自动控制原理PPT

合集下载

根轨迹法(自动控制原理)ppt课件精选全文完整版

根轨迹法(自动控制原理)ppt课件精选全文完整版
1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法

自动控制原理教学ppt

自动控制原理教学ppt
前馈校正
在系统的输入端引入一个前馈环节, 根据输入信号的特性对系统进行补 偿,以提高系统的跟踪精度和抗干 扰能力。
复合校正方法
串联复合校正
将串联超前、串联滞后和串联滞 后-超前等校正方法结合起来, 设计一个复合的串联校正环节, 以实现更复杂的系统性能要求。
反馈复合校正
将局部反馈、全局反馈和前馈等 校正方法结合起来,设计一个复 合的反馈校正环节,以实现更全
自适应控制系统概述
简要介绍自适应控制系统的基本原理、结构和特点,为后续内容 做铺垫。
自适应控制方法
详细介绍自适应控制方法,如模型参考自适应控制、自校正控制等, 及其在自动控制领域中的应用实例。
自适应控制算法
阐述自适应控制算法的实现过程,包括参数估计、控制器设计等关 键技术。
鲁棒控制理论应用
鲁棒控制系统概述
自动控制应用领域
工业领域
自动控制广泛应用于工业领域,如自 动化生产线、工业机器人、智能制造 等。
01
02
航空航天领域
自动控制是航空航天技术的重要组成 部分,如飞行器的自动驾驶仪、导弹 的制导系统等。
03
交通运输领域
自动控制也应用于交通运输领域,如 智能交通系统、自动驾驶汽车等。
其他领域
此外,自动控制还应用于农业、医疗、 环保等领域,如农业自动化、医疗机 器人、环境监测与治理等。
提高系统的稳态精度。
串联滞后-超前校正
03
结合超前和滞后校正的优点,设计一个既有超前又有滞后的校
正环节,以同时改善系统的动态性能和稳态精度。
反馈校正方法
局部反馈校正
在系统的某个局部引入反馈环节, 以改善该局部的性能,而不影响 系统的其他部分。
全局反馈校正

自动控制原理最全PPT

自动控制原理最全PPT

2021年6月10日
第一章 自动控制系统的基本概念
第一章 自动控制系统的基本概念
学习重点
❖ 了解自动控制系统的基本结构和特点及 其工作原理;
❖ 了解闭环控制系统的组成和基本环节;
❖ 掌握反馈控制系统的基本要求及反馈控 制系统的作用;
❖ 学会分析自动控制系统的类型及本质特 征。
2021年6月10日
第一章 自动控制系统的基本概念
主要解决问题:单输入单输出(SISO)系统的控制问题。
主要方法:
以传函为数学模型,以拉氏变换数学工具, 时域分析法、根轨迹法、频率法。
主要研究对象:SISO,线性定常(LTI),非线性系统,离散
系统。
Linear Time
主要代表人物:伯德,奈奎斯特,伊文思。 Invariable
2021年6月10日
电机与拖动
线性代数
大学物理
自动控制原理
微积分
2021年6月10日
各类 专业课
线性系统
现代控 制理论
第一章 自动控制系统的基本概念
自动控制原理
基于数学模型
自动控制理论的发展历程
控制理论是研究有关自动控制共同规律的一门科学。 第一阶段:古典控制理论(20世纪40~60年代)
Classical Control Theory 第二阶段:现代控制理论(20世纪60~70年代)
第1章 自动控制系统的基本概念(4) 第2章 拉普拉斯变换及其应用(4) 第3章 自动控制系统的数学模型(10) 第4章 自动控制系统的时域分析(14) 第5章 自动控制系统的频域分析(14) 第6章 控制系统的校正及综合(10)
2021年6月10日
第一章 自动控制系统的基本概念

自动控制原理课件胡寿松

自动控制原理课件胡寿松
系统开环频率响应相位在临界 频率处的值与180度之间的差值 。
带宽频率
系统开环幅频特性等于0.707时 的频率。
剪切频率
系统开环幅频特性等于0.707时 的频率。
稳定性与性能的关系
稳定性是控制系统的重要性能指 标,它决定了系统能否正常工作

系统的稳定性与其性能指标密切 相关,如系统的超调量、调节时
自动控制原理课件胡 寿松
目录
• 自动控制概述 • 控制系统稳定性分析 • 控制系统的性能指标 • 控制系统的设计方法 • 控制系统的校正与补偿 • 控制系统的应用实例
01
自动控制概述
定义与分类
定义
自动控制是利用控制装置,使被 控对象按照预设规律自动运行的 系统。
分类
开环控制系统、闭环控制系统、 复合控制系统等。
通过分析系统的频率特性 ,研究系统的稳定性、带 宽和阻尼特性。
现代控制理论设计方法
状态空间法
01
基于系统的状态方程进行系统分析和设计,适用于线性时变系
统和非线性系统。
线性二次型最优控制
02
通过优化性能指标,设计最优控制律,适用于多输入多输出系
统。
滑模控制
03
设计滑模面和滑模控制器,使得系统状态在滑模面上滑动,适
无人机飞行控制系统通过自动控制算法,实现无人机的稳定飞行 和精确控制。
卫星姿态控制
卫星姿态控制系统通过传感器和执行机构,实现卫星的稳定指向 和精确姿态调整。
航空发动机控制
航空发动机控制系统通过调节燃油流量和点火时间等参数,实现 发动机的稳定运行和性能优化。
工业自动化控制系统的应用
智能制造
智能制造系统通过自动化设备和传感器,实现生产过程的自动化控 制和优化。

自动控制原理课件

自动控制原理课件

1.2.5 其它分类方法

• • • 自动控制系统还有其他的分类方法: (1)按系统的输入/输出信号的数量来分:有单输入/单输 出系统和多输入/多输出系统。 (2)按控制系统的功能来分:有温度控制系统、速度控 制系统、位置控制系统等。 (3)按系统元件组成来分:有机电系统、液压系统、生 物系统。 (4)按不同的控制理论分支设计的新型控制系统来分, 有最优控制系统,自适应控制系统,预测控制系统, 模糊控制系统,神经网络控制系统等等。 一个系统性能将用特定的品质指标来衡量其优劣, 如系统的稳定特性、动态响应和稳态特性。
直流电动机速度自动控制的原理结构 图如图1-1所示。图中,电位器电压为输 入信号。测速发电机是电动机转速的测量 元件。图1-1中,代表电动机转速变化的 测速发电机电压送到输入端与电位器电压 进行比较,两者的差值(又称偏差信号) 控制功率放大器(控制器),控制器的输 出控制电动机的转速,这就形成了电动机 转速自动控制系统。
« £U
ç µ » Î ÷ Æ
« £ ¦Ê ¹Â ·ó ÷ Å´Æ
ç¯ú µ¶»
电源变化、负载变化等引起转速变化, 称为扰动。电动机被称为被控对象, 转速称为被控量,当电动机受到扰动 后,转速(被控量)发生变化,经测 量元件(测速发电机)将转速信号 (又称为反馈信号)反馈到控制器 (功率放大器),使控制器的输出 (称为控制量)发生相应的变化,从 而可以自动地保持转速不变或使偏差 保持在允许的范围内。
y a1 y
( n)
(n1)
an1 y an y bou bu 1
( n)
(n1)
bn1u bnu
式中:u(t) —系统的输入量;y(t) —系统的输出量。 线性系统的主要特点是具有叠加性和齐次性,即当系 统的输入分别为r1(t)和r2(t)时,对应的输出分别为c1(t) 和c2(t),则当输入为r(t)=a1r1(t)+a2r2(t)时,输出量为 c(t)=a1c1(t)+a2c2(t), 其中为a1、a2为常系数。

《自动控制原理》课件

《自动控制原理》课件

集成化:智能控制技术将更加集 成化,能够实现多种控制技术的 融合和应用。
添加标题
添加标题
添加标题
添加标题
网络化:智能控制技术将更加网 络化,能够实现远程控制和信息 共享。
绿色化:智能控制技术将更加绿 色化,能够实现节能减排和环保 要求。
控制系统的网络化与信息化融合
网络化控制:通过互联网实现远程控制和监控
现代控制理论设计方法
状态空间法:通过建立状态空间模型,进行系统分析和设计 频率响应法:通过分析系统的频率响应特性,进行系统分析和设计 极点配置法:通过配置系统的极点,进行系统分析和设计 线性矩阵不等式法:通过求解线性矩阵不等式,进行系统分析和设计
最优控制理论设计方法
基本概念:最优控制、状态方程、控制方程等 设计步骤:建立模型、求解最优控制问题、设计控制器等 控制策略:线性二次型最优控制、非线性最优控制等 应用领域:航空航天、机器人、汽车电子等
动态性能指标
稳定性:系统在受到扰动后能否恢复到平衡状态 快速性:系统在受到扰动后恢复到平衡状态的速度 准确性:系统在受到扰动后恢复到平衡状态的精度 稳定性:系统在受到扰动后能否保持稳定状态
抗干扰性能指标
稳定性:系统在受到干扰后能够 恢复到原来的状态
准确性:系统在受到干扰后能够 保持原有的精度和准确性
信息化控制:利用大数据、云计算等技术实现智能化控制
融合趋势:网络化与信息化的融合将成为未来控制系统的发展方向 应用领域:工业自动化、智能家居、智能交通等领域都将受益于网络化与 信息化的融合
控制系统的模块化与集成化发展
模块化:将复杂的控制系统分解为多个模块,每个模块负责特定的功能,便于设计和维护 集成化:将多个模块集成为一个整体,提高系统的性能和可靠性 发展趋势:模块化和集成化是未来控制系统发展的重要方向 应用领域:广泛应用于工业自动化、智能家居、智能交通等领域

第1章--自动控制原理课件

第1章--自动控制原理课件
45
下面从系统特性角度分类。 一、按系统构成元件是否线性分类 1 线性控制系统 由线性元件构成的系统是线性控制系统。或者 说,如果系统满足叠加原理,则称其为线性系统。 2 非线性控制系统 在控制系统中,如果有一个以上的元件具有非 线性,则称这个系统为非线性控制系统。或者说, 如果不能应用叠加原理,则系统是非线性的。 严格地说,绝对的线性控制系统是不存在的。 为了简化,在一定条件下,可以对某些非线性特性 作线性化处理。这样,非线性控制系统就可以近似 为线性控制系统。
22
指出:被控对象、测量元件、比较机构、放大机构 和执行机构 该系统方框图:
23
三、方框图的画法: 用方框表示系统中的各个组成部件,在每个 方框中填入它所表示部件的名称或其功能函数的 表达式,而不必画出它们的具体结构。 根据信号在系统中的传递方向,用有向线段 依次把它们连接起来,就得到整个系统的框图。
3
经典控制理论(20世纪60年代以前):主 要解决单输入单输出问题,所研究的系统多半 是线性定常系统。 现代控制理论:20世纪60年代, 随着高精 度数字计算机的诞生,为解决复杂控制系统提 供了实现上的可能性。现代控制理论涉及多变 量控制系统、最优控制理论、系统辨识与模式 识别、最优估计、自适应控制、自学习控制、 模糊控制、专家系统、神经元及其网络控制等 等。
4
第二节 自动控制系统的一般概念
一、自动控制技术及其应用
1 自动控制: 在没有人直接参与的条件下,通过 控制器使被控对象或过程自动地按 要求的规律运行。 2 自动控制系统: 能够完成自动控制功能的基本体 系,称为自动控制系统。 3 自动控制理论: 分析与综合自动控制系统的理论称 为自动控制理论。 4 应用: 自动控制技术已经应用在工程、军事和科 学技术等各个领域,包括:航空、航天、 航海、冶金、机械、能源、电子、生物、 医疗、化工、石油、建筑等。 5

自动控制原理胡寿松(课堂PPT)

自动控制原理胡寿松(课堂PPT)
G2(s)G4(s)
G3(s)H(s) G4(s)H(s)
C(s) G5 (s)
3
R(s) G 1 ( s ) G 3 ( s ) G 2 ( s ) G 4 ( s )
C(s) G5 (s)
G 3 ( s ) G 4 ( s ) H ( s )
4
R(s)
1
G 1 ( s ) G 3 ( s ) G 2 ( s ) G 4 ( s ) 1G3(s)G4(s)H(s)
函数确定。 r (t )
1 e(t) 1/ s
1
c(t)
1
22
信号流图常用的名词术语
➢源节点(输入节点):只有信号输出支路的节点。
➢阱节点(输出节点):只有信号输入支路的节点。
C(s) G5 (s)
5
C R ( (s s) ) G 1 1 (s G )G 3 3 (( ss )) G G 4 2 (( ss ))H G 4 (( ss ))G 5(s) 6
21
• 信号流图的组成及性质
信号流图是以点和有向线段,描述系统的组成、结构、信号传 递关系的图形。它完全表述了一个系统。
C(s)
1G2(s)G3(s)H2(s) G4(s)
H3(s)/G2(s) H1(s)
G2(s)G3(s)G4(s) 1G2(s)G3(s)H2(s)
C(s)
H3(s)/G2(s) H1(s)
G1(s)
G 2(s)G 3(s)G 4(s)
C(s)
1G 2(s)G 3(s)H 2(s)G 3(s)G 4(s)H 3(s)
1
§2-3 控制系统的结构图与信号流图
1.系统结构图的组成和绘制 2.结构图的等效变换和简化 3.信号流图的组成和性质 4.信号流图的绘制 5.梅逊增益公式 6.闭环系统的传递函数

自动控制原理(经典控制论)课程ppT

自动控制原理(经典控制论)课程ppT

自动控制原理
第二章 线性系统的数学模型
单摆(非线性)
是未知函数 的非线性函数,
所以是非线性模型。
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
液面系统(非线性)
是未知函数h的非线性函数,所以是非线性模型。
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
2.2.2 线性化问题的提出 线性系统优点:
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
单变量函数泰勒级数法
函数y=f(x)在其平衡点(x0, y0)附近的泰勒级数展开式为:
略去含有高于一次的增量∆x=x-x0的项,则:
注:非线性系统的线性化 模型,称为增量方程。
注:y = f (x0)称为系统的 静态方程
浙江省精品课程
自动控制原理
增量方程 增量方程的数学含义
将参考坐标的原点移到系统或元件的平衡工作点上, 对于实际系统就是以正常工作状态为研究系统运动的起始 点,这时,系统所有的初始条件均为零。
注:导数根据其定义是一线性映射,满足叠加原理。
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
多变量函数泰勒级数法
增量方程 静态方程
第二章 线性系统的数学模型
微分定理
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
多重微分
原函数的高阶导数 像函数中s的高次代数式
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
积分定理
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
多重积分
原函数的n重积分像函数中除以sn

自动控制原理完整版课件全套ppt教程

自动控制原理完整版课件全套ppt教程

1.1 自动控制系统的基本概念
相关概念说明
1. 被控对象 2. 被控量 3. 控制器 4. 控制量
5. 参考输入量 6. 偏差信号
7. 反馈 8. 测量元件 9. 比较元件 10. 定值元件 11. 执行元件 12. 扰动信号
1.1 自动控制系统的基本概念
1.1 自动控制系统的基本概念
1.2 自动控制系统的组成与结构
6. 按照系统输入输出端口关系分类 单入单出控制系统 多入多出控制系统
图1-10 自动控制系统输入输出端口关系示意图
1.4 自动控制系统分析与设计的基本要求
1.4.1 自动控制系统分析与设计的基本要求
1. 稳定性 2. 准确性 3. 快速性
1.4 自动控制系统分析与设计的基本要求
1.4.1 自动控制系统分析与设计的基本要求
的高次幂或乘积项的函数。如 就是非线性函数。
dd 2( 2 y t)tx(t)dd (ty )ty(t)y2(t)x(t)
1.3 自动控制系统的分类
4. 按照系统参数是否随时间变化分类 定常控制系统 时变控制系统
5. 按照系统传输信号的分类
1.5 自动控制理论的内容与发展
自动控制理论根据其发展过程可以分为以下三个阶段:
3. 智能控制理论阶段
20世纪70年代至90年代
智能控制理论的研究以人工智能的研究为主要方 向,引导人们去探讨自然界更为深刻的运动机理。
高等教育 电气工程与自动化系列规划教材
自动控制原理
高等教育教材编审委员会 组编 主编 吴秀华 邹秋滢 郭南吴铠 主审 孟 华
1.2 自动控制系统的组成与结构
1.2 自动控制系统的组成与结构
1.3 自动控制系统的分类

自动控制原理课件ppt

自动控制原理课件ppt

03
非线性控制系统
非线性控制系统的特点
非线性特性
01
非线性控制系统的输出与输入之间存在非线性关系,
如放大器、继电器等。
复杂的动力学行为
02 非线性控制系统具有复杂的动力学行为,如混沌、分
叉、稳定和不稳定等。
参数变化范围广
03
非线性控制系统的参数变化范围很广,如电阻、电容
、电感等。
非线性控制系统的数学模型
线性控制系统的性能指标与评价
性能指标
衡量一个控制系统性能的好坏,需要使用一些性能指标,如响应时间、超调量、稳态误差等。
性能分析
通过分析系统的性能指标,可以评价一个控制系统的优劣。例如,响应时间短、超调量小、稳态误差小的系统性能较 好。
系统优化
根据性能分析的结果,可以对控制系统进行优化设计,提高控制系统的性能指标。例如,可以通过调整 控制器的参数,减小超调量;或者通过改变系统的结构,减小稳态误差。

采样控制系统的数学模型
描述函数法
描述函数法是一种分析采样控制系统的常用方法,通过将连续时间 函数离散化,用差分方程来描述系统的动态特性。
z变换法
z变换法是一种将离散时间信号变换为复平面上的函数的方法,可 用于分析采样控制系统的稳定性和性能。
状态空间法
状态空间法是一种基于系统状态变量的方法,可以用于分析复杂的采 样控制系统。
航空航天领域中的应用
总结词
高精度、高可靠性、高安全性
详细描述
自动控制原理在航空航天领域中的应用至关重要。例如 ,在飞机系统中,通过使用自动控制原理,可以实现飞 机的自动驾驶和自动着陆等功能,从而提高飞行的精度 和安全性。在火箭和卫星中,通过使用自动控制原理, 可以实现推进系统的精确控制和姿态调整等功能,从而 保证火箭和卫星能够准确地进行轨道变换和定点着陆。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无须人的直接参与,通过控制装置,使 机器、设备、生产过程等按照预定的规律运 行,完成要求的任务,就叫自动控制。
近几十年来,自动控制技术正在迅猛的 发展,并在工农业生产、交通运输、国防建
设和航空航天事业等领域中获得广泛应用。
比如:人造地球卫星的 发射成功与安全返回。
导弹的准确击中目标, 雷达系统的准确跟踪目标;
要使炼钢炉提供优质的产品,就必须严格控制炉 温……等等。
所有这一切都是以高水平的自动控制技术为前提的。
自动控制理论的发展概况
随着自动控制技术的广泛应用和迅猛发展,出 现了许多新问题,这些问题要求从理论上加以解决。 自动控制理论正是在解决这些实际技术问题的过程 中逐步形成和发展起来的,它是研究自动控制技术 的基础理论,是研究自动控制共同规律的技术科学。 按其发展的不同阶段,可把自动控制理论分为经典 控制理论和现代控制理论两大部分。
拉提琴
足球比赛
自动控制的应用领域
军事工业 航空航天 制造业 机器人 流程工业
钢铁、石化、 造纸、制药等 电子工业 家用电器
交通系统,楼宇系统,经济系统,社会系统 …
随着生产和科学技术的发展,自动控制技术可
以说已渗透到各种学科领域,成为促进当代生产发
展和科学技术进步的重要因素。
事实上,任何技 术设备、工作机械或 生产过程都必须按要 求运行。例如:要使 火炮能自动跟踪并命 中飞行目标,炮身就 必须按照指挥仪的命 令而作方位角和俯仰 角的变动;
要把数吨重人造卫星送入数百公里高空的轨道, 使其所携带的各种仪器能长期使用、准确地工作, 就必须保持卫星的正确姿态,使它的太阳能电池一 直朝向太阳,无线电发射天线一直指向地球;
要使数控机床能加工出高 精度的工件,就必须保证 其工作台或刀架的进给量 准确地按照程序Fra bibliotek令的设 定值变化;
要想使轮船安全顺利 的航行,就必须按照 领航员的命令改变尾 舵的方向;
70年代~现在 多种新型控制理论
多变量频域控制理论 ① 经典SISO→MIMO; ② 基于互质分解的全新的频域优化理论
鲁棒控制(robust control) 鲁棒性(robustness):系统存在模型误差或 受到扰动时仍能保持良好性能的能力 鲁棒控制:使系统具有良好鲁棒性的控制
70年代~现在 多种新型控制理论
60 ~70年代 现代控制理论(状态空间法) 核心:状态变量的能控、能观性,
系统性能的最优化 特点:时域法,统一处理SISO、MIMO系统,
有完整的理论体系 数学基础:线性代数,矩阵理论 缺点:对系统的数学模型精度要求高,
实际性能达不到设计的最优, 所需状态反馈难以直接实现
MIMO: Multi-Input and Multi-Output
智能控制(intelligent control)
控制系统具有拟人智能(学习、记忆、判断、推 理等)
大系统控制、复杂系统控制等
被控系统具有高维数、强关联、多约束、多目标、 不确定性、分散性、非线性、大时滞、难建模等 特征,如电力系统、城市交通系统、网络系统、 制造系统、经济系统等
自动控制技术的应用,推动了控制理论的发展;而 自动控制理论的发展,又指导了控制技术的应用, 使其进一步完善。随着科学技术的发展,自动控制 技术及理论已经广泛的应用于机械、冶金、石油、 化工、电子、电力、航空、航海、航天、核反应等 各个学科领域。近年来,控制科学的应用范围还扩 展到生物、医学、环境、经济管理和其他许多社会 生活领域,并为各学科之间的相互渗透起了促进作 用。可以毫不夸张地说,自动控制技术和理论已经 成为现代化社会不可缺少的组成部分。
参考书
1.《自动控制原理》第四版,胡寿松,科学出版 社,2002年;
2. 《自动控制原理》高国燊,华南理工大学出版 社;
3.《自动控制原理》第二版 ,夏德钤,机械工业 出版社
4.《自动控制理论》第二版,文锋、贾光辉,中 国电力出版社。
引言
自动控制学科由自动控制技术和自动控 制理论两部分组成。
什么是自动控制?
交通系统:
安全、快捷、舒适、准点
钢 铁 生 产
制造系统:
数控机床
加工生产线
自动包装机器人
自动码垛机器人
家用电器:
电扇:控制转速 洗衣机:控制水位、强弱、时间等 电冰箱、空调、电饭煲:控制温度
智能建筑:
通信 电梯 供水 通风 空调 安防 抄表 …
工业机器人:
其他机器人:
排爆
步行
灵巧手
吹笛
在此基础上,1945年伯德(H.W.Bode)提出
了分析控制系统的一种图解方法即频率法,致使研 究控制系统的方法由初期的时域分析转到频域分析。 随后,1948年伊文斯(W.R.Evans)又创立了另 一种图解法即有名的根轨迹法。追溯到1877年,劳 斯(E.Routh)和1895年赫尔维茨(A.Hurwitz) 分别独立地提出了关于判断控制系统稳定性的代数 判据。这些都是经典控制理论的重要组成部分。50 年代中期,经典控制理论又添加了非线性系统理论 和离散控制理论,从而形成了完整的理论体系。
40~50年代 经典控制理论 (频域法或复频域法)
核心:传递函数,稳定性、稳定裕度等 特点:图形方法,直观简便,设置参数少,
(以简单控制结构获取相对满意的性能) 适用范围:单输入单输出(SISO)系统 数学基础:复变函数,积分变换
SISO: Single Input and Single Output
经典控制理论也就是自动控制原理,是20世纪 40年代到50年代形成的一门独立学科。早期的控制
系统较为简单,只要列出微分方程并求解之,就可 以用时域法分析他们的性能。第二次世界大战前后, 由于生产和军事的需要,各国均在大力研制新型武 器,于是出现了较复杂的控制系统,这些控制系统 通常是用高阶微分方程来描述的。由于高阶微分方 程求解的困难,各种控制系统的理论研究和分析方 法就应运而生。1932年奈奎斯特(H.Nyquist)在 研究负反馈放大器时创立了有名的稳定性判据,并 提出了稳定裕量的概念。
50年代开始,由于空间技术的发展,各种高速、 高性能的飞行器相继出现,要求高精度地处理多变 量、非线性、时变和自适应等控制问题,60年代初 又形成了现代控制理论。现代控制理论的基础是: 1956年庞特里亚金提出了极大值原理,1957年贝 尔曼(R.Bellman)提出了动态规划,1960年卡尔 曼(R.E.Kalman)提出了最优滤波理论以及状态 空间方法的应用。从60年代至今40多年来,现代控 制理论又有巨大的发展,并形成了若干学科分支, 如线性控制理论、最优控制理论、动态系统辨识、 自适应控制、大系统理论等。
相关文档
最新文档