三年级奥数第九讲__巧填运算符号

合集下载

【全国通用】三年级数学上册奥数经典培训讲义——巧填运算符号 无答案

【全国通用】三年级数学上册奥数经典培训讲义——巧填运算符号 无答案

巧填运算符号姓名教学目标和要求:所谓填运算符号,就是指在一些数之间的适当的地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式称为一个等式,要求学生根据题目给定的条件和要求,添运算符号或括号,使等式成立教学内容和方法:凑数法、倒推法、分组法,或综合起来使用1、如果题目的数字比较简单,可以从等式的结果入手,推想哪些算式能得到这个结果,然后拼凑出所求的式子2、如果题目中的数字比较多,结果也比较大,可以考虑先用几个数字凑出比较接近于等式结果的数,然后再进行调整,使等式成立。

教学过程:例1、在两个数之间加上运算符号,使各式成立;(1)4 4 4 4 = 8 (2)4 4 4 4 = 24 (3)5 5 5 5 5 = 6 2、在下面各题中填上+-×÷,使等式成立(1)3 3 3 3 3 = 0 (2)3 3 3 3 3 = 0(3)3 3 3 3 3 = 6 (4)3 3 3 3 3 = 9例2、在数字1、2、3、4、5中间运算符号和括号使算式的得数为指定得数。

1 2 3 4 5 = 10 1 2 3 4 5 = 1001、在□内填上与等号左边不同的运算符号,使等式成立。

(1)6-2+2=6□2□2 (2)8+2+3=8□2□3 (3)16-8-3=16□8□32、填上适当的运算符号,使算式成立。

(1) 2 3 4 5=24 (2) 3 10 5 4=24(3) 13 10 5 4=24 (4) 11 5 6 12=24例3、在下面的式子里面加上括号,使等式成立。

7×9+12÷3-2=471、在下列算式中,加上括号,使等式成立。

7×9 +12÷3-2=232、在下列算式中合适的地方,填上括号,使算式成立。

(1)9+60÷3+2×4-1=30 (2)9+60÷3+2×4-1=56(3)9+60÷3+2×4-1=15 (4)9+60÷3+2×4-1=453、在下面算式中合适的地方,填上括号,使算式成立。

三年级奥数巧填符号教案

三年级奥数巧填符号教案

三年级奥数巧填符号教案一、教学目标1. 让学生掌握基本的数学符号及其意义。

2. 培养学生运用符号表示数和数量关系的能力。

3. 锻炼学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 数的认识:复习阿拉伯数字、汉字表示数、数位顺序等知识。

2. 符号表示:学习加号、减号、等号、大于号、小于号等符号及其意义。

3. 巧填符号:通过练习,让学生学会在算式中正确填入符号,使等式成立。

三、教学重点与难点1. 教学重点:让学生掌握基本的数学符号及其意义,能够正确填入符号。

2. 教学难点:培养学生运用符号表示数和数量关系的能力,以及解决问题的能力。

四、教学方法1. 采用直观演示法,让学生通过实物、图片等直观教具,加深对符号的理解。

2. 采用游戏教学法,设计有趣的游戏活动,激发学生的学习兴趣。

3. 采用分组讨论法,让学生分组讨论,培养学生的合作意识。

4. 采用问答法,教师提问,学生回答,及时巩固所学知识。

五、教学步骤1. 导入新课:通过讲解生活中的实例,引出数学符号的重要性。

2. 学习符号:介绍加号、减号、等号、大于号、小于号等符号及其意义。

3. 符号练习:设计一些简单的算式,让学生填入正确的符号,使等式成立。

4. 游戏环节:设计“符号接力”游戏,让学生在游戏中运用所学符号。

6. 布置作业:设计一些相关的练习题,让学生巩固所学知识。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答的正确性以及与同学的互动情况。

2. 练习题评价:检查学生完成的练习题,评估其对符号的理解和运用能力。

3. 游戏环节评价:评价学生在游戏中的表现,包括团队合作、符号运用和问题解决能力。

七、教学拓展1. 邀请数学家或相关领域专家进行讲座,分享符号在数学和科学领域的重要性和应用。

2. 组织学生参观数学博物馆或相关展览,加深对数学符号的了解。

3. 开展数学竞赛活动,鼓励学生运用符号解决问题,提高其数学思维能力。

八、教学反思1. 教师应反思教学内容的难易程度,确保学生能够理解和掌握。

三年级奥数第九讲巧填运算符号

三年级奥数第九讲巧填运算符号

三年级数学提升班学生姓名:第九讲:巧填运算符号知识是从刻苦劳动中得来的,任何成就都是刻苦劳动的结晶。

——宋庆龄知识纵横根据题目给定的条件和要求,填运算符号或括号,使等式成立,这是一种很有趣的游戏,这种游戏需要动脑筋找规律,讲究方法,一旦掌握方法,就有取得成功的把握。

填运算符号问题,通常采用尝试探索法,主要尝试方法有两种:1.如果题目的数字比较简单,可以从等式的结果入手,推想那些算式能得到这个结果,然后拼凑出所求的式子。

2.如果题目中的数字比较多,结果也较大,可以考虑先用几个数字凑出比较接近于等式结果的数,然后再进行调整,使等式成立。

通常情况下,要根据题目的特点,选择方法,有时将以上两种方法组合起来使用,更有助于问题的解决。

例题求解【例1】在下面4个4之间填上+、-、×、÷或括号,使等式成立4444=8【例2】在下面各题中添上+、-、×、÷、(),使等式成立。

12345=10【例3】拿出都是8的四张牌,添上+、-、×、÷或(),使等式成立,你能试一试吗?8888=08888=18888=28888=3【例4】在下面算式合适的地方添上+、-、×,使等式成立。

12345678=1【例5】在下面式子适当的地方添上+、-号,使等式成立。

987654321=21【例6】在下面12个5之间添上+、-、×、÷,使下面等式成立。

555555555555=1000学力训练1.你能在下面数中填上+、-、×、÷,使结果等于已知数吗?(1)5555=10(2)9999=182.在下面数中填上+、-、×、÷或(),使等式成立。

(1)33333=9(2)44444=83.在下面几个数中填上+、-、×、÷或(),使等式成立。

(1)2356=6(2)2356=64.你能在下面各数中添上运算符号,使等式成立吗?4125=105.巧填运算符号,使等式成立。

三年级奥数专题之巧填算符之欧阳文创编

三年级奥数专题之巧填算符之欧阳文创编

巧算算符根据题目给定的条件和要求,填运算符号或括号,使等式成立,这是一种很有趣的游戏,这种游戏需要动脑筋找规律,讲究方法。

填运算符号问题,通常采用尝试探索法,主要尝试方法有两种:1、逆推法,如果题目的数字比较简单,可以从等式的结果入手,推想那些算式能得到这个结果,然后拼凑出所求的式子。

2、凑数法,如果题目中的数字比较多,结果也较大,可以考虑先用几个数字凑出比较接近于等式结果的数,然后再进行调整,使等式成立。

通常情况下,要根据题目的特点,选择方法,有时将以上两种方法组合起来使用,更有助于问题的解决。

【例1】在下面4个4之间填上+、-、×、÷或括号,使等式成立4444=8【例2】在下面各题中添上+、-、×、÷、(),使等式成立。

12345=10【例3】拿出都是8的四张牌,添上+、-、×、÷或(),使等式成立,你能试一试吗?8888=08888=18888=28888=3【例4】在下面算式适当的地方添上加号,使算式成立。

8 8 8 8 8 8 8 8=1000【例5】在下面算式中合适的地方,只添两个加号和两个减号使等式成立。

1 2 3 4 5 6 7 8 9=100【例6】在下面算式合适的地方添上+、-、×,使等式成立。

12345678=1课后训练1、巧填运算符号,使等式成立。

(1)3333=1(2)4444=2(3)5555=32、在下面的各数之间,填上适当的运算符号+、-、×、÷和括号,使运算成立。

(1)4 4 4 4 = 5(2)1 2 3 4 5=1003、在下面算式适当的地方添上加号,使算是成立。

1 1 1 1 1 1 1 1 = 10004、在下列各式中填入符号+、-、×、÷或(),使得等式成立:(1)123=1(2)1234=1(3)12345=1(4)123456=1(5)1234567=1(6)12345678=1。

三年级奥数题及答案:巧填算符

三年级奥数题及答案:巧填算符

三年级奥数题及答案:巧填算符★这篇《三年级奥数题及答案:巧填算符》,是###特地为大家整理的,希望对大家有所协助!1.巧填算符在下面算式中合适的地方,只添两个加号和两个减号使等式成立。

1 2 3 4 5 6 7 8 9=100分析在本题条件中,不但限制了所使用运算符号的种类,而且还限制了每种运算符号的个数。

因为题目中,一共能够添四个运算符号,所以,应把1 23 4 5 67 8 9分为五个数,又考虑最后的结果是100,所以应在这五个数中凑出一个较接近100的,这个数能够是123或89。

如果有一个数是123,就要使剩下的后六个数凑出23,且把它们分为四个数,应该是两个两位数,两个一位数.观察发现,45与67相差22,8与9相差1,加起来正巧是23,所以本题的一个答案是:123+45-67+8-9=100如果这个数是89,则它的前面一定是加号,等式变为1 2 3 4 56 7+89=100,为满足要求,1 2 3 4 5 6 7=11,在中间要添一个加号和两个减号,且把它变成四个数,观察发现,无论怎样都不能满足要求。

解:本题的一个答案是:123+45-67+8-9=100补充说明:一般在解题时,如果没有特别说明,只要得到一个准确的解答就能够了。

在例5这类限制比较多的题目的解决过程中,要时时注意按照题目的要求去做,因为题目的要求比较高,所以解决的方法比较少。

2.巧填算符在下面算式适当的地方添上加号,使算是成立。

1 1 1 1 1 1 1 1 = 1000分析:这道题,1000是大数,先找一个离1000最近的数,就是1111,那么多了111怎么办呢?那么就要"-111"这时已经是1000了,还有一个1怎么办呢?会想到:(1111-111)÷1 = 1000。

三年级下册数学试题-奥数巧填算符(练习含答案)全国通用

三年级下册数学试题-奥数巧填算符(练习含答案)全国通用

巧填算符巧填算符,就是指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。

在填算符的问题中,所填的算符包括:+”“-”“×”“÷”“=”“>”“<”“()”“[ ]”“{}” 巧填算符常用的方法有:1.凑数法:先选出一个与结果比较接近的数,然后再对剩下的数进行适当的增加或减少,使算式成立。

我们把这种方法称为凑数法。

2.逆推法:是从算式中的最后一个数开始,由后往前,逐步求解,我们把这种方法称为逆推法。

逆推法思路比较固定,但是分析起来头绪繁多,因此适合于数比较少、结果比较小的添运算符号问题。

注:添运算符号问题的解都比较多,并不唯一。

如果没有特殊的要求,只要添出一种答案就可以了。

例1在5+3×9-4+8÷2=66这个算式中添上两个小括号,使算式成立。

例2在下面算式的适当地方,添上运算符号+,-,×,÷和( ),使等式成立。

9 8 7 6 5 4 3 2 1 =1000例3在八个8之间的适当地方,添上+,-,×,÷运算符号,使算式成立。

8 8 8 8 8 8 8 8 =1000例4(第二届迎春杯决赛)试在15个8之间适当的位置填上适当的运算符号:+、-、×、÷,使运算结果等于1986。

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 =1986例5在□中填上“+”、“-”、“×”、“÷”、“( )”使算式成立。

⑴5□5□5□5□5=1⑵5□5□5□5□5=2⑶5□5□5□5□5=3⑷5□5□5□5□5=4同学们一定都玩过扑克牌,但你会用扑克牌玩一种叫“24点”的游戏吗?其实就是-种添运算符号的游戏。

游戏规则是拿出四张牌,根据四张牌上的点数,运用加、减、乘、除四种运算中的任意几种进行计算,每张牌的点数都必须用:并且只能用一次,使最后的结果等于24。

三年级《巧填运算符号》奥数课件

三年级《巧填运算符号》奥数课件

用各种运算符号把下面三个相同的数字连 接起来,使结果等于30。
( )+5=30
+ 5 × 5 5 = 30
( )-6=30
倒推法
- 6 × 6 6 = 30
你能在下面的各数中添上运算符号,使算式成立吗?
( )+5=10
(1)4 - 1 + 2 +5 =10
÷ (2)4 × 1 2 × 5 =10
1+ 1 - 1 = 1
2+2 - 2 = 2
1 - 1 +1 = 1 1× 1 ÷1 = 1
2 - 2 +2 = 2 2 × 2 ÷2 = 2
1 ÷1 ×1 = 1
2 ÷2 ×2 = 2
2、用四张连号的牌,你能算出“24点”吗? 例如:1、2、3、4四张连号牌可以排出: 4×3×2×1=24。 请你按要求至少排出3个算式。
( )×5=10
倒推法
用6、5、10、2四个数,在它们之间添上+、-、×、÷和 ( ),使结果等于24(每个数只能用一次)。
可以从结果等于24的一些算式中去考虑:
(1)根据2×12=24,可以组成的算式有:
2×(10×6÷5) 2×(10÷5×6) (10÷5)×(2×6) (10÷5)×(6×2)
游戏规则:1、老师随意报4个数字。 2、学员用最短的时间利用加、减、 乘、除使得这4个数的结果等于24。 3、每个数必须用一次且只能用一 次,先算出结果者获胜。
解二十四点的方法: (1) 利用3×8=24、4×6,2×12求解。把牌面上的 四个数想办法凑成3和8、4和6,再相乘求解。 (2)先乘后加。常见的有2×7+10,3×5+9,2×9+6, 3×7+3。 (3)先乘后减。常见的有3×9-3,4×7-4,5×6-6。 这种类型里较难的是减数是由两个数相加而得,例如: 2、5、7、9。 (4)消去法。有时候,3个数就可以算出24,多出来 一个数,用消去法,可将多余的数除去。

三年级《巧填符号》奥数课件

三年级《巧填符号》奥数课件

×、÷和( ),使算式成立。
倒推法
(1)1 2 3 4 = 2
1 ×2× 3Leabharlann 4 =2□6 -4=2
1+2+3=6 1×2×3=6 □8 ÷4=2 无解 (2)1 2 3 4 5 6 = 1 1 × 2 × 3 4 5 6 = 1
□7 -6=1( 1 × 2 3 4 5)÷6 = 1
1+2+3-4+5=7 1×2×3-4+5=7 □6 ÷6=1
1×2+3-4+5=6
我们学习了巧填符号,我们可以用倒推 法,先看等式的结果,再根据左边的最后一 个算式往前面一直推算,一直算到等式成立 为止;如果等式数字很少我们还可以用凑数 法来填符号。
添上适当的运算符号和( ),使算式成立。
(1)2 3×5 7 = 24
倒推法
2+3×5=17
□17 +7=24
(3()6 6 6)÷6 =3
18÷6=3
(2)6÷6
6÷6 =2
1+1=2
12÷6=2 无解
(4)6 (6 6)÷6 =4
6-2=4
在下面的式子里,加上括号,使等式成立。
倒推法
(1)7×([9+12)÷3]-2=47
得数是得4数9 是7 □49 -2=47
(2)7×9+12÷(3-2)=75
得得数数是是7711
4 4 2 4=24
在下面算式的适当地方,只添+、-运算符号,使等式成立。 4+3-2+1=6
(1)98 7 65 4 3 2 1=20
相差6
98-7-65=26
倒推法
(2)1 2 3 4 5 6 78 9 = 100

【奥数】小学三年级数学下册《巧填算符进阶》教学课件

【奥数】小学三年级数学下册《巧填算符进阶》教学课件
(1) (4⚪+ 12⚪÷6)⚪×(17⚪-9)= 48 (2) (6⚪+ 18⚪×3)⚪÷(7⚪-2)= 12
练习4、把+、-、×、÷这4个运算符号,分别填入下面四个圆 圈内,使等式成立:
(2⚪ 8⚪ 4)⚪ (18⚪ 9)=36
(2+⚪ 8⚪÷ 4)⚪× (18⚪- 9)=36
例题5、用下面每小题中给定的5个数凑36,数可以打乱顺序, 每个数仅用一次,可用+、-、×、÷或()。 (1)2,4,6,8,10 (2)1,3,5,7,9
运算符号的由来
表示计算方法的符号叫做运算符号。如四则计算中的+、-、×、÷等。 加号“+”是加法符号,表示相加。 减号“-”是减法符号,表示相减。 “+”与“-”这两个符号是德国数学家威特曼在1489年他的著作《简算 与速算》一书中首先使用的。在1514年被荷兰数学家赫克作为代数运算符 号,后又经法国数学家韦达的宣传和提倡,开始普及,直到1630年,才获 得大家的公认。 乘号“×”是乘法符号,表示相乘。 1631 年,英国数学家奥特轩特提 出用符号“×”表示相乘。乘法是表示增加的另一种方法,所以把“+”号 斜过来。另一个乘法符号“x”是德国数学家莱布尼兹首先使用的。 除号“÷”是除法符号,表示相除。用这个符号表示除法首先出现在瑞 士学者雷恩于1656 年出版的一本代数书中,几年以后,该书被译成英文, 才逐渐被人们认识和接受。
(1) 4+4+4÷4+4÷4 =10
(2)(5 5 5- 5 5)÷5 =100
练习2、在下面算式中合适的地方填上+、-、×、÷或(),使等 式成立:
9 9 9 9 9 9 =102
9 9+(9+9+9)÷9=102

三年级奥数专题 巧填算符

三年级奥数专题 巧填算符

巧填算符巧填算符的符号种类:+-×÷()〖〗{}解题方法:1.凑数法:根据所给的数,凑出一个与结果比较接近的数,然后再对算式中剩下的数字作适当的增加或减少,从而使等式成立。

一般用于等号左边的数比较多,而等号右边的数比较大的题目.2.逆推法:从算式的最后一个数字开始,逐步向前推想,从而得到等式。

一般用于数字不太多(如果太多,推的步骤也会太多),且得数比较小的题目.3.综合法:凑数法和逆推法并用.补充知识:括号的作用是改变运算的顺序,颠覆“先乘除,后加减”,使括号中的部分先做,要改变这一顺序,往往把括号加在有加、减运算的部分.在下列算式的数字之间,添入加号和减号,使等式成立.1 23 4 5 6 78 9=1001.1.在两数之间添上合适的运算符号“+”、“-”、“×”、“÷”(),使等式成立。

3 3 3 3=03 3 3 3=13 3 3 3=23 3 3 3=33 3 3 3=9注:此题答案默认为0,正确答案见解析!2.2.在下列算式的数字之间,添入加号和减号,使等式成立。

12 3 4 5 6 789=100注:此题答案默认为0,正确答案见解析!3.3.下面有8个数,在每两个相邻的数字之间都加上“+”或“-”,使得算式成立。

1 2 3 4 56 7 8=24注:此题答案默认为0,正确答案见解析!将“+”、“-”、“×”、“÷”分别填在下面的○内,使等式成立。

(6○18○3)○(7○2)=121.1.把“+”、“-”、“×”、“÷”分别填在下面的○内,使等式成立。

(4○12○6)○(17○9)=48注:此题答案默认为0,正确答案见解析!2.2.把“+”、“-”、“×”、“÷”分别填在下面的○内,使等式成立。

(2○8○4)○(18○9)=36注:此题答案默认为0,正确答案见解析!3.3.把“+”、“-”、“×”、“÷”分别填在下面的○内,使等式成立。

三年级奥数巧填符号方法技巧

三年级奥数巧填符号方法技巧

三年级奥数巧填符号方法技巧嘿,小朋友们和家长们!今天咱就来讲讲三年级奥数里巧填符号那些有趣的方法技巧。

你们想想啊,这就好比是一场数字的大冒险!那些数字就像是一个个小精灵,等着我们给它们安排合适的符号,让它们乖乖听话,得出我们想要的结果呢。

先来说说凑数法吧。

就好像搭积木一样,我们要试着把数字通过加呀、减呀、乘呀、除呀这些操作,凑成我们想要的那个数。

比如说,给定几个数字,我们得想办法让它们通过符号的连接,变成一个特定的结果。

这是不是很有意思呀?再讲讲倒推法。

这就像是破案一样,从结果出发,一步一步往回推,看看用什么符号才能达成这个结果。

哎呀,就像是走迷宫,找到正确的路可不容易呢,但一旦找到了,那成就感,啧啧啧,别提多棒啦!还有分组法呢!把数字分成小组,然后分别处理,再把结果组合起来。

这就像是把小伙伴们分组做游戏,每个小组都有自己的任务,最后一起完成大目标。

举个例子吧,比如有这么几个数字3、4、5、6,要让它们等于24。

那我们就可以用 6÷3=2,然后 2×4=8,最后 8×3=24,这不就成功啦!这就像是解开了一个数字谜题,是不是很神奇呀?小朋友们在做这些题目的时候,可不要着急哦,要像小侦探一样细心观察,慢慢尝试。

就像找宝藏一样,一点点地挖掘出正确的答案。

而且呀,多练习这些巧填符号的题目,会让你们的小脑袋变得更聪明呢!其实呀,奥数就像是一个神奇的魔法世界,充满了各种奇妙的挑战和乐趣。

巧填符号只是其中的一小部分,但却是非常有趣的一部分呢。

所以呀,小朋友们,大胆地去探索这个魔法世界吧!别怕犯错,因为每一次错误都是成长的机会呀。

家长们也要多多鼓励和支持孩子们哦,和他们一起享受这个探索的过程。

怎么样,现在是不是对三年级奥数的巧填符号方法技巧有了更清楚的认识呀?那就赶紧去试试吧,看看你们能不能成为数字魔法世界里的小高手!。

小学三年级奥数巧填算符【三篇】

小学三年级奥数巧填算符【三篇】

小学三年级奥数巧填算符【三篇】1 2 3 4 5 6 7 8 9=100分析在本题条件中,不但限制了所使用运算符号的种类,而且还限制了每种运算符号的个数。

因为题目中,一共能够添四个运算符号,所以,应把123456789分为五个数,又考虑最后的结果是100,所以应在这五个数中凑出一个较接近100的,这个数能够是123或89。

如果有一个数是123,就要使剩下的后六个数凑出23,且把它们分为四个数,应该是两个两位数,两个一位数.观察发现,45与67相差22,8与9相差1,加起来正巧是23,所以本题的一个答案是:123+45-67+8-9=100如果这个数是89,则它的前面一定是加号,等式变为1234567+89=100,为满足要求,1234567=11,在中间要添一个加号和两个减号,且把它变成四个数,观察发现,无论怎样都不能满足要求。

答案与解析:本题的一个答案是:123+45-67+8-9=100补充说明:一般在解题时,如果没有特别说明,只要得到一个准确的解答就能够了。

在例5这类限制比较多的题目的解决过程中,要时时注意按照题目的要求去做,因为题目的要求比较高,所以解决的方法比较少。

【第二篇】练习题:在下面算式适当的地方添上加号,使算是成立。

1 1 1 1 1 1 1 1=1000分析:这道题,1000是大数,先找一个离1000最近的数,就是1111,那么多了111怎么办呢?那么就要“-111”这时已经是1000了,还有一个1怎么办呢?会想到:(1111-111)÷1=1000【第三篇】练习题:在下面算式适当的地方添上加号,使算式成立。

8 8 8 8 8 8 8 8=1000分析要在八个8之间只添加号,使和为1000,可先考虑在加数中凑出一个较接近1000的数,它能够是888,而888+88=976,此时,用去了五个8,剩下的三个8应凑成1000-976=24,这只要三者相加就行了。

答案与解析:本题的答案是888+88+8+8+8=1000。

【小学三年级奥数讲义】 添加运算符号

【小学三年级奥数讲义】 添加运算符号

【小学三年级奥数讲义】添加运算符号
一、知识要点
根据题目给定的条件和要求,添运算符号和括号,使等式成立,这是一种很有趣的游戏。

这种游戏需要动脑筋找规律,讲究方法,一旦掌握方法,就有取得成功的把握。

添运算符号问题,通常采用尝试探索法。

主要尝试方法有两种:1.如果题目中的数字比较简单,可以从等式的结果入手,推想哪些算式能得到这个结果,然后拼凑出所求的式子;2.如果题目中的数字多,结果也较大,可以考虑先用几个数字凑出比较接近于等式结果的数,然后再进行调整,使等式成立。

通常情况下,要根据题目的特点,选择方法,有时将以上两种方法组合起来使用,更有助于问题的解决。

二、精讲精练
【例题1】在下面各题中添上+、-、×、÷、(),使等式成立。

1 2 3 4 5 = 10 1 2 3 4 5 = 10
1 2 3 4 5 = 10 1 2 3 4 5 = 10
练习1:
1.你能在下面的各数中添上运算符号,使算式成立吗?
(1)4 1 2 5 = 10 (2)4 1 2 5 = 10
1。

三年级上奥数精品讲义巧填算符

三年级上奥数精品讲义巧填算符

消失的符号(巧填算符)知识图谱消失的符号知识精讲一.巧填算符1.一个加减法算式中,如果把某个数前的加号变为减号,那么最后的计算结果不但少加了一次这个数,还额外减了一次这个数,那么结果会变小该数的两倍.2.对于特定的两个数,之间填上“+”和“⨯”一般可以使结果变大,而如果填上“-”和“÷”一般可以使结果变小,但注意存在数字1时比较特殊.3.两个数字越大,那么填上“⨯”所得的结果要比“+”的结果大得多.4.在填写除号的时候,注意一定要让组成的算式可以整除.5.括号用来改变运算顺序,在原有算式的基础上添上括号会使整个计算结果发生变化.6.注意题意,数字间不填符号可以得到多位数.二.算符与数字1.除了和符号相关的问题外,还有许多有关数字的问题.两个一位数相加,所能得到的和最大是9918+=,最小为000+=.除了0、1、17、18外,其他的和都可以有多组数相加得到,而且离9越近,分拆的方法就越多.2.部分数字(0、1、6、8、9)颠倒后仍是数字,而其他则不行.3.各种算式的组成与修改问题.在已知数之间添加运算符号与括号,得出给定结果或取得最大、最小值.通过枚举、试算、顺推、逆推等方法解决算式的变化问题.要求学生有较强的心算和估算能力.三点剖析本讲主要培养学生的观察推理能力,其次培养学生的运算能力.本讲内容是在整数计算的基础上,学习算符与数字.课堂引入例题1、 柯小南对数学可以说是情有独钟,而且对于一些数学难题他会很轻松的解答出来,所以知道他的人都称他为数学家.一天,他的朋友唐小虎遇到一个数学难题,怎么也算不出来.于是,唐小虎带着这个疑问去找柯小南.当唐小虎刚说完题目,聪明的柯小南只是说这不是什么难题,同时在纸上马上添加了运算符号,唐小虎看了后豁然开朗.例题2、 下面有6个数,在每两个相邻的数之间都填上一个加号或减号,使得结果为18:6 5 4 3 2 118=算符与数字中的等式成立例题1、 (1)下面有6个数,在每两个相邻的数之间都填上一个加号或减号,使得结果为19: 65432119=(2)在下面相邻两数之间,填上“”或“”,使等式成立.3____4____5____610=. (3)在下面算式中合适的地方填入小括号,使等式成立: (4)在下面算式中合适的地方填入+、-、×、÷或(),使等式成立:1234578=(5)请在下式中填入“+”和“⨯”,使等式成立(不要求每两个数之间都填入符号,但不能填“+”和“⨯”以外的符号):.例题2、 改变下面算式中一个数字前的运算符号,就能使等式成立. (1)(只能加变减,减变加):765432118++--+-=,(2)123456789100++++++++=,(3)1234567891011121314151617181920200+++++++++++++++++++=.⨯÷6812430⨯+÷=12345678910100=在3个9之间添加任意的运算符号,使其等于2.你知道柯小南是怎样添加运算符号的吗?说一说.我能不能先填一种运算符号呢?然后根据结果再调整?那是不是可以先看看原来的算式结果是多少呢?例题3、 在下面算式中合适的地方填入+、-、×、÷或(),使等式成立: (1)999999102=(2)8888888888882016=随练1、 在下面算式中合适的地方填入+、-、×、÷或(),使等式成立. (1),(2) 随练2、 在下面算式中合适的地方填入小括号,使等式成立:算符与数字中的最值问题例题1、 在下面的算式中填入一对括号,使得算式的结果最大,最大值是________.例题2、 (1)把+、-、×、÷各一个填入下面的空格内,使得计算的结果最大,这个最大值是________.(2)在下面的一排数字之间添入一个加号和一个减号,组成的算式的最小值是________.(3)把+、-、×、÷各一个填入下面的横线上,再添一对括号,要使计算的结果最大,那么能得到的最大的结果是________.例题3、 将1至8填入算式“”中,使得算式结果达到最大或最小.444420=9999919=578124220+⨯+÷-=108320++⨯97531□□□□5432110_____8_____4_____2_____1()()+⨯-□□□□□□□□注意仔细读题哦~是在合适的地方添符号哦~结果最大,那就应该乘数最大吧?什么时候才会有最大值呢?结果最大,相乘的两数要尽可能大;结果最小,相乘的两数要……随练1、 在下面的算式中填入一对括号,使得算式的结果最大,最大值是________. 随练2、 把从1到6这6个数字填入算式中,使得等式达到最大:.算符与数字的实际应用例题1、 有一类三位数,各数位上的数字之积是18,在所有这样的三位数中,最大的数与最小的数的差是______.例题2、 将一个多位数的相邻两个数字从左到右依次相加,得到的和分别为:2、0、4,那么这个多位数是________.例题3、 一张纸片上写着一个两位数,把纸片倒过来之后又变成了另一个两位数,且两个两位数的和为107,那么这两个两位数分别是________.例题4、 在下面的横线上填入2、3、8、9各一个,使得最后的结果等于24.随练1、 将一个多位数相邻两位数字依次相加,得到的和从左到右依次为:5、1、9、8、2、4、8、15,那么这个多位数是________.24点与36点例题1、 在下面各题中,请你用给出的四个数,适当进行加、减、乘、除运算,每个数恰好用一次,使得计算结果等于24:(1)1,4,5,6;(2)1,5,5,5;(3)3,3,7,7;(4)3,3,8,8. 例题2、 把+、-、×、÷这4个运算符号,分别填入下面四个圆圈内,使等式成立:例题3、 用下面每小题给定的5个数凑36,数可以打乱顺序,每个数仅用一次,可用+、-、×、÷或(). (1)2,4,6,8,10 (2)1,3,5,7,9随练1、 在下面的横线上填入1、3、6、8各一个,使得最后的结果等于24.102310++⨯⨯+⨯□□□□□□()________________________________24÷⨯-=()()28418936=○○○○()________________________________24÷+⨯=三位数,各数位上的数字之积是18,那就是说……最后一步是乘法,是不是去凑两个数相乘等于24就可以了呢?易错纠改例题1、看完题目,唐小虎思考了一会,和姐姐唐小果有了以下的讨论:你能帮唐小虎解决这个问题吗?请写出计算过程.拓展1、 用运算符号将1、4、7、7组成一个算式,使结果等于24.__________2、 在下面算式中合适的地方填入+、-、×、÷或(),使等式成立 (1)333310=,(2)55555500=3、 在下面的算式中填入一对括号,使得算式的结果最大,最大值是__________. 7523++⨯4、 在下面的算式中合适的地方填入小括号,使等式成立: (1)48123217-⨯÷+=;(2)3020105250+÷÷⨯=.5、 请将四个4用“+、-、×、÷、( )”组成3个算式如:44449++÷=.使它们的结果分别等于5、6、7. (1)________________________=5(2)________________________=6 (3)________________________=7.6、 ()()÷⨯+-⨯+-□□□□□□□□从1至9这9个数中选出8个数,分别填在上面的8个□内,使算式的结果尽可能大,那么这个最大的结果是多少?7、 把+、-、×、÷各一个填入下面的横线上,再添一对括号,要使计算的结果最大,那么能得到的最大的结果是多少?9_____7_____5_____3_____18、 将一个多位数相邻两位数字依次相加,得到的和分别为:6、2、4、9、5、8、11,那么这个多位数是多少? 9、 分析并口述题目的做题思路及方法.请用4、5、7、9以及算符和括号组成一个算式,使得结果为24,至少用三种方法.姐姐,这节课的内容既好玩还容易哦~那是你没遇到,来看看这题吧.把0~9这十个数字倒过来看,其中0,1,8三个数字不变,6与9两个数字互换,而其余数字倒过来都没有意义.在一张纸片上写出一个两位数,把纸片倒过来看,恰好与原数相同,这样的两位数有几个?如果写的是一个三位数,倒过来看与原数相同,这样的三位数有几个?首先两位数肯定只能是由0、1、8、6、9组成.那就在这5个数中挑出2来组成两位数就可以了呀!按照你的方法,那10满足要求吗?注意题目中的意思哦~不行哎,倒过来就变成01,和10不想等了,姐姐,你等我再想想奥……。

三年级奥数专题-添运算符号

三年级奥数专题-添运算符号

三年级奥数专题-添运算符号一、知识要点根据题目给定的条件和要求,添运算符号和括号,使等式成立,这是一种很有趣的游戏.这种游戏需要动脑筋找规律,讲究方法,一旦掌握方法,就有取得成功的把握.添运算符号问题,通常采用尝试探索法.主要尝试方法有两种:1.如果题目中的数字比较简单,可以从等式的结果入手,推想哪些算式能得到这个结果,然后拼凑出所求的式子;2.如果题目中的数字多,结果也较大,可以考虑先用几个数字凑出比较接近于等式结果的数,然后再进行调整,使等式成立.通常情况下,要根据题目的特点,选择方法,有时将以上两种方法组合起来使用,更有助于问题的解决.二、精讲精练【例题1】在下面各题中添上+、-、×、÷、(),使等式成立.1 2 3 4 5 = 10 1 2 3 4 5 = 101 2 3 4 5 = 10 1 2 3 4 5 = 10【思路导航】对于这种问题,我们也可以用倒推法来分析.从结果10想起,最后一个数是5,可以从下面几种情况中想:□+5=10,□-5=10,□×5=10,□÷5=10.(1)从□+5=10考虑,□=5,前4个数必须组成得数是5的算式有:(1+2)÷3+4+5=10 (1+2)×3-4+5=10 (2)从□-5=10考虑,□=15,前4个数必须组成得数是15的算式有:1+2+3×4-5=10(3)从□×5=10考虑,□=2,前4个数必须组成得数是2的算式有:(1×2×3-4)×5=10 (1+2+3-4)×5=10 (4)从□÷5=10考虑,□=50,前面4个数必须组成得数是50的算式,而前面4个数无法组成得数是50的算式.练习1:1.你能在下面的各数中添上运算符号,使算式成立吗?(1)4 1 2 5 = 10 (2)4 1 2 5 = 102.在下面各数中添上适当的运算符号,使等式成立.(1)3 4 5 6 8 = 8 (2)3 4 5 6 8 = 83.巧添运算符号,使等式成立.(1)3 3 3 3 =1 (2)3 3 3 3 =2 (3)3 3 3 3 =3 【例题2】拿出都是8的四张牌,添上+、-、×、÷或(),使等式成立.你能试一试吗? 8 8 8 8 = 0 8 8 8 8 = 1 8 8 8 8 = 2 8 8 8 8 = 3【思路导航】这道题除了可以用倒推法来分析,还可以这样想:(1)等于0的思考方法:假设最后一步运算是减法,那么这四个数可以分成两组,这两组的和、差、积、商应该相等,有:8+8-(8+8)=0 8×8-8×8=0 8-8-(8-8)=0 8÷8-8÷8=0(2)等于1的思考方法:假设最后一步是除法,那么四个数分成两组,这两组的和、积、商分别相等,相同的数相除也可得到1,有:(8+8)÷(8+8)=1 8×8÷(8×8)=1 8÷8÷(8÷8)=18×8÷8÷8=1 8÷8×8÷8=1 8÷(8×8÷8)=1(3)等于2的思考方法:假设最后一步是加法,那么两组数各为1,有:8÷8+8÷8=2(4)等于3的思考方法:假设最后一步是除法,那么前三个数凑为3个8,有:(8+8+8)÷8=3练习2:1.在各数中添上+、-、×、÷或(),使算式相等.4 4 4 4 = 0 4 4 4 4 = 1 4 4 4 4 = 24 4 4 4 = 3 4 4 4 4 = 4 4 4 4 4 = 52.巧添各种运算符号和括号,使等式成立.5 5 5 5 5 = 0 5 5 5 5 5 = 15 5 5 5 5 = 2 5 5 5 5 5 = 33.用8个8组成5个数,再添上适当的运算符号,使它们的和是1000.8 8 8 8 8 8 8 8 = 1000【例题3】在4个4之间添上+、-、×、÷或括号,使组成的得数是8.4 4 4 4 = 8【思路导航】这类问题,我们可以用倒推方法来分析.这道题最后得数是8,而最后一个数是4,我们可以想□+4=8,□-4=8,□×4=8,□÷4=8,然后再进行解答.(1)从□+4=8考虑,□=4,前面3个4必须组成得数是4的算式有:4+4-4+4=8 4-4+4+4=8 4-(4-4)+4=8(2)从□-4=8考虑,□=12,前3个4必须组成得数是12的算式有:4+4+4-4=8 4×4-4-4=8(3)从□×4=8考虑,□=2,前面3个4必须组成得数是2的算式有:(4+4)÷4×4=8(4)从□÷4=8考虑,□=32,前3个4必须组成得数是32的算式有:(4+4)×4÷4=8 4×(4+4)÷4=8练习3:1.你能在下面数中填上+、-、×、÷,使结果等于已知数吗?答(1)9 9 9 9 = 18 (2)5 5 5 5 = 102.在下面数中填上+、-、×、÷或(),使算式成立.答(1)4 4 4 4 4 = 8 (2)3 3 3 3 3 = 93.在下面几个数中填上+、-、×、÷或(),使等式成立.答(1)2 3 5 6 = 6 (2)2 3 5 6 = 6【例题4】在下面12个5之间添上+、-、×、÷,使算式成立.5 5 5 5 5 5 5 5 5 5 5 5 = 1000【思路导航】这道题的结果比较大,那我们就要尽量想出一些大的数来,使它与1000比较接近,如:555+555=1110这个数比1000大了110,然后我们在剩下的6个5中凑出110减掉就可以了. 555+555-55-55+5-5=1000 练习4:1.用12个3组成8个数,它们的结果等于2000. 3 3 3 3 3 3 3 3 3 3 3 3 = 20002.在9个2之间添上运算符号,使结果等于1000.2 2 2 2 2 2 2 2 2 = 10003.用7个6组成4个数,使下面的算式成立. 6 6 6 6 6 6 6 = 600【例题5】在下面式子中适当的地方添上+、-号,使等式成立.9 8 7 6 5 4 3 2 1 = 21【思路导航】这题左边的数字比较多,等号右边的得数是21,可以考虑在等号左边最后两个数字2、1前添+,这时我们必须使前面几个数字的结果为0,然后再用倒推的方法可以得出:9-8+7-6+5-4-3=0 9-8+7-6+5-4-3+21=21练习5:1.在下面算式中适当的地方添上+、-号,使等式成立.9 8 7 6 5 4 3 2 1 = 232.在下面式子的适当地方添上+、-、×号,使等式成立.1 2 3 4 5 6 7 8 = 13.在下面算式中适当的地方添上+、-号,使等式成立.1 2 3 4 5 6 7 8 = 14。

三年级奥数-巧填算符

三年级奥数-巧填算符
巧填算符
在下式的两数中间填上四则运算符号,使等式成立: 8○2○3=3○3
在一些确定的数字之间填上适当的运算符号和括号,使这些数字和运 算符号构成的算式等于一个给定的数,这种问题,我们称它为巧填算 符。
(★★★ ) 在五个 4 之间,填上适当的运算符号+、-、×、÷和( 的算式成立。 4 4 4 4 4=8
),使得下面
(★★★ ) 在八个 8 之间的适当地方,填上运算符号+、-、×、÷,使算式成立。 8 8 8 的地方,只填两个加号和两个减号使等式成立。 1 2 3 4 5 6 7 8 9=100
(★★★★ ) 把 100 个桃子分给 6 只猴子,每只猴子分得的桃子数都要含有数字 6, 每只猴子应该分到多少只桃子呢?
(★★★★) 在下列算式中合适的地方,填上( )[ ],使等式成立。 ⑴1+2×3+4×5+6×7+8×9=303 ⑵1+2×3+4×5+6×7+8×9=1395 ⑶1+2×3+4×5+6×7+8×9=4455
1

教案9巧填运算符号

教案9巧填运算符号

第五册奥数兴趣班奥数教案教学时间:年月日星期9、巧填符号(一)教学内容:P 26~29 例1~例5 练习题:第1~4题教学要求:1、使学生掌握添运算符号的各种方法。

2、培养学生活跃的思维能力,提高学习奥数的兴趣。

教学过程:一、导入新课语:添运算符号,也是一种数学游戏,在几个或数个数字之间的适当地方填上“+、-、×、÷和()”,组成一个算式,使得运算后等于事先规定的结果。

添运算符号不仅有趣味,还能使人思维活跃,能力提高。

二、探索新课:1、教学例1:填上“+、-、×、÷和()”,使算式成立。

(1)5 5 5=1(2)5 5 5=2 解题思路:我们可以运用凑数的方法思考。

(3)5 5 5=5a:1×1=1 或两个相同的数相除=1 b:1+1=2c:使前3个5等于0即可。

2、教学例2:在○填上“+、-”使等式成立。

(1)12○3○4○5○6○7○89=100(2)123○45○67○89=100解题思路:采用凑数法思考。

结果是:100,最后一个数是89,89再加上11就可以得到100,我们就把前面的数凑成11。

3、教学例3:填上运算符号和括号使式子成立。

(1)9○13○7=100(2)14○2○5=□□小于10解题思路:我们可以采用逆推的方法。

4、教学例4:在下面的式子里加上括号,使他们成为正确的算式。

(1)5+7×8+12÷4-2=20(2)5+7×8+12÷4-2=75解题思路:我们要运用凑数法和逆推法,综合分析。

注意考虑四则运算之间的关系。

三、全课小结:我们解答巧填运算符号通常运用的方法是:凑数法和逆推法,有时也同时使用。

四、课堂练习:1、填上“+”使等式成立。

9 8 7 6 5 4 3 2 1 =99(长春市小学数学竞赛试题)2、填上运算符号或括号使等式成立。

1 2 3 4 5=10 1 2 3 4 5=101 2 3 4 5=10 1 2 3 4 5=10(无锡市北塘区小学三年级数学竞赛试题)3、把“+、-、×、÷和()”填入,是算式成立。

三年级奥数巧填符号教案

三年级奥数巧填符号教案

三年级奥数巧填符号教案一、教学目标1. 让学生理解巧填符号的概念和意义。

2. 培养学生运用逻辑思维和推理能力解决奥数问题。

3. 提高学生对奥数问题的兴趣,培养学生的耐心和细心。

二、教学内容1. 巧填符号的定义和基本规则。

2. 常见的巧填符号题目类型及解题方法。

3. 针对不同题型的练习和解答。

三、教学重点与难点1. 重点:理解巧填符号的概念和意义,掌握基本的填符号规则。

2. 难点:运用逻辑思维和推理能力解决复杂的巧填符号问题。

四、教学准备1. PPT课件或黑板。

2. 练习题和答案。

五、教学过程1. 导入:通过一个简单的巧填符号题目,引发学生的好奇心,激发学习兴趣。

2. 讲解:介绍巧填符号的定义和基本规则,举例说明。

3. 演示:通过PPT课件或黑板,展示不同类型的巧填符号题目和解题方法。

4. 练习:学生独立完成练习题,教师巡回指导。

5. 总结:回顾本节课的内容,强调巧填符号的重要性和解题技巧。

6. 布置作业:让学生回家后练习巧填符号题目,巩固所学知识。

六、教学策略1. 采用问题驱动的教学方法,引导学生主动思考和探索。

2. 通过例题和练习题,让学生逐步掌握巧填符号的解题方法。

3. 鼓励学生相互讨论和交流,培养合作学习能力。

4. 给予学生充分的鼓励和肯定,增强他们的自信心。

七、教学方法1. 讲授法:讲解巧填符号的概念和规则,解释题目要求。

2. 示范法:展示典型的解题过程和方法,引导学生模仿和理解。

3. 练习法:让学生通过做题来巩固知识和提高解题能力。

4. 互动法:鼓励学生提问和参与讨论,促进师生之间的互动。

八、教学评价1. 课堂表现:观察学生在课堂上的参与程度和表现,了解他们的学习状态。

2. 练习题解答:评估学生完成练习题的情况,检验他们对巧填符号的理解和掌握程度。

3. 作业完成情况:检查学生回家后练习题的完成情况,了解他们的学习效果。

4. 学生自我评价:鼓励学生进行自我评价,反思自己的学习过程和进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三年级数学提升班
学生姓名:
第九讲:巧填运算符号
知识是从刻苦劳动中得来的,任何成就都是刻苦劳动的结晶。

——宋庆龄
知识纵横
根据题目给定的条件和要求,填运算符号或括号,使等式成立,这是一种很有趣的游戏,这种游戏需要动脑筋找规律,讲究方法,一旦掌握方法,就有取得成功的把握。

填运算符号问题,通常采用尝试探索法,主要尝试方法有两种:
1.如果题目的数字比较简单,可以从等式的结果入手,推想那些算式能得到这个结果,然后拼凑出所求的式子。

2.如果题目中的数字比较多,结果也较大,可以考虑先用几个数字凑出比较接近于等式结果的数,然后再进行调整,使等式成立。

通常情况下,要根据题目的特点,选择方法,有时将以上两种方法组合起来使用,更有助于问题的解决。

例题求解
【例1】在下面4个4之间填上+、-、×、÷或括号,使等式成立4444=8
【例2】在下面各题中添上+、-、×、÷、(),使等式成立。

12345=10
【例3】拿出都是8的四张牌,添上+、-、×、÷或(),使等式成立,你能试一试吗?
8888=08888=1
8888=28888=3【例4】在下面算式合适的地方添上+、-、×,使等式成立。

12345678=1
【例5】在下面式子适当的地方添上+、-号,使等式成立。

987654321=21
【例6】在下面12个5之间添上+、-、×、÷,使下面等式成立。

555555555555=1000
学力训练
1.你能在下面数中填上+、-、×、÷,使结果等于已知数吗?
(1)5555=10(2)9999=182.在下面数中填上+、-、×、÷或(),使等式成立。

(1)33333=9(2)44444=8
3.在下面几个数中填上+、-、×、÷或(),使等式成立。

(1)2356=6(2)2356=64.你能在下面各数中添上运算符号,使等式成立吗?
4125=10
5.巧填运算符号,使等式成立。

(1)3333=1
(2)4444=2
(3)5555=3
6.在下面的各数中添上运算符号,使等式成立。

34568=8
家长签字:。

相关文档
最新文档