自动控制原理 ppt课件
合集下载
自动控制原理课件
![自动控制原理课件](https://img.taocdn.com/s3/m/b732773d0a1c59eef8c75fbfc77da26925c5962f.png)
• 即,原开环Bode图+校正环节Bode图+ 增益调整=校正后的开环Bode图
2.根轨迹法
在系统中加入校正装置,相当于增加 了新的开环零极点,这些零极点将使 校正后的闭环根轨迹,向有利于改善 系统性能的方向改变,系统闭环零极 点重新布置,从而满足闭环系统性能 要求。
§6.2 线性系统的基本控制规律
校正装置 Gc(s)
R(s)
+
+
+
原有部分 C(s)
Go(s)
-
(d)前馈补偿
对扰动
信号直
接或间
测 量 , R(s) +
+
形成附 加扰动
+ -
补偿通
道
校正装置 Gc(s)
原有部分 + Go2(s)
N(s)
+ 原有部分 C(s) Go2(s)
(e)扰动补偿
•串联校正和反馈校正属于主反馈回路之内的校正。
根据校正装置加入系统的方式和所起的作用不同, 可将其作如下分类:
+
+
-
-
原有部分 Go(s)
校正装置 Gc(s)
(b)反馈校正
C(s)
R(s) +
校正装置 +
Gc1(s)
-
-
原有部分 C(s) Go(s)
校正装置 Gc2(s)
(c)串联反馈校正
相当于 对给定 值信号 进行整 形和滤 波后再 送入反 馈系统
•知 识 要 点
线性系统的基本控制规律比例(P)、积 分(I)、比例-微分(PD)、比例-积分(PI) 和比例-积分-微分(PID)控制规律。超前校 正,滞后校正,滞后-超前校正,用校正装置 的不同特性改善系统的动态特性和稳态特性。 串联校正,反馈校正和复合校正。
2.根轨迹法
在系统中加入校正装置,相当于增加 了新的开环零极点,这些零极点将使 校正后的闭环根轨迹,向有利于改善 系统性能的方向改变,系统闭环零极 点重新布置,从而满足闭环系统性能 要求。
§6.2 线性系统的基本控制规律
校正装置 Gc(s)
R(s)
+
+
+
原有部分 C(s)
Go(s)
-
(d)前馈补偿
对扰动
信号直
接或间
测 量 , R(s) +
+
形成附 加扰动
+ -
补偿通
道
校正装置 Gc(s)
原有部分 + Go2(s)
N(s)
+ 原有部分 C(s) Go2(s)
(e)扰动补偿
•串联校正和反馈校正属于主反馈回路之内的校正。
根据校正装置加入系统的方式和所起的作用不同, 可将其作如下分类:
+
+
-
-
原有部分 Go(s)
校正装置 Gc(s)
(b)反馈校正
C(s)
R(s) +
校正装置 +
Gc1(s)
-
-
原有部分 C(s) Go(s)
校正装置 Gc2(s)
(c)串联反馈校正
相当于 对给定 值信号 进行整 形和滤 波后再 送入反 馈系统
•知 识 要 点
线性系统的基本控制规律比例(P)、积 分(I)、比例-微分(PD)、比例-积分(PI) 和比例-积分-微分(PID)控制规律。超前校 正,滞后校正,滞后-超前校正,用校正装置 的不同特性改善系统的动态特性和稳态特性。 串联校正,反馈校正和复合校正。
自动控制原理课件大全ppt课件
![自动控制原理课件大全ppt课件](https://img.taocdn.com/s3/m/8bfa80130066f5335a81215b.png)
复 杂
自动控制系统对函数概念的理解:
程 度
加
自控原理的思维控制 方量式x:数控学制的系方统法,工被控程制的量意y识,深控制的语言
XI’AN UNIVERSITY OF POSTS & TELECOMUNICATION
西安邮电学院自动化学院 3
第一节 数学模型
数学模型的定义 能够描述控制系统输出量和输入量数量关系之间 关系的数学表达式
(t )
原因:后级电路的电流i2影响前级电路的输出电压uc1(t)。
XI’AN UNIVERSITY OF POSTS & TELECOMUNICATION
西安邮电学院自动化学院 15
第二节 时域数学模型-微分方程
负载效应
R1C1R2C2
d
2uo (t) dt 2
(R1C1
R2C2 )
duo (t) dt
(频域)
XI’AN UNIVERSITY OF POSTS & TELECOMUNICATION
西安邮电学院自动化学院 6
第一节 数学模型
数学模型建立(建模)的方法
解析法: 即依据系统及元部件各变量之间所遵循的 物理、化学定律列写出变量间的数学表达式,并经实 验验证,从而建立系统的数学模型
R1C1R2C2
d
2uo (t) dt 2
(R1C1
R2C2
R1C2
)
duo (t) dt
uo
(t )
ui
(t )
机械力学系统的数学模型: 相似系统
m
d
2 y(t dt 2
)
f
自动控制原理及应用课件
![自动控制原理及应用课件](https://img.taocdn.com/s3/m/aa44e313302b3169a45177232f60ddccda38e68e.png)
确保系统能够满足定位要求。
控制算法设计
采用位置闭环控制算法,根据位置误 差调节执行机构的输出,实现位置的 精确控制。
抗干扰措施
设计滤波器、隔离电路等抗干扰措施, 提高系统对外部干扰的抵抗能力。
07
现代控制理论在自动控制中应用
状态空间法描述动态系统
01
状态变量的定义与 性质
状态变量是描述系统动态行为的 最小变量集,具有可观测性和可 控制性。
极限环与振荡
研究相平面上可能出现的极限环及其性质, 分析系统的振荡行为。
描述函数法分析非线性系统
描述函数的性质
研究描述函数的幅值、相位等特性,分析非 线性系统的频率响应。
描述函数的概念
用一次谐波分量近似表示非线性环节的输入 输出关系。
描述函数法的应用
利用描述函数法分析非线性系统的稳定性、 自振频率等动态特性。
利用数学表达式描述系统的输入-输出关系,便 于理论分析和计算。
表格描述法
通过列出系统在不同输入下的输出值,形成输入输出对应表,方便查阅和对比。
相平面法分析非线性系统
相平面的概念
在相平面上绘制系统状态变量的轨迹,反映 系统的动态行为。
平衡点与稳定性
通过分析相平面上的平衡点及其性质,判断 系统的稳定性。
03
Z变换在离散系统分 析和设计中的应用
利用Z变换可以分析离散系统的稳定 性、因果性和频率响应等特性,进而 进行系统设计和优化。同时,Z变换 也可以用于数字滤波器的设计和分析 等应用领域。ຫໍສະໝຸດ 05非线性系统分析
非线性特性描述方法
图形描述法
通过绘制系统的输入-输出特性曲线,直观展示 非线性特性。
解析描述法
02
状态空间方程的建 立
控制算法设计
采用位置闭环控制算法,根据位置误 差调节执行机构的输出,实现位置的 精确控制。
抗干扰措施
设计滤波器、隔离电路等抗干扰措施, 提高系统对外部干扰的抵抗能力。
07
现代控制理论在自动控制中应用
状态空间法描述动态系统
01
状态变量的定义与 性质
状态变量是描述系统动态行为的 最小变量集,具有可观测性和可 控制性。
极限环与振荡
研究相平面上可能出现的极限环及其性质, 分析系统的振荡行为。
描述函数法分析非线性系统
描述函数的性质
研究描述函数的幅值、相位等特性,分析非 线性系统的频率响应。
描述函数的概念
用一次谐波分量近似表示非线性环节的输入 输出关系。
描述函数法的应用
利用描述函数法分析非线性系统的稳定性、 自振频率等动态特性。
利用数学表达式描述系统的输入-输出关系,便 于理论分析和计算。
表格描述法
通过列出系统在不同输入下的输出值,形成输入输出对应表,方便查阅和对比。
相平面法分析非线性系统
相平面的概念
在相平面上绘制系统状态变量的轨迹,反映 系统的动态行为。
平衡点与稳定性
通过分析相平面上的平衡点及其性质,判断 系统的稳定性。
03
Z变换在离散系统分 析和设计中的应用
利用Z变换可以分析离散系统的稳定 性、因果性和频率响应等特性,进而 进行系统设计和优化。同时,Z变换 也可以用于数字滤波器的设计和分析 等应用领域。ຫໍສະໝຸດ 05非线性系统分析
非线性特性描述方法
图形描述法
通过绘制系统的输入-输出特性曲线,直观展示 非线性特性。
解析描述法
02
状态空间方程的建 立
自动控制原理教学ppt
![自动控制原理教学ppt](https://img.taocdn.com/s3/m/99965a552379168884868762caaedd3383c4b5cd.png)
前馈校正
在系统的输入端引入一个前馈环节, 根据输入信号的特性对系统进行补 偿,以提高系统的跟踪精度和抗干 扰能力。
复合校正方法
串联复合校正
将串联超前、串联滞后和串联滞 后-超前等校正方法结合起来, 设计一个复合的串联校正环节, 以实现更复杂的系统性能要求。
反馈复合校正
将局部反馈、全局反馈和前馈等 校正方法结合起来,设计一个复 合的反馈校正环节,以实现更全
自适应控制系统概述
简要介绍自适应控制系统的基本原理、结构和特点,为后续内容 做铺垫。
自适应控制方法
详细介绍自适应控制方法,如模型参考自适应控制、自校正控制等, 及其在自动控制领域中的应用实例。
自适应控制算法
阐述自适应控制算法的实现过程,包括参数估计、控制器设计等关 键技术。
鲁棒控制理论应用
鲁棒控制系统概述
自动控制应用领域
工业领域
自动控制广泛应用于工业领域,如自 动化生产线、工业机器人、智能制造 等。
01
02
航空航天领域
自动控制是航空航天技术的重要组成 部分,如飞行器的自动驾驶仪、导弹 的制导系统等。
03
交通运输领域
自动控制也应用于交通运输领域,如 智能交通系统、自动驾驶汽车等。
其他领域
此外,自动控制还应用于农业、医疗、 环保等领域,如农业自动化、医疗机 器人、环境监测与治理等。
提高系统的稳态精度。
串联滞后-超前校正
03
结合超前和滞后校正的优点,设计一个既有超前又有滞后的校
正环节,以同时改善系统的动态性能和稳态精度。
反馈校正方法
局部反馈校正
在系统的某个局部引入反馈环节, 以改善该局部的性能,而不影响 系统的其他部分。
全局反馈校正
在系统的输入端引入一个前馈环节, 根据输入信号的特性对系统进行补 偿,以提高系统的跟踪精度和抗干 扰能力。
复合校正方法
串联复合校正
将串联超前、串联滞后和串联滞 后-超前等校正方法结合起来, 设计一个复合的串联校正环节, 以实现更复杂的系统性能要求。
反馈复合校正
将局部反馈、全局反馈和前馈等 校正方法结合起来,设计一个复 合的反馈校正环节,以实现更全
自适应控制系统概述
简要介绍自适应控制系统的基本原理、结构和特点,为后续内容 做铺垫。
自适应控制方法
详细介绍自适应控制方法,如模型参考自适应控制、自校正控制等, 及其在自动控制领域中的应用实例。
自适应控制算法
阐述自适应控制算法的实现过程,包括参数估计、控制器设计等关 键技术。
鲁棒控制理论应用
鲁棒控制系统概述
自动控制应用领域
工业领域
自动控制广泛应用于工业领域,如自 动化生产线、工业机器人、智能制造 等。
01
02
航空航天领域
自动控制是航空航天技术的重要组成 部分,如飞行器的自动驾驶仪、导弹 的制导系统等。
03
交通运输领域
自动控制也应用于交通运输领域,如 智能交通系统、自动驾驶汽车等。
其他领域
此外,自动控制还应用于农业、医疗、 环保等领域,如农业自动化、医疗机 器人、环境监测与治理等。
提高系统的稳态精度。
串联滞后-超前校正
03
结合超前和滞后校正的优点,设计一个既有超前又有滞后的校
正环节,以同时改善系统的动态性能和稳态精度。
反馈校正方法
局部反馈校正
在系统的某个局部引入反馈环节, 以改善该局部的性能,而不影响 系统的其他部分。
全局反馈校正
自动控制原理最全PPT
![自动控制原理最全PPT](https://img.taocdn.com/s3/m/e2f625b4ad02de80d5d840a4.png)
2021年6月10日
第一章 自动控制系统的基本概念
第一章 自动控制系统的基本概念
学习重点
❖ 了解自动控制系统的基本结构和特点及 其工作原理;
❖ 了解闭环控制系统的组成和基本环节;
❖ 掌握反馈控制系统的基本要求及反馈控 制系统的作用;
❖ 学会分析自动控制系统的类型及本质特 征。
2021年6月10日
第一章 自动控制系统的基本概念
主要解决问题:单输入单输出(SISO)系统的控制问题。
主要方法:
以传函为数学模型,以拉氏变换数学工具, 时域分析法、根轨迹法、频率法。
主要研究对象:SISO,线性定常(LTI),非线性系统,离散
系统。
Linear Time
主要代表人物:伯德,奈奎斯特,伊文思。 Invariable
2021年6月10日
电机与拖动
线性代数
大学物理
自动控制原理
微积分
2021年6月10日
各类 专业课
线性系统
现代控 制理论
第一章 自动控制系统的基本概念
自动控制原理
基于数学模型
自动控制理论的发展历程
控制理论是研究有关自动控制共同规律的一门科学。 第一阶段:古典控制理论(20世纪40~60年代)
Classical Control Theory 第二阶段:现代控制理论(20世纪60~70年代)
第1章 自动控制系统的基本概念(4) 第2章 拉普拉斯变换及其应用(4) 第3章 自动控制系统的数学模型(10) 第4章 自动控制系统的时域分析(14) 第5章 自动控制系统的频域分析(14) 第6章 控制系统的校正及综合(10)
2021年6月10日
第一章 自动控制系统的基本概念
《自动控制原理》课件
![《自动控制原理》课件](https://img.taocdn.com/s3/m/9f1df4613069a45177232f60ddccda38376be1dc.png)
集成化:智能控制技术将更加集 成化,能够实现多种控制技术的 融合和应用。
添加标题
添加标题
添加标题
添加标题
网络化:智能控制技术将更加网 络化,能够实现远程控制和信息 共享。
绿色化:智能控制技术将更加绿 色化,能够实现节能减排和环保 要求。
控制系统的网络化与信息化融合
网络化控制:通过互联网实现远程控制和监控
现代控制理论设计方法
状态空间法:通过建立状态空间模型,进行系统分析和设计 频率响应法:通过分析系统的频率响应特性,进行系统分析和设计 极点配置法:通过配置系统的极点,进行系统分析和设计 线性矩阵不等式法:通过求解线性矩阵不等式,进行系统分析和设计
最优控制理论设计方法
基本概念:最优控制、状态方程、控制方程等 设计步骤:建立模型、求解最优控制问题、设计控制器等 控制策略:线性二次型最优控制、非线性最优控制等 应用领域:航空航天、机器人、汽车电子等
动态性能指标
稳定性:系统在受到扰动后能否恢复到平衡状态 快速性:系统在受到扰动后恢复到平衡状态的速度 准确性:系统在受到扰动后恢复到平衡状态的精度 稳定性:系统在受到扰动后能否保持稳定状态
抗干扰性能指标
稳定性:系统在受到干扰后能够 恢复到原来的状态
准确性:系统在受到干扰后能够 保持原有的精度和准确性
信息化控制:利用大数据、云计算等技术实现智能化控制
融合趋势:网络化与信息化的融合将成为未来控制系统的发展方向 应用领域:工业自动化、智能家居、智能交通等领域都将受益于网络化与 信息化的融合
控制系统的模块化与集成化发展
模块化:将复杂的控制系统分解为多个模块,每个模块负责特定的功能,便于设计和维护 集成化:将多个模块集成为一个整体,提高系统的性能和可靠性 发展趋势:模块化和集成化是未来控制系统发展的重要方向 应用领域:广泛应用于工业自动化、智能家居、智能交通等领域
自动控制原理课件
![自动控制原理课件](https://img.taocdn.com/s3/m/9e2ef3e94afe04a1b071de62.png)
例 设Ⅰ型系统的开环传递函数为
K G (s) = s (1 + Ts )
试绘制系统的Bode图。 图 试绘制系统的 解 系统开环对数幅频特性和相频特性分别为
L(ω ) = L1 (ω ) + L2 (ω ) + L3 (ω ) = 20 lg K − 20 lg ω − 20 lg 1 + T 2ω 2
开环相频特性: 开环相频特性:
ϕ(ω) = ∠G( jω) = ∑ϕi (ω)
i =1
n
(5-20) 20)
结论: 由此看出, 结论: 由此看出,系统的开环对数幅频特性 L(ω)等于各个串联环节对数幅频特性之和;系 等于各个串联环节对数幅频特性之和; 统的开环相频特性 ϕ(ω) 等于各个环节相频特性 之和。 之和。
4
惯性环节
1 G4 ( jω) = j0.2ω +1
L4 (ω) = −20 lg 1 + (0.2ω)2
ϕ4 (ω) = −arctg0.2ω
1 ω4 = = 5rad ⋅ s −1 对数幅频特性渐 转折频率 , 0.2 近线类似于 L3 (ω),相频特性类似于ϕ3 (ω)。
比例微分环节
G5 ( jω) = 1 + j0.05ω
5.3
系统的开环频率特性
控制系统开环频率特性的典型环节分解 开环对数频率特性曲线的绘制( 开环对数频率特性曲线的绘制(Bode图) 图 开环幅相特性曲线的绘制( 开环幅相特性曲线的绘制(Nyquist图) 图 最小相位系统( 最小相位系统(minimum phase system) )
5.3.1 系统的开环对数频率特性 一、控制系统开环传递函数的典型环节分解
的零型系统的Bode图。 图 的零型系统的 解 系统开环对数幅频特性和相频特性分别
《自动控制原理》PPT课件
![《自动控制原理》PPT课件](https://img.taocdn.com/s3/m/21e28f25a216147916112816.png)
pi)
0
即K*=0时:闭环极点 si=开环极点pi
当K*→∞时,闭环特征方程 :
m
(s
i 1
zi )
1 K*
n
(s
i 1
pi)
0
K*→∞
m
(s
i 1
zi
)
0
即K*→∞时,闭环极点 si=开环零点zi
当m 时n, 有n-m 条的终点在无穷远点
n
n
K*
s
i 1 m
pi
i 1
s
zi
K*
lim
s
s
i 1
m
s
i 1
pi zi
lim snm s
12
说明:
1)有限开环零、极点:zi,pi 无限开环零、极点:∞
根轨迹起于开环极点,终于开环零点
2)在绘制其他参数根轨迹时,可能会出现 m>n 的情况,
H(s)
其中:Mi (s) (s zi1 )( s zi2 ); Ni (s) (s pi1 )( s pi2 ) i 1,2
开环零点:M1(s)M2(s) 0 开环极点:N1(s)N2(s) 0
闭环传递函数:s
K1 M1 ( s) N 2 s
K*M1(s)M2(s) N1(s)N2(s)
1 绘制依据 ——根轨迹方程
R(s) _
C(s) G(s)
闭环的特征方程:1 G(s)H(s) 0
H(s)
即:G(s)H(s) 1 ——根轨迹方程(向量方程)
用幅值、幅角的形式表示:
G(s)H(s) 1
自动控制原理(经典控制论)课程ppT
![自动控制原理(经典控制论)课程ppT](https://img.taocdn.com/s3/m/dd020a40ad02de80d4d8405c.png)
自动控制原理
第二章 线性系统的数学模型
单摆(非线性)
是未知函数 的非线性函数,
所以是非线性模型。
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
液面系统(非线性)
是未知函数h的非线性函数,所以是非线性模型。
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
2.2.2 线性化问题的提出 线性系统优点:
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
单变量函数泰勒级数法
函数y=f(x)在其平衡点(x0, y0)附近的泰勒级数展开式为:
略去含有高于一次的增量∆x=x-x0的项,则:
注:非线性系统的线性化 模型,称为增量方程。
注:y = f (x0)称为系统的 静态方程
浙江省精品课程
自动控制原理
增量方程 增量方程的数学含义
将参考坐标的原点移到系统或元件的平衡工作点上, 对于实际系统就是以正常工作状态为研究系统运动的起始 点,这时,系统所有的初始条件均为零。
注:导数根据其定义是一线性映射,满足叠加原理。
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
多变量函数泰勒级数法
增量方程 静态方程
第二章 线性系统的数学模型
微分定理
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
多重微分
原函数的高阶导数 像函数中s的高次代数式
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
积分定理
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
多重积分
原函数的n重积分像函数中除以sn
《自动控制原理》PPT课件
![《自动控制原理》PPT课件](https://img.taocdn.com/s3/m/e8c7e25143323968011c9297.png)
i1
j1
i1
j1
f
G(s)
K G (1s 1)(22s2 22s 1) s (T1s 1)(T22s2 2T2s 1)
KG'
(s zi )
i1 q
(s pi )
i1
前向通道增益 前向通道根轨迹增益
KG'
KG
1 2 2 T1T2 2
反馈通道根轨迹增益
l
(s z j )
H(s) K H '
狭义根轨迹(通常情况):
变化参数为开环增益K,且其变化取值范围为0到∞。
G(s)H (s) K s(s 1)
(s) C(s) K R(s) s2 s K
D(s) s2 s K 0
s1,2
1 2
1 2
1 4K
K=0时 s1 0 s2 1
0 K 1/ 4 两个负实根
K值增加 相对靠近移动
i1
i1
负实轴上都是根轨迹上的点!
m
n
(s zi ) (s pi ) | s2 p1 135
i1
i1
负实轴外的点都不是根轨迹上的点!
二、绘制根轨迹的基本规则
一、根轨迹的起点和终点 二、根轨迹分支数 三、根轨迹的连续性和对称性 四、实轴上的根轨迹 五、根轨迹的渐近线 六、根轨迹的分离点 七、根轨迹的起始角和终止角 八、根轨迹与虚轴的交点 九、闭环特征方程根之和与根之积
a
(2k 1)180 nm
渐近线与实轴交点的坐标值:
n
m
pi zi
a= i1
i1
nm
证明
G(s)H (s) K '
m
(s zi )
i 1 n
自动控制原理课件ppt
![自动控制原理课件ppt](https://img.taocdn.com/s3/m/929fe554a31614791711cc7931b765ce05087ab9.png)
控制目标。
传感器
检测系统的状态或参数,并将 检测结果转换为电信号传输给
控制器。
调节机构
根据控制器的指令调整系统的 参数或结构,以实现系统的稳
定和性能优化。
02
控制系统基本概念
系统稳定性
01Biblioteka 0203稳定性的定义
一个控制系统在受到扰动 后能够回到原始状态的能 力。
稳定性的分类
根据系统响应的不同,可 以分为渐近稳定、指数稳 定和不稳定三种类型。
闭环控制系统
系统的输出反馈到输入端,通过反馈 控制提高控制精度。
03
控制系统的数学模型
传递函数
定义
传递函数是描述线性定常系统动 态特性的数学模型,它反映了系 统输出与输入之间的函数关系。
形式
传递函数通常表示为有理分式的 形式,即 G(s) = num(s)/den(s) ,其中 s 是复变量,num(s) 是 分子多项式,den(s) 是分母多项
参数优化
根据系统性能指标,调整控制器的参数,以实现更好的控制效果 。
结构优化
对控制系统结构进行调整,以提高系统的稳定性和动态性能。
鲁棒性优化
提高系统对不确定性和干扰的抵抗能力,保证系统在各种情况下 都能稳定运行。
控制系统的调试与测试
硬件调试
对控制系统的硬件部分进行调试,确保硬件设备正常工作 。
软件调试
自动控制的应用
工业自动化
航空航天
交通运输
智能家居
自动化生产线、机器人 、自动化仪表等。
飞行器控制、卫星轨道 控制等。
自动驾驶车辆、列车控 制等。
智能家电、智能照明等 。
自动控制系统的组成
01
02
03
传感器
检测系统的状态或参数,并将 检测结果转换为电信号传输给
控制器。
调节机构
根据控制器的指令调整系统的 参数或结构,以实现系统的稳
定和性能优化。
02
控制系统基本概念
系统稳定性
01Biblioteka 0203稳定性的定义
一个控制系统在受到扰动 后能够回到原始状态的能 力。
稳定性的分类
根据系统响应的不同,可 以分为渐近稳定、指数稳 定和不稳定三种类型。
闭环控制系统
系统的输出反馈到输入端,通过反馈 控制提高控制精度。
03
控制系统的数学模型
传递函数
定义
传递函数是描述线性定常系统动 态特性的数学模型,它反映了系 统输出与输入之间的函数关系。
形式
传递函数通常表示为有理分式的 形式,即 G(s) = num(s)/den(s) ,其中 s 是复变量,num(s) 是 分子多项式,den(s) 是分母多项
参数优化
根据系统性能指标,调整控制器的参数,以实现更好的控制效果 。
结构优化
对控制系统结构进行调整,以提高系统的稳定性和动态性能。
鲁棒性优化
提高系统对不确定性和干扰的抵抗能力,保证系统在各种情况下 都能稳定运行。
控制系统的调试与测试
硬件调试
对控制系统的硬件部分进行调试,确保硬件设备正常工作 。
软件调试
自动控制的应用
工业自动化
航空航天
交通运输
智能家居
自动化生产线、机器人 、自动化仪表等。
飞行器控制、卫星轨道 控制等。
自动驾驶车辆、列车控 制等。
智能家电、智能照明等 。
自动控制系统的组成
01
02
03
自动控制原理课件ppt
![自动控制原理课件ppt](https://img.taocdn.com/s3/m/9ad25c5bcd7931b765ce0508763231126edb77a4.png)
03
非线性控制系统
非线性控制系统的特点
非线性特性
01
非线性控制系统的输出与输入之间存在非线性关系,
如放大器、继电器等。
复杂的动力学行为
02 非线性控制系统具有复杂的动力学行为,如混沌、分
叉、稳定和不稳定等。
参数变化范围广
03
非线性控制系统的参数变化范围很广,如电阻、电容
、电感等。
非线性控制系统的数学模型
线性控制系统的性能指标与评价
性能指标
衡量一个控制系统性能的好坏,需要使用一些性能指标,如响应时间、超调量、稳态误差等。
性能分析
通过分析系统的性能指标,可以评价一个控制系统的优劣。例如,响应时间短、超调量小、稳态误差小的系统性能较 好。
系统优化
根据性能分析的结果,可以对控制系统进行优化设计,提高控制系统的性能指标。例如,可以通过调整 控制器的参数,减小超调量;或者通过改变系统的结构,减小稳态误差。
。
采样控制系统的数学模型
描述函数法
描述函数法是一种分析采样控制系统的常用方法,通过将连续时间 函数离散化,用差分方程来描述系统的动态特性。
z变换法
z变换法是一种将离散时间信号变换为复平面上的函数的方法,可 用于分析采样控制系统的稳定性和性能。
状态空间法
状态空间法是一种基于系统状态变量的方法,可以用于分析复杂的采 样控制系统。
航空航天领域中的应用
总结词
高精度、高可靠性、高安全性
详细描述
自动控制原理在航空航天领域中的应用至关重要。例如 ,在飞机系统中,通过使用自动控制原理,可以实现飞 机的自动驾驶和自动着陆等功能,从而提高飞行的精度 和安全性。在火箭和卫星中,通过使用自动控制原理, 可以实现推进系统的精确控制和姿态调整等功能,从而 保证火箭和卫星能够准确地进行轨道变换和定点着陆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理 课程的主要内容
第1章 自动控制系统的基本概念(4) 第2章 拉普拉斯变换及其应用(4) 第3章 自动控制系统的数学模型(10) 第4章 自动控制系统的时域分析(14) 第5章 自动控制系统的频域分析(14) 第6章 控制系统的校正及综合(10)
ppt课件
Hale Waihona Puke 自动控制原理课程的性质和特点: 自动控制是一门技术学科,从方法论的度来研究
解决问题: 单输入单输出SISO、多入多出MIMO 主要方法: 状态空间法。采用状态方程作为数学模型 研究对象: 线性定常,时变,非线性系统,离散系统 主要内容: 最优控制理论,系统辩识,最优估计 主要代表人物:卡尔曼,贝尔曼,庞科里亚金
ppt课件
智能控制理论(20世纪70年代~ 今)
以人工智能为基础研究具有模糊性、不确定性, 不完全性和偶然性的系统。非模型 主要方法: 以人工智能为基础 研究对象:研究具有模糊性,不确定性,不完全性,
微积分
各类 专业课
线性系统
现代控 制理论
ppt课件
自动控制原理
基于数学模型
自动控制理论的发展历程
控制理论是研究有关自动控制共同规律的一门科学。 第一阶段:古典控制理论(20世纪40~60年代)
Classical Control Theory 第二阶段:现代控制理论(20世纪60~70年代)
Modern Control Theory 第三阶段:智能控制理论(20世纪70年代~ 今)
ppt课件
第一章 自动控制系统的基本概念
学习重点
了解自动控制系统的基本结构和特点及 其工作原理;
了解闭环控制系统的组成和基本环节; 掌握反馈控制系统的基本要求及反馈控
制系统的作用; 学会分析自动控制系统的类型及本质特
征。
ppt课件
1.1 开环控制系统和闭环控制系统
自动控制
自动控制是在没有人的直接干预下, 利用物理装置对生产设备和工艺过程进行 合理的控制,使被控制的物理量保持恒定 或者按照一定的规律变化。
电力系统单位:发电企业、供电企业、电气设备制造公司、电力设计院、 电力规划院、电力建设、电力科研开发等部门
五大国有发电集团:中国华能集团、中国大唐集团、中国华电集团、中国 国电集团、中国电力投资集团
两大电网公司:国家电网公司、南方电网公司 电气设备制造企业:上海电气电站、新疆特变电工等 外企:SIEMENS、ABB、SCHNEIDER、AREVA、VESTAS等
系统的建立、分析与设计。《自动控制原理》是本学 科的技术基础课。理论性强、抽象、涉及数学知识多, 所以上课要认真听讲。 考核方法:平时30分(作业、测验、考勤、纪律)
考试70分
ppt课件
自动控制原理
本课程与其它课程的关系
信号与系统 电路理论
复变函数 拉氏变换模拟电子技术
电机与拖动
线性代数
大学物理
自动控制原理
2019年10月29日
第一章 自动控pp制t课系件统的基本概念
自动控制原理
电气自动化专业要求
1、学好书本知识 多关注业界资讯,相关行业,专业论坛 2、加强动手能力 二手市场、电子市场,淘,组装,DIY
2019年10月29日
第一章 自动控pp制t课系件统的基本概念
自动控制原理
电力电气领域大型公司介绍
ppt课件
1.1 开环控制系统和闭环控制系统
人工控制
自动控制
煤气灶蒸饭
手排档汽车的驾驶
自行车的速度控制
收音机的音量调节
。 。 。
随机性的系统。 解决问题:模型不完全确定,或模型未知。 主要内容:专家系统,模糊控制,学习控制….
ppt课件
第一章 自动控制系统的基本概念
电气自动化教研室 朱高伟
ppt课件
15
第一章 自动控制系统的基本概念
主要内容
开环控制系统与闭环控制系统 闭环控制系统的组成和基本环节 自动控制系统的类型 自动控制系统的性能指标 小结
自动控制原理
电气自动化专业就业方向
1、电力系统 高电压设备的设计、开发、生产、管理、运行、维 护 输变电工程师、注册电气工程师
2、电气技术方向 电气测量、控制技术、控制领域装置与系统的开发 与设计工作。
3、应用电子方向
2019年10月29日
第一章 自动控pp制t课系件统的基本概念
自动控制原理
电气自动化专业具体的就业方向
Intelligent Control Theory
ppt课件
古典控制理论(20世纪40~6S0i年ng代le)Input Single
Output
以传递函数为基础研究SISO系统的控制问题。
主要解决问题:单输入单输出(SISO)系统的控制问题。
主要方法:
以传函为数学模型,以拉氏变换数学工具, 时域分析法、根轨迹法、频率法。
主要研究对象:SISO,线性定常(LTI),非线性系统,离散
系统。
Linear Time
主要代表人物:伯德,奈奎斯特,伊文思。 Invariable
ppt课件
Multi-input Multi-
现代控制理论(20世纪60~7o0u代tp)ut
以状态空间法为基础,研究MIMO、非线性、时变系统 的分析和设计。
自动控制原理
Principles of Automatic Control
主讲人:朱高伟
ppt课件
1
自动控制原理 电气自动化专业特点
1、强弱电结合 2、电工技术与电子技术相结合 3、软件硬件相结合 4、电力、电子、控制、计算机多学科综
合的“宽口径”专业
2019年10月29日
第一章 自动控pp制t课系件统的基本概念
2019年10月29日
第一章 自动控pp制t课系件统的基本概念
自动控制原理
为什么要选电气自
课程基本信息 动化专业?
适用专业 :电气自动化、测控技术及仪器 /电子信息工程、通信工程
课程性质 :技术基础课 课程类型 :必修课 学 时 :讲课学时 (56/4)
2019年10月29日
第一章 自动控pp制t课系件统的基本概念
1、电厂(包括各个公司,工厂的配电室) 2、软件开发(特别是单片机或EDA等) 3、PLC(大体是工控方向,搭建操作平台等) 4、各个矿山,或金属冶炼场所(进行自动化设备的维护,操
作等) 5、去学校当老师 6、做销售工作(卖自己专业相关的东西) 7、公务员(每个专业都可以) 8、xxx研究所 9、产品设计,硬件电路设计 10、自主创业(有了一定了经济和经验积累)