有理数乘除法混合运算专题
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
有理数的乘除乘方混合运算习题
有理数的乘法、除法、乘方练习一、有理数的乘法运算法则:(一)没有0因数相乘的情况下:1、由负因数的个数确定符号----------+⎧⎨⎩奇数(如1,3,5,)个负因数,积为“—”偶数(如2,4,6,)个负因数,积为“”,可省略,再把绝对值相乘----------(二)有一个以上的0因数相乘,积为0(三)适用的运算律: 1.2.()3.()a b b a a b c a b c a b c d a b a c a d ⨯=⨯⎧⎪ ⨯⨯=⨯⨯⎨⎪ ⨯+-=⨯+⨯-⨯⎩(四)策略:在有理数的乘、除中,碰到小数就 ,碰到带分数就练习:1、(–4)×(–9)= 2、(–52)×81 = 3、(–253)×135= 4、(–12)×2.45×0×9×100 5、10.12512(16)(2)2-⨯⨯-⨯- 6、(-6)×(-4)-(-5)×107、(0.7-103-254+ 0.03)×(-100) 8、(–11)×52+(–11)×953 二、有理数的倒数:(一)定义:如 ,则称a 与b 互为倒数;其中一个是另一个的倒数。
(二)几种情况下的倒数:1、整数:2的倒数是 ;12-的倒数是 ;0没有倒数发现:①互为倒数的两数必然 ;②把整数的分母看成 ,然后分子与分母2、分数:12的倒数是 ;23-的倒数是 ; 112的倒数是 ;223-的倒数是 ; 发现:求倒数时,碰到带分数,必须化为3、小数:0.25的倒数是 ; 1.125-的倒数是 ;发现:求倒数时,碰到小数,必须化为 ,练习:求下列各数的倒数: 4.25-是 235是 1.14-是 三、有理数的除法法则:(a b a b ÷=⨯的 )即看到除法,就转化为 练习:1、(-18)÷(-9)2、-3÷(-31) 3、0÷(–105) 4、(-2)÷(-1.5)×(-3)5、 -0.2÷(-151)×(-261) 6、[65÷(-21-31)+281]÷(-181) 四、乘方:(一)在n a 中,a 称为 ;n 称为 ;n a 称为 。
专题03有理数的乘除混合运算(计算题专项训练)(苏科版)
专题03 有理数的乘除混合运算1.(2022秋·江苏连云港·七年级统考期中)计算(1)8×(−2)×(−5)(2)(−91)÷13(3)(−12−13+34)×(−60) (4)12×(−3)÷(−4)【思路点拨】(1)根据有理数的乘法运算法则和运算顺序计算即可;(2)根据有理数除法运算法则计算即可;(3)利用乘法分配律进行有理数乘法运算即可;(4)根据有理数乘除法运算法则和运算顺序计算即可.【解题过程】解:(1)8×(−2)×(−5)=8×2×5=80;(2)(−91)÷13=-(91÷13)=-7;(3)(−12−13+34)×(−60)= −12×(−60)−13×(−60)+34×(−60) =30+20−45=5;(4)12×(−3)÷(−4)=(−36)×(−14)=9.2.(2022秋·七年级统考课时练习)计算:(1)−2.25÷118×(−8);(2)(−21316)÷(34×98);(3)(−5)÷(−7)÷(−15);(4)(−0.4)÷0.02×(−5);(5)72÷(−8)÷(−12);(6)(−32)÷54÷(−35)×(−14). 【思路点拨】(1)直接利用有理数的乘除运算法则计算得出答案;(2)先计算括号内的乘法,再把除法转化成乘法进行计算即可;(3)把除法转化成乘法进行计算即可;(4)先算除法,再算乘法即可得解;(5)直接利用有理数的乘除运算法则计算得出答案;(6)把除法转化成乘法进行计算即可.【解题过程】(1)−2.25÷118×(−8) =−94×89×(−8)=2×(8)=16;(2)(−21316)÷(34×98)=−4516÷2732=−4516×3227 =−103;(3)(−5)÷(−7)÷(−15)=−5×17×115=−121;(4)(−0.4)÷0.02×(−5)=20×(5)=100;(5)72÷(−8)÷(−12)=(−9)÷(−12)=34; (6)(−32)÷54÷(−35)×(−14)=−32×45×53×14 =−12.3.(2023·全国·七年级假期作业)计算:(1)−3÷(−34)÷(−34); (2)(−12)÷(−4)÷(−115);(3)(−23)×(−78)÷0.25;(4)(−212)÷(−5)×(−313). 【思路点拨】(1)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(2)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(3)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(4)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案.【解题过程】(1)原式=−3×(−43)×(−43)=−163;(2)原式=(−12)×(−14)×(−56)=−52;(3)原式=(−23)×(−78)×4=73; (4)原式=(−52)×(−15)×(−103)=−53. 4.(2022秋·吉林长春·七年级校考阶段练习)计算.(1)−5÷(−127)×45×(−214)÷7;(2)(512+34−58)÷(−524).【思路点拨】(1)根据有理数的乘除混合运算进行计算即可求解;(2)先将除法转化为乘法,然后根据乘法分配律进行计算即可求解.【解题过程】(1)解:−5÷(−127)×45×(−214)÷7=−5÷(−97)×45×(−94)×17=−5×(−79)×45×(−94)×17=−1(2)解:(512+34−58)÷(−524) =512×(−245)+34×(−245)−58×(−245) =−2−185+3 =−135. 5.(2022秋·全国·七年级专题练习)计算:(1)8×|−6−1|+26 12 ×653.(2)3.2÷ 45×(− 815 )÷(−16). (3)(1 13 + 18 −2.75)×(−24)(4)(−36)×(54−56−712).【思路点拨】(1)去掉绝对值号,再把带分数化为假分数,然后根据有理数的乘法和加法运算法则进行计算即可得解.(2)首先把除法统一化为乘法,再确定结果的符号,再把绝对值相乘即可.(3)首先把括号内的数化成分数,然后利用分配律,最后进行加减计算即可.(4)利用分配律即可转化成有理数的乘法,然后进行有理数的加减运算即可.【解题过程】(1)解: 8×|−6−1|+26 12 ×653=8×|−7|+ 532 ×653=56+3=59.(2)解:原式=165×54×(−815)×(−116) =165×54×815×116 =215;(3)解:原式=(43+18−114)×(−24)=−43×24−18×24+114×24 =−32−3+66=31(4)解:原式=(−36)×54−(−36)×56−(−36)×712=−45+30+21=6.6.(2023·全国·七年级假期作业)计算:(1)(−8)×(−6)×(−1.25)×13; (2)(−81)÷(−214)×49÷(−8).【思路点拨】(1)根据有理数乘法运算法则进行计算即可;(2)根据有理数乘除混合运算法则进行计算即可.【解题过程】(1)解:(−8)×(−6)×(−1.25)×13=−8×1.25×6×13=−10×2=−20;(2)解:(−81)÷(−214)×49÷(−8)=(−81)×(−49)×49×(−18)=−2.7.(2022秋·全国·七年级期末)计算:(1)(−23)×25−6×25+18×25+25;(2)(−12)×(−8)+(−6)÷(−13).【思路点拨】(1)根据逆用乘法分配律进行计算即可求解;(2)根据有理数的四则混合运算进行计算即可求解.【解题过程】(1)解:原式=25×(−23−6+18+1)=25×(−10)=−250;(2)解:原式=12×8+6÷13=4+18=22.8.(2022秋·重庆万州·七年级校联考阶段练习)计算:(1)(−56)×(−1516)÷(−134)×47(2)3.25+(−2.6)+(+534)+(−825)【思路点拨】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的加减混合运算法则计算即可.【解题过程】(1)(−56)×(−1516)÷(−134)×47=(−56)×(−2116)÷(−74)×47 =56×2116×(−47)×47 =7×212×(−47)×47=−24;(2)3.25+(−2.6)+(+534)+(−825) =3.25−2.6+5.75−8.4=(3.25+5.75)−(2.6+8.4)=9−11=−2.9.(2022秋·全国·七年级专题练习)计算:(1)(﹣85)×(﹣25)×(﹣4);(2)﹣215×2311÷(−212);(3)(−124)÷(134−78+712);(4)(79−56+34−718)×36.【思路点拨】(1)先计算(﹣25)×(﹣4),再乘(﹣85)即可得出结果;(2)先将带分数化为假分数,再将除法运算转化为乘法运算;(3)先将括号内通分,再将除法运算转化为乘法运算;(4)利用乘法分配律计算.【解题过程】(1)解:(﹣85)×(﹣25)×(﹣4),=(﹣85)×[(﹣25)×(﹣4)],=﹣85×100,=﹣8500;(2)﹣215×2311÷(﹣212),=﹣115×2511×(﹣25),=2;(3)(﹣124)÷(134﹣78+712),=(﹣124)÷(4224−2124+1424), =(﹣124)÷3524, =(﹣124)×2435,=﹣135;(4)(79−56+34−718)×36,=79×36﹣56×36+34×36﹣718×36,=28﹣30+27﹣14,=55﹣44,=11.10.(2022秋·全国·七年级专题练习)计算(1)−127÷(−156)×138×(−7); (2)(−113+19+512)×36.【思路点拨】(1)先将带分数化为假分数,再利用有理数的乘除法法则计算即可;(2)利用乘法分配律计算即可.【解题过程】解:(1)−127÷(−156)×138×(−7)=−97÷(−116)×118×(−7) =−97×(−611)×118×(−7) =−274;(2)(−113+19+512)×36=−43×36+19×36+512×36 =−48+4+15=−29.11.(2022秋·全国·七年级专题练习)计算:(1)49×1516÷56(2)(12−13+14)×48(3)625÷9+625×89(4)15÷[(23+15)×0.6]【思路点拨】(1)直接根据有理数乘除法法则计算即可得到答案;(2)去括号直接计算即可得到答案;(3)先乘除后加减计算即可得到答案;(4)先去括号在根据法则运算即可得到答案.【解题过程】(1)解:原式=49×1516×65=12;(2)解:原式=12×48−13×48+14×48=24−16+12=20;(3)解:原式=625×19+625×89=625×(19+89)=625(4)解:原式=15÷(23×0.6+15×0.6)=15÷(25+325)=15÷1325=15×2513=513.12.(2022秋·山东青岛·七年级青岛超银中学校考期末)计算下列各题:(1)(−24)×(−34+23+112);(2)(−81)÷214×49÷(−16).【思路点拨】(1)根据分配率进行计算即可求解;(2)先把除法转化为乘法,再进行有理数的乘法运算即可求解.【解题过程】(1)解:(−24)×(−34+23+112)=(−24)×(−34)+(−24)×23+(−24)×112=18−16−2=0;(2)解:(−81)÷214×49÷(−16)=(−81)×49×49×(−116)=1.13.(2022秋·浙江·七年级专题练习)计算(1)34×(−112)÷(−214)(2)(﹣81)÷2.25×49÷(﹣32).(3)−34÷38×(−49)÷(−23)(4)﹣15÷(13−112−3)×68(5)−112÷34×(−0.2)×134÷1.4×(−35).【思路点拨】(1)先统一为乘法运算,再按照有理数乘法法则计算即可;(2)根据除法运算法则除以一个数等于乘以这个数的倒数,进而化简求出即可.(3)先统一为乘法运算,再按照有理数乘法法则计算即可;(4)先算小括号,再按照从左往右的顺序计算即可;(5)先统一为乘法运算,再按照有理数乘法法则计算即可.【解题过程】解:(1)34×(−112)÷(−214) =34×32×49=12. (2)(﹣81)÷2.25×49÷(﹣32)=81×49×49×132=12. (3)−34÷38×(−49)÷(−23) =−(34×83×49×32) =−43. (4)−15÷(13−112−3)×68=−15÷(−256)×68 =15×625×68=244.8.(5)−112÷34×(−0.2)×134÷1.4×(−35)=−(32×43×15×74×57×35) =−0.3.14.(2023春·七年级专题练习)计算:(1)−2.5÷58×(−14); (2)−27÷214×49÷(−24);(3)(−35)×(−312)÷(−114)÷3;(4)−4×12÷(−12)×2;(5)−5÷(−127)×45×(−214)÷7;(6)|−118|÷34×43×|−12|.【思路点拨】(1)把小数化为分数,把除法转化为乘法,再根据乘法法则计算;(2)(3)(5)把带分数化为假分数,把除法转化为乘法,再根据乘法法则计算;(4)把除法转化为乘法,再根据乘法法则计算;(6)先算绝对值,再算乘除法.【解题过程】(1)原式=−52×85×(−14)=1; (2)原式=−27×49×49×(−124)=29; (3)原式=(−35)×(−72)×(−45)×13=-1425;(4)原式=−4×12×(−2)×2=8; (5)原式=−5×(−79)×45×(−94)×17=−1;(6)原式=98×43×43×12=1.15.(2022秋·贵州铜仁·七年级校考阶段练习)乘除计算:(1)(−81)÷214×(−49)÷(−16)(2)1.25÷(−0.5)÷(−212)×1(3)(−2)×32÷(−34)×4;(4)(134−78−712)×(−117)【解题过程】(1)解:(−81)÷214×(−49)÷(−16) =−81×49×(−49)×(−116)=−1;(2)1.25÷(−0.5)÷(−212)×1=54×(−2)×(−25)×1=1;(3)(−2)×32÷(−34)×4 =(−3)×(−43)×4 =16.(4)(134−78−712)×(−117)=74×(−87)+78×87+712×87=−2+1+23 =−13. 16.(2022秋·全国·七年级专题练习)计算:(1)(−3)÷(−134)×0.75÷(−37)×(−6);(2)(−15)×(−0.1)÷125×(−10);(3)[(−72)×(−23)]×[(−35)÷(−815)]. 【思路点拨】(1)首先确定结果的符号,再把除法变为乘法,先约分,后相乘进行计算即可;(2)首先确定结果的符号,再把除法变为乘法,约分后相乘进行计算即可;(3)首先计算括号里面的,再计算括号外面的乘法即可.【解题过程】(1)解:(−3)÷(−134)×0.75÷(−37)×(−6) =3×47×34×73×6 =18;(2)解:(−15)×(−0.1)÷125×(−10)=−(15×110×25×10) =−5;(3)解:[(−72)×(−23)]×[(−35)÷(−815)]=(72×23)×(35×158) =48×98=54.17.(2023·全国·九年级专题练习)计算(1)−25÷(−13)÷(−325)×(523)(2)1÷(−18)+73÷|15−23|【思路点拨】(1)先将带分数化为假分数,再根据有理数乘除法的运算法则按照同级运算从左到右的顺序计算即可得到答案;(2)先算绝对值里面的,再根据乘除互化,将除法转化为乘法,再结合有理数加法运算法则求解即可得到答案.【解题过程】(1)解:−25÷(−13)÷(−325)×(523) =−25÷(−13)÷(−175)×173=−25×(−3)×(−517)×173=−2;(2)解:1÷(−18)+73÷|15−23|=1×(−8)+73÷|315−1015| =1×(−8)+73÷|−715| =1×(−8)+73÷715=1×(−8)+73×157=−8+5=−3.18.(2022秋·全国·七年级专题练习)计算:(1)15×(−5) ÷ (−15)×5(2)2÷(−37)×47÷(−517) (3)(+512)÷(−4425)×(−1315)÷(−3118)(4)(−56)÷(−3)×|−145|×(−2)【思路点拨】(1)原式先把除法转换为乘法后,再进行乘法运算即可;(2)原式先把除法转换为乘法后,再进行乘法运算即可;(3)原式先把除法转换为乘法后,再进行乘法运算即可;(4)原式先把除法转换为乘法后,再进行乘法运算即可.【解题过程】(1)解:15×(−5)÷(−15)×5 =15×(−5)×(−5)×5 =(−1)×(−5)×5=25;(2)解:2÷(−37)×47÷(−517) =2×(−73)×47×(−736) =1427;(3)解:(+512)÷(−4425)×(−1315)÷(−3118) =112÷(−10425)×(−1315)÷(−5518) =−112×25104×1315×1855 =38;(4)解:(−56)÷(−3)×|−145|×(−2)=56×13×95×(−2)=−1.19.(2023·全国·七年级假期作业)计算:(1)(−3)÷(−134)×0.75÷(−37)×(−6);(2)(−15)×(−0.1)÷125×(−10); (3)[(−72)×(−23)]×[(−35)÷(−815)]. 【思路点拨】根据有理数的加减乘除混合运算法则及运算顺序计算即可得到答案.【解题过程】(1)解:(−3)÷(−134)×0.75÷(−37)×(−6)=3×47×34×73×6 =18;(2)解:(−15)×(−0.1)÷125×(−10)=−(15×110×25×10) =−5;(3)解:[(−72)×(−23)]×[(−35)÷(−815)] =(72×23)×(35×158) =48×98=54.20.(2022秋·山东济宁·七年级统考期中)请你先认真阅读材料:计算(﹣130)÷(23﹣110+16﹣25) 解法1:(﹣130)÷(23﹣110+16﹣25) =(﹣130)÷[(23+16)﹣(110+25)]=(﹣130)÷(56−12)=(﹣130)÷13=﹣130×3=﹣110 解法2:原式的倒数为:(23﹣110+16﹣25)÷(﹣130) =(23﹣110+16﹣25)×(﹣30)=﹣20+3﹣5+12=(﹣20﹣5)+(3+12)=﹣10再根据你对所提供材料的理解,选择合适的方法计算:(﹣142)÷(16−314+23−27). 【思路点拨】观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.【解题过程】解:原式的倒数为:(16−314+23−27)÷(−142) =(16−314+23−27)×(−42)=−7+9-28+12=−14∴原式=−114.。
有理数的混合运算专项训练(100题)
专题2.4 有理数的混合运算专项训练(100题)参考答案与试题解析一.解答题(共25小题,满分100分,每小题4分)1.(4分)(2022•黄冈开学)计算:(1)(−514)+(−3.5); (2)23+(−15)+(−1)+13;(3)−22÷(−12)−(138+213−334)×48; (4)(﹣2)2×3+(﹣3)3÷9.【分析】(1)先通分,然后根据有理数的加法法则计算即可;(2)根据加法的交换律和结合律解答即可;(3)先算乘方,然后算乘除法,最后算加减法即可;(4)先算乘方,再算乘除法,最后算加法即可.【解答】解:(1)(−514)+(−3.5)=(﹣514)+(﹣324) =﹣834; (2)23+(−15)+(−1)+13=(23+13)+[(−15)+(﹣1)] =1+(﹣115)=−15;(3)−22÷(−12)−(138+213−334)×48 =﹣4×(﹣2)−118×48−73×48+154×48=8﹣66﹣112+180=10;(4)(﹣2)2×3+(﹣3)3÷9=4×3+(﹣27)÷9=12+(﹣3)=9.2.(4分)(2022•垦利区期末)计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);(2)−12021×[4−(−3)2]+3÷(−34);(3)(512−79+23)÷136;(4)−316×7−316×(−9)+(−196)×(−8).【分析】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)先算乘方和括号内的式子,然后计算括号外的乘除法、最后算加法即可;(3)先把除法转化为乘法、然后根据乘法分配律计算即可;(4)先将带分数化为假分数,然后根据乘法分配律计算即可.【解答】解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=(﹣5)+(﹣4)+(﹣101)+9=﹣101;(2)−12021×[4−(−3)2]+3÷(−34)=﹣1×(4﹣9)+3×(−43)=﹣1×(﹣5)+(﹣4)=5+(﹣4)=1;(3)(512−79+23)÷136=(512−79+23)×36=512×36−79×36+23×36=15﹣28+24=11;(4)−316×7−316×(−9)+(−196)×(−8)=−196×7−196×(﹣9)−196×(﹣8)=−196×[7+(﹣9)+(﹣8)]=−196×(﹣10)=953.3.(4分)(2022•呼和浩特期末)计算:(1)(﹣8)×(﹣7)÷(−12);(2)(23−34+16)÷(−124);(3)﹣14﹣(1﹣)×13−|1﹣(﹣5)2|;(4)|13−12|÷(−112)−18×(−2)3.【分析】(1)先把除法统一成乘法,按乘法法则计算即可;(2)利用乘法的分配律计算比较简便;(3)先算乘方,再算绝对值和括号里面的,最后算乘法和加减;(4)先算乘方和绝对值里面的,再算乘除,最后算加减.【解答】解:(1)(﹣8)×(﹣7)÷(−12)=﹣8×7×2=﹣112;(2)(23−34+16)÷(−124)=(23−34+16)×(﹣24)=23×(﹣24)−34×(﹣24)+16×(﹣24)=﹣16+18﹣4=﹣2;(3)﹣14﹣(1﹣)×13−|1﹣(﹣5)2|=﹣1−12×13−|1﹣25|=﹣1−16−24=﹣2516;(4)|13−12|÷(−112)−18×(−2)3 =|−16|×(﹣12)−18×(﹣8)=16×(﹣12)+1=﹣2+1=﹣1.4.(4分)(2022•重庆期末)计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13;(3)(34−13−56)×(﹣12); (4)﹣12023﹣(−13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13 =(﹣4)×(−54)×3=15;(3)(34−13−56)×(﹣12)=34×(﹣12)−13×(﹣12)−56×(﹣12)=(﹣9)+4+10=5;(4)﹣12023﹣(−13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(−13)×(﹣4+3)+12×2 =﹣1+13×(﹣1)+1=﹣1+(−13)+1=−13.5.(4分)(2022•镇平县校级期末)计算:(1)|﹣2|÷(−12)+(﹣5)×(﹣2); (2)(23−12+56)×(﹣24); (3)15÷(−32+56);(4)(﹣2)2﹣|﹣7|﹣3÷(−14)+(﹣3)3×(−13)2.【分析】(1)首先计算绝对值,然后计算除法、乘法,最后计算加法即可.(2)根据乘法分配律计算即可.(3)首先计算小括号里面的加法,然后计算小括号外面的除法即可.(4)首先计算乘方、绝对值,然后计算除法、乘法,最后从左向右依次计算即可.【解答】解:(1)|﹣2|÷(−12)+(﹣5)×(﹣2)=2×(﹣2)+10=﹣4+10=6.(2)(23−12+56)×(﹣24)=23×(﹣24)−12×(﹣24)+56×(﹣24)=﹣16+12﹣20=﹣24.(3)15÷(−32+56)=15÷(−23)=15×(−32)=﹣.(4)(﹣2)2﹣|﹣7|﹣3÷(−14)+(﹣3)3×(−13)2 =4﹣7﹣3×(﹣4)+(﹣27)×19=4﹣7+12+(﹣3)=﹣3+12+(﹣3)=9+(﹣3)=6.6.(4分)(2022•高青县期末)计算:(1)(14+38−712)÷124; (2)﹣23÷8−14×(﹣2)2;(3)﹣24+(3﹣7)2﹣2×(﹣1)2;(4)[(﹣2)3+43]÷4+(−23). 【分析】(1)运用乘法对加法的分配律,简化计算.(2)先算乘方,再算乘除,最后算加减.(3)先算乘方,再算乘除,最后算加减.(4)先算乘方,再算中括号里的,再算除法,再算加法.【解答】解:(1)原式=(14+38−712)×24=14×24+38×24−712×24=6+9﹣14=1.(2)原式=−8÷8−14×4 =﹣1﹣1=﹣2.(3)原式=﹣16+(﹣4)2﹣2×1=﹣16+16﹣2=﹣2.(4)原式=(−8+43)÷4+(−23) =−203÷4+(−23) =−53+(−23)=−73.7.(4分)(2022•莱西市期末)计算:(1)﹣﹣﹣;(2)(−613)+(−713)﹣5; (3)25×34−(﹣25)×12+25×;(4)5×(﹣6)﹣(﹣4)2÷(﹣8).【分析】(1)利用有理数的加减运算的法则进行求解即可;(2)利用加减运算的法则进行求解即可;(3)先把式子进行整理,再利用乘法的分配律进行求解即可;(4)先算乘方,再算乘法与除法,最后算加法即可.【解答】解:(1)﹣﹣﹣=﹣﹣=﹣=﹣12;(2)(−613)+(−713)﹣5 =﹣1﹣5=﹣6;(3)25×34−(﹣25)×12+25× =25×0.75+25×0.5+25×=25×()=25×=;(4)5×(﹣6)﹣(﹣4)2÷(﹣8)=5×(﹣6)﹣16÷(﹣8)=﹣30+2=﹣28.8.(4分)(2022•越城区校级月考)计算(1)10﹣1÷(16−13)÷112(2)﹣12﹣6×(−13)2+(﹣5)×(﹣3)(3)32÷(﹣22)×(﹣114)+(﹣5)6×(−125)3 (4)[1﹣(38+16−34)×24]÷5.【分析】(1)先算括号里面的,再算除法,最后算减法即可;(2)先算乘方,再算乘法,最后算加减即可;(3)先算乘方,再算除法和乘法,最后算加减即可;(4)先算乘法,再算加减,最后算除法即可.【解答】解: (1)原式=10﹣1÷(−16)×12=10+72=82;(2)原式=﹣1﹣6×19+15 =﹣1−23+15 =1313;(3)原式=32÷(﹣4)×(−54)+(﹣1)=10﹣1=9;(4)[1﹣(38+16−34)×24]÷5.=[1﹣(9+4﹣18)]÷5=[1﹣(﹣5)]÷5=6÷5=.9.(4分)(2022•宜兴市期中)计算:(1)﹣10﹣(﹣16)+(﹣24);(2)5÷(−35)×53; (3)﹣22×7﹣(﹣3)×6+5;(4)(113+18−2.75)×(﹣24)+(﹣1)2014+(﹣3)3. 【分析】(1)根据有理数的加减混合运算进行计算即可;(2)根据有理数的乘除法进行计算即可;(3)根据有理数的混合运算进行计算即可;(4)根据有理数的混合运算进行计算即可.【解答】解:(1)原式=﹣10+16﹣24=﹣18;(2)原式=﹣5×53×53=−1259;(3)原式=﹣4×7+18+5=﹣28+18+5=﹣5;(4)原式=−43×24−18×24+114×24+1﹣27 =﹣32﹣3+66﹣26=5.10.(4分)(2022•镇平县月考)计算:(1)(−58)÷143×(−165)÷(−67)(2)﹣3﹣[﹣5+(1﹣×35)÷(﹣2)](3)(413−312)×(﹣2)﹣223÷(−12) (4)[50﹣(79−1112+16)×(﹣6)2]÷(﹣7)2.【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=−58×314×165×76=−12; (2)原式=﹣3+5+(1−325)×12=−3+5+1125=21125; (3)原式=−263+7+163=323;(4)原式=(50﹣28+33﹣6)×149=49×149=1.11.(4分)(2022•饶平县校级期中)计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣2467)÷6 (3)(﹣18)÷214×49÷(﹣16)(4)43−{(−3)4−[(−1)÷2.5+214×(−4)]÷(24815−27815)}.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24−67)×16=−4−17=−417;(3)原式=﹣18×49×49×(−116)=29;(4)原式=64﹣81+(﹣925)÷(﹣3)=64﹣81+4715=−131315. 12.(4分)(2022•定陶区期中)计算:(1)23﹣6×(﹣3)+2×(﹣4);(2)(﹣134)﹣(+613)﹣+103; (3)214×(−67)÷(12−2);(4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114).【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加法可以解答本题.【解答】解:(1)23﹣6×(﹣3)+2×(﹣4)=23+18+(﹣8)=33;(2)(﹣134)﹣(+613)﹣+103=(﹣134)+(﹣613)+(﹣214)+313 =[(﹣134)+(﹣214)]+[(﹣613)+313] =(﹣4)+(﹣3)=﹣7;(3)214×(−67)÷(12−2) =94×(−67)÷(−32) =94×67×23=97; (4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114)=(﹣125)×(−35)+32÷(﹣4)×(−54)=75+(﹣8)×(−54)=75+10=85.13.(4分)(2022•甘州区期末)计算:(1)(18−13+16)×(−24); (2)|−2|×(−1)2023−3÷12×2;(3)−12−(1−0.5)×13×[2−(−3)]2;(4)7×(−36)×(−87)×16. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算绝对值及乘方运算,再计算乘除运算,最后算加减运算,即可得到结果;(3)原式先计算乘方及括号中的运算,再计算乘法运算,最后算加减运算,即可得到结果;(4)原式约分即可得到结果.【解答】解:(1)原式=18×(﹣24)−13×(﹣24)+16×(﹣24)=﹣3+8﹣4=1;(2)原式=2×(﹣1)﹣3×2×2=﹣2﹣12=﹣14;(3)原式=﹣1−12×13×25 =﹣1+76 =−316; (4)原式=48.14.(4分)(2022•江都区期中)计算(1)0﹣(+3)+(﹣5)﹣(﹣7)﹣(﹣3)(2)48×(−23)﹣(﹣48)÷(﹣8) (3)﹣12×(12−34+112)(4)﹣12﹣(1﹣)×13×[3﹣(﹣3)2].【分析】(1)先将减法转化为加法,再利用加法法则计算;(2)先算乘除,再算加法即可;(3)利用分配律计算即可;(4)先算乘方,再算乘除,最后算加减,有括号,要先做括号内的运算.【解答】解:(1)原式=0﹣3﹣5+7+3=﹣8+10=2;(2)原式=﹣32﹣6=﹣38;(3)原式=﹣12×12+12×34−12×112=﹣6+9﹣1=﹣7+9=2;(4)原式=﹣1−12×13×(3﹣9) =﹣1−12×13×(﹣6) =﹣1+1=0.15.(4分)(2022•铁力市校级期中)计算:(1)25−|−112|−(+214)+(−2.75) (2)[(−12)2+(−14)×16+42]×[(−32)−3](3)−13−(1−0.5)×13×[2−(−3)2](4)(−5)×313+2×313+(−6)×313.【分析】(1)先计算绝对值、将减法转化为加法,再根据法则计算可得;(2)根据有理数混合运算顺序和运算法则计算可得;(3)根据有理数混合运算顺序和运算法则计算可得;(4)逆用乘法分配律提取313,再计算括号内的,最后计算乘法即可得.【解答】解:(1)原式=25−32−94−114=−1110−5=﹣6110;(2)原式=(14−4+16)×(−92)=494×(−92)8(3)原式=﹣1−12×13×(﹣7)=﹣1+76=16;(4)原式=103×(﹣5+2﹣6) =103×(﹣9)=﹣30.16.(4分)(2022•禄丰县校级期中)计算(1)23﹣17﹣(﹣7)+(﹣16)(2)(﹣4)+|﹣8|+(﹣3)3﹣(﹣3)(3)﹣24÷(223)2﹣312×(−14)(4)×(﹣2)3﹣[4÷(−23)2+1]+(﹣1)2022.【分析】(1)根据有理数的加法法则计算即可;(2)先计算乘方、绝对值即可;(3)先算乘方,再算乘除,最后算加减即可;(4)先算乘方,再算乘除,最后算加减即可;【解答】解:(1)23﹣17﹣(﹣7)+(﹣16)=23﹣17+7﹣16=﹣3(2)(﹣4)+|﹣8|+(﹣3)3﹣(﹣3)=﹣4+8﹣27+3=﹣20(3)﹣24÷(223)2﹣312×(−14)=﹣24×964+72×14=−278+788=−52 (4)×(﹣2)3﹣[4÷(−23)2+1]+(﹣1)2022.=﹣2﹣(9+1)+1=﹣1117.(4分)(2022•高新区校级期中)计算:(1)12﹣(﹣18)+(﹣12)﹣15(2)(−13)﹣(−25)+(−23)+35(3)(14−12+16)×(﹣24)(4)﹣14+(﹣2)3×(−12)﹣(﹣32)【分析】(1)减法转化为加法,依据法则计算可得;(2)减法转化为加法,运用加法的交换律和运算法则计算可得;(3)运用乘法分配律计算可得;(4)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=12+18﹣12﹣15=30﹣27=3;(2)原式=−13−23+25+35=−1+1=0;(3)原式=14×(﹣24)−12×(﹣24)+16×(﹣24)=﹣6+12﹣4=2;(4)原式=﹣1+8×12+9=﹣1+4+9=12.18.(4分)(2022•如皋市校级月考)计算:(1)11+(﹣22)﹣3×(﹣11)(2)(−36911)÷9(3)3.52×(−47)+2.48×(−47)−13×(−47) (4)(13−12)×(−6)+(−14)÷(−18).【分析】(1)先计算乘法,再计算加减可得;(2)将除法转化为乘法,再计算乘法可得;(3)逆用乘法分配律提取公因数−47,再计算括号内的,最后计算乘法即可得;(4)先计算乘法、除法,然后计算加减可得.【解答】解:(1)原式=11﹣22+33=22;(2)原式=﹣(36+911)×19=−4−111=−4111;(3)原式=(−47)×(﹣13)=(−47)×(﹣7)=4;(4)原式=﹣2+3+2=3.19.(4分)(2022•郯城县月考)计算(1)1+(﹣2)+|﹣2﹣3|﹣5﹣(﹣9)(2)113×(13−12)×311÷54(3)(512+23−34)×(﹣12)(4)﹣3﹣[﹣5+(1﹣2×35)÷(﹣2)].【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算括号中的运算,再计算乘除运算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘除运算,再计算加减运算即可求出值.【解答】解:(1)原式=1﹣2+5﹣5+9=8;(2)原式=113×(−16)×311×45=−215; (3)原式=512×(﹣12)+23×(﹣12)−34×(﹣12)=﹣5﹣8+9=﹣4;(4)原式=﹣3+5−110=.20.(4分)(2022•南川区校级月考)计算(1)(+45)﹣91+5+(﹣9)(2)(−34)×113÷(﹣112) (3)(−74)÷78−23×(−6)(4)[1124−(38+16−34)×24]÷5.【分析】(1)根据加法交换律和结合律简便计算;(2)将除法变为乘法,再约分计算即可求解;(3)先算乘除法,再算加法即可求解;(4)先算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.注意乘法分配律的运用.【解答】解:(1)(+45)﹣91+5+(﹣9)=(45+5)+(﹣91﹣9)=50﹣100=﹣50;(2)(−34)×113÷(﹣112) =34×43×23 =23;(3)(−74)÷78−23×(−6)=﹣2+4=2;(4)[1124−(38+16−34)×24]÷5 =[1124−9﹣4+18]÷5=6124÷5=1524. 21.(4分)(2022•凉州区校级月考)计算:(1)74÷78−23×(﹣6)(2)(−34−59+712)÷136(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|(4)113×(13−12)×311÷54.【分析】(1)根据有理数的乘除法和减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的乘除法和减法可以解答本题.【解答】解:(1)74÷78−23×(﹣6)=74×87+4=2+4=6;(2)(−34−59+712)÷136=(−34−59+712)×36=﹣27﹣15+21=﹣21;(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|=(﹣)+(﹣)+2.5+(﹣)=﹣;(4)113×(13−12)×311÷54=113×(−16)×311×45=−215.22.(4分)(2022•凉州区校级月考)计算:(1)74÷78−23×(﹣6)(2)(−34−59+712)÷136(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|(4)113×(13−12)×311÷54.【分析】(1)根据有理数的乘除法和减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的乘除法和减法可以解答本题.【解答】解:(1)74÷78−23×(﹣6)=74×87+4=2+4=6;(2)(−34−59+712)÷136=(−34−59+712)×36=﹣27﹣15+21=﹣21;(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|=(﹣)+(﹣)+2.5+(﹣)=﹣;(4)113×(13−12)×311÷54=113×(−16)×311×45=−215.23.(4分)(2022•兴隆台区校级月考)计算(1)(1−38+712)×(﹣24)(2)25×16+25×13−25×12(3)(﹣1)4−17×[2﹣(﹣4)2](4)﹣32+16÷(﹣2)×12−(﹣1)2015.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式逆用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解: (1)原式=﹣24+9﹣14=﹣29;(2)原式=25×(16+13−12)=25×0=0;(3)原式=1−17×(﹣14)=1+2=3; (4)原式=﹣9﹣4+1=﹣12.24.(4分)(2022•苏仙区校级期中)计算(1)23+(﹣37)﹣23+7(2)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(3)(23−112−415)×(﹣60).(4)﹣12022+|﹣5|×(−85)﹣(﹣4)2÷(﹣8).【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=23﹣23﹣37+7=﹣30;(2)原式=﹣10+2﹣12=﹣20;(3)原式=﹣40+5+16=﹣19;(4)原式=﹣1﹣8+2=﹣7.25.(4分)(2022•立山区期中)计算题(1)﹣81÷(﹣214)×49÷(﹣16);(2)(−124)÷(123−54+76);(3)﹣32÷(﹣2)3×|﹣113|×6+(﹣2)4;(4)﹣(23)2×18﹣2×(−15)÷25+|﹣8|×2+179×(﹣112)2.【分析】(1)原式从左到右依次计算即可求出值;(2)原式被除式与除式调换求出值,即可求出所求;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣81×49×49×116=﹣1;(2)(123−54+76)÷(−124)=(123−54+76)×(﹣24)=53×(﹣24)−54×(﹣24)+76×(﹣24)=﹣40+30﹣28=﹣38,则原式=−138;(3)原式=﹣9÷(﹣8)×43×6+16=98×43×6+16=9+16=25;(4)原式=−49×18﹣2×(−15)×52+8×+169×94=﹣8+1+2+4=﹣1.。
有理数的加减乘除混合运算题
有理数的加减乘除混合运算题
一、简单类型
1. 小明去商店买文具,一支铅笔的价格是元(这里我们把价格看作有理数),一个笔记本的价格是元。
他买了支铅笔和个笔记本,然后给了售货员元。
售货员应该找给他多少钱呢?(用有理数混合运算来表示这个过程哦)
- 首先计算买文具花的钱:(元)。
- 然后计算应找的钱数:(元)。
用有理数混合运算式子表示就是。
2. 小蚂蚁在数轴上爬行,它从原点出发,先向右爬了个单位长度(我们把向右看作正数,这个就是有理数啦),然后向左爬了个单位长度,接着又向右爬了个单位长度。
那么小蚂蚁现在在数轴上的位置对应的有理数是多少呢?
- 我们可以这样计算:。
二、稍微复杂一点的类型
1. 有这样一道题:计算。
这就像是一个小迷宫,我们要按照顺序一步一步走哦。
- 先算除法:。
- 再算括号里的减法:。
- 接着算乘法:。
- 最后算加法:。
2. 假如你有一个魔法数字盒子,按照下面的规则计算结果。
先输入数字,然后先除以,再加上,最后乘以。
这个过程用有理数混合运算式子表示就是。
- 先算括号里的除法:。
- 再算括号里的加法:。
- 最后算乘法:。
有理数乘除法混合运算
有理数的乘除法混合运算混合运算.主要学习乘除法混合运算的相关法则.重点在于有理数乘除法的混合运算,同学们需要多加练习.1、有理数的混合运算(1)运算顺序:先乘方,后乘除,再加减;同级运算从左到右;如果有括号,先算小括号,后算中括号,再算大括号.(2)去括号:括号前带负号,去括号后括号内各项要变号,即()a b a b -+=--,()a b a b --=-+.(3)各种运算定律和运算法则都适用于有理数运算.【例1】计算:(1)()2110.25362⎛⎫⎛⎫⎛⎫-+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)()22231-⨯-⨯-;(3)()()()115551010---⨯÷⨯-.有理数乘除法混合运算内容分析模块一有理数乘除法混合运算知识精讲例题解析(1)()()28133-÷-⨯;(2)()41110.53---⨯;(3)34210215⎛⎫+÷⨯-- ⎪⎝⎭.【例3】计算:(1)()30.250.1250.754--+--+-;(2)32212355⎛⎫------- ⎪⎝⎭.【例4】计算:(1)()12332.50.75 1.415345⎛⎫⎛⎫-÷⨯-⨯÷-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭;(2)()2452.41 4.12513.42183137⎡⎤⎛⎫⎛⎫÷-⨯----- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦.(1)22113115517⎛⎫-÷-⨯ ⎪⎝⎭;(2)221110.7523122⎛⎫++⨯+ ⎪⎝⎭.【例6】计算:(1)7377184812⎛⎫⎛⎫-÷-- ⎪ ⎪⎝⎭⎝⎭;(2)114723132456⎛⎫⎛⎫-+÷- ⎪ ⎝⎭⎝⎭.【例7】计算:(1)()()3211331232⎧⎫⎡⎤⎛⎫----+-÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭;(2)()341313120.544104⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫+--⨯-÷---⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭.【例8】计算:63.8552 1.2573171 1.1739⎛⎫⨯⨯÷⎪⎝⎭⎛⎫+÷⨯⎪⎝⎭.【例9】计算:1231123126.323411⎡⎤⎛⎫⎛⎫++-⨯-⨯⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦271311⎛⎫÷--⎪⎝⎭.【例10】计算:()()()()()2222323287 348593258⨯-⨯---⨯-⎡⎤-⨯+⨯--+⨯⎣⎦.【例11】计算:52111111339369126912⎛⎫⎛⎫⎛⎫+-⨯++--+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11125691239⎛⎫⎛⎫+++⨯-⎪⎝⎭⎝⎭.【习题1】计算:(1)()5414772⎛⎫⎛⎫⎛⎫-⨯-÷--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)()()23127123⎛⎫⎡⎤+--+-⨯ ⎪⎣⎦⎝⎭;(3)()()23223251833⎛⎫---⨯--÷-- ⎪⎝⎭;(4)113241777113610710718811⎛⎫⎛⎫-+÷-÷-⨯ ⎝⎭⎝⎭;(5)525228314183 4.37519129-⨯⎛⎫+÷ ⎪⎝⎭;随堂检测。
有理数的混合运算专项训练(100题)(举一反三)(解析版)
专题2.13 有理数的混合运算专项训练(100题)参考答案与试题解析一.解答题(共25小题,满分100分,每小题4分)1.(4分)(2021春•道里区期末)计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(−134)×(−112)÷(−214);(3)76÷(16−13)×314÷35;(4)﹣12×(﹣5)÷[(﹣3)2+2×(﹣5)].【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式先计算括号中的减法运算,再计算乘除运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算即可求出值.【解答过程】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=−74×32×49=−76;(3)原式=76÷(−16)×314×53=76×(﹣6)×314×53=−52;(4)原式=﹣1×(﹣5)÷(9﹣10)=﹣1×(﹣5)÷(﹣1)=5÷(﹣1)=﹣5.2.(4分)(2021春•杨浦区校级期中)计算:(1)(﹣413)﹣(﹣212)+(﹣923)+3.5;(2)(﹣1)÷(0.75)×(﹣113)÷3×(﹣0.5)2;(3)(﹣3)2﹣(112)3×39−6÷23;(4)(12−3+56−712)×(﹣62).【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法可以解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、乘法分配律可以解答本题.【解答过程】解:(1)(﹣413)﹣(﹣212)+(﹣923)+3.5=(﹣413)+212+(﹣923)+3.5=[(﹣413)+(﹣923)]+(212+3.5)=(﹣14)+6=﹣8;(2)(﹣1)÷(0.75)×(﹣113)÷3×(﹣0.5)2=(﹣1)×43×(−43)×13×14=1×43×43×13×14=427;(3)(﹣3)2﹣(112)3×39−6÷23=9−278×39−6×32=9−98−9=−98;(4)(12−3+56−712)×(﹣62)=(12−3+56−712)×(﹣36)=12×(﹣36)﹣3×(﹣36)+56×(﹣36)−712×(﹣36)=(﹣18)+108+(﹣30)+21=81.3.(4分)(2020秋•卫辉市期末)计算:(1)|3﹣8|﹣|14|+(−34);(2)(﹣1)2021+2×(−13)2÷16;(3)123×(0.5−23)÷119;(4)(﹣48)×[(−12)−58+712].【解题思路】(1)先计算绝对值,再计算加减即可;(2)先计算乘方、除法转化为乘法,再计算乘法,最后计算加减即可;(3)先计算括号内减法、将除法转化为乘法,再计算乘法即可;(4)利用乘法的交换律计算即可.【解答过程】解:(1)原式=5−14−34=5﹣1=4;(2)原式=﹣1+2×19×6=﹣1+43=13;(3)原式=53×(−16)×910=−14;(4)原式=(﹣48)×(−12)﹣(﹣48)×58+(﹣48)×712=24+30﹣28=26.4.(4分)(2020秋•门头沟区期末)计算:(1)(+4)×(+3)÷(−32);(2)(+10)﹣(+1)+(﹣2)﹣(﹣5);(3)(﹣24)×(23−58+12);(4)﹣12+(﹣6)×(−12)﹣8÷(﹣2)3.【解题思路】(1)先计算乘法、将除法转化为乘法,再计算乘法即可;(2)减法转化为加法,再进一步计算即可;(3)利用乘法分配律展开,再进一步计算即可;(4)根据有理数的混合运算顺序和运算法则计算即可.【解答过程】解:(1)原式=12×(−23)=﹣8;(2)原式=10﹣1﹣2+5=12;(3)原式=(﹣24)×23−(﹣24)×58+(﹣24)×12=﹣16+15﹣12=﹣13;(4)原式=﹣1+3﹣8÷(﹣8)=﹣1+3+1=3.5.(4分)(2020秋•西城区期末)计算:(1)13+(﹣24)﹣25﹣(﹣20);(2)25÷5×(−15)÷(−34);(3)(−79+56−34)×(﹣36);(4)﹣14﹣(1﹣0.5)×13×|1﹣(﹣5)2|.【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=13﹣24﹣25+20=﹣16;(2)原式=25×15×15×43=43;(3)原式=−79×(﹣36)+56×(﹣36)−34×(﹣36)=28﹣30+27=25;(4)原式=﹣1﹣0.5×13×24=﹣1﹣4=﹣5.6.(4分)(2020秋•呼和浩特期末)计算、求解:(1)(﹣8)×(12−114+18);(2)16×(﹣6)÷(−17)×7;(3)(﹣2)3÷45+113×|1﹣(﹣4)2|;(4)﹣12﹣(12−23)÷13×[﹣2+(﹣3)2].【解题思路】(1)原式利用乘法分配律计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=﹣8×12+8×54−8×18=﹣4+10﹣1=5;(2)原式=﹣1×(﹣7)×7=49;(3)原式=﹣8×54+43×|1﹣16|=﹣10+43×15=﹣10+20=10;(4)原式=﹣1+16×3×(﹣2+9)=﹣1+12×7=﹣1+7 2=52.7.(4分)(2020秋•金塔县期末)计算:(1)﹣28+(﹣13)﹣(﹣21)+13;(2)16÷(﹣2)3﹣4×(−1 8);(3)(512+23−34)×(−12);(4)2×(﹣3)2﹣33﹣6÷(﹣2).【解题思路】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方,然后计算乘法、除法,最后计算减法,求出算式的值是多少即可.(3)应用乘法分配律,求出算式的值是多少即可.(4)首先计算乘方,然后计算乘法、除法,最后从左向右依次计算,求出算式的值是多少即可.【解答过程】解:(1)﹣28+(﹣13)﹣(﹣21)+13=﹣41+21+13=﹣20+13=﹣7.(2)16÷(﹣2)3﹣4×(−1 8)=16÷(﹣8)+1 2=﹣2+1 2=−32.(3)(512+23−34)×(−12)=512×(﹣12)+23×(﹣12)−34×(﹣12)=﹣5﹣8+9=﹣4.(4)2×(﹣3)2﹣33﹣6÷(﹣2)=18﹣27+3=﹣9+3=﹣6.8.(4分)(2020秋•二道区期末)计算:(1)(﹣15)﹣(﹣25);(2)|﹣7.5|﹣|−12|;(3)(−34+712−58)×(﹣24);(4)﹣991315×15.【解题思路】(1)先把减法转化为加法,然后根据有理数的加法即可解答本题;(2)先去掉绝对值,然后根据有理数的减法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据乘法分配律可以解答本题.【解答过程】解:(1)(﹣15)﹣(﹣25)=(﹣15)+25=10;(2)|﹣7.5|﹣|−12|=7.5﹣0.5=7;(3)(−34+712−58)×(﹣24)=−34×(﹣24)+712×(﹣24)−58×(﹣24)=18+(﹣14)+15=19;(4)﹣991315×15=(﹣100+215)×15=﹣100×15+215×15=﹣1498.9.(4分)(2020秋•虎林市期末)计算:(1)(﹣8)+(+9)﹣(﹣5)+(﹣3);(2)(23+49−56)×18;(3)(23−12)÷(−76)×145;(4)﹣42+(﹣20)÷(﹣5)﹣6×(﹣2)3.【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算括号中的运算,再计算乘除运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=﹣8+9+5﹣3=1+2=3;(2)原式=23×18+49×18−56×18=12+8﹣15=5;(3)原式=16×(−67)×145=−25;(4)原式=﹣16+4﹣6×(﹣8)=﹣16+4+48=36.10.(4分)(2020秋•北碚区期末)计算下列各题(1)(﹣2)3﹣|2﹣5|﹣(﹣15);(2)(−12+56−38+512)÷(−124);(3)﹣32﹣[(112)3×(−29)﹣6÷|−23|];(4)2×(﹣137)﹣234×13+(﹣137)×5+14×(﹣13).【解题思路】(1)根据有理数的乘方、有理数的加减法可以解答本题;(2)先把除法转化为乘法,然后根据乘法分配律可以解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(4)根据乘法分配律可以解答本题.【解答过程】解:(1)(﹣2)3﹣|2﹣5|﹣(﹣15)=(﹣8)﹣3+15=(﹣8)+(﹣3)+15=4;(2)(−12+56−38+512)÷(−124)=(−12+56−38+512)×(﹣24)=−12×(﹣24)+56×(﹣24)−38×(﹣24)+512×(﹣24)=12+(﹣20)+9+(﹣10)=﹣9;(3)﹣32﹣[(112)3×(−29)﹣6÷|−23|]=﹣9﹣[(32)3×(−29)﹣6÷23]=﹣9﹣[278×(−29)﹣6×32]=﹣9﹣(−34−9)=﹣9+34+9=34;(4)2×(﹣137)﹣234×13+(﹣137)×5+14×(﹣13)=(2+5)×(﹣137)+[(﹣234)+(−14)]×13=7×(−107)+(﹣3)×13=(﹣10)+(﹣39)=﹣49.11.(4分)(2020秋•南山区校级期中)计算题(1)12﹣(﹣18)+(﹣7)+(﹣12);(2)(﹣18)×(12−19+16);(3)16÷|﹣2|3﹣|﹣8|×(−14);(4)﹣12﹣(﹣10)÷12×2+(﹣4)2.【解题思路】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)根据乘法分配律可以解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答过程】解:(1)12﹣(﹣18)+(﹣7)+(﹣12)=12+18+(﹣7)+(﹣12)=[12+(﹣12)]+[18+(﹣7)]=0+11=11;(2)(﹣18)×(12−19+16)=(﹣18)×12−(﹣18)×19+(﹣18)×16=(﹣9)+2+(﹣3)=﹣10;(3)16÷|﹣2|3﹣|﹣8|×(−14)=16÷8﹣8×(−14)=2+2=4;(4)﹣12﹣(﹣10)÷12×2+(﹣4)2=﹣1﹣(﹣10)×2×2+16=﹣1+40+16=55.12.(4分)(2020秋•定陶区期中)计算:(1)23﹣6×(﹣3)+2×(﹣4);(2)(﹣134)﹣(+613)﹣2.25+103;(3)214×(−67)÷(12−2);(4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114).【解题思路】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加法可以解答本题.【解答过程】解:(1)23﹣6×(﹣3)+2×(﹣4)=23+18+(﹣8)=33;(2)(﹣134)﹣(+613)﹣2.25+103=(﹣134)+(﹣613)+(﹣214)+313=[(﹣134)+(﹣214)]+[(﹣613)+313]=(﹣4)+(﹣3)=﹣7;(3)214×(−67)÷(12−2)=94×(−67)÷(−32)=94×67×23=97;(4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114)=(﹣125)×(−35)+32÷(﹣4)×(−54)=75+(﹣8)×(−54)=75+10=85.13.(4分)(2020秋•武昌区校级月考)计算:(1)(−813)+(+412)−123;(2)(﹣32)÷(﹣4)﹣(﹣25)×4;(3)(−214)÷412×(−118)÷(−98);(4)[1124−(38+16−34)×24]÷(−5).【解题思路】(1)根据有理数加减法则进行计算,即可得出答案;(2)根据有理数混合运算法则:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,进行计算即可得出答案.(3)解法同(2);(4)解法同(2).【解答过程】解:(1)(−813)+(+412)−123=−253+92−53 =﹣10+92=−112;(2)(﹣32)÷(﹣4)﹣(﹣25)×4=8﹣(﹣100)=8+100=108;(3)(−214)÷412×(−118)÷(−98)=−94÷92×(−98)×(−89) =−12×1 =−12;(4)[1124−(38+16−34)×24]÷(−5)=[2524−(38×24+16×24−34×24)]÷(﹣5)=[2524−(9+4﹣18)]÷(﹣5) =[2524−(﹣5)]÷(﹣5)=2524×(−15)−(−5)×(−15) =−524−1 =−2924.14.(4分)(2020秋•秀洲区月考)计算下列各题:(1)﹣3﹣(﹣9)+5;(2)|−110|×(﹣5)﹣|﹣312|;(3)(−12)×(−8)+(−6)÷(−13);(4)(﹣5)×(﹣7)+(512+23−34)×(﹣12).【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算绝对值运算,再计算乘法运算,最后算减法运算即可求出值;(3)原式先计算乘除运算,再计算加法运算即可求出值;(4)原式先计算乘法运算,再计算加减运算即可求出值.【解答过程】解:(1)原式=﹣3+9+5=﹣3+14=11;(2)原式=110×(﹣5)﹣312=−12−312=﹣4;(3)原式=12×8+6×3=4+18=22;(4)原式=5×7+512×(﹣12)+23×(﹣12)−34×(﹣12)=35﹣5﹣8+9=31.15.(4分)(2020秋•新都区校级月考)(1)(−52)÷(﹣15)×(−115);(2)﹣745×(﹣856)﹣(﹣7.8)×(﹣434)−4912÷539;(3)(﹣2)3×(﹣1)4﹣|﹣12|÷[﹣(−12)2];(4)(﹣24)×(18−13+14)+(﹣2)3.【解题思路】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用乘法分配律计算得出答案;(3)直接利用有理数的混合运算法则计算得出答案;(4)直接利用乘法分配律计算得出答案.【解答过程】解:(1)(−52)÷(﹣15)×(−115)=52×115×(−115)=−190;(2)﹣745×(﹣856)﹣(﹣7.8)×(﹣434)−4912÷539=﹣7.8×(﹣856)﹣(﹣7.8)×(﹣434)−4912×7.8=7.8×(856−434−4112)=7.8×(81012−4912−4112)=7.8×0=0;(3)(﹣2)3×(﹣1)4﹣|﹣12|÷[﹣(−12)2]=﹣8﹣12×(−14)=﹣8+3=﹣5;(4)(﹣24)×(18−13+14)+(﹣2)3=﹣24×18+(﹣24)×(−13)+(﹣24)×14−8=﹣3+8﹣6﹣8=﹣9.16.(4分)(2020秋•侯马市期中)计算:(1)﹣3.5÷78×(−34);(2)﹣124849×7;(3)25×34−(﹣25)×12+25×(−14);(4)﹣32﹣3×22﹣(﹣3×2)3.【解题思路】(1)原式从左到右依次计算即可求值;(2)原式变形后,利用乘法分配律计算即可求出值;(3)原式逆用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=−72×87×(−34)=72×87×34=3;(2)原式=(﹣13+149)×7=﹣91+17=﹣9067;(3)原式=25×(34+12−14)=25×1=25;(4)原式=﹣9﹣3×4﹣(﹣6)3=﹣9﹣12+216=195.17.(4分)(2020秋•沈北新区期中)计算:(1)[115+(−56)﹣(−712)]×(﹣60);(2)﹣22÷49×(−23)2;(3)﹣1﹣(1﹣0.5)×13×[2﹣(﹣3)2];(4)﹣32﹣(﹣2﹣5)2﹣|−14|×(﹣2)4.【解题思路】(1)利用乘法分配律计算即可;(2)先计算乘方,将除法转化为乘法,再进一步计算即可;(3)根据有理数的混合运算顺序和运算法则计算即可;(4)根据有理数的混合运算顺序和运算法则计算即可.【解答过程】解:(1)原式=(115−56+712)×(−60)=−4+50﹣35=11;(2)原式=−4×94×49=−4;(3)原式=−1+76×(−7)=−1+76=16;(4)原式=−9−49−14×16=−58−4=−62.18.(4分)(2020秋•资中县期中)计算下列各题:(1)23﹣17﹣(﹣7)+(﹣16).(2)(﹣20)×(﹣1)9﹣0÷(﹣4).(3)(﹣36)×(−49+56−712).(4)﹣22﹣(﹣2)2﹣(﹣3)2×(−23)﹣42÷|﹣4|.【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答过程】解:(1)23﹣17﹣(﹣7)+(﹣16)=23+(﹣17)+7+(﹣16)=(23+7)+[(﹣17)+(﹣16)]=30+(﹣33)=﹣3;(2)(﹣20)×(﹣1)9﹣0÷(﹣4)=(﹣20)×(﹣1)﹣0=20﹣0=20;(3)(﹣36)×(−49+56−712)=(﹣36)×(−49)+(﹣36)×56+(﹣36)×(−712) =16+(﹣30)+21=7;(4)﹣22﹣(﹣2)2﹣(﹣3)2×(−23)﹣42÷|﹣4|=﹣4﹣4﹣9×(−23)﹣16÷4=﹣4﹣4+6﹣4=﹣6.19.(4分)(2020秋•广州期中)计算:(1)12﹣(﹣18)﹣21;(2)﹣81÷(﹣214)×49÷(﹣16); (3)(﹣7.03)×40.16+(﹣0.16)×(﹣7.03)+7.03×(﹣60);(4)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2020.【解题思路】(1)从左往右计算即可求解;(2)将带分数变为假分数,除法变为乘法,再约分计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【解答过程】解:(1)12﹣(﹣18)﹣21=30﹣21=9;(2)﹣81÷(﹣214)×49÷(﹣16) =﹣81×(−49)×49×(−116)=﹣1;(3)(﹣7.03)×40.16+(﹣0.16)×(﹣7.03)+7.03×(﹣60)=7.03×(﹣40.16+0.16﹣60)=7.03×(﹣100)=﹣703;(4)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2020=﹣8+6+3﹣1=0.20.(4分)(2020秋•孝义市期中)计算:(1)(﹣15)+(+3)﹣(﹣5)﹣(+7);(2)−12+23+56−34;(3)(−23)×58÷(﹣0.25);(4)﹣12+3×(﹣2)2×(13−1)÷83.【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的乘除法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答过程】解:(1)(﹣15)+(+3)﹣(﹣5)﹣(+7)=(﹣15)+3+5+(﹣7)=[(﹣15)+(﹣7)]+(3+5)=(﹣22)+8=﹣14;(2)−12+23+56−34=−612+812+1012−912=14;(3)(−23)×58÷(﹣0.25)=23×58÷14=23×58×4=53;(4)﹣12+3×(﹣2)2×(13−1)÷83=﹣1+3×4×(−23)×38=﹣1﹣3×4×23×38=﹣1﹣3=﹣4.21.(4分)(2020秋•叶县期中)计算:(1)12+(﹣8)﹣(﹣7)﹣15;(2)(1+23−34)×(﹣12);(3)|﹣5|÷(﹣127)×0.8×214;(4)﹣23÷(−12)2+9×(−13)3﹣(﹣1)2020.【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据乘法分配律可以解答本题;(3)根据绝对值、有理数的乘除法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答过程】解:(1)12+(﹣8)﹣(﹣7)﹣15=12+(﹣8)+7+(﹣15)=(12+7)+[(﹣8)+(﹣15)]=19+(﹣23)=﹣4;(2)(1+23−34)×(﹣12)=1×(﹣12)+23×(﹣12)−34×(﹣12)=(﹣12)+(﹣8)+9=(﹣20)+9=﹣11;(3)|﹣5|÷(﹣127)×0.8×214=5×(−79)×45×94=﹣7;(4)﹣23÷(−12)2+9×(−13)3﹣(﹣1)2020=﹣8÷14+9×(−127)﹣1=﹣8×4+(−13)+(﹣1)=﹣32+(−13)+(﹣1)=﹣3313.22.(4分)(2020秋•南岸区校级月考)计算:(1)9+(﹣8)+10﹣2+(﹣9);(2)(−35)×|﹣312|÷45÷7;(3)﹣32÷214×(−23)2+4﹣22×(−13);(4)991225×(﹣2)+(﹣991225)×(﹣27).【解题思路】(1)利用加法运算律,将和为0的数结合,再计算即可;(2)先化简绝对值,再算乘除法即可;(3)先算乘方,再算乘除,最后算加减即可;(4)利用分配律计算即可.【解答过程】解:(1)9+(﹣8)+10﹣2+(﹣9)=[9+(﹣9)]+[(﹣8)+10﹣2]=0+0=0;(2)(−35)×|﹣312|÷45÷7=(−35)×72×54×17=−38;(3)﹣32÷214×(−23)2+4﹣22×(−13)=﹣9×49×49+4﹣4×(−13)=−169+4+43=329;(4)991225×(﹣2)+(﹣991225)×(﹣27)=991225×(﹣2)+991225)×27=991225×(﹣2+27)=(100−1325)×25=2500﹣13=2487.23.(4分)(2020秋•原阳县月考)计算:(1)12﹣(﹣18)+(﹣7)﹣20;(2)6.14+(−234)−(−5.86)−(+14);(3)(−12)×(14−16−12)−|−5|;(4)(29−14+118)÷(−136).【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据乘法分配律和有理数的加减法可以解答本题;(4)先把除法转化为乘法,然后利用乘法分配律即可解答本题.【解答过程】解:(1)12﹣(﹣18)+(﹣7)﹣20=12+18+(﹣7)+(﹣20)=(12+18)+[(﹣7)+(﹣20)]=30+(﹣27)=3;(2)6.14+(−234)−(−5.86)−(+14)=6.14+(﹣234)+5.86+(−14)=(6.14+5.86)+[(﹣234)+(−14)]=12+(﹣3)=9;(3)(−12)×(14−16−12)−|−5|=(﹣12)×14−(﹣12)×16−(﹣12)×12−5=(﹣3)+2+6﹣5=﹣1+6﹣5=5﹣5=0;(4)(29−14+118)÷(−136)=(29−14+118)×(﹣36)=29×(﹣36)−14×(﹣36)+118×(﹣36)=(﹣8)+9+(﹣2)=﹣1.24.(4分)(2020秋•临汾月考)计算:(1)﹣(﹣2.5)+(+2.2)﹣3.1+(﹣0.5)﹣(+1.1);(2)﹣0.5﹣314+(−2.75)+712;(3)(−34−56+78)×(−24);(4)(−8)×(−1137)+(−7)×(−1137)+(−15)×1137.【解题思路】(1)直接根据有理数的加减运算法则即可;(2)先把小数化成分数,然后根据交换律和结合律进行简便运算;(3)利用乘法的分配律进行简便运算;(4)提取公因式进行简便运算.【解答过程】解:(1)原式=2.5+2.2﹣3.1﹣0.5﹣1.1=4.7﹣4.7=0;(2)原式=−12+712−(314+234)=7﹣6=1;(3)原式=−34×(﹣24)−56×(﹣24)+78×(﹣24)=18+20﹣21=17;(4)原式=(﹣8﹣7+15)×(﹣1137)=0.25.(4分)(2020秋•立山区期中)计算题(1)﹣81÷(﹣214)×49÷(﹣16);(2)(−124)÷(123−54+76);(3)﹣32÷(﹣2)3×|﹣113|×6+(﹣2)4;(4)﹣(23)2×18﹣2×(−15)÷25+|﹣8|×0.52+179×(﹣112)2.【解题思路】(1)原式从左到右依次计算即可求出值;(2)原式被除式与除式调换求出值,即可求出所求;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=﹣81×49×49×116=﹣1;(2)(123−54+76)÷(−124)=(123−54+76)×(﹣24)=53×(﹣24)−54×(﹣24)+76×(﹣24)=﹣40+30﹣28=﹣38,则原式=−1 38;(3)原式=﹣9÷(﹣8)×43×6+16=98×43×6+16=9+16=25;(4)原式=−49×18﹣2×(−15)×52+8×0.25+169×94=﹣8+1+2+4=﹣1.。
3)有理数的乘除,乘方,及混合运算(讲义+习题)
知识8-----有理数的乘(除)运算A 有理数的乘法法则:① 两数相乘,同号为正,异号为负。
先算符号, ② 一般情况下均要把小数和带分数化成假分数, 课堂训练 (计算)(―2.5)x0.44.3x(—1弓)B 有理数的除法法则:① 所有除法运算要先把它化为乘法,乘以这个数的倒数; ② 把小数和带分数化成假分数 ③先算符号,再算数字。
课堂训练 (计算)-80 + ( -5)=C 有理数乘除的运算律:乘法运算满足交换律和结合律,通过运算可以简便运算。
特别地,利用互为 倒数的数进行约分可以简便运算;yx ( -S> X ( -0,25>-2x(+9) =(-3F (- 6 )0x(—3.6) =再算数字。
要养成这种转化的习惯; (-1才皆.2)0 + (-5) =f)= 4 5(一4)十i4)=44知识9-----有理数的乘方运算 定义:求几个相同数的积的运算叫乘方运算。
aa ……a =a n ,乘方的结果叫幕, a 叫底数,n 叫指数。
①正数的乘方运算与小学相同。
负数的奇次方为负,偶次方为正。
数字按乘方法 则算;②指数蹲在谁的上面管“谁”。
如-32、2次方只管、3.不管符号,(-3)2,2次管分子中的数1;1、计算7 -13方管-3,既管符号,又管数字。
1—3丿,2次方程管整个分数。
—,2次方只 3③分数- 31二二符号放上面,F 面,前面结果相同;①-34 =);②-3—( 23);④--=(32、比较大小:a)2 ⑥弓-3(-2)32⑧-(迖)1 (-2)3运算顺序:乘方f 乘(除)f 加(减)(7) 按运算法则,小括号二中括号=大括号。
即:通过观察先确定运算顺序; (8) 每一步都代表一个知识点,都有“技术含量”。
因此决不能跳步;(9) 必须重视判断符号;因为算式中经常省略三种符号: 正号加号和乘号,。
如口号。
2(3冷〕,括号前面省略了“X”乘号。
再如-6-7, -7前面省略了 “+”加号;(3)(5)(7) /8-(—12 +4) +(—2)x5_23 _I 1 斗丄+43 4 16—12 x(2.5)2— —4(6)(2) -(-)2咒3-4 十(-3)X 3 + 8X (-3)23 5 23⑷(肓-24)叫-1)-]2任 G+4.5]T>Ml 2 川(7+(8)3x (—0.5) (—4)-(—6)〔7.195—7丄 ”0.25—丄亠 13〕I 8八 4 13丿知识10——有理数的混合运算 混合运算法则:2 _2的倒数的相反数是3已知两个有理数 a,b ,如果ab v 0,且a+b < 0,那么(1 1 14、计算:(1) (—8)x(— -1—+-);2 4 8(2)(-丄-丄 + 3-lpc^^8)。
专题 有理数的乘除法计算题(八大题型共50题)(解析版) -2024-2025学年七年级数学上册同步
(苏科版)七年级上册数学《第二章 有理数》 专题 有理数的乘除法的计算题(50题)1.计算:(1)0×(﹣112);题型一 两个数有理数相乘(2)(﹣0.25)×(−45); (3)85×(−154); (4)(﹣416)×0.2.【分析】根据有理数的乘法运算法则进行计算即可得解. 【解答】解:(1)0×(﹣112)=0;(2)(﹣0.25)×(−45) =14×45 =15;(3)85×(−154)=−85×154 =﹣6;(4)(﹣416)×0.2=−256×15 =−56.【点评】本题考查了有理数的乘法运算,熟记运算法则是解题的关键. 2.计算:(1)(﹣3)×(﹣4); (2)(﹣3.2)×1.5; (3)49×(−32);(4)134×(﹣8).【分析】(1)两数相乘,同号得正,再把绝对值相乘即可求解; (2)两数相乘,异号得负,再把绝对值相乘即可求解; (3)两数相乘,异号得负,再把绝对值相乘即可求解; (4)两数相乘,异号得负,再把绝对值相乘即可求解.【解答】解:(1)原式=3×4=12; (2)原式=﹣(3.2×1.5)=﹣4.8; (3)原式=﹣(49×32)=−23;(4)原式=﹣(74×8)=﹣14.【点评】本题主要考查有理数的乘法,掌握有理数的乘法法则是解题的关键.3.计算:(1)(﹣3)×(﹣4); (2)(+45)×(﹣114);(3)(﹣2022)×0; (4)(﹣0.125)×8; (5)25×(﹣1); (6)(−13)×(﹣3).【分析】(1)根据有理数乘法法则:两数相乘,同号得正,并把绝对值相乘即可求解; (2)根据有理数乘法法则:两数相乘,异号得负,并把绝对值相乘即可求解; (3)根据有理数乘法法则:任何数与0相乘,都得0即可求解;(4)根据有理数乘法法则:两数相乘,异号得负,并把绝对值相乘即可求解; (5)根据有理数乘法法则:两数相乘,异号得负,并把绝对值相乘即可求解; (6)根据有理数乘法法则:两数相乘,同号得正,并把绝对值相乘即可求解. 【解答】解:(1)原式=3×4=12; (2)原式=﹣(45×54)=﹣1;(3)原式=0;(4)原式=﹣(0.125×8)=﹣1; (5)原式=﹣(25×1)=﹣25; (6)原式=13×3=1.【点评】本题主要考查了有理数的乘法,掌握有理数的乘法法则是解题的关键. 4.计算:(1)0×(−5 6);(2)3×(−1 3);(3)(﹣7)×(﹣1);(4)(−16)×(−67).【分析】根据有理理数的乘法法则进行计算即可.【解答】解:(1)原式=0;(2)原式=﹣3×13=−1;(3)原式=7×1=7;(4)原式=16×67=17.【点评】本题考查了有理数的乘法.解题的关键是掌握有理数的乘法法则,特别要注意积的符号.5.(−47)×23×(−114)×12.【分析】根据有理数的乘法法则有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘,都得0,进行计算即可得出答案.【解答】解:原式=[(−47)×(−54)]×(23×12)=57×13=521.【点评】本题主要考查了有理数的乘法,熟练掌握有理数的乘法法则进行计算是解决本题的关键.6.计算:(1)(﹣2)×(−12)×(﹣3);(2)(﹣0.1)×1000×(﹣0.01).【分析】根据有理数的乘法法则进行计算便可.【解答】解:(1)(﹣2)×(−12)×(﹣3)=﹣2×12×3=﹣3;题型二多个有理数相乘(2)(﹣0.1)×1000×(﹣0.01) =+0.1×1000×0.01 =1.【点评】本题主要考查了有理数的乘法,关键是熟记有理数乘法法则. 7.(2022秋•宁远县校级月考)求值:(1)14×(﹣16)×(−45)×(﹣114);(2)(−511)×(−813)×(﹣215)×(−34).【分析】根据有理数乘法法则进行计算便可. 【解答】解:(1)14×(﹣16)×(−45)×(﹣114)=−14×16×45×54 =﹣4;(2)(−511)×(−813)×(﹣215)×(−34)=511×813×115×34 =613. 【点评】本题考查了有理数乘法,关键是熟记和应用有理数法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数与零相乘积为零;几个不为零的数相乘,积的符号由负因数个数决定,负因数的个数为奇数时,积为负,负因数的个数为偶数时,积为正.8.计算: (1)(﹣8)×154×(−13); (2)(−37)×(−89)×(﹣6); (3)23×(−12)×(−45)×(﹣5).【分析】应用有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,进行计算即可得出答案.【解答】解:(1)原式=(﹣30)×(−13)=10;(2)(−37)×(−89)×(﹣6) 原式=821×(﹣6) =−4821; (3)23×(−12)×(−45)×(﹣5) 原式=(−13)×[(−45)×(﹣5)] =(−13)×4 =−43.【点评】本题主要考查了有理数的乘法,熟练掌握有理数的乘法法则进行求解是解决本题的关键. 9.计算下列各题:(1)6)2.0()61()30(⨯-⨯-⨯- (2))98()321(87)53(-⨯-⨯⨯- (3)411)54()16(41-⨯-⨯-⨯ (4))]751([)91()2.1(45--⨯-⨯-⨯- 【分析】根据有理数的乘法计算即可得出答案.【解答】解:(1)原式=6)62.06130(-=⨯⨯⨯- (2)原式=97)98358753(-=⨯⨯⨯-(3)原式=45)54()16(41⨯-⨯-⨯=4)45541641(=⨯⨯⨯+ (4)原式=72)712915645(751)91()2.1(45-=⨯⨯⨯-=⨯-⨯-⨯-【点评】本题考查多个有理数的乘法,正确掌握运算法则是解题的关键.10.计算:(1)3×(﹣1)×(−13). (2)﹣1.2×5×(﹣3)×(﹣4). (3)(−512)×415×(−32)×(﹣6).(4)54×(﹣1.2)×(−19).【分析】根据有理数的乘法法则进行计算便可. 【解答】解:(1)3×(﹣1)×(−13) =+3×1×13=1;(2)﹣1.2×5×(﹣3)×(﹣4) =﹣1.2×5×3×4 =﹣72; (3)(−512)×415×(−32)×(﹣6) =−512×415×32×6 =﹣1;(4)54×(﹣1.2)×(−19)=+54×1210×19 =16.【点评】本题主要考查了有理数的乘法,熟记运算法则与是解题的关键.11.计算:(﹣8)×9×(﹣1.25)×(−19)【分析】根据有理数的乘法法则和乘法的交换律进行计算即可. 【解答】解:(﹣8)×9×(﹣1.25)×(−19) =[(﹣8)×(﹣1.25)]×9[×(−19)] =10×(﹣1) =﹣10.【点评】此题考查了有理数的乘法,掌握有理数的乘法法则是解题的关键,是一道基础题.题型三 利用乘法运算律简便计算12.用简便方法计算:(﹣8)×(−43)×(﹣1.25)×54.【分析】根据有理数的乘法法则,运用乘法交换律和结合律进行简便计算. 【解答】解:原式=[(﹣8)×(﹣1.25)]×[(−43)×54] =10×(−53) =−503.【点评】本题主要考查有理数的乘法,掌握乘法法则,运用乘法交换律和结合律进行简便计算是解题的关键.13.(2022秋•惠城区月考)计算:45×(−25)×78×(−1115)÷14×(−117).【分析】先确定符号.把除法化为化为乘法,带分数化为假分数,最后计算出结果. 【解答】解:45×(﹣25)×78×(−1115)÷14×(﹣117) =﹣(45×25×78×1115×4×87) =﹣(78×87×45×1115×25×4)=﹣3300.【点评】本题考查有理数的混合运算,掌握乘法的交换律和结合律的熟练应用,把除法化为乘法是解题关键.14.计算:(﹣36)×997172【分析】直接利用有理数的乘法运算法则进而得出答案. 【解答】解:原式=(﹣36)×(100−172) =(﹣36)×100﹣(﹣36)×172 =﹣3600+12 =﹣359912.【点评】此题主要考查了有理数的乘法运算,正确掌握相关运算法则是解题关键.15.计算:−(−595960)×60; 【分析】根据有理数的乘法法则以及乘法运算律则计算即可. 【解答】解:原式=595960×60 =(60−160)×60 =60×60−160×60 =3600﹣1 =3599.【点评】本题主要考查了有理数的乘法,熟练掌握乘法运算律是解答本题的关键.16.用简便方法计算 (1)﹣392324×(﹣12) (2)(23−112−115)×(﹣60)【分析】根据乘法分配律,可得答案. 【解答】解:(1)原式=(﹣40+124)×(﹣12)=﹣40×(﹣12)−124×12=480−12=47912; (2)原式=23×(﹣60)+112×60+115×60=﹣40+5+4=﹣31. 【点评】本题考查了有理数的乘法,利用拆项法得出乘法分配律是解题关键. 17.用简便方法计算:(1)﹣13×23−0.34×27+13×(﹣13)−57×0.34 (2)(−13−14+15−715)×(﹣60)【分析】(1)首先应用乘法交换律,把﹣13×23−0.34×27+13×(﹣13)−57×0.34化成 ﹣13×23−13×13−57×0.34﹣0.34×27,然后应用乘法分配律,求出算式的值是多少即可. (2)应用乘法分配律,求出算式(−13−14+15−715)×(﹣60)的值是多少即可. 【解答】解:(1)﹣13×23−0.34×27+13×(﹣13)−57×0.34 =﹣13×23−13×13−57×0.34﹣0.34×27=﹣13×(23+13)﹣(57+27)×0.34=﹣13×1﹣1×0.34 =﹣13﹣0.34 =﹣13.34(2)(−13−14+15−715)×(﹣60)=(−13)×(﹣60)−14×(﹣60)+15×(﹣60)−715×(﹣60) =20+15﹣12+28 =51【点评】(1)此题主要考查了有理数的乘法,要熟练掌握,解答此题的关键是要明确有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘. (2)此题还考查了乘法运算定律的应用,要熟练掌握.18.用乘法运算律,将下列各式进行简便计算:(1)(﹣112)×(﹣7)×23; (2))25.1()541(8)5(-⨯-⨯⨯-(3)(﹣48)×(−34+56−712); (4)0.7×311−6.6×37−1.1×37+0.7×811. (5)﹣392324×(﹣12) (6)4.61×37−5.39×(−37)+3×(−37).【分析】(1)利用乘法的交换律与结合律计算; (2)利用乘法的交换律与结合律计算; (3)利用乘法的分配律计算即可; (4)逆用乘法的分配律,以简化运算即可. (5)利用乘法的分配律计算即可; (6)逆用乘法的分配律,以简化运算即可. 【解答】解:(1)(﹣112)×(﹣7)×23=(−32)×23×(−7) =7;(2))25.1()541(8)5(-⨯-⨯⨯- =)]25.1(8[)]59()5[(-⨯⨯-⨯-=)10(9-⨯=90(3)(﹣48)×(−34+56−712)=−48×(−34)−48×56−48×(−712)=36﹣40+28=24;(4)0.7×311−6.6×37−1.1×37+0.7×811=0.7×(311+811)+37×(−6.6−1.1)=0.7﹣3.3=﹣2.6.(5)原式=(﹣40+124)×(﹣12)=﹣40×(﹣12)−124×12 =480−12=47912; (6)原式=4.61×37+5.39×37−3×37=37×(4.61+5.39﹣3)=37×7=3.【点评】本题主要考查有理数的运算,关键是使用运算律可使运算简便.19.计算:(1)(﹣6.5)÷(﹣0.5);(2)4÷(﹣2);(3)0÷(﹣1 000);(4)(﹣2.5)÷5 8.【分析】(1)先判断出符号,再绝对值相除即可;(2)先判断出符号,再绝对值相除即可;(3)零除以任何一个不为零的数,商为零,(4)先判断出符号,再绝对值相除,既有分数,又有小数,一般把小数化为分数直接约分即可;【解答】解:(1)(﹣6.5)÷(﹣0.5)=6.5÷0.5=13;(2)4÷(﹣2)=﹣4÷2=﹣2(3)0÷(﹣1 000)=0;(4)(﹣2.5)÷58=−2.5÷58=−52×85=−4;【点评】此题是有理数的除法,主要考查了有理数除法的法则,进行计算时,先判断符号,再绝对值相除.20.计算:(1)0÷(﹣2022);(2)(﹣27)÷9;(3)(−43)÷43;(4)−32÷1.5【分析】(1)0除以任何数都为0;(2)根据九九乘法表计算;(3)根据有理数的除法运算进行计算;(4)换算成小数进行计算;题型四两个有理数的除法【解答】解:(1)0÷(﹣2022)=0;(2)(﹣27)÷9=﹣3;(3)(−43)÷43=﹣1;(4)−32÷1.5=﹣1;【点评】本题考查了有理数的除法运算,解题关键在于熟知除以一个数等于乘以它的倒数.21.计算:(1)(﹣68)÷(﹣17);(2)(﹣0.75)÷0.25;(3)(−78)÷(﹣1.75);(4)312÷(﹣7) 【分析】(1)直接利用有理数的除法运算法则计算得出答案;(2)直接利用有理数的除法运算法则计算得出答案;(3)直接利用有理数的除法运算法则计算得出答案;(4)直接利用有理数的除法运算法则计算得出答案.【解答】解:(1)(﹣68)÷(﹣17)=4;(2)(﹣0.75)÷0.25=﹣0.75×4=﹣3;(3)(−78)÷(﹣1.75)=78×47=12;(4)312÷(﹣7) =72×(−17)=−12.【点评】此题主要考查了有理数的乘除运算,正确掌握相关运算法则是解题关键.(1)(+48)÷(+6);(2)(−323)÷(512);(3)4÷(﹣2);(4)0÷(﹣1000).【分析】原式各项利用除法法则计算即可得到结果.【解答】解:(1)原式=8;(2)原式=−113×211=−23;(3)原式=﹣2;(4)原式=0.【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.23.计算:(1)(−47)÷(−314)÷(−23);(2)(﹣0.65)÷(−57)÷(﹣213)÷(+310).【分析】根据有理数的乘除法则和混合运算顺序进行计算便可.【解答】解:(1)(−47)×(−143)÷(−23)=−47×143×32=﹣4;(2)(﹣0.65)÷(−57)÷(﹣213)÷(+310).=−65100×75×37×103=﹣1.3.【点评】本题主要考查了有理数乘除法,关键是熟记有理数乘除法法则和混合运算顺序.题型五多个有理数的除法(1)(﹣24)÷(﹣2)÷(﹣115); (2)﹣27÷214÷94÷(﹣24).【分析】(1)先确定符号再把绝对值相除;(2)先确定符号再把绝对值相除或相乘,最后把除法化为乘法计算.【解答】解:(1)(﹣24)÷(﹣2)÷(﹣115) =12÷(﹣115) =﹣10;(2)﹣27÷214÷94÷(﹣24)=27÷94×49÷24=27×49×49×124=29.【点评】本题主要考查了有理数除法、乘法,掌握有理数的除法、乘法法则,符号的确定是解题关键.25.计算:(1)(−35)÷(﹣27)÷(﹣114)÷3; (2)(﹣8)÷23÷(﹣23)÷(﹣9). 【分析】各式利用除法法则把除法转化成乘法运算,通过约分即可得到结果.【解答】解:(1)(−35)÷(﹣27)÷(﹣114)÷3=−35×72×45×13=−1425; (2)(﹣8)÷23÷(﹣23)÷(﹣9)=﹣8×32×32×19=−2. 【点评】此题考查了有理数的乘除法,熟练掌握乘除法则是解本题的关键.26.计算:(1)﹣3÷(−34)÷(−34);(2)(﹣12)÷(﹣4)÷(﹣115); (3)(−23)÷(−87)÷0.25;(4)(﹣212)÷(﹣5)÷(﹣310).【分析】(1)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(2)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(3)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(4)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案.【解答】解:(1)原式=﹣3×(−43)×(−43)=−163;(2)原式=(﹣12)×(−14)×(−56)=−52;(3)原式=(−23)×(−78)×4=73;(4)原式=(−52)×(−15)×(−103)=−53.【点评】此题主要考查了有理数的除法运算,正确掌握相关运算法则是解题关键.27.计算:(1)(−23)÷(−85)÷(﹣0.25);(2)(﹣81)÷94÷94÷(﹣16);(3)(﹣6.5)÷(−12)÷(−25)÷(﹣5).【分析】应用有理数除法法则:有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a ÷b =a •1b (b ≠0),有理数乘法法则:(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘. (2)任何数同零相乘,都得0,(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.进行计算即可得出答案.【解答】解:(1)原式=(−23)×(−58)×(﹣4) =﹣(23×58×4)=−53;(2)原式=(﹣81)×49×49×(−116)=(﹣16)×(−116) =1;(3)(﹣6.5)×(﹣2)÷(−25)÷(﹣5).原式=13×(−52)×(−15)=13×(52×15) =13×12=132.【点评】本题主要考查了有理数乘法及有理数除法,熟练掌握有理数乘法及有理数除法法则进行求解是解决本题的关键.28.计算:59÷20×185.【分析】根据有理数的除法运算以及乘法运算即可求出答案.【解答】解:原式=59×120×185=110.【点评】本题考查有理数的乘除运算,解题的关键是熟练运用有理数的乘除运算法则,本题属于基础题型.题型六 有理数乘除混合运算29.(2022秋•榆树市期中)计算:(﹣54)÷34×43÷(﹣32).【分析】先确定符号,再把除法化为乘法,根据有理数乘法法则计算.【解答】解:原式=54×43×43×132=3.【点评】本题主要考查了有理数的乘法、除法,掌握有理数乘法、除法法则,符号的确定是解题关键.30.(2022秋•丰台区校级期中)计算:(−35)×(−27)÷37.【分析】根据有理数除法法则把有理数除法转化为乘法,再按照有理数乘法法则进行计算便可.【解答】解:(−35)×(−27)÷37=35×27×73=25.【点评】本题考查的是乘除混合运算,掌握“同级运算按照从左往右的顺序进行运算”是解本题的关键.31.计算:(﹣223)×1516÷(﹣1.5) 【分析】化有理数除法为乘法,然后计算有理数乘法.【解答】解:(﹣223)×1516÷(﹣1.5), =(−83)×1516÷(−32),=(−83)×1516×(−23),=8×15×23×16×3, =53.【点评】本题考查了有理数的乘除法,熟记计算法则即可解题,属于基础题.32.计算:(﹣81)÷214×49÷(﹣16)【分析】原式从左到右依次计算即可得到结果.【解答】解:原式=81×49×49×116=1.【点评】此题考查了有理数的乘除法,熟练掌握有理数乘除法则是解本题的关键.33.(2022秋•香洲区校级月考)计算:(1)(−5)×6×(−45)×14;(2)−9÷(−0.1)÷(−335 ).【分析】(1)利用有理数的乘法法则原式即可;(2)将有理数的除法转化成乘法后,利用有理数的乘法法则原式即可.【解答】解:(1)原式=5×6×45×14=6;(2)原式=﹣9×(﹣10)×(−5 18)=﹣9×10×5 18=﹣25.【点评】本题主要考查了有理数的乘、除法,正确利用有理数的乘除法则运算是解题的关键.34.计算:(1)(﹣32)÷4×(−1 16);(2)(−23)×(−85)÷(﹣178).【分析】根据有理数的乘除法则进行计算便可.【解答】解:(1)(﹣32)÷4×(−1 16)=+32×14×116=12;(2)(−23)×(−85)÷(﹣178)=−23×85×815=−128225.【点评】本题考查了有理数乘除法,熟记有理数乘除法则是解题的关键.35.计算:(1)(﹣134)×(﹣112)÷(﹣118). (2)(﹣1.25)×54×(﹣8)÷(−34).【分析】(1)先确定结果的符号,再计算乘除法;(2)先确定结果的符号,再计算乘除法.【解答】解:(1)原式=﹣134×112÷118 =−74×32×89=−73;(2)原式=﹣1.25×54×8÷34=−54×54×8×43=−503. 【点评】本题考查了有理数乘除法,有理数的除法要分情况灵活选择法则,若是整数与整数相除一般采用“同号得正,异号得负,并把绝对值相除”.如果有了分数,则采用“除以一个不等于0的数,等于乘这个数的倒数”,再约分.乘除混合运算时一定注意两个原则:①变除为乘,②从左到右.36.计算:(1)(−35)×(﹣312)÷(﹣114)÷3; (2)(﹣8)÷23×(﹣112)÷(﹣9). 【分析】各式利用除法法则把除法转化成乘法运算,通过约分即可得到结果.【解答】解:(1)(−35)×(﹣312)÷(﹣114)÷3=−35×72×45×13=−1425; (2)(﹣8)÷23×(﹣112)÷(﹣9)=﹣8×32×32×19=−2. 【点评】此题考查了有理数的乘除法,熟练掌握乘除法则是解本题的关键.37.计算:(1)(−517)×(−34)÷9×(﹣325); (2)(−72)÷(﹣114)÷3×(−35);(3)(−320)×246÷910×(−341). 【分析】(1)先将带分数化成假分数,再根据有理数的乘法法则和除法法则求解即可;(2)先将带分数化成假分数,再根据有理数的乘法法则和除法法则求解即可;(3)根据有理数的乘法法则和除法法则求解即可.【解答】解:(1)原式=−517×(−34)×19×(−175)=[(−517)×(−175)]×[(−34)×19]=1×(−112)=−112; (2)原式=(−72)×(−45)×13×(−35)=﹣(72×45×13×35) =−1425; (3)原式=(−320)×246×109×(−341) =320×109×341×246=16×341×246=3246×246 =3.【点评】本题主要考查了有理数的乘除混合运算,掌握有理数的乘法和除法法则是解题的关键,注意运算顺序.38.(−73)÷(−79)+54×(−85).【分析】根据除以一个数等于乘以这个数的倒数,可把除法转化成乘法,根据有理数的乘法,可得答案.【解答】解:原式=(−73)×(−97)+54×(−85)=3+(﹣2)=1.【点评】本题考查了有理数的除法,先转化成乘法,再进行乘法运算,注意两数相乘同号得正,异号得负,再把绝对值相乘.39.计算:113×(−212+34)÷(−213).【分析】直接利用二次根式的乘除运算法则进行计算得出答案.【解答】解:原式=43×(−52+34)÷(−73)=43×(−104+34)×(−37) =43×(−74)×(−37)=1.40.计算:1.25×(25−215)+125÷6.【分析】把小数化为分数,利用乘法分配律计算,把除法转化为乘法,利用有理数的乘法法则计算,最后算加减即可.【解答】解:原式=54×25−54×215+125×16=12−16+25=1115.【点评】本题考查了有理数的混合运算,掌握乘法分配律a(b+c)=ab+ac是解题的关键,注意运算顺序.41.计算:(−73)÷(−76)+34×(−83).题型七有理数加减乘除混合运算【分析】首先将除法转化为乘法,然后按照有理数的乘法法则计算即可.【解答】解;原式=(−73)×(−67)+34×(−83)=2+(﹣2)=0.【点评】本题主要考查的是有理数的乘除运算,掌握有理数的乘法和除法法则是解题的关键.42.计算:(−72)×(16−12)×314÷(−12) 【分析】根据除以一个数等于乘以这个数的倒数,可转化成乘法运算,再根据乘法运算法则,可得答案.【解答】解:原式=(−72)×(−13)×314×(−2) =−12.【点评】本题考查了有理数的除法运算,除以一个数等于乘以这个数的倒数是解题关键.43.计算:(1)[1124−(38+16−34)×24]×(−15)(2)−5×(−115)+11×(−115)−3×(−225).【分析】(1)先把括号里面的利用乘法分配律进行计算,然后再次利用乘法分配律进行计算即可得解;(2)先把第三项整理,然后逆运用乘法分配律进行计算即可得解.【解答】解:(1)[1124−(38+16−34)×24]×(−15), =[1124−(38×24+16×24−34×24)]×(−15), =[2524−(9+4﹣18)]×(−15),=(2524+5)×(−15), =2524×(−15)+5×(−15), =−524−1,=−2924;(2)﹣5×(−115)+11×(−115)﹣3×(−225),=﹣5×(−115)+11×(−115)﹣6×(−115),=(﹣5+11﹣6)×(−11 5),=0.【点评】本题考查了有理数的乘法,利用运算定律可以使计算更加简便,难点在于(2)的整理.44.计算:(1)−1÷(−18)−3÷(−12);(2)−81÷13−13÷(−19).(3)−1+5÷(−16)×(−6);(4)(13−12)÷114÷110.【分析】(1)(2)(3)根据除以一个数等于乘以这数的倒数把除法转化为乘法运算,然后根据有理数的乘法运算法则和加法运算法则进行计算即可得解;(4)先算小括号里面的,再根据除以一个数等于乘以这数的倒数把除法转化为乘法运算并把带分数化为假分数,然后根据有理数的乘法运算法则进行计算即可得解.【解答】解:(1)﹣1÷(−18)﹣3÷(−12)=﹣1×(﹣8)﹣3×(﹣2)=8+6=14;(2)﹣81÷13−13÷(−19)=﹣81×3−13×(﹣9)=﹣243+3=﹣240;(3)﹣1+5÷(−16)×(﹣6)=﹣1+5×(﹣6)×(﹣6)=﹣1+180=179;(4)(13−12)÷114÷110=−16×45×10=−43.【点评】本题考查了有理数的除法,有理数的乘法,有理数的加减法运算,熟记运算法则和运算顺序是解题的关键,计算时要注意运算符号的处理.45.计算.(1)1.25÷(−0.5)÷(−212);(2)(−45)÷[(−13)÷(−25)];(3)(13−56+79)÷(−118);(4)−32324÷(−112). 【分析】(1)先把小数化为分数,再把除法运算化为乘法运算,然后约分即可;(2)要算中括号内的除法运算;(3)先把除法运算化为乘法运算,然后利用乘法的分配律计算;(4)先确定符合,再把带分数写成整数与真分数的和,然后利用乘法的分配律计算.【解答】解:(1)原式=54×(﹣2)×(−25)=1;(2)原式=﹣45÷(13×52) =﹣45÷56=﹣45×65=﹣54;(3)原式=(13−56+79)×(﹣18) =13×(﹣18)−56×(﹣18)+79×(﹣18)=﹣6+15﹣14=﹣5;(4)原式=(3+2324)×12 =3×12+2324×12 =36+232 =36+1112 =4712. 【点评】本题考查了有理数除法:除以一个不等于0的数,等于乘这个数的倒数.46.计算:(1)75×(13−12)×37÷54; (2)(56−37+13−914)÷(−142).【分析】(1)先计算括号中的运算,以及除法化为乘法运算,约分即可得到结果;(2)原式先将除法运算化为乘法运算,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=75×(−16)×37×45=−225; (2)原式=(56−37+13−914)×(﹣42)=﹣35+18﹣14+27=﹣4. 【点评】此题考查了有理数的乘法与除法,熟练掌握运算法则是解本题的关键.题型八 利用“倒数法”解决问题47.数学老师布置了一道思考题“计算:(−112)÷(13−56)”,小明仔细思考了一番,用了一种不同的方法解决了这个问题. 小明的解法:原式的倒数为(13−56)÷(−112)=(13−56)×(﹣12)=﹣4+10=6, 所以(−112)÷(13−56)=16. (1)请你判断小明的解答是否正确,并说明理由.(2)请你运用小明的解法解答下面的问题.计算:(−124)÷(13−16+38). 【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.【解答】解:(1)正确,理由为:一个数的倒数的倒数等于原数;(2)原式的倒数为(13−16+38)÷(−124)=(13−16+38)×(﹣24)=﹣8+4﹣9=﹣13, 则(−124)÷(13−16+38)=−113. 【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.48.请你认真阅读下列材料计算:(−130)÷(23−110+16−25) 解法1:原式=(−130)÷[23+16−(110+25)]=(−130)÷(56−12)=(−130)×3=−110 解法2:将原式的除数与被除数互换(23−110+16−25)÷(−130)=(23−110+16−25)×(﹣30)=﹣20+3﹣5+12=﹣10 故原式=−110根据你对所提供的材料的理解,选择适当的方法计算下面的算式:(−142)÷(−16−314+23−47)【分析】法1:原式先计算括号中的加减运算,再计算除法运算即可得到结果;法2:将原式除数与被除数互换求出值,即可确定出原式的值.【解答】解:法1:原式=(−142)÷[23−16−(314+47)]=(−142)÷(12−1114)=(−142)÷(−27) =(−142)×(−72)=112; 法2:将原式的除数与被除数互换,(−16−314+23−47)÷(−142) =(−16−314+23−47)×(﹣42) =7+9﹣28+24=12,则原式=112.【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.49.(2022秋•徐州月考)认真阅读材料后,解决问题:计算:130÷(23−110+16−25). 分析:利用通分计算23−110+16−25的结果很麻烦,可以采用以下方法进行计算. 解:原式的倒数是(23−110+16−25)÷130 =(23−110+16−25)×30 =(23×30−110×30+16×30−25×30=20﹣3+5﹣12=10,故原式=110. 仿照阅读材料计算:(−120)÷(−14−25+910−32).【分析】仿照所给的求解方式进行运算即可.【解答】解:原式的倒数是:(−14−25+910−32)÷(−120)=(−14−25+910−32)×(﹣20)=14×20+25×20−910×20+32×20 =5+8﹣18+30=25,故原式=125. 【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.50.阅读材料:计算130÷(23−110+16−25) 分析:利用通分计算23−110+16−25的结果很麻烦,可以采用以下方法进行计算 解:原式的倒数是:=(23−110+16−25)×30 =(23−110+16−25)×30 =23×30−110×30+16×30−25×30=10故原式=110请你根据对所提供材料的理解,选择合适的方法计算:148÷(112−316+524+23) 【分析】仿照阅读材料中的方法求出原式的值即可.【解答】解:原式的倒数是:(112−316+524+23)÷148 =(112−316+524+23)×48=4﹣9+10+32=37,故原式=137. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
有理数计算专练62题(含加减乘除混合运算知识点以及运算题) 苏科版七年级上册数学第二章有理数
有理数计算专练62题(含加减乘除混合运算)要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;要点二、有理数的减法1.定义: 已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法。
注意点:(1)任意两个数都可以进行减法运算.(2)几个有理数相减差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值. 2.法则:减去一个数,等于加这个数的相反数,即有:.一、有理数的加减法运算 1.计算:(1)(+20)+(+12); (2)1223⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭;(3) (+2)+(-11); (4)(-3.4)+(+4.3);(5)(-2.9)+(+2.9); (6)(-5)+0.有理数加法运算律加法交换律 文字语言 两个数相加,交换加数的位置,和不变 符号语言 a+b =b+a加法结合律文字语言 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c =a+(b+c)(7)113343⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭(8)(+10)+(-11);(9)⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭12-1+-23(10)(+2)-(-25).(11)﹣75+(+110);(12)90﹣(﹣3);(13)﹣0.5﹣(﹣314)+2.75﹣(+712);(14)7121 (4)(3)(2)(6)9696----++-.(15)232(1)(1)( 1.75)343-----+-(16)132.1253(5)(3.2)58-+---+(17)21772953323+---(18)231321234243--++-+(19)2312()() 3255 ---+--+-(20)-1+2-3+4-5-6+……-2011+2022要点三、有理数的乘法1.有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.要点四、有理数的除法1.倒数的意义:乘积是1的两个数互为倒数.有理数除法法则:法则一:除以一个不等于0的数,等于乘这个数的倒数,即1(0)a b a bb÷=≠.法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.二、有理数的乘除法则(1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯-⎪⎝⎭;(2)(1-2)(2-3)(3-4)…(19-20);(3)(-5)×(-8.1)×3.14×0.(4)5105(12)6⎛⎫-⨯+ ⎪⎝⎭(5)(-0.25)×0.5×(-100)×4(6)111(5)323(6)3333-⨯+⨯+-⨯(7)(-32)÷(-8) (8)112(1)36÷-(8) 1.25(0.375)-÷- (10)(1) 753796418⎛⎫-+- ⎪⎝⎭×(-36); (11) -56×21220.65⎛⎫-- ⎪⎝⎭; (12) (-0.25)×0.5×247⎛⎫- ⎪⎝⎭×4; (13) 132×57⎛⎫- ⎪⎝⎭-57⎛⎫- ⎪⎝⎭×122-57×12⎛⎫- ⎪⎝⎭; (14) 124×314⎛⎫- ⎪⎝⎭×23⎛⎫- ⎪⎝⎭×87⎛⎫- ⎪⎝⎭; (15) -264927×3;(16)719172×(-36).(17)112⎛⎫-⎪⎝⎭112⎛⎫+⎪⎝⎭113⎛⎫-⎪⎝⎭113⎛⎫+⎪⎝⎭…1110⎛⎫-⎪⎝⎭1110⎛⎫+⎪⎝⎭.(18) (-15)÷(-3);(19) (-12)÷12-⎛⎫⎪⎝⎭÷(-10);(20) (-5)÷725-⎛⎫⎪⎝⎭+(-12)÷725;(21) -0.125÷83;(22) -72×124×49÷335-⎛⎫⎪⎝⎭;(23)1142313245-+⎛⎫⎪⎝⎭÷116-⎛⎫⎪⎝⎭.(24) -24÷131243-+-⎛⎫⎪⎝⎭.(25)142-⎛⎫⎪⎝⎭÷132261437-+-⎛⎫⎪⎝⎭.要点五、有理数的乘方;有理数的混合运算1.乘方的概念:求几个相同因数积的运算,叫做乘方。
专题04 有理数的乘除法(知识点串讲)(解析版)
专题04 有理数的乘除法重点突破知识点一 有理数的乘法 有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘。
(2)任何数同0相乘,都得0.倒数:乘积是1的两个有理数互为倒数。
【注意】0没有倒数。
(数()0a a ≠的倒数是1a)确定乘积符号:(1)若a <0,b >0,则ab < 0 ;(2)若a <0,b <0,则ab > 0 ;(3)若ab >0,则a 、b 同号 (4)若ab <0,则a 、b 异号(5)若ab = 0,则a 、b 中至少有一个数为0. 多个有理数相乘的法则及规律:(1)几个不是0的数相乘,负因数的个数是奇数时,积是负数; 负因数的个数是偶数时,积是正数。
确定符号后,把各个因数的绝对值相乘。
(2)几个数相乘,有一个因数为0,积为0;反之,如果积为0,那么至少有一个因数是0.[注意]在乘法计算时,遇到带分数,应先化为假分数;遇到小数,应先化成分数,再进行计算。
有理数的乘法运算律乘法交换律:两个数相乘,交换因数的位置,积相等。
即a b b a ⨯=⨯。
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
即()()a b c a b c ⨯⨯=⨯⨯。
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
即()a b c a b a c ⨯+=⨯+⨯。
知识点二 有理数的除法 有理数除法法则:(1)除以一个不为0的数,等于乘以这个数的倒数。
即()10a b a b b÷=⨯≠。
(2)两数相除(被除数不为0),同号得正,异号得负,并把绝对值相除。
【注意】0除以任何不为0的数,都得0。
除法步骤:1.将除号变为乘号。
2.将除数变为它的倒数。
3.按照乘法法则进行计算。
考查题型考查题型一有理数的乘法运算典例1.(2018·重庆市期末)在﹣2,3,4,﹣5这四个数中,任取两个数相乘,所得积中最大的是()A.20 B.﹣20 C.12 D.10【答案】C【解析】本题考查的是有理数的乘法根据有理数乘法法则:两数相乘,同号得正,异号得负,而正数大于一切负数,可知同号两数相乘的积大于异号两数相乘的积,则只有两种情况,-2×(-5)与3×4,比较即可得出.,,所得积最大的是,故选C。
有理数乘除混合运算(计算练习题)
有理数乘除混合运算(计算练习题)问题1已知有理数$-3.5$和$1.2$,求它们的乘积。
答案:$-3.5 \times 1.2 = -4.2$问题2已知有理数$-6.7$和$0.5$,求它们的商。
答案:$-6.7 \div 0.5 = -13.4$问题3已知有理数$2.5$和$-1.8$,求它们的乘积与商的和。
答案:$2.5 \times -1.8 + 2.5 \div -1.8 = -4.5 + (-1.3889) = -5.8889$问题4已知有理数$-0.3$和$-0.6$,求它们的积与商的差。
答案:$-0.3 \times -0.6 - -0.3 \div -0.6 = 0.18 - 0.5 = -0.32$问题5已知有理数$3.2$和$-2.4$,求它们的积与商的和。
答案:$3.2 \times -2.4 + 3.2 \div -2.4 = -7.68 + (-1.3333) = -9.0133$问题6已知有理数$-12.6$和$-0.9$,求它们的积与商的积。
答案:$-12.6 \times -0.9 \times -12.6 \div -0.9 = 113.4$问题7已知有理数$4.8$和$-0.4$,求它们的积与商的差。
答案:$4.8 \times -0.4 - 4.8 \div -0.4 = -1.92 - (-12) = -10.08$问题8已知有理数$-2.9$和$-1.5$,求它们的乘积与商的和。
答案:$-2.9 \times -1.5 + -2.9 \div -1.5 = 4.35 + 1.9333 = 6.2833$以上为有理数乘除混合运算的计算练习题。
希望能对你的学习有所帮助!。