胡寿松《自动控制原理》课件讲义
合集下载
胡寿松自动控制原理PPT课件
1. 典型环节
最小相位环节 比例环节:G(s)=K (K>0) 积分环节:G(s)=1/s 微分环节:G(s)=s
非最小相位环节 比例环节:G(s)=K (K<0)
惯性环节:G(s)=1/(Ts+1)
惯性环节:G(s)=1/(1-Ts)
一阶微分环节:G(s)=Ts+1
一阶微分环节:G(s)=1-Ts
2j
2j
G( jw) Asin(t ()) Ac sin(t ())
第4页/共67页
A() G( j)
() G( j)
幅频特性 相频特性
线性系统的稳态输出是和输入具有相同频率的正弦信号,
其输出与输入的幅值比为
A() G( j)
输出与输入的相位差
() G( j)
第5页/共67页
(1)、频率响应 在正弦输入信号作用下,系统输出的稳态值称为系统的频率响应, 记为css(t)
第52页/共67页
二、系统开环对数频特性曲线的绘制
控制系统一般由多个环节组成,在绘制系统Bode图时,应先将系统传递函数 分解为典型环节乘积的形式,再逐步绘制。
G(s)H (s)
K (1s
s (T1s
1)
(
2 2
s
2
1) (T22 s 2
22 2s 1) 22T2s 1)
b0s m b1s m1 bm1s bm s n a1s n1 an1s an
解 首先求出系统的闭环传递函数(s) ,令s=j 得
如=2, 则 (j2)=0.35 -45o 则系统稳态输出为:c(t)=0.35sin(2t-45o)
第8页/共67页
频率特性表示法
频率特性可用解析式或图形来表示。 (一)解析表示
最小相位环节 比例环节:G(s)=K (K>0) 积分环节:G(s)=1/s 微分环节:G(s)=s
非最小相位环节 比例环节:G(s)=K (K<0)
惯性环节:G(s)=1/(Ts+1)
惯性环节:G(s)=1/(1-Ts)
一阶微分环节:G(s)=Ts+1
一阶微分环节:G(s)=1-Ts
2j
2j
G( jw) Asin(t ()) Ac sin(t ())
第4页/共67页
A() G( j)
() G( j)
幅频特性 相频特性
线性系统的稳态输出是和输入具有相同频率的正弦信号,
其输出与输入的幅值比为
A() G( j)
输出与输入的相位差
() G( j)
第5页/共67页
(1)、频率响应 在正弦输入信号作用下,系统输出的稳态值称为系统的频率响应, 记为css(t)
第52页/共67页
二、系统开环对数频特性曲线的绘制
控制系统一般由多个环节组成,在绘制系统Bode图时,应先将系统传递函数 分解为典型环节乘积的形式,再逐步绘制。
G(s)H (s)
K (1s
s (T1s
1)
(
2 2
s
2
1) (T22 s 2
22 2s 1) 22T2s 1)
b0s m b1s m1 bm1s bm s n a1s n1 an1s an
解 首先求出系统的闭环传递函数(s) ,令s=j 得
如=2, 则 (j2)=0.35 -45o 则系统稳态输出为:c(t)=0.35sin(2t-45o)
第8页/共67页
频率特性表示法
频率特性可用解析式或图形来表示。 (一)解析表示
自动控制原理课件胡寿松
系统开环频率响应相位在临界 频率处的值与180度之间的差值 。
带宽频率
系统开环幅频特性等于0.707时 的频率。
剪切频率
系统开环幅频特性等于0.707时 的频率。
稳定性与性能的关系
稳定性是控制系统的重要性能指 标,它决定了系统能否正常工作
。
系统的稳定性与其性能指标密切 相关,如系统的超调量、调节时
自动控制原理课件胡 寿松
目录
• 自动控制概述 • 控制系统稳定性分析 • 控制系统的性能指标 • 控制系统的设计方法 • 控制系统的校正与补偿 • 控制系统的应用实例
01
自动控制概述
定义与分类
定义
自动控制是利用控制装置,使被 控对象按照预设规律自动运行的 系统。
分类
开环控制系统、闭环控制系统、 复合控制系统等。
通过分析系统的频率特性 ,研究系统的稳定性、带 宽和阻尼特性。
现代控制理论设计方法
状态空间法
01
基于系统的状态方程进行系统分析和设计,适用于线性时变系
统和非线性系统。
线性二次型最优控制
02
通过优化性能指标,设计最优控制律,适用于多输入多输出系
统。
滑模控制
03
设计滑模面和滑模控制器,使得系统状态在滑模面上滑动,适
无人机飞行控制系统通过自动控制算法,实现无人机的稳定飞行 和精确控制。
卫星姿态控制
卫星姿态控制系统通过传感器和执行机构,实现卫星的稳定指向 和精确姿态调整。
航空发动机控制
航空发动机控制系统通过调节燃油流量和点火时间等参数,实现 发动机的稳定运行和性能优化。
工业自动化控制系统的应用
智能制造
智能制造系统通过自动化设备和传感器,实现生产过程的自动化控 制和优化。
带宽频率
系统开环幅频特性等于0.707时 的频率。
剪切频率
系统开环幅频特性等于0.707时 的频率。
稳定性与性能的关系
稳定性是控制系统的重要性能指 标,它决定了系统能否正常工作
。
系统的稳定性与其性能指标密切 相关,如系统的超调量、调节时
自动控制原理课件胡 寿松
目录
• 自动控制概述 • 控制系统稳定性分析 • 控制系统的性能指标 • 控制系统的设计方法 • 控制系统的校正与补偿 • 控制系统的应用实例
01
自动控制概述
定义与分类
定义
自动控制是利用控制装置,使被 控对象按照预设规律自动运行的 系统。
分类
开环控制系统、闭环控制系统、 复合控制系统等。
通过分析系统的频率特性 ,研究系统的稳定性、带 宽和阻尼特性。
现代控制理论设计方法
状态空间法
01
基于系统的状态方程进行系统分析和设计,适用于线性时变系
统和非线性系统。
线性二次型最优控制
02
通过优化性能指标,设计最优控制律,适用于多输入多输出系
统。
滑模控制
03
设计滑模面和滑模控制器,使得系统状态在滑模面上滑动,适
无人机飞行控制系统通过自动控制算法,实现无人机的稳定飞行 和精确控制。
卫星姿态控制
卫星姿态控制系统通过传感器和执行机构,实现卫星的稳定指向 和精确姿态调整。
航空发动机控制
航空发动机控制系统通过调节燃油流量和点火时间等参数,实现 发动机的稳定运行和性能优化。
工业自动化控制系统的应用
智能制造
智能制造系统通过自动化设备和传感器,实现生产过程的自动化控 制和优化。
自动控制原理课件胡寿松官方版
解 一条前向通道,P1=G1G2G3G4G5
三个反馈回路,L1=G2G3H1 L2=-G3G4H2 L3=-G1G2G3G4H3
三个回路相互接触,△=1 -(L1 +L2 +L3)
调节时间tsຫໍສະໝຸດ *动态性能指标定义2
h(t)
t
上升时间tr
调节时间 ts
*
动态性能指标定义3
h(t) t ts B 100%
A
tr
σ%=
tp
A
B
*
一阶系统时域分析
无零点的一阶系统 Φ(s)=
Ts+1
k
, T
时间常数
(画图时取k=1,T=0.5)
单 位 脉 冲 响 应
k(t)=
T
1
e-
T
t
k(0)=
劳斯表出现零行系统一定不稳定
*
误差定义
G(s)
H(s)
R(s)
E(s)
C(s)
B(s)
输入端定义:
E(s)=R(s)-B(s)=R(s)-C(s)H(s)
G(s)
H(s)
R(s)
E(s)
C(s)
H(s)
1
R(s)
ˊ
ˊ
输出端定义:
E(s)=C希-C实= -C(s)
R(s)
H(s)
*
202X
单击此处添加副标题
第二章 控制系统的数学模型
汇报日期
2.2.1 传递函数的定义和性质 传递函数传递函数是系统(或元件)一个输入量与一个输出量之间关系的数学描述,它不涉及系统内部状态变化情况,为输入—输出模型。
意义:
1. 定义 零初始条件下,线性定常系统输出量的拉氏变换与输入量的拉氏变换之比,称为该系统的传递函数,记为G(s),即:
三个反馈回路,L1=G2G3H1 L2=-G3G4H2 L3=-G1G2G3G4H3
三个回路相互接触,△=1 -(L1 +L2 +L3)
调节时间tsຫໍສະໝຸດ *动态性能指标定义2
h(t)
t
上升时间tr
调节时间 ts
*
动态性能指标定义3
h(t) t ts B 100%
A
tr
σ%=
tp
A
B
*
一阶系统时域分析
无零点的一阶系统 Φ(s)=
Ts+1
k
, T
时间常数
(画图时取k=1,T=0.5)
单 位 脉 冲 响 应
k(t)=
T
1
e-
T
t
k(0)=
劳斯表出现零行系统一定不稳定
*
误差定义
G(s)
H(s)
R(s)
E(s)
C(s)
B(s)
输入端定义:
E(s)=R(s)-B(s)=R(s)-C(s)H(s)
G(s)
H(s)
R(s)
E(s)
C(s)
H(s)
1
R(s)
ˊ
ˊ
输出端定义:
E(s)=C希-C实= -C(s)
R(s)
H(s)
*
202X
单击此处添加副标题
第二章 控制系统的数学模型
汇报日期
2.2.1 传递函数的定义和性质 传递函数传递函数是系统(或元件)一个输入量与一个输出量之间关系的数学描述,它不涉及系统内部状态变化情况,为输入—输出模型。
意义:
1. 定义 零初始条件下,线性定常系统输出量的拉氏变换与输入量的拉氏变换之比,称为该系统的传递函数,记为G(s),即:
自动控制原理(胡寿松)第三章ppt
非线性控制系统
非线性控制系统是指系统中各部分之间的数学关 系不能用线性方程描述的系统。非线性控制系统 具有非均匀性和非叠加性,分析和设计较为复杂 。
控制系统的基本要求
稳定性
稳定性是控制系统的基本要求之一,是指系统受到扰动后能够回到原始平衡状态的能力。系统稳定性的判断依据是系 统的极点和零点分布情况。
实验法
通过系统输入和输出数据的实验测量,采用系统辨 识的方法得到系统的数学模型。
混合法
结合解析法和实验法的优点,先通过机理分 析建立部分数学模型,再通过实验数据进行 系统参数的调整和优化。
控制系统数学模型的分类
线性时不变系统
描述线性、时不变系统的动态特性,是最常 见的控制系统数学模型。
非线性系统
描述非线性系统的动态特性,其数学模型通 常较为复杂。
时变系统
描述时变系统的动态特性,其数学模型中包 含时间变量。
离散系统
描述离散时间系统的动态特性,其数学模型 通常采用差分方程或离散状态方程。
控制系统数学模型的转换与化简
01
线性化处理
将非线性系统通过泰勒级数展开 等方法转换为线性系统,便于分 析和设计。
化简模型
02
03
模型降阶
对复杂的控制系统模型进行化简 ,如采用等效变换、状态空间平 均等方法。
控制系统设计的步骤与方法
选择合适的控制策略
根据系统特性和要求选择合适 的控制算法。
控制器设计
基于系统模型设计控制器,满 足性能指标。
确定系统要求
明确控制目标,确定性能指标 。
系统建模
建立被控对象的数学模型,为 后续设计提供依据。
系统仿真与调试
通过仿真验证设计的有效性, 并进行实际调试。
非线性控制系统是指系统中各部分之间的数学关 系不能用线性方程描述的系统。非线性控制系统 具有非均匀性和非叠加性,分析和设计较为复杂 。
控制系统的基本要求
稳定性
稳定性是控制系统的基本要求之一,是指系统受到扰动后能够回到原始平衡状态的能力。系统稳定性的判断依据是系 统的极点和零点分布情况。
实验法
通过系统输入和输出数据的实验测量,采用系统辨 识的方法得到系统的数学模型。
混合法
结合解析法和实验法的优点,先通过机理分 析建立部分数学模型,再通过实验数据进行 系统参数的调整和优化。
控制系统数学模型的分类
线性时不变系统
描述线性、时不变系统的动态特性,是最常 见的控制系统数学模型。
非线性系统
描述非线性系统的动态特性,其数学模型通 常较为复杂。
时变系统
描述时变系统的动态特性,其数学模型中包 含时间变量。
离散系统
描述离散时间系统的动态特性,其数学模型 通常采用差分方程或离散状态方程。
控制系统数学模型的转换与化简
01
线性化处理
将非线性系统通过泰勒级数展开 等方法转换为线性系统,便于分 析和设计。
化简模型
02
03
模型降阶
对复杂的控制系统模型进行化简 ,如采用等效变换、状态空间平 均等方法。
控制系统设计的步骤与方法
选择合适的控制策略
根据系统特性和要求选择合适 的控制算法。
控制器设计
基于系统模型设计控制器,满 足性能指标。
确定系统要求
明确控制目标,确定性能指标 。
系统建模
建立被控对象的数学模型,为 后续设计提供依据。
系统仿真与调试
通过仿真验证设计的有效性, 并进行实际调试。
自动控制原理胡寿松第一张
时间离散:系统中存在某些信号,仅在特定旳时间点上有定义。 离散系统描述旳特点:用差分方程来描述。
•非线1-4 对自动控制系统旳基本要求
1.基本要求旳提法 2.经典外作用
怎样评价系统?
•基本要求旳提法
1.稳定性:系统在没有外加信号鼓励条件下,能否最终停留在一种 固定旳位置上。
位置测量
•电阻炉微型计算机温度控制系统
控制目旳:电炉温度在设定旳范围内。 工作原理:电阻丝经过晶闸管主电路加热。温度依托电阻丝中旳电
流大小来调整。
温度检测:热电偶。 控制器:微型计算机。 计算机控制器特点:微型计算机采用数字量,按节拍工作。
设定温度
微型计算机
D/A转换
晶闸管
炉温
电阻丝
A/D转换
热电偶
•锅炉液位控制系统
控制目的:锅炉内水位在设定范围(进水量与蒸发水量平衡)。
调整量:经过调整进水阀门开赌旳大小,变化进水量。 工作原理:由液位测量装置(变送器)测出液位信号,与设定值比
较,若液位降低,则加大阀门开度,反之则减小。
设定水位
调整器
阀门
干扰 水位
锅炉
液位测量
§1-3 自动控制系统旳分类
1.线性连续控制系统 2.线性定常离散控制系统 3.非线性控制系统
1.函数统计仪 2.飞机自动驾驶仪 3.电阻炉微型计算机温度控制系统 4.锅炉液位控制系统
•函数统计仪
控制目的:纪录笔按要求到达要求位置。
控制量:纪录笔位置。 控制对象:纪录笔。
纪录笔运动原理:给定一种电压信号,设定位移量。在输入作用下 开启电机,带动齿轮、绳系,拖动纪录笔运动。
位置精度考虑:为了使纪录笔能精确到达指定位置,应将纪录笔旳 位置测量出来,用来反馈。
自动控制原理胡寿松(课堂PPT)
G2(s)G4(s)
G3(s)H(s) G4(s)H(s)
C(s) G5 (s)
3
R(s) G 1 ( s ) G 3 ( s ) G 2 ( s ) G 4 ( s )
C(s) G5 (s)
G 3 ( s ) G 4 ( s ) H ( s )
4
R(s)
1
G 1 ( s ) G 3 ( s ) G 2 ( s ) G 4 ( s ) 1G3(s)G4(s)H(s)
函数确定。 r (t )
1 e(t) 1/ s
1
c(t)
1
22
信号流图常用的名词术语
➢源节点(输入节点):只有信号输出支路的节点。
➢阱节点(输出节点):只有信号输入支路的节点。
C(s) G5 (s)
5
C R ( (s s) ) G 1 1 (s G )G 3 3 (( ss )) G G 4 2 (( ss ))H G 4 (( ss ))G 5(s) 6
21
• 信号流图的组成及性质
信号流图是以点和有向线段,描述系统的组成、结构、信号传 递关系的图形。它完全表述了一个系统。
C(s)
1G2(s)G3(s)H2(s) G4(s)
H3(s)/G2(s) H1(s)
G2(s)G3(s)G4(s) 1G2(s)G3(s)H2(s)
C(s)
H3(s)/G2(s) H1(s)
G1(s)
G 2(s)G 3(s)G 4(s)
C(s)
1G 2(s)G 3(s)H 2(s)G 3(s)G 4(s)H 3(s)
1
§2-3 控制系统的结构图与信号流图
1.系统结构图的组成和绘制 2.结构图的等效变换和简化 3.信号流图的组成和性质 4.信号流图的绘制 5.梅逊增益公式 6.闭环系统的传递函数
G3(s)H(s) G4(s)H(s)
C(s) G5 (s)
3
R(s) G 1 ( s ) G 3 ( s ) G 2 ( s ) G 4 ( s )
C(s) G5 (s)
G 3 ( s ) G 4 ( s ) H ( s )
4
R(s)
1
G 1 ( s ) G 3 ( s ) G 2 ( s ) G 4 ( s ) 1G3(s)G4(s)H(s)
函数确定。 r (t )
1 e(t) 1/ s
1
c(t)
1
22
信号流图常用的名词术语
➢源节点(输入节点):只有信号输出支路的节点。
➢阱节点(输出节点):只有信号输入支路的节点。
C(s) G5 (s)
5
C R ( (s s) ) G 1 1 (s G )G 3 3 (( ss )) G G 4 2 (( ss ))H G 4 (( ss ))G 5(s) 6
21
• 信号流图的组成及性质
信号流图是以点和有向线段,描述系统的组成、结构、信号传 递关系的图形。它完全表述了一个系统。
C(s)
1G2(s)G3(s)H2(s) G4(s)
H3(s)/G2(s) H1(s)
G2(s)G3(s)G4(s) 1G2(s)G3(s)H2(s)
C(s)
H3(s)/G2(s) H1(s)
G1(s)
G 2(s)G 3(s)G 4(s)
C(s)
1G 2(s)G 3(s)H 2(s)G 3(s)G 4(s)H 3(s)
1
§2-3 控制系统的结构图与信号流图
1.系统结构图的组成和绘制 2.结构图的等效变换和简化 3.信号流图的组成和性质 4.信号流图的绘制 5.梅逊增益公式 6.闭环系统的传递函数
自动控制原理-胡寿松-第六版第二章ppt
。
03
主要功能
实现航空航天器的导航、姿态控 制、推进控制等功能,确保航空
航天器的安全和稳定运行。
02
应用领域
包括飞机、导弹、卫星、火箭等 。
04
技术组成
包括导航系统、控制系统、推进 系统等。
智能家居控制系统
01
02
03
04
定义
智能家居控制系统是用于家庭 居住环境的各种智能化控制系
统的总称。
应用领域
性质
传递函数具有多项式函数的形式,且在复平面上有极点和 零点。
应用
传递函数广泛应用于控制系统分析和设计中,如稳定性分 析、频率响应分析等。
方框图
定义
方框图是一种用方框和信号线组成的图形表示控制系统的方法。
组成
方框图由信号线、输入端、输出端、环节和连接线组成。
应用
方框图直观易懂,便于对控制系统进行分析和设计。在自动控制原 理课程中,学生需要掌握方框图的绘制和解读方法。
包括智能照明、智能安防、智 能家电、智能环境等。
主要功能
实现家庭居住环境的智能化控 制,提高居住的舒适度和便利
性,降低能耗。
技术组成
包括传感器、执行器、控制器 、网络通信等。
THANKS
感谢观看
分类
根据不同的分类标准,可以将自动控制系统分为多种类型,如开环控制系统和 闭环控制系统、定值控制系统和程序控制系统、线性控制系统和非线性控制系 统等。
自动控制系统的重要性
提高生产效率和产品质量
自动控制系统能够实现自动化生产, 提高生产效率,减少人为因素对产品 质量的干扰,从而提高产品质量。
节能减排
性能。
常用的串联校正装置包括:滞 后环节、超前环节、相位滞后-
03
主要功能
实现航空航天器的导航、姿态控 制、推进控制等功能,确保航空
航天器的安全和稳定运行。
02
应用领域
包括飞机、导弹、卫星、火箭等 。
04
技术组成
包括导航系统、控制系统、推进 系统等。
智能家居控制系统
01
02
03
04
定义
智能家居控制系统是用于家庭 居住环境的各种智能化控制系
统的总称。
应用领域
性质
传递函数具有多项式函数的形式,且在复平面上有极点和 零点。
应用
传递函数广泛应用于控制系统分析和设计中,如稳定性分 析、频率响应分析等。
方框图
定义
方框图是一种用方框和信号线组成的图形表示控制系统的方法。
组成
方框图由信号线、输入端、输出端、环节和连接线组成。
应用
方框图直观易懂,便于对控制系统进行分析和设计。在自动控制原 理课程中,学生需要掌握方框图的绘制和解读方法。
包括智能照明、智能安防、智 能家电、智能环境等。
主要功能
实现家庭居住环境的智能化控 制,提高居住的舒适度和便利
性,降低能耗。
技术组成
包括传感器、执行器、控制器 、网络通信等。
THANKS
感谢观看
分类
根据不同的分类标准,可以将自动控制系统分为多种类型,如开环控制系统和 闭环控制系统、定值控制系统和程序控制系统、线性控制系统和非线性控制系 统等。
自动控制系统的重要性
提高生产效率和产品质量
自动控制系统能够实现自动化生产, 提高生产效率,减少人为因素对产品 质量的干扰,从而提高产品质量。
节能减排
性能。
常用的串联校正装置包括:滞 后环节、超前环节、相位滞后-
自动控制原理(胡寿松)第一章ppt课件
智能家居
智能家居是自动控制系统在家庭生活中的应用,通过智能家居设备 实现家庭生活的智能化和自动化。
交通工具
交通工具是自动控制系统的重要应用领域之一,如自动驾驶汽车、无 人机等,通过自动化控制技术提高交通工具的安全性和效率。
03
控制系统的传递函数
线性时不变系统的描述
线性时不变系统
在一定的输入下,输出量与输入量成正比,且与 时间无关的系统。
稳定的。
05
控制系统的性能指标
时域性能指标
峰值时间
控制系统达到其最大超调量的 时间。
调节时间
控制系统从设定值稳定到误差 带内的所需时间。
上升时间
控制系统输出从0上升到稳态值 所需的时间。
最大超调量
控制系统输出超过稳态值的最 大偏差量。
频域性能指标
幅值裕度
系统开环频率响应幅值下降到稳态值所需的 分贝数。
传递函数的性质
01
02
传递函数具有复数域上的函数性质,如连续 性、可微性等。
传递函数的分子和分母都是多项式,且分 母多项式的阶数高于分子多项式的阶数。
03
04
传递函数的计算方法
根据系统的结构图或微分方程,计算传递 函数。
05
06
通过系统元件的传递函数,组合得到整个 系统的传递函数。
04
控制系统的稳定性分析
03 如果劳斯表格中的所有符号都是负的,则系统是 稳定的;否则,系统是不稳定的。
奈奎斯特稳定判据
01
02
03
奈奎斯特稳定判据是通 过分析系统的频率响应 来判定系统稳定性的方
法。
它基于奈奎斯特曲线(频 率响应曲线)的计算,通 过判断奈奎斯特曲线是否 包围点(-1,0)来确定
智能家居是自动控制系统在家庭生活中的应用,通过智能家居设备 实现家庭生活的智能化和自动化。
交通工具
交通工具是自动控制系统的重要应用领域之一,如自动驾驶汽车、无 人机等,通过自动化控制技术提高交通工具的安全性和效率。
03
控制系统的传递函数
线性时不变系统的描述
线性时不变系统
在一定的输入下,输出量与输入量成正比,且与 时间无关的系统。
稳定的。
05
控制系统的性能指标
时域性能指标
峰值时间
控制系统达到其最大超调量的 时间。
调节时间
控制系统从设定值稳定到误差 带内的所需时间。
上升时间
控制系统输出从0上升到稳态值 所需的时间。
最大超调量
控制系统输出超过稳态值的最 大偏差量。
频域性能指标
幅值裕度
系统开环频率响应幅值下降到稳态值所需的 分贝数。
传递函数的性质
01
02
传递函数具有复数域上的函数性质,如连续 性、可微性等。
传递函数的分子和分母都是多项式,且分 母多项式的阶数高于分子多项式的阶数。
03
04
传递函数的计算方法
根据系统的结构图或微分方程,计算传递 函数。
05
06
通过系统元件的传递函数,组合得到整个 系统的传递函数。
04
控制系统的稳定性分析
03 如果劳斯表格中的所有符号都是负的,则系统是 稳定的;否则,系统是不稳定的。
奈奎斯特稳定判据
01
02
03
奈奎斯特稳定判据是通 过分析系统的频率响应 来判定系统稳定性的方
法。
它基于奈奎斯特曲线(频 率响应曲线)的计算,通 过判断奈奎斯特曲线是否 包围点(-1,0)来确定
第7章自动控制原理课件胡寿松
2012年6月22日 EXIT 第7章第11页
5.变放大系数特性
k1e (t ) y (t ) k 2 e (t )
e( t ) a e(t ) a
变放大系数特性使系统在大误差信号时具有较大的 放大系数,系统响应迅速。而在小误差信号时具有较 小的放大系数,使系统响应既缓且稳。 具有这种特性的系统,其动态品质较好。
第7章
非线性控制系统
2012年6月22日
EXIT
第7章第1页
7.1 非线性系统的基本概念
7.2 二阶线性和非线性系统的特征
7.3 非线性系统的相平面分析
7.4 非线性系统一种线性近似表示
——描述函数
7.5 非线性环节的串并联及系统的变换
7.6 利用非线性特性改善系统的性能
2012年6月22日
EXIT
齿轮传动的齿隙特性,液压传动的的油隙特性等均属于 这类特性。 当系统中有间隙特性存在时,将使系统输出信号在相位 上产生滞后,从而使系统的稳定裕度减少,动态特性变坏。 间隙的存在常常是系统产生自持振荡的主要原因。
2012年6月22日
EXIT
第7章第9页
4.继电器特性
0 0 y ( t ) b sg n e ( t ) b b m a e( t ) a e( t) 0 e( t) 0
第7章第2页
7.1
非线性系统的基本概念
2012年6月22日
EXIT
第7章第3页
7.1.1 非线性系统的数学描述
非线性系统:如果一个系统中包含一个或一个以上具有非线 性特性的元件或环节时,即称该系统为非线性控制系统。 例:弹簧阻尼系统 其运动可用下面非线性微分方程描述:
5.变放大系数特性
k1e (t ) y (t ) k 2 e (t )
e( t ) a e(t ) a
变放大系数特性使系统在大误差信号时具有较大的 放大系数,系统响应迅速。而在小误差信号时具有较 小的放大系数,使系统响应既缓且稳。 具有这种特性的系统,其动态品质较好。
第7章
非线性控制系统
2012年6月22日
EXIT
第7章第1页
7.1 非线性系统的基本概念
7.2 二阶线性和非线性系统的特征
7.3 非线性系统的相平面分析
7.4 非线性系统一种线性近似表示
——描述函数
7.5 非线性环节的串并联及系统的变换
7.6 利用非线性特性改善系统的性能
2012年6月22日
EXIT
齿轮传动的齿隙特性,液压传动的的油隙特性等均属于 这类特性。 当系统中有间隙特性存在时,将使系统输出信号在相位 上产生滞后,从而使系统的稳定裕度减少,动态特性变坏。 间隙的存在常常是系统产生自持振荡的主要原因。
2012年6月22日
EXIT
第7章第9页
4.继电器特性
0 0 y ( t ) b sg n e ( t ) b b m a e( t ) a e( t) 0 e( t) 0
第7章第2页
7.1
非线性系统的基本概念
2012年6月22日
EXIT
第7章第3页
7.1.1 非线性系统的数学描述
非线性系统:如果一个系统中包含一个或一个以上具有非线 性特性的元件或环节时,即称该系统为非线性控制系统。 例:弹簧阻尼系统 其运动可用下面非线性微分方程描述:
自动控制原理课件第一章 胡寿松
⑴ 恒值控制系统 输入信号是恒定常值,被控量也是一个与之对应的常值, 输入信号是恒定常值,被控量也是一个与之对应的常值,当外 界有扰动时,系统要求被控量保持为一个不变的常值。 界有扰动时,系统要求被控量保持为一个不变的常值。如电压控制 系统。对系统的要求是稳定性和稳态误差。 系统。对系统的要求是稳定性和稳态误差。 ⑵ 随动系统 输入信号是时间的任意函数,其变化规律事先不知道。系统要 输入信号是时间的任意函数,其变化规律事先不知道。 求输出量以尽可能小的误差跟随输入信号的变化。系统分析、 求输出量以尽可能小的误差跟随输入信号的变化。系统分析、设计 的重点是研究被控量跟随的快速性和准确性。 的重点是研究被控量跟随的快速性和准确性。 ⑶程序控制系统 这类控制系统的输入信号是按预定规律随时间变化的函数, 这类控制系统的输入信号是按预定规律随时间变化的函数,要 求被控量迅速、准确地复现. 求被控量迅速、准确地复现.机械加工使用的数字程序控制机床便 是一例. 是一例. 22
第一章
自动控制的一般概念
1
1.1 1.2 1.3 1.4
自动控制的基本原理与方式 自动控制系统示例 自动控制系统的分类 对自动控制系统的基本要求
2
1.1 自动控制的基本原理与方式
1.1.1 自动控制技术及其应用 自动控制:在没有人直接参与的情况下,通过控制器 自动控制:在没有人直接参与的情况下,通过控制器,使被 控对象或过程自动地按预定的规律运行。 控对象或过程自动地按预定的规律运行。 应用:工业、农业、交通、国防、宇航、社会。 应用:工业、农业、交通、国防、宇航、社会。 自动控制的优点: 节省人力; 自动控制的优点:① 节省人力; 提高系统的精度; ② 提高系统的精度; 可以完成人工控制系统无法完成的工作。 ③ 可以完成人工控制系统无法完成的工作。 自动控制已成为现代社会活动中不可缺少的重要组成部分 3
自动控制原理电子课件胡寿松版
π
- 取其解中的最小值,S1,2= 得ωntp= ±jωωd n √1- 2
e 由σ%=
h(t)=
h(tp) -h(∞)
1-h(∞) 1
√1- 2
100%
-
e 得 σ% = -π ωnt sin(ωd t +β
100%
)
(0 ﹤ ≤ 0.8) 由包络线求调节时间
设系统特征方程为: 劳思表介绍
s6+2s5+3s4+4s3+5s2+6s+7=0
• 课件10先要讲清H1和H3的双重作用,再讲分解就 很自然了。
• 课件11 、12 、13是直接在结构图上应用梅逊公式 ,制作者认为没必要将结构图变为信号流图后再 用梅逊公式求传递函数。
说明3
• 课件17~30为第三章的内容。
• 课件17~19中的误差带均取为稳态值的5%,有超 调的阶跃响应曲线的上升时间为第一次到达稳态 值的时间。
1 按扰动的全补偿
Gn(s)
N(s )
R(s) E(s )
k1 T1s+1
k2
C(s
s(T2s+1) )
令R(s)=0,En(s) = -C(s) =
s
(T1s+1)+ k1Gn(s) (T1s+1)(T2s+1) + k1k2
N(s)
令分子=0,得Gn(s) = - (T1s+1)/k1
2 按扰动的稳t态从补0→偿∞全过设程系统这稳就定是,按N(扰s)=动1/的s ,则全补偿
串联
并联
反馈
G1 G2
G1
G1
G2
G2
G1 G2
- 取其解中的最小值,S1,2= 得ωntp= ±jωωd n √1- 2
e 由σ%=
h(t)=
h(tp) -h(∞)
1-h(∞) 1
√1- 2
100%
-
e 得 σ% = -π ωnt sin(ωd t +β
100%
)
(0 ﹤ ≤ 0.8) 由包络线求调节时间
设系统特征方程为: 劳思表介绍
s6+2s5+3s4+4s3+5s2+6s+7=0
• 课件10先要讲清H1和H3的双重作用,再讲分解就 很自然了。
• 课件11 、12 、13是直接在结构图上应用梅逊公式 ,制作者认为没必要将结构图变为信号流图后再 用梅逊公式求传递函数。
说明3
• 课件17~30为第三章的内容。
• 课件17~19中的误差带均取为稳态值的5%,有超 调的阶跃响应曲线的上升时间为第一次到达稳态 值的时间。
1 按扰动的全补偿
Gn(s)
N(s )
R(s) E(s )
k1 T1s+1
k2
C(s
s(T2s+1) )
令R(s)=0,En(s) = -C(s) =
s
(T1s+1)+ k1Gn(s) (T1s+1)(T2s+1) + k1k2
N(s)
令分子=0,得Gn(s) = - (T1s+1)/k1
2 按扰动的稳t态从补0→偿∞全过设程系统这稳就定是,按N(扰s)=动1/的s ,则全补偿
串联
并联
反馈
G1 G2
G1
G1
G2
G2
G1 G2
自动控制原理课件第六版第一章胡寿松
控制系统的性能指标
性能指标
描述控制系统在特定条件下表现出的性能特征的参数或标准。性能指标是控制系统设计和评价的重要 依据,常见的性能指标有超调量、调节时间、稳态误差等。
性能指标的确定
根据实际应用需求和系统要求,选择合适的性能指标,并进行相应的计算和分析。性能指标的选择和 确定需要考虑系统的动态特性和稳态特性,以及系统的抗干扰能力和鲁棒性等。
03
控制系统的数学模型
微分方程
定义
微分方程是描述控制系统动态行为的数学模型,它描述了系统输出 变量对时间的变化率与输入变量之间的关系。
建立方法
通过分析系统的工作原理和物理特性,列出系统各部分之间的物理 量关系,然后转化为微分方程。
求解方法
常用的求解微分方程的方法包括分离变量法、常数变易法、线性化 法等。
02
控制系统的基本概念
开环与闭环控制系统
开环控制系统
系统的输出只受输入信号的控制,系统没有反馈回路,即系统输出对系统没有 控制作用。开环控制系统结构简单,控制精度低,容易实现,但抗干扰能力差。
闭环控制系统
系统的输出量能够直接或间接地反馈到输入端,并构成一个闭合回路。闭环控 制系统具有较好的抗干扰能力,能够实现精确控制,但系统结构复杂,设计和 调试难度较大。
自动控制系统的工作流程
输入信号通过传感器检测 被控对象的输出,并转换 为控制器可以接收的信号。
控制信号通过执行器作用 于被控对象,调节其工作 状态。
ABCD
控制器根据输入信号和设 定值进行比较,根据控制 算法计算出控制信号。
被控对象的输出信号通过 传感器检测并反馈给控制 器,形成一个闭环控制回 路。
传递函数
定义
传递函数是描述线性时不变控 制系统动态特性的数学模型, 它描述了输出变量与输入变量