电晕电弧辉光滑闪放电
辉光放电、弧光放电解释
弧光放电arc discharge高温热发射持续弧光放电呈现弧状白光并产生高温的气体放电现象。
无论在稀薄气体、金属蒸气或大气中,当电源功率较大,能提供足够大的电流(几安到几十安),使气体击穿,发出强烈光辉,产生高温(几千到上万度),这种气体自持放电的形式就是弧光放电。
通常产生弧光放电的方法是使两电极接触后随即分开,因短路发热,使阴极表面温度陡增,产生热电子发射。
热电子发射使碰撞电离及阴极的二次电子发射急剧增加,从而使两极间的气体具有良好的导电性。
弧光放电的特征是电压不高,电流增大的两极间电压反而下降,有强烈光辉。
还有一种弧光放电叫做冷阴极弧光放电,阴极由低熔点材料(如汞)做成。
阴极表面蒸发出的蒸气被电离,在阴极表面附近堆积成空间正电荷层,此电荷层与阴极间极为狭窄区域内形成的强电场引起场致发射,使电流剧增,产生电弧。
弧光放电应用广泛。
可用作强光光源,在光谱分析中用作激发元素光谱的光源,在工业上用于冶炼、焊接和高熔点金属的切割,在医学上用作紫外线源(汞弧灯),等等。
但是大电流电路开关断开时产生的弧火极其有害,应采取灭弧措施。
辉光放电glow discharge低压气体中显示辉光的气体放电(空气中的电子大概在1000对/cm3,由于高压放电现象在低气压状态下会产生辉光现象)现象。
在置有板状电极的玻璃管内充入低压(约几毫米汞柱)气体或蒸气,当两极间电压较高(约1000伏)时,稀薄气体中的残余正离子在电场中加速,有足够的动能轰击阴极,产生二次电子,经簇射过程产生更多的带电粒子,使气体导电。
辉光放电的特征是电流强度较小(约几毫安),温度不高,故电管内有特殊的亮区和暗区,呈现瑰丽的发光现象。
辉光放电时,在放电管两极电场的作用下,电子和正离子分别向阳极、阴极运动,并堆积在两极附近形成空间电荷区。
因正离子的漂移速度远小于电子,故正离子空间电荷区的电荷密度比电子空间电荷区大得多,使得整个极间电压几乎全部集中在阴极附近的狭窄区域内。
气体放电
气体放电气体在正常状态下是良好的绝缘介质.但在电压的作用下,也会形成微弱的电流;气体在外加电压作用下产生导通电流的现象称为气体放电。
当加于气体上的电压达到一定数值时,通过气体的电流会突然剧增,气体失去绝缘的性能。
气体在外加电压作用下由绝缘状态转变为导电状态的过程称为击穿。
使气体击穿的最低电压称为击穿电压、气体发生击穿时,电导突增,并伴有光、声、热等现象。
通过实验观察,由于电源功率、电极形状、气体压力等的不同,气体放电现象存在以下几种主要形式: 1.辉光放电外加电压增加到一定值时,通过气体的电流明显增加,气体间隙整个空间突然出现发光现象,这种放电形式称为辉光放电。
辉光放电的电流密度较小,放电区域通常占据整个电极同的空间。
辉光放电是低气压下的放电形式,验电笔中的氖管、广告用霓虹灯管发光就是辉光放电的例子。
2.电晕放电对于电极很尖的极不均匀电场气隙,随外加电压的升高,在电极尖端附近会出现暗蓝色的晕光,并伴有咝咝声。
如电压不继续升高,放电就局限在这较小的菹围内,形成局部放电,称为电晕放电。
发生电晕放电时,气体间隙的大部分尚未丧失绝缘性能,放电电流很小。
电气设备带电的尖角和输电线路,在运行中时有发生这种电晕放电。
3.火花或电弧放电在气体间隙的两极,电压升高到一定值时,气体中突然产生明亮的树枝状放电火花,当电源功率不大时,这种树枝状火花会瞬时熄灭,接着又突然产生,这种现象称为火花放电;当电源功率足够大时,气体发生火花放电以后,树枝状放电火花立即发展至对面电极,出现非常明亮的连续弧光,形成电弧放电。
二、气体中带电质点的产生和消失我们已经知道,气体间隙在外加电压作用下会产生放电,甚至击穿,这说明气体中有大量带电质点产生;而气体间隙击穿后,若去掉外加电压,气体又能恢复到它原来的耐电强度,这说明气体中的带电质点会消失。
1.带电质点的产生气体原子由带正电荷的原子核和若干带负电荷的电子构成。
正常状态下,这些电子受原子核的吸引在各自的轨道上围绕原子核旋转,这时的气体原子是一个整体,呈中性,称为中性原子。
教学参考:自持放电、电晕放电、辉光放电、电弧放电的区别
自持放电:不依赖外界电离条件,仅由外施电压作用即可维持的一种气体放电。
这是按照气体放电形成条件来区分的一种气体放电类型,与它并列的是非自持放电。
气体放电的形成需要具备两个基本条件,一是外施电压,它使电极间隙的空间范围内呈现一定强度的电场;二是外界电离因素,它在电极间隙中形成初始带电粒子。
外界电离因素有多种方式,例如,天然辐射或人工光源照射会使空间出现带电粒子。
当外加电压较低时,只有由外界电离因素所造成的带电粒子在电场中运动而形成气体放电电流,一旦外界电离作用停止,气体放电现象即随之中断,这种放电称为非自持放电。
当外加电压逐渐升高后,气体中的放电过程发生转变,此时若去掉外界激离因素,放电仍继续发展,成为自持放电。
通常所研究的各种气体放电形式如辉光放电、电晕放电、火花放电、电弧放电等都属于自持放电。
形成自持放电的条件可根据汤森理论来确定。
辉光放电稀薄气体中的自激导电现象。
其物理机制是:放电管两极的电压加大到一定值时,稀薄气体中的残余正离子被电场加速,获得足够大的动能去撞击阴极,产生二次电子,经簇射过程形成大量带电粒子,使气体导电。
辉光放电的特点是电流密度小,温度不高,放电管内产生明暗光区,管内的气体不同,辉光的颜色也不同。
正常辉光放电时,放电管极间电压不随电流变化。
辉光放电的发光效应被用于制造霓虹灯、荧光灯等光源,利用其稳压特性可制成稳压管(如氖稳压管)。
气体在低气压状态下的一种自持放电。
对玻璃圆柱状放电管两端施加电压,当压力处于1~0.1托的范围时,由阴极逸出的电子在气体中发生碰撞电离和光电离,此时放电管的大部分区域都呈现弥漫的光辉,其颜色因气体而异,故称辉光放电。
辉光放电与暗放电和电弧放电共同组成可连续变化的3种基本放电形式。
1831~1835年,M.法拉第在研究低气压放电时发现辉光放电现象和法拉第暗区。
1858年,J.普吕克尔在1/100托下研究辉光放电时发现了阴极射线,成为19世纪末粒子辐射和原子物理研究的先躯。
气体放电的主要形式
气体放电的主要形式一、电晕放电电晕放电是一种在电极周围形成辐射状光晕的放电形式。
当电压升高到电晕放电阈值时,电极周围的电场强度足够强,使电极附近的气体分子电离和激发,产生电子和正离子。
这些电子和离子通过碰撞和俘获电子的过程,导致电晕放电区域内的气体发光,形成光晕。
电晕放电常见于高压线路和电晕灯中,具有稳定性好、能耗低的特点。
二、辉光放电辉光放电是一种在电极附近形成均匀辉光的放电形式。
当电压升高到辉光放电阈值时,电极附近的电场强度足够强,使气体分子电离和激发,产生电子和正离子。
这些电子和离子经过长距离的自由运动后,与其他气体分子碰撞,再次激发和电离,最终导致整个放电区域内的气体发光。
辉光放电常见于荧光灯、气体放电显示器和气体激光器等装置中,具有均匀亮度和较高的放电稳定性。
三、电弧放电电弧放电是一种高能放电形式,具有强烈的光和热效应。
当电压升高到电弧放电阈值时,电极附近的电场强度足够大,使气体分子电离和激发,产生电子和正离子。
这些电子和离子在电场的作用下,加速运动,形成电子和离子流,即电弧。
电弧放电常见于焊接、电弧灯和电弧炉等场合,具有高能量密度和高温度的特点。
四、等离子体放电等离子体放电是一种高度电离的气体放电形式,具有丰富的物理和化学特性。
当电压升高到等离子体放电阈值时,电极附近的电场强度足够大,使气体分子电离和激发,产生电子和正离子。
这些电子和离子在电场的作用下,以及与其他等离子体粒子的碰撞,形成高度电离的等离子体。
等离子体放电广泛应用于等离子体显示器、等离子体喷涂和等离子体刻蚀等领域,具有可控性好和反应速度快的特点。
五、脉冲放电脉冲放电是一种以脉冲形式工作的放电形式,具有高能量和高频率的特点。
脉冲放电通常通过将高电压脉冲施加在电极上,使气体分子电离和激发,产生电子和正离子。
这些电子和离子在电场的作用下,以及与其他气体分子的碰撞,形成脉冲放电。
脉冲放电广泛应用于等离子体切割、等离子体喷涂、光谱分析和生物医学领域,具有高精度和高效率的特点。
辉光放电和弧光放电
辉光放电和弧光放电辉光放电与弧光放电1汞氩气体放电的全伏—安特性1.1放电管两端刚开始加上电压时,电压很低,放电管中只有微弱电流流过,这个电流只有用非常灵敏的电流计才能测出来,此时电压低,电流小,不能使管内的汞氩气体激发或电离,但由于宇宙线、放射线辐射或光照下,使管内的气体中产生一些原始的电子或正离子,它们的量的很小,称为剩余电离,这些带电粒子在正级电压作用下分别从负极向正级运动(电子流)或从正极向负极运动(离子流)形成电流,随着电压的增加,电流也增大,OA段.1.2当电压继续增加时, 因为带电粒子数目不多,当所有的因为剩余电离产生的带电粒子全部达到电极后,电流就饱和了,这就是说电压升高,电流就不再增加,AB段。
1.3电压再升高时,放电管中电子受电场力加速,管内原始的自由电子速度愈来愈大,它们和汞原子、氩原子、气体分子碰撞时,就能使分子、原子电离,而电子又产生新的自由电子和离子,这些新的自由电子和离子加速后又使更多的原子分子电离,这个过程称雪崩放电,BD段。
1.4当电压升到B点时,由于雪崩放电,电流突然增加,汞离子、氩离子质量大能量高,猛烈轰击阴极,可以使阴极发射出足够多的电子来,电子和汞原子、电子和氩离子碰撞,汞在4.67V和5.46V 等能级上和氩在11.53和11.72能级上并不辐射,这些状态称亚稳态,亚稳态在气体放电灯中的启动时可作出重要贡献。
亚稳态原子与电子或其它粒子碰撞时,除了可能产生逐级激发或逐级电离外,也能把激发能交给电子或其它粒子,发生第二类非弹性碰撞.其中,潘宁效应是气体放电中最有用的第二类非弹性碰撞.在适当的两种气体组成的的混合气体中.它的着火电位要低于单种气体的着火电位.这个效应称为潘宁效应,它可用下式来表达.A* B→A B* e ΔE(ΔE是粒子碰撞后多余的一部分动能)此过程说明,激发态A*原子与B原子相碰, A*原子把自己的激发能转移给B 原子,使B原子电离.这里A*的激发能应大于或至少等于B原子的电离能. A*的激发能越接近于B原子的电离能,这种激发转移的几率就越大.一般来说, A*是亚稳态,因为它能在该能级上停留足够时间长,A*与B原子有足够长的相互作用时间,因此,发生潘宁效应的几率就大了.所以在低压汞荧光灯中,除了Hg以外,还充以适量的氩气,以形成潘宁效应,从而降低灯的启动电压.图D,称为放电着火,相应于D点的电压称为着火电压。
关于电晕放电
火花放电是电极间的气体被击穿,形成电流在气体中的通道,即明显的电火花称为火花放电。
电晕放电是电极间的气体还没有被击穿,电荷在高电压的作用下发生移动而进行的放电,放电的现象是:在黑暗中可以看到电极的尖端有蓝色的光晕,称为电晕放电。
火花放电的电流大多都很大,而电晕放电的电流比较小。
电晕放电的形成机制因尖端电极的极性不同而有区别,这主要是由于电晕放电时空间电荷的积累和分布状况不同所造成的。
在直流电压作用下,负极性电晕或正极性电晕均在尖端电极附近聚集起空间电荷。
在负极性电晕中,当电子引起碰撞电离后,电子被驱往远离尖端电极的空间,并形成负离子,在靠近电极表面则聚集起正离子。
电场继续加强时,正离子被吸进电极,此时出现一脉冲电晕电流,负离子则扩散到间隙空间。
此后又重复开始下一个电离及带电粒子运动过程。
如此循环,以致出现许多脉冲形式的电晕电流。
电晕电流这一现象是G.W. 特里切尔于1938年发现的,称为特里切尔脉冲。
若电压继续升高,电晕电流的脉冲频率增加、幅值增大,转变为负辉光放电。
电压再升高,出现负流注放电,因其形状又称羽状放电或称刷状放电。
当负流注放电得以继续发展到对面电极时,即导致火花放电,使整个间隙击穿。
正极性电晕在尖端电极附近也分布着正离子,但不断被推斥向间隙空间,而电子则被吸进电极,同样形成重复脉冲式电晕电流。
电压继续升高时,出现流注放电,并可导致间隙击穿。
电晕放电频电晕电流与电压同相,反映出电晕功率损耗。
工程应用中还常以外施电压与电晕电荷量的关系表示电晕特性,称为电晕的伏库特性。
架空输电线路导线电晕起始电场强度E s可由皮克公式计算:(千伏/厘米)式中δ为空气相对密度,m为绞线系数,R为导线半径(厘米)。
当δ=1、m=0.5、R=0.9厘米时,E s=19.7千伏/厘米。
实际上,导线表面状况如损伤、雨滴、附着物等,都会使电晕放电易于发生。
电晕放电在工程技术领域中有多种影响。
电力系统中的高压及超高压输电线路导线上发生电晕(见图),会引起电晕功率损失、无线电干扰、电视干扰以及噪声干扰。
自持放电、电晕放电、辉光放电、电弧放电的区别
自持放电:不依赖外界电离条件,仅由外施电压作用即可维持的一种气体放电类型,与它并列的是非自持放电。
气体放电的形成需要具备两个基本条件,一是外施电压,它使电极间隙的空间范围内呈现一定强度的电场;二是外界电离因素,它在电极间隙中形成初始带电粒子。
外界电离因素有多种方式,例如,天然辐射或人工光源照射会使空间出现带电粒子。
当外加电压较低时,只有由外界电离因素所造成的带电粒子在电场中运动而形成气体放电电流,一旦外界电离作用停止,气体放电现象即随之中断,这种放电称为非自持放电。
当外加电压逐渐升高后,气体中的放电过程发生转变,此时若去掉外界激离因素,放电仍继续发展,成辉光放电稀薄气体中的自激导电现象。
其物理机制是:放电管两极的电压加大到一定值时,稀薄气体中的残余正离子被电场加速,获得足够大的动能去撞击阴极,产生二次电子,经簇射过程形成大量带电粒子,使气体导电。
辉光放电的特点是电流密度小,温度不高,放电管内产生明暗光区,管内的气体不同,辉光的颜色也不同。
正常辉光放电时,放电管极间电压不随电流变化。
辉光放电的发光效应被用于制造霓虹灯、荧光灯等光源,利用其稳压特性可制成稳压管(如氖稳压管)。
气体在低气压状态下的一种自持放电。
对玻璃圆柱状放电管两端施加电压,当压力处于1~0.1托的范围时,由阴极逸出的电子在气体中发生碰撞电离和光电离,此时放电管的大部分区域都呈现弥漫的光辉,其颜色因气体而异,故称辉光放电。
辉光放电与暗放电和电弧放电共同组成可连续变化的3种基本放电形式。
1831~1835年,M.法拉第在研究低气压放电时发现辉光放电现象和法拉第暗区。
1858年,J.普吕克尔在1/100托下研究辉光放电时发现了阴极射线,成为19世纪末粒子辐射和原子物理研究的先躯。
辉光放电有亚正常辉光和反常辉光两个过渡阶段,放电的整个通道由不同亮度的区间组成,即由阴极表面开始,依次为:①阿斯通暗区;②阴极光层;③阴极暗区(克鲁克斯暗区);④负辉光区;⑤法拉第暗区;⑥正柱区;⑦阳极暗区;⑧阳极光层。
电晕和电弧
电晕是高压带电体表面向空气游离放电的现象.当高压带电体(例如高压架空线的导线或者其他电气设备的带电部分)的电压达到电晕临界电压,或者其表面电场强度达到电晕电场强度(30~31千伏/厘米)时,在正常气压和强度下,会看到带电体周围出现兰色的辉光放电现象,这就是电晕.在恶劣的气象条件下(霉雨,大雾等),出现电晕的电压或电场强度还要降低,或者说在同样电压或电场电场强度下,电晕现象比好天气时更强烈.由于电晕的辉光放电,对附近的通讯设施会产生干扰,影响通讯质量.更不利的是会引起电晕损耗,尤其是雨,雪,雾天电晕损耗比好天气时将成倍增加,造成电能的极大浪费.在目前情况下,设法减少电晕损失,节约电力能源,具有重大的显示意义电弧定义:由焊接电源供给的,在两极间产生强烈而持久的气体放电现象—叫电弧。
分类:〈1〉按电流种类可分为:交流电弧、直流电弧和脉冲电弧。
〈2〉按电弧的状态可分为:自由电弧和压缩电弧(如等离子弧)。
〈3〉按电极材料可分为:熔化极电弧和不熔化极电弧。
作用:电弧是高温高导电率的游离气体,它不仅对触头有很大的破坏作用,而且使断开电路的时间延长。
产生:电弧当用开关电器断开电流时,如果电路电压不低于10—20伏,电流不小于80~100mA,电器的触头间便会产生电弧。
因此,在了解开关电器的结构和工作情况之前,首先来看看其是如何产生和熄灭的。
电弧的形成是触头间中性质子(分子和原子)被游离的过程。
开关触头分离时,触头间距离很小,电场强度E很高(E = U/d)。
当电场强度超过3×10---6---V/m时,阴极表面的电子就会被电场力拉出而形成触头空间的自由电子。
这种游离方式称为:强电场发射。
从阴极表面发射出来的自由电子和触头间原有的少数电子,在电场力的作用下向阳极作加速运动,途中不断地和中性质点相碰撞。
只要电子的运动速度v足够高,电子的动能A = mv2足够大,就可能从中性质子中打出电子,形成自由电子和正离子。
电弧、电火花、电晕
三者产生基本原理电晕:电晕放电(corona discharge)气体介质在不均匀电场中的局部自持放电。
最常见的一种气体放电形式。
在曲率半径很小的尖端电极附近,由于局部电场强度超过气体的电离场强,使气体发生电离和激励,因而出现电晕放电引。
发生电晕时在电极周围可以看到光亮,并伴有咝咝声。
电晕放电可以是相对稳定的放电形式,也可以是不均匀电场间隙击穿过程中的早期发展阶段。
在高压变压器内部通常都会产生电晕放电,在电晕放电的同时会产生大量的热量。
在一定条件下,可以通过葫芦网络波可以测试到电晕。
电弧:电弧是一种气体放电现象,电流通过某些绝缘介质(例如空气)所产生的瞬间火花。
电弧放电是由于电极间消电离(什么是消电离?,初步理解为电极表面的电离子的一个消散过程)不充分,放电点不分散,多次连续在同一处放电而形成,它是稳定的放电过程,放电时,爆炸力小,蚀除量低。
电弧比电晕更危险,消耗的能量非常剧烈,甚至可以点燃塑料、纸、木,还可以用来切割金属(如离子切割机),电弧比较好处理,加强绝缘就可以了。
电火花:电火花是一种自激放电,火花放电是非稳定的放电过程,具有明显的脉冲特性,放电时爆炸力大,蚀除量高。
电弧放电的伏安特性曲线为正值(即随着极间电压的减小,通过介质的电流减小),而火花放电的伏安特性曲线为负值(即随着极间电压的减小,通过介质的电流却增加)。
其特点如下:火花放电的两个电极间在放电前具较高的电压,当两电极接近时,其间介质被击穿后,随即发生火花放电。
伴随击穿过程,两电极间的电阻剧烈变小,两极之间的电压也随之急剧变低。
火花通道必须在维持暂短的时间(通常为10-7-10-3s)后及时熄灭,才可保持火花放电的“冷极”特性(即通道能量转换的热能来不及传至电极纵深),使通道能量作用于极小范围。
通道能量的作用,可使电极局部被腐蚀。
另注:电弧放电通道形状显圆锥形,阳极与阴极斑点大小不同,阳极斑点小,而阴极斑点大,因此,其电流密度也不相同,阳极的电流密度约为2800 A/ cm2 ,阴极电流密度为300 A/ cm2。
电晕与电弧
电晕是高压带电体表面向空气游离放电的现象.当高压带电体(例如高压架空线的导线或者其他电气设备的带电部分)的电压达到电晕临界电压,或者其表面电场强度达到电晕电场强度(30~31千伏/厘米)时,在正常气压和强度下,会看到带电体周围出现兰色的辉光放电现象,这就是电晕.在恶劣的气象条件下(霉雨,大雾等),出现电晕的电压或电场强度还要降低,或者说在同样电压或电场电场强度下,电晕现象比好天气时更强烈.由于电晕的辉光放电,对附近的通讯设施会产生干扰,影响通讯质量.更不利的是会引起电晕损耗,尤其是雨,雪,雾天电晕损耗比好天气时将成倍增加,造成电能的极大浪费.在目前情况下,设法减少电晕损失,节约电力能源,具有重大的显示意义电弧定义:由焊接电源供给的,在两极间产生强烈而持久的气体放电现象—叫电弧。
分类:〈1〉按电流种类可分为:交流电弧、直流电弧和脉冲电弧。
〈2〉按电弧的状态可分为:自由电弧和压缩电弧(如等离子弧)。
〈3〉按电极材料可分为:熔化极电弧和不熔化极电弧。
作用:电弧是高温高导电率的游离气体,它不仅对触头有很大的破坏作用,而且使断开电路的时间延长。
产生:电弧当用开关电器断开电流时,如果电路电压不低于10—20伏,电流不小于80~100mA,电器的触头间便会产生电弧。
因此,在了解开关电器的结构和工作情况之前,首先来看看其是如何产生和熄灭的。
电弧的形成是触头间中性质子(分子和原子)被游离的过程。
开关触头分离时,触头间距离很小,电场强度E很高(E = U/d)。
当电场强度超过3×10---6---V/m 时,阴极表面的电子就会被电场力拉出而形成触头空间的自由电子。
这种游离方式称为:强电场发射。
从阴极表面发射出来的自由电子和触头间原有的少数电子,在电场力的作用下向阳极作加速运动,途中不断地和中性质点相碰撞。
只要电子的运动速度v足够高,电子的动能A = mv2足够大,就可能从中性质子中打出电子,形成自由电子和正离子。
高电压技术考试试题及答案
《高电压技术》综合复习资料一、填空题1、气体放电有两种,分别是____________________和__________________。
2、巴申定律的内容是:_________。
3、对于不均匀电场,电场的极性取决于______________电极的电位符号;如果两个电极的几何尺寸相同,极性取决于___________的电位。
4、标准操作冲击电压波形的波前时间是__________________,半峰值时间是__________________。
5、污闪的发展大体可以分为四个阶段,分别是__________、___________、___________、____________。
6、根据汤逊理论,二次电子来源于__________________,而流注理论认为二次电子的来源是___________。
7、正极性棒板电极与负极性棒板电极相比,____________________较高,____________________较低。
8、同轴圆筒电场击穿电压的最大值出现在r/R=______时,同轴圆筒电场绝缘设计时,通常取r/R=______。
9、提高气体介质电气强度一般有两个措施:_______________;__________________。
10、固体介质表面的放电分为四个阶段,分别是:___________、_________、_________、_________。
11、常用的液体介质包括______________、______________和______________。
12、固体介质的击穿有三种,分别是______________、______________、______________。
13、稳态电压主要分为两种,分别是________________和________________。
14、对于同轴圆筒电场,当内外径比值为________________时,其击穿电压最高。
高电压技术
一、概念题(每小题5分,共20分)1、电弧放电:若放电回路阻抗较小,电源容量大,气体间隙一旦放电电流极大,放电间隙温度极高,放电通道发出耀眼的光亮,这种放电形式成为电弧放电。
2、滑闪放电:电场垂直分量作用,带电质点撞击介质表面,局部温升引起热电离,通道中带电质点剧增,电阻剧降,头部场强增加,通道迅速增长形成滑闪放电,具有强垂直分量的绝缘结构特有的放电形式。
3、细线效应:导线直径小反而击穿电压高(接近均匀),导线直径大,击穿电压与尖板接近,解释为:当直径很小时,导线周围易形成均匀的电晕层,电压增加电晕层扩大,形成的空间电荷使电场分布改变,电晕层均匀,电场分布改善,提高了击穿电压。
4、波阻抗:自由空间或波导内任何一点,电磁波的电场强度与磁场强度的比值称为波阻抗。
二、理论分析与综述题(每小题20分,共60分)1、画出标准操作冲击电压全波波形,并给出IEC推荐的波形参数。
答:IEC推荐标准波形:50/2500us波前时间: Tcr=250us半峰值时间:T2=2500us另推荐: 100/2500us500/2500us波形,近年趋向用长波尾非周期冲击波,模拟的操作过电压为:2、均匀电场中沿面闪络电压比纯空气间隙的击穿电压要低的原因是什么?答:1:固体介质表面会吸附气体中的水分形成水膜,水膜具有离子电导,介质表面电压不均匀2:介质表面电阻不均匀及表面有伤痕裂纹,会畸变原电场分布,使闪络电压降低3:电极和固体介质断面存在气隙,场强大,发生电离,带电质点到达介质表面,畸变电场,闪络电压降低。
3、测量电介质或电气设备的绝缘电阻时,为什么规定取加压1分钟时的数值?答:绝缘电阻是电介质流过的泄露电流所对应的电阻,电介质存在吸收现象,实际测得的绝缘电阻是一个随时间变化的曲线,吸收电流完全衰减到一恒定电流值ig往往需要数分钟以上的时间,所以通常测绝缘电阻规定取加压1分钟的数值。
三、工程实践题(共20分)1、试述冲击电压测量系统的特殊要求,实验室测量冲击电压的方法,冲击电压测量的50%放电电压方法;答:冲击电压测量系统的特殊要求:1:测量系统必须具有良好的瞬态响应特性2:测量稳压或慢过程的测量不适宜冲击电压3:冲击电压测量-峰值测量,波形记录方面。
低气压均匀电场条件下的放电形式
低气压均匀电场条件下的放电形式
正常放电是指在低气压条件下产生的稳定、可控、均匀的放电。
在低
气压下,电场强度增加,当电场强度超过气体击穿电压时,放电就会发生。
正常放电可以通过控制电场强度和气体压力来实现,以产生稳定的放电。
在低气压均匀电场条件下,气体分子受到较大的电场力,电子被离子化,产生电离电流。
当电离电流达到饱和时,即电流密度达到最大值时,
放电达到稳定状态。
这种稳定的放电通常形成均匀的辉光放电。
辉光放电
是一种连续且均匀的电流放电,它产生的光线呈现出辉光。
非正常放电指的是在低气压均匀电场条件下产生的异常放电现象。
这
种放电形式通常是放电过程中的不稳定现象,如电晕放电、电弧放电等。
电晕放电是指在电极的附近形成的电子弛豫区,当电场强度超过气体的击
穿电压时,电子会通过离子化的方式形成电离电流,形成电晕发光。
电弧
放电是指电场强度非常高时,气体发生大量离子化,形成高温等离子体,
电弧发光。
这些非正常放电形式都是放电过程中能量释放较大且不稳定的
现象。
低气压均匀电场条件下的放电具有一定的应用价值。
辉光放电现象在
荧光灯、气体放电管等照明设备中应用广泛。
电晕放电在静电净化设备中
起着重要作用,通过电晕放电可使空气中的尘埃颗粒带电,进而吸附气体
中的颗粒物。
电弧放电则可应用于电焊、等离子体切割等领域。
总之,在低气压均匀电场条件下,放电形式既有正常放电如辉光放电,也有非正常放电如电晕放电、电弧放电。
了解不同放电形式的特点和应用,有助于我们更好地理解和应用低气压均匀电场下的放电现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电晕放电气体介质在不均匀电场中的局部自持放电。
最常见的一种气体放电形式。
在曲率半径很小的尖端电极附近,由于局部电场强度超过气体的电离场强,使气体发生电离和激励,因而出现电晕放电引。
发生电晕时在电极周围可以看到光亮,并伴有咝咝声。
电晕放电可以是相对稳定的放电形式,也可以是不均匀电场间隙击穿过程中的早期发展阶段。
低压气体中显示辉光的气体放电(空气中的电子大概在1000对/cm,由于高压放电现象在低气压状态下会产生辉光现象)现象,即是稀薄气体中的自激导电现象。
滑闪放电是绝缘表面气体热电离引起的,沿着绝缘表面的不稳定的树枝状放电,它并没有贯穿两极。
如果滑闪贯穿两极就称为闪络。
闪络是指固体绝缘子周围的气体或液体电介质被击穿时,沿固体绝缘子表面放电的现象。
(当在气体或液体电介质中沿固体绝缘表面发生破坏性放电现象,称之为闪络。
)其放电时的电压称为闪络电压。
发生闪络后,电极间的电压迅速下降到零或接近于零。
闪络通道中的火花或电弧使绝缘表面局部过热造成炭化,损坏表面绝缘。
电弧是一种气体放电现象,电流通过某些绝缘介质(例如空气)所产生的瞬间火花。
电弧放电是气体放电中最强烈的一种自持放电。
当电源提供较大功率的电能时,若极间电压不高(约几十伏),两极间气体或金属蒸气中可持续通过较强的电流(几安至几十安),并发出强烈的光辉,产生高温(几千至上万度),这就是电弧放电。
电弧是一种常见的热等离子体(见等离子体应用)。
电弧放电最显著的外观特征是明亮的弧光柱和电极斑点。
当高压电源的功率不太大时,高电压电极间的气体被击穿,出现闪光和爆裂声的气体放电现象。
火花放电时,碰撞电离并不发生在电极间的整个区域内,只是沿着狭窄曲折的发光通道进行,并伴随爆裂声。