初中数学整式的乘法教案
人教版初中数学八年级上册14.1.4整式的乘法(教案)

3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“整式乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
举例:难点在于理解并掌握如何将多项式(2x - 3)乘以(4x^2 + 5x - 6)的结果正确合并同类项。在此过程中,教师要引导学生注意同类项的识别和符号的处理,如-3乘以4x^2的结果是-12x^2,而-3乘以-6的结果是18等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的乘法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或体积的情况?”(如长方形的长和宽相乘得到面积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式乘法的奥秘。
其次,我在课堂上强调了分配律的重要性,并多次演示如何运用分配律进行整式乘法计算。然而,从学生的练习情况来看,分配律的应用仍然是一个薄弱环节。在今后的教学中,我需要进一步加强对这一知识点的讲解和练习。
此外,小组讨论环节中,学生们表现得积极主动,能够围绕整式乘法在实际生活中的应用展开讨论。但在引导学生们思考问题时,我发现自己的提问方式还有待改进,以提高问题的针对性和启发性。
五、教学反思
在今天的教学过程中,我发现学生们对整式乘法的概念和应用有了初步的认识,但同时也暴露出一些问题。在讲解单项式乘以单项式、单项式乘以多项式和多项式乘以多项式的过程中,我注意到部分学生对于符号处理和合并同类项这两个难点掌握得不够牢固。
初中整式的乘除教案

初中整式的乘除教案教学目标:1. 理解整式的乘法概念,掌握整式乘法的方法和步骤。
2. 掌握整式的除法概念,能够进行简单的整式除法运算。
3. 能够应用整式的乘除法解决实际问题。
教学重点:1. 整式的乘法方法。
2. 整式的除法概念和步骤。
教学难点:1. 整式乘法中的项的合并。
2. 整式除法中的除法法则的应用。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾已学的整式加减法,复习相关的数学概念和运算规则。
2. 提问:我们已经学习了整式的加减法,那么有没有什么方法可以将整式相乘或相除呢?二、整式的乘法(15分钟)1. 讲解整式乘法的概念:将两个整式相乘,得到一个新的整式。
2. 示例:给出两个整式 a(x + y) 和 b(x + y),引导学生通过分配律进行乘法运算,得到 (ax + ay + bx + by)。
3. 练习:让学生独立进行一些简单的整式乘法运算,并及时给予指导和反馈。
三、整式的除法(15分钟)1. 讲解整式除法的概念:将一个整式除以另一个整式,得到一个新的整式。
2. 示例:给出一个整式 ax + b 和另一个整式 cx + d,引导学生通过长除法或其他方法进行除法运算,得到 (ax + b) ÷ (cx + d)。
3. 练习:让学生独立进行一些简单的整式除法运算,并及时给予指导和反馈。
四、应用和拓展(15分钟)1. 给出一些实际问题,让学生应用整式的乘除法进行解决。
2. 引导学生思考整式的乘除法在实际生活中的应用,例如代数表达式的计算、几何图形的面积计算等。
五、总结和作业布置(5分钟)1. 对本节课的内容进行总结,强调整式的乘除法的概念和运算规则。
2. 布置一些练习题,让学生巩固所学的内容。
教学反思:本节课通过讲解和练习,让学生掌握了整式的乘除法概念和运算方法。
在教学过程中,要注意引导学生理解和掌握运算规则,并通过练习及时给予指导和反馈。
整式的乘法教案

整式的乘法教案一、教学目标1. 能够理解整式的乘法规则,掌握整式的乘法方法。
2. 能够应用整式的乘法方法解决实际问题。
二、教学内容1. 整式的乘法规则2. 整式的乘法方法3. 应用整式的乘法解决实际问题三、教学重难点1. 整式的乘法规则的掌握2. 整式的乘法方法的运用四、教学方法1. 讲授法2. 练习法五、教学过程1. 整式的乘法规则首先,对于两个单项式相乘,应用成分分解方法进行计算,即把两个单项式中的系数和字母分开,然后对系数和字母分别相乘:例如:(3a)(4b) = 3 × 4 × a × b = 12ab对于两个多项式相乘,利用分配律,把两个多项式的各项依次相乘,然后将结果合并:例如:(3a + 2b)(4a − 5b) = 3a × 4a − 3a × 5b + 2b × 4a − 2b × 5b = 12a^2 − 15ab + 8ab − 10b^2= 12a^2 − 7ab − 10b^22. 整式的乘法方法步骤一:分解整式将整式按照单项式分解的方式分解为单项式的乘积。
例如:2x^2 − 3xy + y^2 = (2x − y)(x − y)步骤二:按照公式进行运算根据乘法公式,在相应的位置上写下对应的系数和字母,然后合并同类项。
例如:(2x − y)(x − y) = 2x^2 − 2xy − xy + y^2 = 2x^2 − 3xy + y^2步骤三:检查结果检查结果是否合理,是否有错漏。
3. 应用整式的乘法解决实际问题例题一:甲、乙两人从甲地到乙地需要上车,车费7元,甲要付5元,乙付2元,求甲、乙两人到车站乘车的路程相差3千米,则甲、乙两人到车站乘车的路程分别是多少千米?解题方法:设甲的路程为x千米,则乙的路程为(x + 3)千米。
由题意可得:5/x + 2/(x + 3) = 7/x(x + 3)将上式通分并整理得:3x^2 − 2x − 15 = 0将上式分解得:(3x + 5)(x − 3) = 0得出x = −5/3,3因为路程不能为负数,所以甲的路程为3千米,乙的路程为6千米。
初中数学整式的乘法教案设计

初中数学整式的乘法教案设计一、教学目标1. 知识与技能:(1)掌握整式的乘法运算法则;(2)能够正确进行整式的乘法运算;(3)理解整式乘法在实际问题中的应用。
2. 过程与方法:(1)通过小组合作、讨论交流的方式,探索整式乘法的方法;(3)运用整式乘法解决实际问题。
3. 情感态度与价值观:(1)培养学生的团队合作意识;(2)提高学生对数学学习的兴趣;(3)培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)掌握整式的乘法运算法则;(2)能够正确进行整式的乘法运算。
2. 教学难点:(1)整式乘法中的多项式与单项式的相乘;(2)整式乘法中的乘法分配律的应用。
三、教学方法1. 情境导入:通过生活实例引入整式乘法的概念,激发学生的学习兴趣;2. 小组合作:引导学生进行小组讨论,共同探索整式乘法的方法;3. 举例讲解:运用具体例子,讲解整式乘法的运算法则;4. 练习巩固:设计相关练习题,让学生在实践中掌握整式乘法的运用;5. 拓展提高:引导学生运用整式乘法解决实际问题,提高学生的应用能力。
四、教学内容1. 整式乘法的概念引入;2. 整式乘法的运算法则;3. 整式乘法的计算方法;4. 整式乘法在实际问题中的应用。
五、教学过程1. 情境导入(5分钟):(1)通过生活实例,如计算矩形的面积,引入整式乘法概念;(2)引导学生思考如何将矩形的面积公式用数学表达式表示。
2. 小组合作(10分钟):(1)引导学生进行小组讨论,共同探索整式乘法的方法;3. 举例讲解(15分钟):(1)运用具体例子,讲解整式乘法的运算法则;(2)引导学生跟随讲解过程,理解整式乘法的计算方法。
4. 练习巩固(10分钟):(1)设计相关练习题,让学生在实践中掌握整式乘法的运用;(2)学生独立完成练习题,教师进行个别指导。
5. 拓展提高(10分钟):(1)引导学生运用整式乘法解决实际问题;(2)学生分组讨论,分享解题过程和答案。
初中数学整式乘除教案

初中数学整式乘除教案教学目标:1. 理解整式的概念,掌握整式乘除的基本运算法则;2. 能够熟练地进行整式的乘除运算;3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 整式的概念及基本性质;2. 整式的乘法法则;3. 整式的除法法则;4. 整式乘除的综合应用。
教学步骤:一、导入(5分钟)1. 引导学生回顾小学学过的乘法和除法运算,如2×3=6,6÷3=2等;2. 提问:大家想过吗,这些运算在数学中有什么更高级的应用呢?二、新课讲解(20分钟)1. 引入整式的概念,举例说明整式的形式,如2x、3x^2、4x^3等;2. 讲解整式的乘法法则,通过具体的例子来说明,如(2x+3)×(4x-1)、(a+b)×(c+d)等;3. 讲解整式的除法法则,同样通过具体的例子来说明,如(2x^2+4x+3)÷(2x+1)、(a+b)÷(c+d)等;4. 强调整式乘除运算中的注意事项,如符号的判断、系数的处理等。
三、课堂练习(15分钟)1. 布置一些整式乘除的题目,让学生独立完成;2. 选取一些学生的作业进行讲解和点评,指出其中的错误和不足。
四、巩固提高(10分钟)1. 引导学生总结整式乘除的运算规律和技巧;2. 提供一些综合性的题目,让学生进行思考和解答,如(2x^2+4x+3)÷(2x+1)×(2x+1)、(a+b)÷(c+d)×(c+d)等。
五、课堂小结(5分钟)1. 回顾本节课所学的内容,让学生明确整式乘除的重要性;2. 提醒学生在平时的学习中多加强整式乘除的练习,提高自己的数学水平。
教学评价:1. 课后收集学生的作业,评估学生的掌握情况;2. 在下一节课开始时,进行一次整式乘除的测试,检验学生的学习效果;3. 关注学生在课堂上的参与度和提问反馈,了解学生的学习状况。
教学反思:本节课通过讲解整式乘除的基本运算法则,让学生掌握了整式乘除的方法和技巧。
人教初中数学八上《整式的乘法 》教案 (公开课获奖)

整式的乘法〔3〕〔一〕教学目标 知识与技能目标:理解多项式乘法的法那么,并会进行多项式乘法的运算. 过程与方法目标:经历探索多项式乘法的法那么的过程. 情感态度与价值观:通过探索多项式乘法法那么,让学生感受数学与生活的联系,同时感受整体思想、转化思想,并培养学生的抽象思维能力.教学重点:多项式与多项式相乘法那么及应用. 教学难点:● 多项式乘法法那么的推导. ● 多项式乘法法那么的灵活运用. 〔二〕教学程序 教学过程师生活动设计意图 一、问题情境导入新课为了扩大街心花园的绿地面积,把一块原长为m 米,宽为a 米的长方形绿地,增长了n 米,加宽了b 米.你能用几种方法求出扩大后的绿地面积?问题情境导入新课有助于激发学生的学习兴趣.二、新知讲解扩大后绿地的面积可以表示为(m+n)(a+b)或(ma+mb+na+nb),它们表示同一块地的面积,故有:(m+n)(a+b)= ma+mb+na+nb通过图示方法向学生展示多项式amb n多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加. 乘以多项式的过程.也可以这样考虑: 当X=m+n时, (a+b)X=?由单项式乘以多项式知 (a+b)X=aX+bX 于是,当X=m+n时,(a+b)X=(a+b)(m+n)=a(m+n)+b(m+n) 即 (a+b)(m+n)=am+an+bm+bn=am+an+bm+bn为学生提供不同的思维方式,以使学生更好的掌握此内容.例题讲解:例题1:计算:(1)(x+2y)(5a+3b); (2)(2x-3)(x+4);(3)(x+y)2; (4)(x+y)(x2-xy+y2)解:(1)(x+2y)(5a+3b)=x·5a+x·3b+2y·5a+2y·3b=5ax+3bx+10ay+6by;(2)(2x-3)(x+4)=2x2+8x-3x-12=2x2+5x-12(3)(x+y)2=(x+y)(x+y)=x2+xy+xy+y2=x2+2xy+y2;(4)(x+y)(x2-xy+y2)=x3-x2y+xy2+x2y-xy2+y3=x3+y3例题2:计算以下各题:多项式乘以多项式的具体应用,通过教师演示向学生提供严格的书写过程培养学生严谨的思维训练.〔1〕(a+3)·(b+5); 〔2〕(3x-y) (2x+3y); 〔3〕(a-b)(a+b); 〔4〕(a-b)(a 2+ab+b 2) 解:(1) (a+3)·(b+5) =ab+5a+3b+15; (2) (3x-y) (2x+3y)=6x 2+9xy-2xy-3y 2(多项式与多项式相乘的法那么) =6x 2+7xy-3y 2(合并同类项) (3)(a-b)(a+b) =a 2+ab-ab-b 2= a 2-b 2(4)(a-b)(a 2+ab+b 2) =a 3+a 2b+ab 2-a 2b-ab 2-b 3= a 3-b 3例题3:先化简,再求值:〔2a-3〕〔3a+1〕-6a 〔a-4〕其中a =2/17 解:〔2a-3〕〔3a+1〕-6a 〔a-4〕 =6a 2+2a-9a-3-6a 2+24a =17a-3当a =2/17时,原式=17×2/17-3=-1 例题4:观察以下解法,判断是否正确,假设错请说出理由。
《整式的乘除与因式分解》初中数学教案

《整式的乘除与因式分解》初中数学教案一、教学目标:1. 让学生掌握整式乘除的计算方法,能够正确进行整式的乘除运算。
2. 让学生理解因式分解的意义,掌握因式分解的方法,能够对简单的多项式进行因式分解。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 整式的乘法:单项式乘单项式,单项式乘多项式,多项式乘多项式。
2. 整式的除法:单项式除以单项式,多项式除以单项式。
3. 因式分解:提公因式法,公式法。
三、教学重点与难点:1. 教学重点:整式的乘除运算,因式分解的方法。
2. 教学难点:因式分解的灵活运用,解决实际问题。
四、教学方法:1. 采用讲授法,讲解整式乘除的运算方法和因式分解的方法。
2. 采用案例分析法,分析实际问题,引导学生运用因式分解解决实际问题。
3. 采用互动教学法,引导学生积极参与讨论,提高学生的思维能力。
五、教学过程:1. 导入:通过复习相关知识,引导学生进入新课。
2. 讲解:讲解整式乘除的运算方法和因式分解的方法,结合案例进行分析。
3. 练习:让学生进行相关的练习,巩固所学知识。
4. 拓展:引导学生运用因式分解解决实际问题,提高学生的应用能力。
5. 总结:对本节课的内容进行总结,布置作业。
六、教学评价:1. 通过课堂练习和课后作业,评价学生对整式乘除和因式分解的掌握程度。
2. 观察学生在解决问题时的思维过程和方法选择,评价学生的逻辑思维能力和解决问题的能力。
3. 采用学生自评、互评和他评的方式,鼓励学生积极参与评价,提高学生的自我认知和反思能力。
七、教学资源:1. 教材:《整式的乘除与因式分解》相关章节。
2. 教学课件:展示整式乘除和因式分解的运算方法和案例分析。
3. 练习题:提供不同难度的练习题,巩固学生对知识的理解和应用。
4. 教学视频:讲解整式乘除和因式分解的运算方法和案例分析。
八、教学进度安排:1. 第一课时:讲解整式乘法,包括单项式乘单项式、单项式乘多项式、多项式乘多项式。
初中数学_整式的乘法教学设计学情分析教材分析课后反思

( n 为正整数)运用幂的运算性质计算:(-2a 2)·(-3a 3)师生活动:师课件展示复习问题,学生讨论交流回答后,教师展示答案。
由此题引出本课课题,师板书课题:1.4.1整式的乘法(1)课件展示教材第14页问题:京京用两张同样大小的纸,精心制作了两幅画。
如下图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有 米的空白。
你能表示出两幅画的面积吗?第(1)幅图的话面面积是多少平方米,第二幅呢?你是怎样计算的?师生活动:引导学生认真读图分析后计算面积第一幅画的画面面积是: 平方米,n n n b a ab )(x 81第二幅图画面面积是: 平方米师生活动:教师请学生交流自己的思考过程,理解其中的算理,找一学生回答.单项式乘以单项式的运算,根据乘法的交换律、结合律,幂的运算性质,可以写成:师:我们知道整式包括单项式和多项式,从这节课起我们来研究整式的乘法,先来学习单项式乘以单项式。
二、教学新知1 探索单项式乘以单项式的运算法则课件展示教材第14页中的想一想:(1)3a 2b · 2ab 3 和 (xyz ) ·y 2z 又等于什么?你是怎样计算的?(2)如何进行单项式与单项式的运算?师生活动:组织学生先独立思考,再以四人为小组讨论,鼓励学生大胆发表自己的见解,全班共同交流问题的结果,找两生板演。
2()x mx x x m x m ⋅=⋅⋅=2333()()444mx x m x x mx ⋅=⋅⋅⋅=2332a b ab ⋅()()()2332a a b b =⋅⋅⋅⋅⋅21136a b ++=⋅⋅346a b =2()xyz y z ⋅()()2x y y z z =⋅⋅⋅⋅师;通过上面的计算,你能总结出单项式乘以单项式的运算法则吗/生:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
(教师板书)2.单项式乘以单项式的运算法则的应用课件展示教材第14页例1计算:)31()2)(1(2xy xy ⋅ (2)(-2a 2b 3)·(-3a)(3)7xy 2z ·(2xyz)2 师生活动:教师讲解第一题,后两题安排学生让板演,让学生进行评价,发现自己或同伴出现的问题,教师带领学生进行订正及示范。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学《整式的乘法》教案第15章整式的乘除与因式分解
整式的乘法15.1.1
教学目标①感受生活中幂的运算的存在与价值.
②经历自主探索同底数幂的乘法、幂的乘方和积的乘方等运算性质的过程,能用代数式和文字正确地表述这些性质,并会运用它们熟练地进行计算.
③逐步形成独立思考、主动探索的习惯.④通过由特殊到一般的猜想与说理、验证,培养学生一定的说理能力和归纳表达能力.
教学重点与难点重点:幂的三个运算性质.难点:幂的三个运算性质.
教学设计
创设情境导入新课问题:一种电子计算机每秒可以进行1012次运算,它工作103s可以进行多少次运算?你能用学过的知识解决吗?
从实际问题的导入,让学生自己动手试一试,主动探索,在自己的实践中获得知识.从而构建新的知识体系,同时因为关于底数、指数、幂等概念是在有理数的乘法中学习的,学生可能生疏或遗忘,在新课讲解之前利用这个实际问题进行
页 1 第
复习.
学生略作思考后得出,它工作103s可以进行的运算次数是1012103.怎样计算1012103?
根据乘方的意义可以知道:探究新知1.探一探根据乘方的意义填空:
从引例到“探一探”,“猜一猜”,“说一说”是一个从特殊到一般,从具体到抽象,把幂的底数与指数分两步有层次地进行概括抽象的过程.在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得运算法则.
学生独立思考后回答,教师板演.
.猜一猜2问:看看计算结果,你能发现结果有什么规律吗?
学生小组讨论后交流结果:不管底数是什么数,只要底数相同,结果就是指数相加.
3.说一说aman(m,n是正整数)?学生说出理由,教师板演共同得出结论:aman=am+n(m,n都是正整数)
即同底数幂相乘,底数不变,指数相加.注意性质中的m、n的取值范围.
注:要求学生用语言叙述这个性质,即“同底数的幂相乘,底数不变,指数相加”,这对于学生提高数学语言的表述能页2 第
力是有益的.
.想一想4 amanap=? 5.做一做例1教科书第142页的例1(1)~(4)
(5)-a3a5;(6)(x+1)2(x+1)3同底数幂的性质很容易推广
到三个以上的同底数幂相乘.
在例1的课堂教学中教师要求学生说明底数是什么,指数是什么,引导学生观察是不是同底数幂相乘,再利用性质进行计算.例1(5)中注意让学生说清“-a3”的底数是“a”还是“-a”.性质中的字母可以是单项式也可以是多项式,如例1(6),把底数进一步扩充到式的范围.
.自主学习6根据乘方的意义及同底数幂的乘法,让学生自主探究教科书第170页探究问题.学生在独立思考、合作交流的基础上,得出幂的乘方运算性质:(am)n=amn(m,n都是正整数)即幂的乘方,底数不变,指数相乘.
.做一做7例2教科书第171页的例2(1)~(4)
(5) -(x3)4x2 .想一想8页 3 第
让学生自主探究教科书第171页的探究问题,并完成填空.尝试分析运算过程中用到哪些运算律?运算结果有什么
规律?
学生自己归纳出积的乘方的运算性质:(ab)n=anbn(n为正整数)即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
那么,(abc)n=?注:和前两个性质的教学一样,这个性质也是先用具体指数为例说明积的乘方的意义和导出性质的每一步依据,从而归纳出一般指数情形的性质.这个性质也很容易推广到三个以上因式的乘方.
.做一做9例3教科书第172页的例3(1)~(4);补充:(5)
[-3(x+y)2]3
例4 计算:x(x2)3-2x4x2
比一比这节课我们学习了三个运算性质:“同底数幂的乘法”、“幂的乘方”和“积的乘方”.组织学生进行计时比赛,在规定时间内完成教科书第170页、17l页、172页的练习.深入探究例5计算:
(1)(-8)2019(-0.125)2019(2)(-2)2n+1+2(-2)2n(n为正整数).
在这三个性质中的底数、指数中,指数注明为正整数,而底页 4 第
数可以是数、字母或式.把底数进一步扩充到式的范围.议一议
下面的计算对不对?如果不对,应当怎样改正.
(1)a3a3=a6;(2)b4b4=2b4;
;(3)x5+x5=x10; (4)y7y=y8 (5)(a3)5=a8;
(6)a3a5=a15;(7)(a2)3a4=a9 ;(8)(xy3)2=xy6;
(9)(-2x)3=-2x3
注:补充议一议与辨析题的目的是让学生通过对这些判断题的讨论甚至争论,加强对运算性质的掌握,同时也培养学生一定的批判性思维能力.
小结组织学生讨论和辨析三个运算性质.
课外巩固1.必做题:教科书第148页习题15.1第1、2题.
2.备选题:
(1)计算:(2)计算:am-1an+2+am+2an-1+aman+1
(3)已知:am=7,bm=4,则(ab)2m=______
(4) 已知:3x+2y-3=0,则27x9y=___________页 5 第
页 6 第。