语言入手来引入函数的单调性,使学生体会到研究函数单调性的必要性,明确本课我们要研究和学习的课题,同时激发学生的学习兴趣和主动探究的精神。
在课前,我给学生布置了两个任务:(1) 由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因。
课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.(2) 通过查阅历史资料研究北京奥运会开幕式当天气温变化情况。
课上我引导学生观察2008年8月8日的气温变化曲线图,引导学生体会在某些时段温度升高,某些时段温度降低。
然后,我指出生活中我们关心很多数据的变化,并让学生举出一些实际例子(如燃油价格等)。
随后进一步引导学生归纳:所有这些数据的变化,用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小。
(二)归纳探索,形成概念在本阶段的教学中,为使学生充分感受数学概念的发生与发展过程和数形结合的数学思想,经历观察、归纳、抽象的探究过程,加深对函数单调性的本质的认识,我设计了三个环节,引导学生分别完成对单调性定义的三次认识。
1.借助图象,直观感知本环节的教学主要是从学生的已有认知出发,即从学生熟悉的常见函数的图象出发,直观感知函数的单调性,完成对函数单调性定义的第一次认识。
在本环节的教学中,我主要设计了两个问题:问题1:分别作出函数温表的图象,并且观察自变量变化时,函数值有什么变化规律?在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小。
然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数。
而后两个函数图象的上升与下降要分段说明,通过讨论使学生明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质。
对于概念教学,若学生能用自己的语言来表述概念的相关属性,则能更好的理解和掌握概念,因此我设计了问题2。
问题2:能否根据自己的理解说说什么是增函数、减函数?教学中,我引导学生用自己的语言描述增函数的定义:如果函数在某个区间上的图象从左向右逐渐上升,或者如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数.然后让学生类比描述减函数的定义.至此,学生对函数单调性就有了一个直观、描述性的认识.2.探究规律,理性认识在此环节中,我设计了两个问题,通过对两个问题的研究、交流、讨论,将函数的单调性研究从研究函数图象过渡到研究函数的解析式,使学生对单调性的认识由感性认识上升到理性认识的高度,使学生完成对概念的第二次认识.问题1:右图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?对于问题1,学生的困难是难以确定分界点的确切位置。
通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究,使学生体会到用数量大小关系严格表述函数单调性的必要性,从而将函数的单调性研究从研究函数图象过渡到研究函数的解析式。
问题2:如何从解析式的角度说明在上为增函数?在前边的铺垫下,问题2是形成单调性概念的关键,在教学中,我组织学生先分组探究,然后全班交流,相互补充,并及时对学生的发言进行反馈,评价,对普遍出现的问题组织学生讨论,在辨析中达成共识。
对于问题2,学生错误的回答主要有两种:(1)在给定区间内取两个数,例如1和2,因为12<22,所以f(x)=x2在[0,+∞]上为增函数。
(2)仿(1),取很多组验证均满足,所以f(x)=x 2在[0,+∞]上为增函数。
对于这两种错误,我鼓励学生分别用图形语言和文字语言进行辨析.引导学生明确问题的根源是两个自变量不可能被穷举。
在充分讨论的基础上,引导学生从给定的区间内任意取两个自变量x 1,x 2,然后求差比较函数值的大小,从而得到正确的回答:取,有,即,所 任意以f(x)=x 2在[0,+∞]上为增函数为增函数。
这种回答既揭示了单调性的本质,也让学生领悟到两点:(1)两自变量的取值具有任意性;(2)求差比较它们函数值的大小。
事实上,这种回答也给出了证明单调性的方法,为后续用定义证明其他函数的单调性做好铺垫,降低难度.至此,学生对函数单调性有了理性的认识。
3.抽象思维,形成概念本环节在前面研究的基础上,引导学生归纳、抽象出函数单调性的定义,使学生经历从特殊到一般,从具体到抽象的认知过程,完成对概念的第三次认识。
教学中,我引导学生用严格的数学符号语言归纳、抽象增函数的定义,并让学生类比得到减函数的定义。
然后我指导学生认真阅读教材中有关单调性的概念,对定义中关键的地方进行强调。
同时我设计了一组判断题: ①.已知函数xx f 1)(=,因为)2()1(f f <-,所以函数)(x f 是增函数。
②若函数f(x)满足f(2)<f(3),则函数f(x)在[2,3]上为增函数.③若函数f(x)在(1,2]和(2,3)上均为增函数,则函数f(x)在(1,3)上为增函数. ④因为函数x x f 1)(=在(-∞,0)和(0,+∞)上都是减函数,所以xx f 1)(=在 (-∞,0)和(0,+∞)上是减函数.通过对判断题的讨论,强调三点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性。
②有的函数在整个定义域内单调(如一次函数),有的函数只在定义域内的某些区间单调(如二次函数),有的函数根本没有单调区间(如常函数)。
③函数在定义域内的两个区间A,B 上都是增(或减)函数,一般不能认为函数在上是增(或减)函数。
从而加深学生对定义的理解,完成本阶段的教学。
(三)掌握证法,适当延展本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握根据单调性定义证明函数单调性的方法,同时引导学生探究定义的等价形式,对证明方法做适当延展。
例 证明函数),2(2)(+∞+=在xx x f 在上是增函数。
证明过程的教学分为三个环节:难点突破、详细板书、归纳步骤。
1.难点突破对于函数单调性的证明,由于前边有对函数上为增函数的研究作铺垫, 大部分学生能完成取值和求差两个步骤: 证明:任取,,因此学生的难点主要是两个函数值求差后的变形方向以及变形的程度。
问题主要集中在两个方面:一方面部分学生不知道如何变形,不敢动笔;另一方面部分学生在变形不彻底,理由不充分的情形下就下结论:.针对这两方面问题,教学中,我组织学生讨论,引导学生回顾函数)0[)(2∞+=,x x f 在上为增函数的说明过程,明确变形的主要思路是因式分解。
然后我引导学生从已有的认知出发,考虑分组分解法,即把形式相同的项分在一起,变形后容易找到公因式)(21x x -,提取后即可考虑判断符号。
2.详细板书在上面分析的基础上,我对证明过程进行规范、完整的板书,引导学生注意证明过程的规范性和严谨性,帮助学生养成良好的学习习惯. 证明:任取, 设元求差变形. 由得 断号 又由,得 于是即. 所以,函数),2(2)(+∞+=在xx x f 在上是增函数。
定论 3.归纳步骤在板书的基础上,我引导学生归纳利用定义证明函数单调性的方法和步骤(设元,求差,变形,断号,定论).通过对证明过程的分析,使学生明确每一步的必要性和目的,特别是第三步,让学生明确变形的方法以及变形的程度,帮助学生掌握方法,提高学生的推理论证能力。
教学过程中,我对学生的完成课堂练习的情况进行及时评价和有针对性的指导。