多相流模型和离散相模型的区别

合集下载

多相流动的基本理论

多相流动的基本理论
无滑移流平衡流强滑移流冻结流扩散冻结流扩散平衡流稀疏悬浮流稠密悬浮流多相流体动力学长期以来气固两相流动的研究中按照对颗粒的处理方式不同主要有两大类模型确定轨道模型确定轨道模型随机轨道模型随机轨道模型单颗粒动力学模型spd模型单颗粒动力学模型spd模型颗粒轨道模型pt模型颗粒轨道模型pt模型小滑移模型ss模型小滑移模型ss模型无滑移模型ns模型无滑移模型ns模型拟流体多流体模型mf模型拟流体多流体模型mf模型离散介质模型离散介质模型连续介质模型连续介质模型多相流体动力学各种颗粒模型的一些基本观点颗粒相模型基本观点颗粒对流体的影响相间滑移坐标系颗粒相输运性单颗粒动力学模型离散体系不考虑无扩散冻结颗粒轨道模型离散体系考虑机轨道模型小滑移模型连续介质不考虑扩散滑移无滑移模型连续介质部分考虑无动力学平衡热力学平衡或冻扩散平衡拟流体多流体模型连续介质全部考虑多相流体动力学?无滑移模型?小滑移连续介质模型?滑移扩散的颗粒群模型?分散颗粒群模型?双流体模型?颗粒轨道模型多相流体动力学?前提
滑移-扩散的颗粒群模型
(Slip-diffusion Model)
•基本假设:
• 各相时均速度差异造成滑移的主要部分,由于各 相的初始动量不同引起; • 扩散漂移造成滑移的小部分; • 空间各点各尺寸组的速度、尺寸、温度等物理参 数均不相同。
多相流体动力学
拟流体模型小结
• 无滑移模型:颗粒相的宏观运动而引起的质量迁 移是由流体运动引起的; • 小滑移模型:混合物运动引起的 • 滑移-扩散模型:颗粒相自身的宏观运动引起了 质量迁移
方程本身是精确的,不含任何认为假设 和经验常数,仅有的误差只是由数值方 直接模拟 (DNS) 法引入的误差 。 技术的应用
多相流体动力学
湍流流场涡结构图
小尺度涡

FLUENT系列资料:7

FLUENT系列资料:7

多相流算例多相流模拟介绍在自然界和工程问题中会遇到大量的多相流动。

物质一般具有气态、液态和固态三相,但是多相流系统中相的概念具有更为广泛的意义。

在多项流动中,所谓的“相”可以定义为具有相同类别的物质,该类物质在所处的流动中具有特定的惯性响应并与流场相互作用。

多相流动模式根据多相流系统中相的概念,按照下面的原则对多相流分成如下几类:∙气-液或者液-液两相流:o气泡流动:连续流体中的气泡或者液泡。

o液滴流动:连续气体中的离散流体液滴。

o活塞流动: 在连续流体中的大的气泡o分层自由面流动:由明显的分界面隔开的非混合流体流动。

∙气-固两相流:o充满粒子的流动:连续气体流动中有离散的固体粒子。

o气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。

最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。

o流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。

从床底不断充入的气体使得颗粒得以悬浮。

改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。

∙液-固两相流o泥浆流:流体中的颗粒输运。

液-固两相流的基本特征不同于液体中固体颗粒的流动。

在泥浆流中,Stokes数通常小于1。

当Stokes数大于1时,流动成为流化(fluidization)了的液-固流动。

o水力运输: 在连续流体中密布着固体颗粒o沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。

随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。

在澄清层和沉降层中间,是一个清晰可辨的交界面。

∙三相流(上面各种情况的组合)多相系统的例子各流动模式对应的例子如下:∙气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷∙液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗∙活塞流例子:管道或容器内有大尺度气泡的流动∙分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝∙粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动∙风力输运例子:水泥、谷粒和金属粉末的输运∙流化床例子:流化床反应器,循环流化床∙泥浆流例子:泥浆输运,矿物处理∙水力输运例子:矿物处理,生物医学及物理化学中的流体系统∙沉降例子:矿物处理多相建模方法计算流体力学的进展为深入了解多相流动提供了基础。

fluent软件介绍

fluent软件介绍

Fluent软件简介想起CFD,人们总会想起FLUENT,丰富的物理模型使其应用广泛,从机翼空气流动到熔炉燃烧,从鼓泡塔到玻璃制造,从血液流动到半导体生产,从洁净室到污水处理工厂的设计,另外软件强大的模拟能力还扩展了在旋转机械,气动噪声,内燃机和多相流系统等领域的应用。

今天,全球数以千计的公司得益于FLUENT的这一工程设计与分析软件,它在多物理场方面的模拟能力使其应用范围非常广泛,是目前功能最全的CFD软件。

FLUENT因其用户界面友好,算法健壮,新用户容易上手等优点一直在用户中有着良好的口碑。

长期以来,功能强大的模块,易用性和专业的技术支持所有这些因素使得FLUENT受到企业的青睐。

网格技术,数值技术,并行计算计算网格是任何CFD(Computational Fluid Dynamics, 即计算流体动力学)计算的核心,它通常把计算域划分为几千甚至几百万个单元,在单元上计算并存储求解变量,FLUENT使用非结构化网格技术,这就意味着可以有各种各样的网格单元:二维的四边形和三角形单元,三维的四面体核心单元、六面体核心单元、棱柱和多面体单元。

这些网格可以使用FLUENT的前处理软件GAMBIT自动生成,也可以选择在ICEM CFD工具中生成。

在目前的CFD市场, FLUENT以其在非结构网格的基础上提供丰富物理模型而著称,久经考验的数值算法和鲁棒性极好的求解器保证了计算结果的精度,新的NITA算法大大减少了求解瞬态问题的所需时间,成熟的并行计算能力适用于NT,Linux或Unix 平台,而且既适用单机的多处理器又适用网络联接的多台机器。

动态加载平衡功能自动监测并分析并行性能,通过调整各处理器间的网格分配平衡各CPU的计算负载。

湍流和噪声模型FLUENT的湍流模型一直处于商业CFD软件的前沿,它提供的丰富的湍流模型中有经常使用到的湍流模型、针对强旋流和各相异性流的雷诺应力模型等,随着计算机能力的显著提高,FLUENT已经将大涡模拟(LES)纳入其标准模块,并且开发了更加高效的分离涡模型(DES),FLUENT提供的壁面函数和加强壁面处理的方法可以很好地处理壁面附近的流动问题。

Fluent多相流模型选择

Fluent多相流模型选择

FLUENT多相流模型分类1、气液或液液流动气泡流动:连续流体中存在离散的气泡或液泡液滴流动:连续相为气相,其它相为液滴栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。

2、气固两相流动粒子负载流动:连续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。

最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。

3、液固两相流动泥浆流:流体中的大量颗粒流动。

颗粒的stokes数通常小于1。

大于1是成为流化了的液固流动。

水力运输:在连续流体中密布着固体颗粒沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。

4、三相流以上各种情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。

液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。

栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反应装置沸腾和冷凝粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反应器、循环流化床泥浆流:泥浆输运、矿物处理水力输运:矿物处理、生物医学、物理化学中的流体系统沉降流动:矿物处理。

多相流模型的选择原则1、基本原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。

2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。

3)对于栓塞流、泡状流,采用VOF模型4)对于分层/自由面流动,采用VOF模型5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。

6)对于流化床,采用欧拉模型7)泥浆和水力输运,采用混合模型或欧拉模型。

8)沉降采用欧拉模型9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣的流动特种,选择合适的流动模型。

Fluent多相流模型选择

Fluent多相流模型选择

FLUENT多相流模型分类1、气液或液液流动气泡流动:连续流体中存在离散的气泡或液泡液滴流动:连续相为气相,其它相为液滴栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。

2、气固两相流动粒子负载流动:连续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。

最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。

3、液固两相流动泥浆流:流体中的大量颗粒流动。

颗粒的stokes数通常小于1。

大于1是成为流化了的液固流动。

水力运输:在连续流体中密布着固体颗粒沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。

4、三相流以上各种情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。

液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。

栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反应装置沸腾和冷凝粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反应器、循环流化床泥浆流:泥浆输运、矿物处理水力输运:矿物处理、生物医学、物理化学中的流体系统沉降流动:矿物处理。

多相流模型的选择原则1、基本原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。

2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。

3)对于栓塞流、泡状流,采用VOF模型4)对于分层/自由面流动,采用VOF模型5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。

6)对于流化床,采用欧拉模型7)泥浆和水力输运,采用混合模型或欧拉模型。

8)沉降采用欧拉模型9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣的流动特种,选择合适的流动模型。

Fluent学习资料教程集锦12-fluent_多项流

Fluent学习资料教程集锦12-fluent_多项流

• 使用FLUENT中 DPM模型模拟仿 真喷雾干燥过程, 包括液体喷雾进入 加热室接触干燥粉 末时的流动,热交 换和质量交换。
• 优化喷雾干燥器 中的不同参数时, CFD仿真技术起到
Air and methane inlets
Centerline for particle injections
Outlet
– 稀疏型 (< 10%), 内部颗粒间的距离大于 颗粒载颗荷 粒– 离直散径相和两连倍续相,的因惯此性力,颗粒间的相Vpri互mary作用可
比率
part
cont
cp以oanrtt 忽 略1。1, ,twonoewwaayyccoouupplilningg
Vse c onda r y
• 如果St 1, 所有模型都适用,这时就需要考虑 计算速度
附录
建立离散相模型 (DPM)
Define Models Discrete Phase…
Define Injections…
Display Particle Tracks…
DPM 模型边界条件
• Escape
• Trap • Reflect
欧拉多相模型
欧拉多相模型
• 欧拉多相流模型基于平均N-S方程,可以计算 任意粒子和连续相物质。 • 对每一相求解守恒方程。 • 每相同时共存: 每相的守恒方程都包涵单相项 (压力梯度,导热率等)+界面项。 • 界面项包括动量(升力),热量和质量交换。 相间速度和温度差异使得机械能和热能的交换是 非线性的。 • 提供了附加的模型(湍流模型等)。
VOF模型举例 – 晃动的汽车油箱
• 在FLUENT中使 用VOF模型,仿 真模拟各种加速 环境下,汽车油 箱中液体的晃动 t = 1.05 sec (自由表面移 动)。

多相流动的基础知识和数值模拟方法

多相流动的基础知识和数值模拟方法

多相流动的基础知识和数值模拟方法多相流动是指在同一空间中存在两种及以上物质的流动现象。

在工程领域中,多相流动具有广泛应用,如化工反应器中的气液流动、石油勘探中的油水混合流动等。

本文将介绍多相流动的基础知识,并探讨一些常用的数值模拟方法。

一、多相流动的分类多相流动可以根据不同的分类标准进行分类,常见的分类方法包括:1.根据组分:固液流动、气液流动、固气流动等;2.根据速度:稳定流动、不稳定流动、湍流等;3.根据形态:离散相、连续相、两相界面等。

二、多相流动的基础知识1.多相流动的基本方程多相流动的基本方程包括连续性方程、动量方程和能量方程。

在连续性方程中,考虑到多相流动中各相的质量守恒关系;在动量方程中,引入各相之间的相互作用力和速度差等因素;在能量方程中,考虑到各相之间的相变、传热等现象。

2.多相流动的相互作用多相流动中的不同相之间存在相互作用力,如液固两相之间的颗粒间碰撞力、气液两相之间的表面张力等。

这些相互作用力对多相流动的行为和特性具有重要影响。

3.多相流动的模型为了更好地描述多相流动的行为,研究者们提出了多种多相流动模型,如两流体模型、Eulerian-Eulerian模型和Eulerian-Lagrangian模型等。

不同的模型适用于不同的多相流动情况,选择合适的模型对于准确描述多相流动至关重要。

三、多相流动的数值模拟方法数值模拟是研究多相流动的重要手段之一,常用的数值模拟方法包括:1.有限体积法有限体积法是常用的求解多相流动的数值方法之一,它将流动域划分为网格单元,通过离散化各个方程,利用差分格式求解模拟区域内的物理量。

2.多尺度方法多尺度方法考虑到多相流动中存在不同尺度的现象和作用力,通过将流动域划分为不同的区域进行求解,以更好地描述多相流动的行为。

常见的多尺度方法有多尺度网格方法和多尺度时间方法。

3.相场方法相场方法是一种常用的描述多相流动界面的方法,它通过引入相场函数来表示相界面,并利用Cahn-Hilliard方程等对相场函数进行求解,从而获得界面位置和形状等信息。

Fluent多相流选择原则

Fluent多相流选择原则

Fluent 多相流选择原则分类一、气液或液液流动气泡流动:持续流体中存在离散的气泡或液泡液滴流动:持续相为气相,其它相为液滴栓塞(泡状)流动:在持续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。

二、气固两相流动粒子负载流动:持续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。

最典型的模式有沙子的流动,泥浆流,填充床和各相同性流流化床:有一个盛有粒子的竖直圆筒组成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。

3、液固两相流动泥浆流:流体中的大量颗粒流动。

颗粒的stokes数通常小于1。

大于1是成为流化了的液固流动。

水力运输:在持续流体中密布着固体颗粒沉降运动:在有必然高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。

4、三相流以上各类情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。

液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。

栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反映装置沸腾和冷凝负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反映器、循环流化床泥浆流:泥浆输运、矿物处置水力输运:矿物处置、生物医学、物理化学中的流体系统沉降流动:矿物处置。

多相流模型的选择原则一、大体原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。

2)对于离散相混合物或单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。

3)对于栓塞流、泡状流,采用VOF模型4)对于分层自由面流动,采用VOF模型5) 对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。

6) 对于流化床,采用欧拉模型7)泥浆和水力输运,采用混合模型或欧拉模型。

8)沉降采用欧拉模型9)对于更一般的,同时包括多种多相流模式的情况,应按照最感兴趣的流动特种,选择适合的流动模型。

多相流模型

多相流模型

弹状流
气泡流、含液滴气流、带粉气流
气力输送、液力输送、泥浆流
分层流、有自由表面流
沉降
流化床
图5.13 多相流流型
根据所依赖的数学方法和物理原理不同,多相流的理论模型分为三大类:(1)经典的 连续介质力学方法;(2)建立在统计分子动力学基础上的分子动力学模拟方法;(3)介观层 次上的模拟方法,即格子 - Boltzmann 方法。目前多在工程中应用的多相流连续介质力学
5.4.3 多相流时间格式
为了准确模拟多相流的时空变化过程,空间和时间离散均需要高阶格式。除了一阶 时间格式外,混合模型、Euler 模型以及 VOF 隐式格式均可以使用二阶时间格式。 二阶时间格式可用于全部输运方程,包括混合相动量方程、能量方程、组分输运方 程、湍流模型、相体积分数方程、压力修正方程和颗粒流模型。在多相流中,通用输运 方程可以写成:
(5.381)
式中, τd
ρd dd2 为颗粒响应时间(也称为松弛时间或弛豫时间),代表颗粒与连续相动 18 μc
量非平衡松弛过程的快慢,在连续相速度为常数以及Stokes阻力条件下,颗粒相对于连 续相的速度按指数规律衰减,经过时间τd后衰减为初始值的e−1;τs为系统响应时间,为 系统特征长度Ls与特征速度Vs之比,即 τs

只能有一相为可压缩理想气体。对于使用 UDF 所定义的可压缩液体没有限制。 使用 VOF 模型时,不能模拟顺流向周期性流动。 使用 VOF 模型时,不能使用二阶隐式时间步进格式。 使用 DPM 模型进行并行颗粒追踪时, 不能采用共享内存 (Shared Memory) 选项, 可采用消息传递(Message Passing)选项。
(3) Euler 模型
Euler 模型对每一相求解动量方程和连续性方程。通过压力和相间交换系数实现耦

Fluent模型几大问题你知道么

Fluent模型几大问题你知道么

FLUENT多相流模型分类1、气液或液液流动气泡流动:连续流体中存在离散的气泡或液泡液滴流动:连续相为气相,其它相为液滴栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。

2、气固两相流动粒子负载流动:连续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。

最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。

3、液固两相流动泥浆流:流体中的大量颗粒流动。

颗粒的stokes数通常小于1。

大于1是成为流化了的液固流动。

水力运输:在连续流体中密布着固体颗粒沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。

4、三相流以上各种情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。

液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。

栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反应装置沸腾和冷凝粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反应器、循环流化床泥浆流:泥浆输运、矿物处理水力输运:矿物处理、生物医学、物理化学中的流体系统沉降流动:矿物处理。

多相流模型的选择原则1、基本原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。

2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。

3)对于栓塞流、泡状流,采用VOF模型4)对于分层/自由面流动,采用VOF模型5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。

6)对于流化床,采用欧拉模型7)泥浆和水力输运,采用混合模型或欧拉模型。

8)沉降采用欧拉模型9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣的流动特种,选择合适的流动模型。

5.4多相流模型5.5分散相模型2

5.4多相流模型5.5分散相模型2

4 α p ρppVol α p ρ ppVol 2t n 1 n 1 n 1 n 1 Anb nb p SU Sp p
n 1 n
3 α p ρppVol
n 1
(5.383)
将上式重写为
App Anbnb S
(2) 体积分数方程
a. 体积分数方程 通过求解一相或多相体积分数的连续性方程,可以追踪各相之间的界面。第 q 相体 积分数的连续性方程为
n 1 pq m qp (5.385) α ρ α ρ v S m q q q q q α q ρq t p 1 qp 为从相q向相p的传质; m pq 为从相 其中,ρq为第q相的物理密度;vq 为第q相的速度; m
在 VOF 模型中,各相流体共享一个方程组,每一相的体积分数在整个计算域内被追踪。 适用 VOF 模型的多相流应用包括分层流、有自由表面流动、液体灌注、容器内液体振 荡、液体中大气泡运动、堰流、喷注破碎的预测和气 - 液界面的稳态与瞬态追踪等。
114
沈阳航空工业学院
(2) 混合模型
混合模型的相可以是流体或颗粒,并被看作互相穿插的连续统一体。混合模型求解 混合物动量方程,以设定的相对速度描述弥散相。适用混合模型的应用包括低载粉率的 带粉气流、含气泡流、沉降过程和旋风分离器等。混合模型还可以用于模拟无相对速度 的匀质弥散多相流。
117
沈阳航空工业学院
则有下列 3 中可能:

αq = 0:单元中没有第q相流体。 αq = 1:单元中充满第q相流体。 0 < αq < 1:单元中有第q相流体与其它一相或多相流体间的界面。
根据局部αq值,计算域内每一控制容积被赋予适当的物性和变量值。

离散相位模型

离散相位模型

离散相位模型离散相位模型(Discrete Phase Model,DPM)是一种用于描述非连续相的数学模型。

该模型被广泛应用于天然气、石油工程等领域,用于研究气液两相流中分散相(气泡或液滴)的行为。

离散相位模型最初是由Gidaspow在1986年提出的,随后得到了广泛的关注和应用。

离散相位模型的基本思想是将气液两相流中的分散相看作是离散的粒子,按照其不同的运动状态进行分类。

离散相位模型假设分散相的运动速度、形态、大小等特性都是固定的,而气液相之间的质量、动量与能量的交换则是连续的。

离散相位模型通常是在三维空间中描述的,其基本假设包括:1.离散相是球形或椭球形的,其大小和形状是固定不变的;2.离散相的质量是常数,在运动过程中不会改变;3.离散相之间的碰撞是弹性碰撞;4.离散相与气液两相之间存在着多种作用力,如浮力、阻力、颗粒重力等。

离散相位模型主要包括两个方面的内容:离散相之间的运动和离散相与气液相的交互作用。

离散相之间的运动是在粒子间建立联系的基础上进行的,具体包括:1.质量间的碰撞,即粒子之间的弹性碰撞;2.浮力的影响,包括阿基米德浮力和液体表面张力效应等;3.阻力的影响,根据终端落速不同可以分为Stokes阻力和Newton阻力等。

离散相与气液相之间的交互作用主要包括:1.动量交换,表现为气泡或液滴在气液相中运动时对流体的涡动、动量传递等现象;2.能量交换,表现为气泡或液滴在气液相中运动时对流体的热量传递、相变等现象;3.物质交换,表现为气泡或液滴吸附或释放气体、分子扩散等现象。

1.适用于研究气液两相流中分散相的行为,能够解释气泡或液滴在流体中的运动特性;2.理论基础较为牢固,能够较为准确地描述气液两相流中的运动规律;3.适用于求解不同的工况,从而为气液两相流领域的应用提供了一定的理论依据。

离散相位模型也存在一些不足之处:1.离散相之间的相互作用过于复杂,需要进行精确的建模,计算量较大;2.随着计算维度的增加,计算量会呈现指数级增长,给计算带来一定的困难;3.在一些特殊的工况下,离散相与气液相之间的作用可能表现得很不规律,导致模型的应用受到限制。

多相流模拟知识讲解

多相流模拟知识讲解

多相流模拟知识讲解多相流模拟多相流模拟介绍自然界和工程问题中会遇到大量的多相流动。

物质一般具有气态、液态和固态三相,但是多相流系统中相的概念具有更为广泛的意义。

在多项流动中,所谓的“相”可以定义为具有相同类别的物质,该类物质在所处的流动中具有特定的惯性响应并与流场相互作用。

比如说,相同材料的固体物质颗粒如果具有不同尺寸,就可以把它们看成不同的相,因为相同尺寸粒子的集合对流场有相似的动力学响应。

本章大致介绍一下Fluent中的多相流建模。

多相流动模式我们可以根据下面的原则对多相流分成四类:气-液或者液-液两相流:o气泡流动:连续流体中的气泡或者液泡。

o液滴流动:连续气体中的离散流体液滴。

o活塞流动:在连续流体中的大的气泡o分层自由面流动:由明显的分界面隔开的非混合流体流动。

气-固两相流:o充满粒子的流动:连续气体流动中有离散的固体粒子。

o气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。

最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。

o流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。

从床底不断充入的气体使得颗粒得以悬浮。

改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。

液-固两相流o泥浆流:流体中的颗粒输运。

液-固两相流的基本特征不同于液体中固体颗粒的流动。

在泥浆流中,Stokes数通常小于1。

当Stokes 数大于1时,流动成为流化(fluidization)了的液-固流动。

o水力运输:在连续流体中密布着固体颗粒o沉降运动:在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。

随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。

在澄清层和沉降层中间,是一个清晰可辨的交界面。

三相流 (上面各种情况的组合)多相系统的例子气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗活塞流例子:管道或容器内有大尺度气泡的流动分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动风力输运例子:水泥、谷粒和金属粉末的输运流化床例子:流化床反应器,循环流化床泥浆流例子: 泥浆输运,矿物处理水力输运例子:矿物处理,生物医学及物理化学中的流体系统沉降例子:矿物处理多相建模方法计算流体力学的进展为深入了解多相流动提供了基础。

Fluent多相流模型选择与设定(优选.)

Fluent多相流模型选择与设定(优选.)

1.多相流动模式我们可以根据下面的原则对多相流分成四类:•气-液或者液-液两相流:o 气泡流动:连续流体中的气泡或者液泡。

o 液滴流动:连续气体中的离散流体液滴。

o 活塞流动: 在连续流体中的大的气泡o 分层自由面流动:由明显的分界面隔开的非混合流体流动。

•气-固两相流:o 充满粒子的流动:连续气体流动中有离散的固体粒子。

o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。

最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。

o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。

从床底不断充入的气体使得颗粒得以悬浮。

改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。

•液-固两相流o 泥浆流:流体中的颗粒输运。

液-固两相流的基本特征不同于液体中固体颗粒的流动。

在泥浆流中,Stokes 数通常小于1。

当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。

o 水力运输: 在连续流体中密布着固体颗粒o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。

随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。

在澄清层和沉降层中间,是一个清晰可辨的交界面。

•三相流(上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子: 泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2. 多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法。

多相流模型和离散相模型的区别

多相流模型和离散相模型的区别

多相流模型和离散相模型的区别两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。

两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。

引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。

离散相模型←FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相;←离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等;←应用范围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等;←颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑;湍流中颗粒处理的两种模型:Stochastic←Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。

通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道”多相流模型FLUENT中提供的模型:VOF模型(Volume of Fluid Model)←混合模型(Mixture Model)←←欧拉模型(Eulerian Model)VOF模型(Volume of Fluid Model)← VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0<α1<1,表示该控制容积中有两相交界面;← VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法。

多相流动的基本理论

多相流动的基本理论

多相流体动力学
小滑移连续介质模型 (Soo-drew Slip Model)
•基本假设:
• 颗粒群看作连续介质,不同尺寸组代表不同相; • 各组尺寸颗粒群速度不等于当地的流体相速度, 各颗粒相之间的速度亦不相等,即各颗粒相间、 与流体相间有相对速度; • 相间的相互作用类似于流体混合物中各种组分 之间的相互作用,颗粒相和流体相间的阻力忽 略不计; • 颗粒的运动是由流体的运动而引起的,颗粒相 的滑移是由于颗粒相对于多相流整体的湍流扩 散所致,故这种小滑移也称为湍流飘移; • 多相混合物整体与各相之间的关系,仍类似于 多组分流体混合物和各流体组分间的关系. 多相流体动力学
多相流体动力学
模型小结
•各种不同的气固两相流动模型,从不同的角度对 真实的气固两相流动过程做了近似和简化,因而具 有不同的适用范围。 •对稀疏多相流动中固体颗粒,液体颗粒以及气泡 运动的计算方法,Loth[159]做过较为详细的介绍和 分类。一般情况下可通过判断颗粒相对浓度和相间 滑移量的大小来选择合适的模型。
非线性 k
依靠理论与经验的接合,引进一 Reynolds应力模型(RSM) 系列模型假设,从而建立一组描 写湍流平均量的方程组。
代数应力模型(ASM) FLT模型
SSG模型
多相流体动力学
湍流模式理论局限性
对经验数据的依赖性; 将脉动运动的全部细节一律抹平从 而丢失大量重要信息;
目前各种模型,都只能适用于解决 一种或者几种特定的湍流运动。
多相流体动力学
双流体模型
• 气相牛顿粘性应力方程
g
ij
g j 1 gi 1 gk 2 g g ( ( ) ) 2 x j xi 3 xk
固相的应力张量

5.4多相流模型5.5分散相模型2

5.4多相流模型5.5分散相模型2
117
沈阳航空工业学院
则有下列 3 中可能:

αq = 0:单元中没有第q相流体。 αq = 1:单元中充满第q相流体。 0 < αq < 1:单元中有第q相流体与其它一相或多相流体间的界面。
根据局部αq值,计算域内每一控制容积被赋予适当的物性和变量值。
VOF 模型一般用于瞬态问题。只有在求解不依赖于初始条件,且对每一相有独立的
的每一相,引入一个称为单元相体积分数的变量。在每个控制容积中,所有相的体积分 数之和为 1。只要在计算域内每一点的各相的体积分数已知,全部变量和物性的场都由 各相共享并代表了体积平均值。因而,根据体积分数的值,任意单元内的变量和物性或 者为一相的代表,或者为多相混合物的代表。即,如果单元中第q相流体体积分数为αq,
其中,
n 1 n 1 Sp Ap Anb
(5.384)
3 α p ρpVol 2t
n
n 1
n 1 S SU
4 α p ρppVol α p ρppVol 2t
n 1
该格式是无条件稳定的, 但如果时间步长太大, 三层时层方法的 n – 1 时层的负系数 会产生解的振荡。这个问题可以通过引入有界二阶格式解决。由于解的振荡主要出现在 可压缩液体流动中,因此仅对可压缩液体流动使用有界二阶格式。
弹状流
气泡流、含液滴气流、带粉气流
气力输送、液力输送、泥浆流
分层流、有自由表面流
沉降
流化床
图5.13 多相流流型
根据所依赖的数学方法和物理原理不同,多相流的理论模型分为三大类:(1)经典的 连续介质力学方法;(2)建立在统计分子动力学基础上的分子动力学模拟方法;(3)介观层 次上的模拟方法,即格子 - Boltzmann 方法。目前多在工程中应用的多相流连续介质力学

流体力学中的多相流问题

流体力学中的多相流问题

流体力学中的多相流问题多相流指的是在同一空间内同时存在两种或更多相态的流体混合体。

在流体力学中,多相流问题是一个重要的研究领域,涉及到气液、固体液体等多种物质相态的相互作用和流动特性。

本文将探讨多相流问题在流体力学中的应用和研究进展。

一、多相流的基本概念在理解多相流问题之前,我们需要先了解一些关键的概念。

多相流系统由连续相和分散相组成,其中连续相是指占据整个流动区域的相,分散相是指以液滴、气泡、颗粒等形式存在于连续相中的相。

多相流的性质和行为往往由分散相的运动、交互以及与连续相的相互作用决定。

二、多相流的分类多相流可根据不同的特征进行分类。

常见的分类方法包括根据相态组合、分散相运动形式和流体流动性质等。

1.根据相态组合分类根据不同的相态组合,多相流可以分为气液两相流、固体液两相流、多气泡流、多液滴流等。

其中最常见的是气液两相流,如气泡在液体中的运动。

2.根据分散相运动形式分类分散相的运动形式也是多相流分类的重要标准。

常见的运动形式包括颗粒床流动、气泡上升、液滴飞溅等。

3.根据流体流动性质分类流体流动性质对于多相流问题的研究也具有重要意义。

多相流可以分为层流、湍流等不同流动状态,其中湍流多相流较为复杂,经常出现相之间的湍流剪切现象。

三、多相流的数学模型解决多相流问题需要建立适当的数学模型。

常用的数学模型包括欧拉-拉格朗日方法和欧拉-欧拉方法。

1.欧拉-拉格朗日方法欧拉-拉格朗日方法将连续相和分散相分别看作两个独立的相,建立各自的质量守恒、动量守恒和能量守恒方程。

该方法适用于分散相浓度较低的情况。

2.欧拉-欧拉方法欧拉-欧拉方法将连续相和分散相视为大小不同的两个均匀相,建立各自的质量守恒、动量守恒和能量守恒方程。

该方法适用于分散相浓度较高的情况。

四、多相流问题的应用多相流问题在工程和科学研究中有广泛的应用。

以下是多相流问题的几个典型应用:1.石油工程领域在石油开采过程中,多相流问题非常普遍。

包括油气的相互作用、抽采过程中的气液两相流、油井压力和流量的分析等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多相流模型和离散相模型的区别
2008-03-30 10:18
两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。

两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。

引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。

离散相模型
FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相;←
←离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等;
←应用范围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等;
←颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑;
湍流中颗粒处理的两种模型:Stochastic← Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。

通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道”
多相流模型
FLUENT中提供的模型:
VOF模型(Volume of Fluid← Model)
混合模型(Mixture Model)←
欧拉模型(Eulerian Model)←
VOF模型(Volume of Fluid Model)
← VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0<α1<1,表示该控制容积中有两相交界面;
← VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法。

混合模型(Mixture Model)
用混合特性参数描述的两相流场的场方程组称为混合模型;←
←考虑了界面传递特性以及两相间的扩散作用和脉动作用;使用了滑移速度的概念,允许相以不同的速度运动;
←用于模拟各相有不同速度的多相流;也用于模拟有强烈耦合的各向同性多相流和各相以相同速度运动的多相流;
←缺点:界面特性包括不全,扩散和脉动特性难于处理。

欧拉模型(Eulerian Model)
欧拉模型指的是欧拉—欧拉模型;←
←把颗粒和气体看成两种流体,空间各点都有这两种流体各自不同的速度、温度和密度,这些流体其存在在同一空间并相互渗透,但各有不同的体积分数,相互间有滑移;
←颗粒群与气体有相互作用,并且颗粒与颗粒之间相互作用,颗粒群紊流输运取决于与气相间的相互作用而不是颗粒间的相互作用;
←各颗粒相在空间中有连续的速度、温度及体积分数分布。

几种多相流模型的选择
VOF模型适合于分层流动或自由表面流;←
← Mixture和Eulerian模型适合于流动中有混合或分离,或者离散相的体积份额超过10%-12%的情况。

Mixture模型和Eulerian模型区别
如果离散相在计算域分布较广,采用← Mixture模型;如果离散相只集中在一部分,使用Eulerian模型;
当考虑计算域内的interphase drag laws←时,Eulerian模型通常比Mixture模型能给出更精确的结果;
从计算时间和计算精度上考虑。

←。

相关文档
最新文档