第六届全国大学生数学竞赛决赛试题及参考答案(非数学类)

合集下载

全国大学生数学竞赛(非数学类)大纲及历年预赛试卷

全国大学生数学竞赛(非数学类)大纲及历年预赛试卷
—1—
余弦函数,以及它们的和与积 7. 欧拉(Euler)方程. 8. 微分方程的简单应用 五、向量代数和空间解析几何 1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积. 2. 两向量垂直、平行的条件、两向量的夹角. 3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦. 4. 曲面方程和空间曲线方程的概念、平面方程、直线方程. 5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和
f ( y) x2[1 f ( y)]3
1 x2 (1 f ( y))
f ( y) [1 f ( y)]2 x2[1 f ( y)]3
解法 2 方程 xe f (y) ey ln 29 取对数,得 f ( y) ln x y ln ln 29
(1)
方程(1)的两边对 x 求导,得 f ( y) y 1 y x
4.设函数 y y(x) 由方程 xe f ( y) ey ln 29 确定,其中 f 具有二阶导数,且 f 1 ,

d2 y dx 2
________________.
解法 1 方程 xe f ( y) ey ln 29 的两边对 x 求导,得
e f ( y) xf ( y) ye f ( y) e y y ln 29

[ 1 f ( y) y]xe f ( y) ye y ln 29 x
因 e y ln 29 xe f ( y) 0 ,故 1 f ( y) y y,即 y
1
,因此
x
x(1 f ( y))
d2 y dx 2
y
1 x2 (1 f
( y))
f ( y) y x[1 f ( y)]2
点到直线的距离. 6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次

历届全国大学生数学竞赛真题及答案非数学类

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

全国大学生数学竞赛试题解答及评分标准 非数学类

全国大学生数学竞赛试题解答及评分标准 非数学类

全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.解因为()sin sin 2sinn ππ==……(2分);原式lim 1exp lim ln 1sin nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦=2.证明广义积分0sin xdx x ⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。

……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。

…………(2分) 而()021n n π∞=+∑发散,故由比较判别法0n n a ∞=∑发散。

……………………………………(2分)3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。

解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x +'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分)将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y y x ''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-,故()01y=-为极大值,()21y-=为极小值。

大学生数学竞赛(非数)试题及答案

大学生数学竞赛(非数)试题及答案

大学生数学竞赛(非数学类)试卷及标准答案考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分.一、填空(每小题5分,共20分).计算)cos 1(cos 1lim 0x x x x --+→= .(2)设()f x 在2x =连续,且2()3lim2x f x x →--存在,则(2)f = . (3)若tx x xt t f 2)11(lim )(+=∞→,则=')(t f .(4)已知()f x 的一个原函数为2ln x ,则()xf x dx '⎰= .(1)21. (2) 3 . (3)te t 2)12(+ . (4)C x x +-2ln ln 2. 二、(5分)计算dxdy xy D⎰⎰-2,其中1010≤≤≤≤y x D ,:.解:dxdy x y D⎰⎰-2=dxdy y x x y D )(21:2-⎰⎰<+⎰⎰≥-22:2)(x y D dxdy x y -------- 2分 =dy y x dx x )(2210-⎰⎰+dy x y dx x)(12102⎰⎰- -------------4分姓名:身份证号所在院校:年级专业线封密注意:1.所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效. 2.密封线左边请勿答题,密封线外不得有姓名及相关标记.=3011-------------5分.三、(10分)设)](sin[2x f y =,其中f 具有二阶 导数,求22dxyd .解:)],(cos[)(222x f x f x dxdy'=---------------3分 )](sin[)]([4)](cos[)(4)](cos[)(222222222222x f x f x x f x f x x f x f dxy d '-''+'=-----7分=)]}(sin[)]([)](cos[)({4)](cos[)(222222222x f x f x f x f x x f x f '-''+'---------10分.四、(15分)已知3123ln 0=-⋅⎰dx e e a x x ,求a 的值. 解:)23(232123ln 0ln 0xa x ax x e d e dx e e ---=-⋅⎰⎰---------3分 令t e x =-23,所以dt t dx e e aax x ⎰⎰--=-⋅231ln 02123---------6分 =a t 231233221-⋅-------------7分=]1)23([313--⋅-a ,-----------9分 由3123ln 0=-⋅⎰dx e e a x x ,故]1)23([313--⋅-a =31,-----------12分即3)23(a -=0-----------13分 亦即023=-a -------------14分所以23=a -------------15分.五、(10分)求微分方程0=-+'x e y y x 满足条件e yx ==1的特解.解:原方程可化为xe y x y x=+'1-----------2分这是一阶线性非齐次方程,代入公式得⎥⎦⎤⎢⎣⎡+⎰⋅⎰=⎰-C dx e x e e y dxx xdx x 11----------4分=⎥⎦⎤⎢⎣⎡+⋅⎰-C dx e x e ex x xln ln ----------5分 =[]⎰+C dx e x x 1-----------6分 =)(1C e xx+.---------------7分 所以原方程的通解是)(1C e xy x +=.----------8分再由条件e yx ==1,有C e e +=,即0=C ,-----------9分因此,所求的特解是xe y x=.----------10分.六(10分)、若函数()f x 在(,)a b 内具有二阶导数,且123()()()f x f x f x ==,其中123a x x x b <<<<,证明:在13(,)x x 内至少有一点ξ,使()0f ξ'=。

第六届数学竞赛决赛试题及答案

第六届数学竞赛决赛试题及答案

第六届数学竞赛决赛试题(满分120分)一、计算题(能用简便方法计算的,要用简便算法。

每题4分,共12分。

)2. 77×13+255×999+510二、填空题(1~9题每空 4分,10~12题每空 3分,共 54分。

)1.a=8.8+8.98+8.998+8.9998+8.99998,a的整数部分是____。

2.1995的约数共有____。

3.等式“学学×好好+数学=1994”,表示两个两位数的乘积,再加上一个两位数,所得的和是1994。

式中的“学、好、数”3个汉字各代表3个不同数字,其中“数”代表____。

4.如图1,“好、伙、伴、助、手、参、谋”这7个汉字代表1~7这7个数字。

已知3条直线上的3个数相加、2个圆圈上3个数相加所得的5个和都相等。

图中间的“好”代表____。

5.农民叔叔阿根想用20块长2米、宽1.2米的金属网建一个靠墙的长方形鸡窝(如图2)。

为了防止鸡飞出,所建鸡窝高度不得低于2米。

要使所建的鸡窝面积最大,BC的长应是米。

7.小胡和小涂计算甲、乙两个两位数的乘积,小胡看错了甲数的个位数字,计算结果为1274;小涂看错了甲数的十位数字,计算结果为819。

甲数是____。

8.1994年“世界杯”足球赛中,甲、乙、丙、丁4支队分在同一小组。

在小组赛中,这4支队中的每支队都要与另3支队比赛一场。

根据规定:每场比赛获胜的队可得3分;失败的队得0分;如果双方踢平,两队各得1分。

已知:(1)这4支队三场比赛的总得分为4个连续奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方踢平,其中有一场是与丙队踢平的。

根据以上条件可以推断:总得分排在第四的是____队。

9.一块空地上堆放了216块砖(如图3),这个砖堆有两面靠墙。

现在把这个砖堆的表面涂满石灰,被涂上石灰的砖共有____块。

10.南方某城市的一家企业有90%的员工是股民,80%的员工是“万元户”,60%的员工是打工仔。

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类).

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类).

1
1 2 4 2 3 1 5 16
2 (12t t )dt 2 t t t
令t 1u ,则u 1t2 ,du 2tdt ,u2 12t2 t4 ,u(1u) t2 (1t)(1t) ,
0
(*) 2 (12t2 t4 )dt
1
2
d y
则 2 ________________.
dx
f (y ) y
x
解方程xe e ln 29 的两边对 求导,得
y
(x y ) ln(1 ) u ln u u ln v
1x y
坐标轴所围成三角形区域.
0 1
解令 ,则 , ,
x y u,x v x v,y u v dxdy det dudv dudv
1 1
2 .设f (x) 是连续函数,且满足f (x) 3x 2 f (x)dx 2 , 则f (x) ____________.
0
处的切平面方程是2(x 2) 2(y 1) (z 5) 0 ,即曲面z y 2 平行平面
2
2x 2y z 0 的切平面方程是2x 2y z 1 0 。
4 .设函数y y (x) 由方程 f (y ) y 确定,其中 具有二阶导数,且 ,
xe e ln 29 f f 1
处的法向量为(z (x , y ), z (x , y ),1) ,故(z (x , y ), z (x , y ),1) 与(2,2,1) 平行,
x 0 0 y 0 0 x 0 0 y 0 0
D x dxdy D dudv
1x y 1u
1 u ln u u u u
4 2 10
解得A 。因此f (x) 3x 。

历届全国大学生数学竞赛真题及答案非数学类

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题〔非数学类〕〔参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

〕2021年 第一届全国大学生数学竞赛预赛试卷 一、填空题〔每题5分,共20分〕1.计算=--++⎰⎰y x yx x yy x D d d 1)1ln()(,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令vx u y x ==+,,那么vu y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v u uv u u u u u〔*〕令u t -=1,那么21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)t t t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 那么=)(x f .解:令⎰=20d )(x x f A ,那么23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得。

因此。

3.曲面平行平面022=-+z y x 的切平面方程是.解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面22=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

历届全国大学生高等数学竞赛真题及答案非数学类

历届全国大学生高等数学竞赛真题及答案非数学类

2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

2014年第六届全国大学生数学竞赛初赛-非数学类试卷

2014年第六届全国大学生数学竞赛初赛-非数学类试卷

参考答案参见微信公众号:考研竞赛数学(ID: xwmath)菜单“竞赛实验”下的“竞赛试题与通知” 相关知识点总结与解题思路分析、探索参见公众号《公共基础课》在线课堂,或公众号回复“在线课堂”12014年第六届全国大学生数学竞赛初赛(非数学类)试卷一 、填空题(共有5 小题,每小题6分,共30分)(1) 已知1x y e =和2x y xe =是齐次二阶常系数线性微分方程的解,则该微分方程是 .(2) 设有曲面22:2S z x y =+和平面:220x y z π++=,则与π平行的S 的切平面方程是 .(3) 设()y y x =由21sin d 4y x t x t π-⎛⎫ =⎝⎭⎰所确定,则0d d x y x == . (4) 设()11!n n k k x k ==+∑,则lim n n x →∞= . (5) 已知130()lim 1x x f x x e x →⎛⎫ ⎪++= ⎪ ⎪⎝⎭,则()20lim x f x x →= . 第二题:(12分)设n 为正整数,计算12d 1cos ln d .d n e I x x x π-⎛⎫ ⎪= ⎪ ⎪⎝⎭⎰ 第三题:(14分)设函数()f x 在0,1⎡⎤⎢⎥⎣⎦上有二阶导数,且有正常数,A B 使得()(),f x A f x B ''≤≤,证明:对于任意0,1x ⎡⎤∈⎢⎥⎣⎦,有()2.2B f x A '≤+ 第四题:(14分) (1) 设一球缺高为h ,所在球半径为R 。

证明该球缺的体积为()233R h h π-,球冠的面积为2.Rh π (2) 设球体()()()22211112x y z -+-+-≤被平面:6P x y z ++=所截的小球缺为 。

记球缺上的球冠为 ,方向指向球外,求第二型曲面积分d d d d d d .I x y z y z x z x y =++⎰⎰第五题:(15分)设f 在,a b ⎡⎤⎢⎥⎣⎦上非负连续,严格单增,且存在,n x a b ⎡⎤∈⎢⎥⎣⎦使得()()1d ,b n n n a f x f x x b a ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦-⎰ 求lim .n n x →∞第六题:(15分)设22222,12n n n n A n n n n=++++++ 求lim .4n n n A π→∞⎛⎫ ⎪- ⎪ ⎪⎝⎭。

历届全国大学生数学竞赛真题及答案非数学类

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算____________,其中区域由直线与两坐标轴所围成三角形区域.解: 令,则,,(*)令,则,,,2.设是连续函数,且满足, 则____________.解: 令,则,,解得。

因此。

3.曲面平行平面的切平面方程是__________.解: 因平面的法向量为,而曲面在处的法向量为,故与平行,因此,由,知,即,又,于是曲面在处的切平面方程是,即曲面平行平面的切平面方程是。

4.设函数由方程确定,其中具有二阶导数,且,则________________.解: 方程的两边对求导,得因,故,即,因此二、(5分)求极限,其中是给定的正整数.解 :因故因此三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性.解 : 由和函数连续知,因,故,因此,当时,,故当时,,这表明在处连续.四、(15分)已知平面区域,为的正向边界,试证:(1);(2).证 :因被积函数的偏导数连续在上连续,故由格林公式知(1)而关于和是对称的,即知因此(2)因故由知即五、(10分)已知,,是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解设,,是二阶常系数线性非齐次微分方程的三个解,则和都是二阶常系数线性齐次微分方程的解,因此的特征多项式是,而的特征多项式是因此二阶常系数线性齐次微分方程为,由和,知,二阶常系数线性非齐次微分方程为六、(10分)设抛物线过原点.当时,,又已知该抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小.解因抛物线过原点,故,于是即而此图形绕轴旋转一周而成的旋转体的体积即令,得即因此,,.七、(15分)已知满足, 且, 求函数项级数之和.解,即由一阶线性非齐次微分方程公式知即因此由知,,于是下面求级数的和:令则即由一阶线性非齐次微分方程公式知令,得,因此级数的和八、(10分)求时, 与等价的无穷大量.解令,则因当,时,,故在上严格单调减。

历届全国大学生高等数学竞赛真题及答案非数学类.docx

历届全国大学生高等数学竞赛真题及答案非数学类.docx

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解:令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类)

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类)

第一届全国大学生数学竞赛预赛试卷(非数学类)2009一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=,dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)t t t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(22-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面 022=-+z y x 的切平面方程是0122=--+z y x 。

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(19届)一、试题概述全国大学生数学竞赛是由中国数学会主办的一项面向全国高校本科生的数学竞赛。

自2009年首届竞赛举办以来,已成功举办九届。

竞赛旨在激发大学生对数学的兴趣,提高他们的数学素养和综合能力,同时选拔优秀数学人才。

每届竞赛均设有预赛和决赛两个阶段,预赛为全国范围内的统一考试,决赛则在全国范围内选拔出的优秀选手中进行。

二、竞赛内容全国大学生数学竞赛的试题内容主要包括高等数学、线性代数、概率论与数理统计等基础数学知识。

试题难度适中,既考查参赛选手的基础知识掌握程度,又注重考查他们的综合应用能力和创新思维能力。

三、竞赛特点1. 公平公正:竞赛试题由全国数学教育专家命题,确保试题质量,保证竞赛的公平公正。

2. 注重基础:竞赛试题主要考查参赛选手对基础数学知识的掌握程度,有利于引导大学生重视基础数学学习。

3. 综合应用:试题设计注重考查参赛选手的综合应用能力,培养他们的创新思维和实践能力。

4. 激发兴趣:竞赛通过丰富多样的试题形式,激发大学生对数学的兴趣,培养他们的数学素养。

四、竞赛组织全国大学生数学竞赛由各省、市、自治区数学会负责组织本地区的预赛,中国数学会负责全国范围内的决赛。

竞赛组织工作包括试题命制、竞赛宣传、选手选拔、竞赛监督等环节,确保竞赛的顺利进行。

五、竞赛影响全国大学生数学竞赛自举办以来,受到了广大高校和数学爱好者的广泛关注和热情参与。

竞赛不仅为优秀数学人才提供了展示才华的舞台,也为全国高校数学教育提供了有益的借鉴和启示。

通过竞赛,大学生们不仅提高了自己的数学水平,还结识了许多志同道合的朋友,拓宽了视野,激发了学习热情。

六、竞赛历程自2009年首届全国大学生数学竞赛举办以来,竞赛规模逐年扩大,影响力不断提升。

参赛选手涵盖了全国各大高校的本科生,包括综合性大学、理工科院校、师范院校等。

随着竞赛的普及,越来越多的学生开始关注并参与其中,竞赛逐渐成为衡量高校数学教育水平和学生数学素养的重要标志。

2023年长沙理工大学数学竞赛大学高年级非数学专业答案

2023年长沙理工大学数学竞赛大学高年级非数学专业答案

一、填空题1. 2ln 21-;2. 1/6;3.ln 2-;4. 4π-;5. 221114ab π⎛⎫+ ⎪⎝⎭; 6. ()22!!,0,n n is a odd n is a even ⎧⎡⎤-⎪⎣⎦⎨⎪⎩; 7.()()111110,,,,xz x zz xdz dx f x y z dy dz dx f x y z dy ---+⎰⎰⎰⎰⎰⎰;8. 22006π.I =();9.42π(,).4a f x y x y =+;10. 0。

二、解 ))1(()1(),(22y x o y x y x f +-+---=, 由全微分旳定义知 0)0,1(=f 1)0,1()0,1(-='='y x f f .xf y e fg xy x 221⋅'+⋅'='y f x e f g xyy 221⋅'+⋅'='0)0,0(='x g0)0,0(='y g2222121121122)2()2(2f x x f y e f y e f y e x f y e f g xyxy xy xy x '+⋅''+⋅''+⋅'+⋅''+⋅''='' x y f x e f e xy e f y e y f x e f g xyxy xy xy xy xy 2)2()()2(222111211⋅''+⋅''++⋅'+⋅''+⋅''='' 2222121121122)2()2(2f y y f x e f x e f x e y f x e fg xyxyxyxyy '+⋅''+⋅''+⋅'+⋅''+⋅''='' A=2)0,1(2)0,0(22-='=''f g x ,1)0,1()0,0(1-='=''=f g B xy ,2)0,1(2)0,0(22-='=''=f g C y 032>=-B AC , 且0<A , 故0)0,1()0,0(==f g 是极大值. 三、 .,1:π,d )cos sin sin (d d d d d )()(d ,)()(22π202正向解=+-=+-=+=+=⎪⎪⎭⎫⎝⎛∂∂-∂∂=∴∂∂-∂∂=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-∂∂+∂∂=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=⎰⎰⎰⎰⎰⎰⎰••y x L yy x y y uv x uv y uv x uv y uv x uv y v u y u v x v u x u v y v x v u y u x u v L L D Dθθθθσσg f g f四、.1)1(22122)1(2)2(;02lim ,112)1(1121212121212112112112121++→∞---+++++++-+++=++++-+++=++++=-=+++∴-⋅-+++-=+++-=-++-+-+=+++n n n n n n n n n n n n n n n n n n n a n a n na a a n na a a n na a a n na a a n n na a a S S nna a a nn n S S S S n S S S S nS S S S S S S n na a a 解.)1(2)1(2,21111121112121S a a b n n na a a a b b n n na a a n na a a b n n n n n nn n n nn n ==+=++++∴+-=+++++++=∑∑∑∞=∞=+∞=++ 则记五、000()(,)(0,0),(0,0),(0,0).(,0)(0,0)||(,0)(0,0)limlim ,||(,0)||(,0)lim (0,0),lim (0,0),(0,0)0.()(0,0)0,(0,0)0,(0,0)0.x y x x x x x x y f x y f f f x f x x f x xx x x x x xf f ϕϕϕϕϕϕϕ+-→→→→''-'====-=''===证:必要性设在点处可微则存在由于且故有充分性若则可知因为(,)(0,0)(0,0)(0,0)2,0.(,)(0,0).x y f x y f f x f yf x y →→''---=所以由定义在点处可微六、解: 由于dxdydz c z dxdydz b y dxdydz a x I VVV⎰⎰⎰⎰⎰⎰⎰⎰⎰++=222222, 其中⎰⎰⎰⎰⎰⎰-=Daa Vdydz dx a x dxdydz a x 2222, 这里D 表达椭球面2222221ax c z b y -≤+或1)1()1(22222222≤-+-ax c z axb y 。

2015年第六届全国大学生数学竞赛预赛试题及答案

2015年第六届全国大学生数学竞赛预赛试题及答案

n +1 n n ∑ n n n 2015 年第七届预赛(非数学类)参考答案一、每小题 6 分,共计 30 分。

⎛ sin π sin 2 π ⎞⎜ n n sin π ⎜ 2 (1) 极限 lim n ⎜ 2 + n +1n + 2 + L + n 2 + n ⎜ =π。

n →∞ ⎜ ⎜ ⎝ ⎟i1 n in sin π n 1 n i 解:由于 ∑sin i =1 π ≤ ∑ i =1n +i n≤ ∑sin i =1 π , 而 nlim 1 ∑sin i π = lim n π ni 1 π 2 sin π = ∫ sin xdx = , n →∞ n +1 i =1 n n →∞ (n +1)π n i =1n π 0 πlim 1 ∑sin i π = lim 1 π ∑sin i π = 1 ∫π sin xdx = 2。

n →∞ n i =1 n n →∞ π n i =1 n π 0 π所以所求极限是 2 .π(2)设函数 z = z ( x , y ) 由方程 F ( x + z, y + z ) = 0 所决定,其中 F (u , v ) 具有连续偏导y x∂z ∂z数,且 xF u + yF v ≠ 0 。

则 x + y = z −xy 。

(本小题结果要求不显含 F 及其 ∂x ∂y偏导数)⎛ 1 ∂z ⎞⎜⎛ 1 ∂z z ⎞ ⎜ ⎜ ⎜ 解:方程对 x 求导,得到⎜1+ ⎜ F u +⎜ − y x x x x ⎜ F v = 0 ⎝⎜ ∂ ⎟⎜⎝⎜ ∂ 2 ⎟⎜∂z y ( z F − x 2 F ) 即 x = v u。

∂x xF u + yF v∂z x ( z F − y 2F ) 同样,方程对 y 求导,得到 y = u v。

∂y xF u + yF v于是 x∂z + y ∂z = z ( x F u + yF v ) − xy ( x F u + yF v )= z − xy ∂x ∂y u + v(3)曲面 z = x 2 + y 2 + 1 在点 M (1,‐1,3)的切平面与曲面 z = x 2 + y 2所围区域的体积为π。

历届全国大学生高等数学竞赛真题及答案非数学类.docx

历届全国大学生高等数学竞赛真题及答案非数学类.docx

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解:令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档