函数及极限习题及答案
(完整word版)《微积分》各章习题及详细答案
第一单元 函数与极限一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim 22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→x x k x 成立的k 为 。
5、=-∞→x e x x arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、____________22lim22=--++∞→x x n 。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
高等数学(函数与极限)习题及解答
练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9练ຫໍສະໝຸດ 1-10高等数学习题高等数学函数高等数学习题集高等数学习题详解蔡高厅高等数学习题高等数学函数公式高等数学习题答案高等数学极限高等数学极限试题高等数学求极限
本资料为word版本,可以直接编辑和打印,感谢您的下载
高等数学(函数与极限)习题及解答
地点:__________________
时间:__________________
(完整版)函数、极限与连续习题及答案
第一章 函数、极限与连续(A)1.区间[)+∞,a 表示不等式( )A .+∞<<x aB .+∞<≤x aC .x a <D .x a ≥ 2.若()13+=t t ϕ,则()=+13t ϕ( )A .13+tB .26+tC .29+tD .233369+++t t t 3.设函数()()x x x x f arcsin 2513ln +-++=的定义域是( )A .⎪⎭⎫ ⎝⎛-25,31B .⎪⎭⎫ ⎝⎛-25,1C .⎪⎭⎫⎝⎛-1,31 D .()1,1-4.下列函数()x f 与()x g 相等的是( )A .()2x x f =,()4x x g =B .()x x f =,()()2x x g =C .()11+-=x x x f ,()11+-=x x x g D . ()112--=x x x f ,()1+=x x g 5.下列函数中为奇函数的是( )A .2sin xx y = B .xxe y 2-= C .x x x sin 222-- D .x x x x y sin cos 2+= 6.若函数()x x f =,22<<-x ,则()1-x f 的值域为( ) A .[)2,0 B .[)3,0 C .[]2,0 D .[]3,0 7.设函数()x e x f =(0≠x ),那么()()21x f x f ⋅为( )A .()()21x f x f +B .()21x x f +C .()21x x fD .⎪⎪⎭⎫⎝⎛21x x f8.已知()x f 在区间()+∞∞-,上单调递减,则()42+x f 的单调递减区间是( ) A .()+∞∞-, B .()0,∞- C .[)+∞,0 D .不存在 9.函数()x f y =与其反函数()x fy 1-=的图形对称于直线( )A .0=yB .0=xC .x y =D .x y -=10.函数2101-=-x y 的反函数是( ) A .2lg-=x x y B .2log x y = C .xy 1log 2= D .()2lg 1++=x y 11.设函数()⎩⎨⎧=是无理数是有理数x x a x f x ,0,10<<a ,则( )A .当+∞→x 时,()x f 是无穷大B .当+∞→x 时,()x f 是无穷小C .当-∞→x 时,()x f 是无穷大D .当-∞→x 时,()x f 是无穷小 12.设()x f 在R 上有定义,函数()x f 在点0x 左、右极限都存在且相等是函数()x f 在点0x 连续的( )A .充分条件B .充分且必要条件C .必要条件D .非充分也非必要条件13.若函数()⎩⎨⎧<≥+=1,cos 1,2x x x a x x f π在R 上连续,则a 的值为( )A .0B .1C .-1D .-2 14.若函数()x f 在某点0x 极限存在,则( ) A . ()x f 在0x 的函数值必存在且等于极限值 B .()x f 在0x 函数值必存在,但不一定等于极限值 C .()x f 在0x 的函数值可以不存在 D .如果()0x f 存在的话,必等于极限值15.数列0,31,42,53,64,…是( )A .以0为极限B .以1为极限C .以n n 2-为极限 D .不存在在极限 16.=∞→xx x 1sin lim ( )A .∞B .不存在C .1D .017.=⎪⎭⎫ ⎝⎛-∞→xx x 211lim ( )A .2-eB .∞C .0D .21 18.无穷小量是( )A .比零稍大一点的一个数B .一个很小很小的数C .以零为极限的一个变量D .数零19.设()⎪⎩⎪⎨⎧≤≤-<≤<≤-=31,110,201,2x x x x x f x 则()x f 的定义域为 ,()0f = ,()1f = 。
第一章函数、极限与连续习题答案.doc
第一章函数、极限与连续1 . 若」 t =t31,贝 U 「t 31 =( D )A. t 31 B. t62 C. t92 D. t 9 3t 6 3t322. 设函数 f x = In 3x ? 1 ? i 5 - 2x ? arcsin x 的定义域是 ( C )1 5C.-1,1 D. -1,13 ,233. 下列函数 f x 与 g x 相等的是 (A )— 2A. f x = x 2 , g x - x4B . fx=x ,gx= xC.fX gx「X 1x -14. 下列函数中为奇函数的是 (A )2x x八sin xf- c 2— 22 ?A. y2B .y - xe xCsin xD . y = x cosx xsin xx25 . 若函数 fxl=x , - 2:; x ::: 2,则 f x-1 的值域为 (B )A. 0,2B. 0,3C. 0,21D. 0,316 . 函数y =10x4 -2 的反函数是(D )xC .A . y =igB .log x 2x—2a X X 是有理数7.设函数 %是无理数°<a",则(B )1y =Iog 2_ D . y =1 lg x 2 x1A . 当 Xr J 时, f x 是无穷大B . 当 x- 工: 时, f x 是无穷小C. 当 Xr - ■时, f x 是无穷大 D . 当 x—. - ■时, f x 是无穷小8 . 设 f x 在R上有定义 ,f x 在点X。
连续的(A . 充分条件C.必要条件x2 a,cos x, 函数 f x 在点X。
左、右极限都存在且相等是函数B. 充分且必要条件D. 非充分也非必要条件x—1在 R 上连续,则 a 的值为(D)x::: 1C. -1D.-210.若函数 f x 在某点X。
极限存在,则(C )f x 在X o的函数值必存在且等于极限值B. f x 在X o函数值必存在,但不一定等于极限值C. f X 在X o的函数值可以不存在D. 如果f X o存在的话 ,11 . 数列0,3 ,2,4,是 (B )A.以0为极限B.以1为极限C . 以口为极限D . 不存在在极限n112 . lim xsin( CxB. 不存在C. 1D. 013.li=(A )C.0x2214?无穷小量是(C)A.比零稍大一点的一个数B. —个很小很小的数C. 以零为极限的一个变量 D . 数零[2X,-1 _ x :: 015. 设f(x)= 2, x ::: 1 则f x的定义域为[-1,3] , f 0 =x—1, 1 _x _32 __ , f 1 =0。
函数极限与连续习题(含答案)
基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。
函数的极限与连续训练题1、 已知四个命题:(1)若)(x f 在0x 点连续,则)(x f 在0x x →点必有极限(2)若)(x f 在0x x →点有极限,则)(x f 在0x 点必连续(3)若)(x f 在0x x →点无极限,则)(x f 在0x x =点一定不连续(4)若)(x f 在0x x =点不连续,则)(x f 在0x x →点一定无极限。
其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、42、若a x f x x =→)(lim 0,则下列说法正确的是( C ) A 、)(x f 在0x x =处有意义 B 、a x f =)(0C 、)(x f 在0x x =处可以无意义D 、x 可以只从一侧无限趋近于0x3、下列命题错误的是( D )A 、函数在点0x 处连续的充要条件是在点0x 左、右连续B 、函数)(x f 在点0x 处连续,则)lim ()(lim 00x f x f x x x x →→= C 、初等函数在其定义区间上是连续的 D 、对于函数)(x f 有)()(lim 00x f x f x x =→ 4、已知x x f 1)(=,则xx f x x f x ∆-∆+→∆)()(lim 0的值是( C ) A 、21x B 、x C 、21x - D 、x - 5、下列式子中,正确的是( B )A 、1lim 0=→x xx B 、1)1(21lim 21=--→x x x C 、111lim 1=---→x x x D 、0lim 0=→x x x 6、51lim 21=-++→xb ax x x ,则b a 、的值分别为( A ) A 、67和- B 、67-和 C 、67--和 D 、67和7、已知,2)3(,2)3(-='=f f 则3)(32lim 3--→x x f x x 的值是( C ) A 、4- B 、0 C 、8 D 、不存在8、=--→33lim a x ax a x ( D )A 、0B 、1C 、32aD 、323a9、当定义=-)1(f 2 时,xx x f +-=11)(2在1-=x 处是连续的。
第一章 函数、极限与连续(答案)
第一章 函数、极限与连续(一)1.区间[)+∞,a 表示不等式( B )A .+∞<<x aB .+∞<≤x aC .x a <D .x a ≥ 2.若()13+=t t ϕ,则()=+13t ϕ( D )A .13+tB .26+tC .29+tD .233369+++t t t 3.设函数()()x x x x f arcsin 2513ln +-++=的定义域是( C )A .⎪⎭⎫ ⎝⎛-25,31B .⎪⎭⎫ ⎝⎛-25,1C .⎪⎭⎫⎝⎛-1,31 D .()1,1-4.下列函数()x f 与()x g 相等的是( A )A .()2x x f =,()4x x g =B .()x x f =,()()2x x g =C .()11+-=x x x f ,()11+-=x x x g D . ()112--=x x x f ,()1+=x x g 5.下列函数中为奇函数的是( A )A .2sin xx y = B .xxe y 2-= C .x x x sin 222-- D .x x x x y sin cos 2+= 6.若函数()x x f =,22<<-x ,则()1-x f 的值域为( B ) A .[)2,0 B .[)3,0 C .[]2,0 D .[]3,0 7.设函数()x e x f =(0≠x ),那么()()21x f x f ⋅为( B )A .()()21x f x f +B .()21x x f +C .()21x x fD .⎪⎪⎭⎫⎝⎛21x x f8.已知()x f 在区间()+∞∞-,上单调递减,则()42+x f 的单调递减区间是( C ) A .()+∞∞-, B .()0,∞- C .[)+∞,0 D .不存在 9.函数()x f y =与其反函数()x fy 1-=的图形对称于直线( C )A .0=yB .0=xC .x y =D .x y -=10.函数2101-=-x y 的反函数是( D ) A .2lg-=x x y B .2log x y = C .xy 1log 2= D .()2lg 1++=x y 11.设函数()⎩⎨⎧=是无理数是有理数x x a x f x ,0,10<<a ,则( B )A .当+∞→x 时,()x f 是无穷大B .当+∞→x 时,()x f 是无穷小C .当-∞→x 时,()x f 是无穷大D .当-∞→x 时,()x f 是无穷小 12.设()x f 在R 上有定义,函数()x f 在点0x 左、右极限都存在且相等是函数()x f 在点0x 连续的( C )A .充分条件B .充分且必要条件C .必要条件D .非充分也非必要条件13.若函数()⎩⎨⎧<≥+=1,cos 1,2x x x a x x f π在R 上连续,则a 的值为( D )A .0B .1C .-1D .-2 14.若函数()x f 在某点0x 极限存在,则( C ) A . ()x f 在0x 的函数值必存在且等于极限值 B .()x f 在0x 函数值必存在,但不一定等于极限值 C .()x f 在0x 的函数值可以不存在 D .如果()0x f 存在的话,必等于极限值15.数列0,31,42,53,64,…是( B )A .以0为极限B .以1为极限C .以n n 2-为极限 D .不存在在极限 16.=∞→xx x 1sin lim ( C )A .∞B .不存在C .1D .017.=⎪⎭⎫ ⎝⎛-∞→xx x 211lim ( A )A .2-eB .∞C .0D .21 18.无穷小量是( C )A .比零稍大一点的一个数B .一个很小很小的数C .以零为极限的一个变量D .数零19.设()⎪⎩⎪⎨⎧≤≤-<≤<≤-=31,110,201,2x x x x x f x 则()x f 的定义域为[]3,1-,()0f = 2 ,()1f = 0 。
厦门理工学院高数练习题答案第一章 函数与极限
高等数学练习题 第一章 函数与极限________系_______专业 班级 姓名______ ____学号_______第一节 映射与极限一.选择题 1.函数216ln 1x xx y -+-=的定义域为 [ D ] (A )(0,1) (B )(0,1)⋃(1,4) (C )(0,4) (D )4,1()1,0(⋃] 2.3arcsin 2lgxx x y +-=的定义域为 [ C ] (A ))2,3(]3,(-⋃-∞ (B )(0,3) (C )]3,2()0,3[⋃- (D )),3(+∞- 3.函数)1ln(2++=x x y 是 [ A ](A )奇函数 (B )非奇非偶函数 (C )偶函数 (D )既是奇函数又是偶函数 4.下列函数中为偶函数且在)0,(-∞上是减函数的是 [ D ] (A )222-+=x x y (B ))1(2x y -= (C )||)21(x y = (D ).||log 2x y = 二.填空题1. 已知),569(log )3(22+-=x x x f 则=)1(f 2 2. 已知,1)1(2++=+x x x f 则)(x f 12+-x x3. 已知xx f 1)(=,x x g -=1)(, 则()=][x g f x -114. 求函数)2lg(1-+=x y 的反函数 1102-+=x y5. 下列函数可以看成由哪些基本初等函数复合而成 (1) x y ln tan 2=: x s s v v u u y ====,ln ,tan ,2(2) 32arcsin lg x y =:__ 32x t t s s v v u u y =====,arcsin ,lg ,, _三.计算题1.设)(x f 的定义域为]1,0[, 求)(sin ),(2x f x f 的定义域解:)(2x f 的定义域为[11,-] )(s i n xf 的定义域为)()(,[Z k k k ∈+ππ1222.设⎪⎩⎪⎨⎧<<-≤-=2||111||1)(2x x x x x ϕ , 求)23(),21(),1(ϕϕϕ-, 并作出函数)(x y ϕ=的图形.解:01=)(ϕ 2321=-)(ϕ 2123=)(ϕ ( 图略 )4.已知水渠的横断面为等腰梯形,斜角 40=ϕ(图1-22)。
高等数学函数的极限与连续习题及答案
上式化简为
1a2
0,∴a1,
2
1b
12ab12abx1b212ablimlimlim
xxx1a∴1
a1,12ab0,b2
10、函数fx
的间断点是(x0,x1).
11
xx2x2
11、fx2的连续区间是(,1,1,3,3,).
x4x3ax2sinx
2,则a(2)12、若lim.
xx∴aax2sinxsinxlimlima2a0a02limxxxxx
a
xx21
logaxx21fx
3、当x0时,ex1是x的(c)
a.高阶无穷小b.低阶无穷小c.等价无穷小
4、如果函数fx在x0点的某个邻域b.连续c.有界
5、函数fx1
1x在(c)条件下趋于.
a.x1 b.x10 c.x10
6、设函数fxsinx
x,则limx0fx(c)
a.1b.-1c.不存在∵sinx
6、如果~,则o.
1,是
∴limlim10,即是的同阶无穷小.
2xx2sin2sin1cosx11limlim2正确∵limx0x0x04x2x2x2
2正确∵lim
11limxlimsin0.x0xx0x0x
1错误∵limsin不存在,∴不可利用两个函数乘积求极限的法则计算。x0x8、limxsin
高等数学函数的极限与连续习题精选及答案
第一章函数与极限复习题
1、函数fxx2x31x1与函数gxx1相同.
错误∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴fxx2x31x1与gx函数关系相同,但定义域不同,所以fx与gxx1
是不同的函数。
2、如果fxM(M为一个常数),则fx为无穷大.
高数 上 习题及答案 极限
x +1
⎞ ⎟ ⎟ ⎟
⎝ 2x ⎠
3
=
lim
x→∞
⎛⎜1 ⎝ ⎛⎜⎝1
+ +
3 2x 1 2x
x +1
⎞ ⎟ ⎠
x +1
⎞ ⎟⎠
3
⎡
⎤ 2x 2
=
lim
⎢⎢⎢⎣⎛⎜⎝ 1 +
3 2x
⎞ ⎟ ⎠
3
⎥
⎥ ⎥⎦
⎛⎜ 1 + ⎝
3 2x
⎞ ⎟ ⎠
x→∞
1
⎡⎢⎢⎣⎛⎜⎝1
+
1 2x
2
⎞ ⎟ ⎠
x
⎤ ⎥ ⎥⎦
ln lim y = ln e0 , lim y = 1
x→π
x→π
2
2
5
解: lim sin xln x
lim xsin x = lim esin xln x = ex→0+
x→0+
x→0+
ln x
lim sin xln x = lim
x→0+
1 x→0+
sin x
1
= lim
x→0+
x⋅
−cos x sin2 x
⎛⎜1
+
⎠⎝
3 n
⎞ ⎟ ⎠
=1
(18) lim sin 5x = ( )
x→π sin 3x
(a) − 4 (b)-1 (c)1
3 分析:lim sin 5x = lim 5cos5x = 5
x→π sin 3x x→π 3cos 3x 3
(d) 5
3
(22) lim x2 +1 − 3x = ( )
高等数学(函数与极限)习题及解答
练习1-1(2)∕(∕n5S)W)∙4.设映射f ιX→Y y若存在一个映射g.Y→X.使S-f=I x 5 f-g=ιγ,其中《、“分别是x、y上的恒等映射,即对于每一个xwX,有ZYXnc;对于每一个ywlζ有b>⅛=y.证明:/是双射, 且g是/的逆映射:g=f~x.5.设映射f .X→Y,A^X.证明: (Ir I m)=>4;(2)当/是单射时,有Γ1(∕(^)M・6.求下列函数的自然定义域: (l)y=V3x+2 ;⑶丿=丄-JI-X2 ;X(5) j∕=sin √x;(7)戶arcsing - 3);(8)>,=√3-x+arctan—;⑼TI如);解±x+l>O得函数的定义域P=(-19+∞X1(IO)尸尹.解±x≠0得函数的定义域6(-00, 0)u(0,+00).7.下列各题中,函数、冷)和蛉)是否相同?为什么? (l)∕(x)≡lgx2,4g(x)≡21gx;解不同.因为定义域不同.⑵/(兀)=七g(x)=V?;解不同.因为对应法则不同,无<0时,g(x)=-兀.⑶f(x)=l∕^(X)=X^[x^i ;解和同.因为定义域、对应法则均相相同.(4MX)=I, g(x)=sec2x-tai^x .解不同.因为定义域不同.&设卩(兀)=<兀一3疗一求久石),仅牙)5 0(-牙}9吠-2)9并作出函数片於)的图形.9・试证下列函数在指定区间内的单调性:⑴p=⅛gi);(2)y=x+lnx, (0, +□o).io.设yu)为定义在(-M内的奇函数,若沧)在(0』内单调埠加,证明金)在(-/,0)内也单调增加・11.设下面所考虑的函数都是定义在对称区间上的,证I(1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数偶函数与奇函数的乘积是奇函数.证明设F(x)=f(xyg(x∖如果Λr)和能)都是偶函数,则F(-x M-兀)∙g(-x )∕X)∙g(x)=F(Q 所以Fa)为偶函数,即两个偶函数的积是偶函数.如果压)和ME都是奇函数7则F(→)=∕(-x) g(-Λ)=[√{x)] [-g(x)]√(x)∙g(x)=F(x)9 所以Fa)为偶函数,即两个奇函数的积是偶函数・如果用)是偶函数,而g(x)是奇函数,则F(-x>√(-兀)g(-xM>)[-曲)]=√(H)於)=-F(Q 所以F(Q为奇函数,即偶函数与奇函数的积是奇函数.12.下列函数中哪些是偶函数,哪些是奇函数,哪些既非奇目数又菲偶函数?{l)y=x2(l-x2);解因为Λ→X→)2[l-(→)2]^x2( 1 →2M X),所以√(x)是偶函I-X2.l+x2 9解因为/(一X)=走⅛g,所畑)是偶函{2)y=3x2-x3;⑶尸(4]yw(x-I)(X+1);(5)y=sinx-cos x+1;解由∕{-x)=SirI(-工)-cos(-x)+1 =-sinx-cos x+1 可见√(v)既? 数又非偶函数,(6)尸¥13.下列各函数中哪些是周期函数?对于周期函数,指出其周期:(l)y=cos(x-2);(2)y=cos 4x;(3)y=l+sinπv;(4]y=xcosx;(5)y-siι∕x.14.求下列函数的反函数: (l)y=Vjc+l ;解由尸炖得⑵尸l—x. 1+x ,解由y=2sin Sx 得1 - yX=—arcsm⅛-.3 2所以y=2sinlr 的反函数为解由尸昙得一 1一丿X ~u7,所以v=⅛的反函数为(^y=^±^(ad-bc≠O); cx+a解由P=空毘得CX+d所以空卑的反函数为V =Ir一 dx+b(5)尸 l+ln*+2); 解 由*l+ln*+2)得所以y=l 十ln&十2)的反函数为 y=e x ^l -2.解由少=莞?得 X=Iog2 F L , ι-y所以尸丄的反函数为 2x +lP=Iog215. 设函数金)在数集X 上有定义 试证:函数庄)在X 上有 界的充分必要条件是它在X 上既有上界又有下界・⑹尸 2x 27+l证明先证必要性.设函数TIH)在X 上有界,则存在正数M 使 ∖f(x)∖≤M 9 即-Mg)≤M这就证明了心)在X 上有下界-M 和上界M. 再证充分性设函数刃>)在X 上有下界Kl 和上界心,即 KIg)≤ K 2. 取M=UmX{Kι∣,KT},则-M<K A ^∖X )<K 1<M,即Iz(X)KM. 这就证明了 Λχy^x±有界. 16. 在下列各题中,求由所给函数复合而成的函数,并求这 函数分别对应于给定自变量值Xi 和Xi 的函数值:解 y=sin2v, I =Sin(2∙-^)=Sm^=^(3) y=y∕^i 9 U ==I+x 9 Xl=IS 兀2= 2; 解 y=y∕l+x 2 9 jμ1=71+l 2 =V2 , y 2 =∖∕l + 22 =√5 a_兀71 ,X l=P,j 2=siπ(2∙^)=sι∩y=L(I)^=W 29 M=Sinx 5 x 16(4)Jfee M9u=x29 Xi =0, x2=l;解y = eχ25y↑ =e°2 =15j∕2=^I2 =e-n II(5)y=u , , xι=l9 %2=-l.解2j5yι=e2,1=e2, j2=^2^"1^=e^2β17.设沧)的定义域D=G U求下列各函数的定义域: (Iw);解由O≤r2≤l得IXld⑵.AsiiK);解由OSSinXSl得2nπ≤x<(2n+1 )π(∕ι=0, ±1, ±2・・・), 所以函数爪血)的定义域为⑵忆(2H+1)∕Γ](H=O? +1, 土2…)・⑶Λ*)(QO);所以函数/(/)的定义域为解由O≤τ+QSl得-a≤x< 1 -Zi, 所以函数βx+a)的定义域为[-a, ∖-a∖.⑷刃χ+d)t∕H)(U〉o)・解由O≤τ+6r≤ l 且O≤x-α≤l 得: '"ι0<π<y 时,a≤x<∖-a∖ 当α>*时,无解.因此当0<a≤^时函数的定义域为阪1-H当时函数无意义f 1 ∣χ∣<l1& 设f(x)=∖ 0 ∖x∖=l9g(x)=e s9求√[g(x)]^tl g[∕(x)]5并作[-1 ∖x∖>∖出这两个函数的图形.1 解/WA O-1■I 护∣<1 f 1I5即/Ig(χ)]T OW(x)]=RE={ e0x∣<l e心,即M∕Cv)]=j1 x∣>l0 IL IL < => I-IiiIIH^ XXXx>0x=Q.19.已知水渠的横断面为等腰梯形,斜 角歼40。
高数函数的极限连续习题精选及答案
1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。
2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a nn =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。
5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫ ⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。
7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2022020=⎪⎪⎪⎪⎭⎫⎝⎛⋅⋅==-→→→x x x x x x x x x8、 01sin lim lim 1sinlim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。
9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00l i m 1l i m00-=--→x x x ,=+→xx x 00lim 1lim 00=+→x xx ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则(1)()x e f 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是(,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭ ); (3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x(3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n n x n n x n x n n n n =⋅==∞→∞→∞→sinlim sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x xx ,则=a ( 1 ),=b ( 21-). ∵()b ax x x x --+-+∞→1lim2()()()bax x x b ax x x b ax x x x +++-+++---+-=+∞→111lim222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()2211212112lim lim lim 1x x x b ab ab x b ab a →+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ).11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ).()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a13、=∞→xxx sin lim( 0 ),=∞→xx x 1s i nlim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim =⋅=∞→∞→x x x x x x 111sin lim1sin lim ==∞→∞→xx x x x x ()[]1)1(11)(1lim 1lim --⋅-→→=-+=-e x x xx x x kkx x kx x e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、lim sin(arctan )x x →∞=( 不存在 ),l i ms i n (a r c c o t )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列 2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa ()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界 5、函数()x f x-=11在( c )条件下趋于∞+.a .1→xb .01+→xc .01-→x 6、设函数()x f xx sin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xxx x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。
高等数学练习册及答案
第一章第一章 函数与极限§1 函数一、单项选择题1、下面四个函数中,与y=|x |不同的是( A ) (A )||ln xey = (B )2x y = (C )44x y = (D )x x y sgn =)上是(,在其定义域、B x x f )()3(cos )(22∞+−∞=非周期函数。
的周期函数; 最小正周期为的周期函数;最小正周期为的周期函数; 最小正周期为)(32)(3)(3)(D C B A πππ )函数的是( 、下列函数中为非偶数B 3)1lg(1)(4343)(arccos )(1212sin )(2222x x x x y D x x x x y C x y B x y A x x +++=++++−==+−⋅=;;4、是 函数)0(ln)(>+−=a xa xa x f (A ) 的值奇偶性决定于非奇非偶函数;偶函数; 奇函数; a D C B A )()()()(二、填空题1、=则时且当设 z x z y y x f y x z , , 0 , )(2==−++= . 解:2 , 0 x z y ==时因 2)(x x f x =+∴ 故有 x x x f −=2)( )()()(2y x y x y x f −−−=−)()(2y x y x y x z −−−++=∴2)(2y x y −+=2、的定义域为,则设 )()65lg(56)(22x f x x x x x f +−+−+=解:由 解得 ,650162+−≥−≤≤x x x由 解得 或x x x x 256023−+><>[)(]故函数的定义域是 ,,−1236Υ.3、[]=则., ;,设)(0202)(x f f x x x x f≥<+=解:[]f f x x x x ()=+<−≥−4222,;, 4、=的反函数则.,;,;,设)()(42411)(2x x f x x x x x x f xφ+∞<<≤≤<<∞−=解:当时,,即−∞<<==x y x x y 1 −∞<<y 1 当时,, .141162≤≤=∴=≤≤x y x x yy当时,, .42162<<+∞=∴=>x y x y x y log>≤≤<<∞−=φ.,;,;,的反函数故16log 1611)()(2x x x x x x x x f 5,,且成立,对一切实数设0)0()()()()(212121≠=+f x f x f x x f x x x f ,a f =)1(=则)0(f ,=)(n f )(为正整数.n解)0()0()0()00(021≠⋅=+==f f f f x x ,代入已知式取∴=f ()01又 f af f f f a ()()()()()1211112==+==设则f k a f k f k f a a akkk ()()()()=+=⋅=⋅=+111nan f n =)(有故对一切§2 数列的极限一.单项选择题1、{}无界是数列发散的数列n a ( B )件..既非充分又非必要条 .充分必要条件.充分条件 .必要条件D C B A ;;;2、=−为偶数当为奇数当n n n x n ,10,17则 D 。
数学分析上册练习题及答案第三章函数极限
第三章函数极限1. 函数极限概念1. 按定义证明下列极限:(1)65lim 6x x x→+∞+=;(2)22lim(610)2x x x →-+=;(3)225lim 11x x x →∞-=-;(4)2lim 0x -→=; (5)00lim cos cos x x x x →=.证明(1)任意给定0ε>,取5M ε=,则当x M >时有65556x x x Mε+-=<=.按函数极限定义有65lim6x x x→+∞+=.(2)当2x ≠时有,2(610)2(2)(4)24x x x x x x -+-=--=--.若限制021x <-<,则43x -<.于是,对任给的0ε>,只要取min{1,}3εδ=,则当02x δ<-<时,有2(610)2x x ε-+-<.故有定义得22lim(610)2x x x →-+=.(3)由于22254111x x x --=--.若限制1x >,则2211x x -=-,对任给的0ε>,取max M ⎧⎪=⎨⎪⎩,则当x M >时有22225441111x x M x ε--=<=---,所以225lim 11x x x →∞-=-.(4)0==若此时限制021x <-<,==<=0ε>,取2min{1,}4εδ=,当02x δ<-<022εε<≤⋅=,故由定义得2lim 0x -→=.(5)因为sin ,x x x R ≤∈,则0000000cos cos 2sinsin 2sin sin 222222x x x x x x x x x x x x x x -+-+--=-=≤⋅=-.对任给的0ε>,只要取δε=,当00x x δ<-<时,就有00cos cos x x x x δε-≤-<=,所以按定义有00lim cos cos x x x x →=.2. 叙述0lim ()x x f x A →≠。
第一章函数与极限习题参考解答
习题1-1 映射与函数 1、求下列函数的自然定义域: (1)211x x y --=(2))3arcsin(-=x y (3)xx y 1arctan 3+-= 解(1)由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (2)由|x -3|≤1得函数的定义域D =[2, 4].(3) 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).2、在下列各题中,求由所给函数构成的复合函数,并求这函数分别对应于给定自变量值1x 和2x 的函数值:(1)3,6,sin ,212ππ====x x x u u y解y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy . (2)2,1,1,212==+==x x x u u y解 21x y +=, 21121=+=y , 52122=+=y (3)1,1,,212-====x x e u u y x解 y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.习题1-2 数列极限 函数极限1、下列各题中,哪些数列收敛?哪些数列发散?对收敛数列,通过观察{}n x 的变化趋势, 写出它们的极限:(1)n n x 21=(2)212n x n +=(3)11+-=n n x n (4)n n x nn1]1)1[(++-= 解(1) 当n →∞时, n n x 21=→0, 021lim =∞→n n .(2) 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→nn .(3)当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n .(4)发散,因为当n 为偶数时,数列趋于2,而当n 为奇数时,数列趋于0。
2、求()()xx x x xx f ==ϕ, 当0→x 时的左、右极限,并说明它们在0→x 时的极限是否存在证明 (1)因为 11lim lim )(lim 00===---→→→x x x x x x f , 11lim lim )(lim 000===+++→→→x x x x x x f ,)(lim )(lim 0x f x f x x +→→=-, 所以极限)(lim 0x f x →存在.(2)因为1lim ||lim )(lim 00-=-==---→→→xx x x x x x x ϕ, 1lim ||lim )(lim 000===+++→→→x x x x x x x x ϕ,)(l i m )(l i m 0x x x x ϕϕ+→→≠-, 所以极限)(lim 0x x ϕ→不存在 3、用定义证明: 0sin lim=+∞→xx x分析 因为x x x x x 1|sin |0sin ≤=-. 所以要使ε<-0sin x x , 只须ε<x1, 即21ε>x .证明 因为∀ε >0, ∃21X ε=>, 当x > X 时, 有ε<-0sin x x , 所以0sin lim =+∞→xx x 。
(完整版)函数极限习题与解析
函数与极限习题与解析(同济大学第六版高等数学)一、填空题1、设x x x f lg lg 2)(+-= ,其定义域为 。
2、设)1ln()(+=x x f ,其定义域为 。
3、设)3arcsin()(-=x x f ,其定义域为 。
4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。
5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。
6、432lim 23=-+-→x k x x x ,则k= 。
7、函数xx y sin =有间断点 ,其中 为其可去间断点。
8、若当0≠x 时 ,x x x f 2sin )(=,且0)(=x x f 在处连续 ,则=)0(f 。
9、=++++++∞→)21(lim 222nn n n n n n n 。
10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。
11、=++++∞→352352)23)(1(lim x x x x x x 。
12、3)21(lim -∞→=+e n kn n ,则k= 。
13、函数23122+--=x x x y 的间断点是 。
14、当+∞→x 时,x1是比3-+x15、当0→x 时,无穷小x --11与x 相比较是 无穷小。
16、函数x e y 1=在x=0处是第 类间断点。
17、设113--=x x y ,则x=1为y 的 间断点。
18、已知33=⎪⎭⎫ ⎝⎛πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。
19、设⎪⎩⎪⎨⎧>+<=0)1(02sin )(1x ax x x xx f x 若)(lim 0x f x →存在 ,则a=。
20、曲线2sin 2-+=x xx y 水平渐近线方程是 。
21、114)(22-+-=x x x f 的连续区间为 。
22、设⎩⎨⎧>≤+=0,cos 0,)(x x x a x x f 在0=x 连续 ,则常数a= 。
高等数学第一章函数与极限试题及答案
高等数学第一章函数与极限试题一.选择题1.设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C ) F(x)是周期函数⇔f(x)是周期函数. (D ) F(x)是单调函数⇔f(x)是单调函数 2.设函数,11)(1-=-x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点(C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点.3.设f (x)=xx 1-,x ≠0,1,则f [)(1x f ]= ( )A ) 1-xB ) x-11C ) X1 D ) x4.下列各式正确的是 ( )A ) lim 0+→x )x1 +1(x=1B ) lim 0+→x )x1 +1(x=eC ) lim ∞→x )x1 1-(x=-e D ) lim ∞→x )x1 +1(x-=e5.已知9)(lim =-+∞→xx ax a x ,则=a ( )。
A.1; B.∞; C.3ln ; D.3ln 2。
6.极限:=+-∞→xx x x )11(lim ( ) A.1; B.∞; C.2-e ; D.2e7.极限:∞→x lim 332x x +=( ) A.1; B.∞; C.0; D.2. 8.极限:xx x 11lim 0-+→=( )A.0; B.∞; C 21; D.2.9. 极限:)(lim 2x x x x -+∞+→=( )A.0; B.∞; C.2; D. 21. 10.极限: xx x x 2sin sin tan lim 30-→=( )A.0; B.∞; C. 161; D.16.()()x x x x f 25lg 12-+-+=二. 填空题 11.极限12sinlim 2+∞→x xx x = . 12. lim 0→x xarctanx=_______________.13. 若)(x f y =在点0x 连续,则)]()([lim 0→-0x f x f x x =_______________; 14. =→x x x x 5sin lim0___________; 15. =-∞→n n n)21(lim _________________;16. 若函数23122+--=x x x y ,则它的间断点是___________________17. 绝对值函数 ==x x f )(⎪⎩⎪⎨⎧<-=>.0,;0,0;0,x x x x x x 其定义域是 ,值域是18. 符号函数 ==x x f sgn )(⎪⎩⎪⎨⎧<-=>.0,1;0,0;0,1x x x其定义域是 ,值域是三个点的集合19. 无穷小量是20. 函数)(x f y =在点x0 连续,要求函数y f (x) 满足的三个条件是三. 计算题21.求).111(lim 0xe x x x --+-→ 22.设f(e 1-x )=3x-2,求f(x)(其中x>0); 23.求lim 2 x →(3-x)25--x x ; 24.求lim ∞→ x (11-+x x )x ; 25.求lim 0 x →)3(2tan sin 22x x x x + 26. 已知9)(lim =-+∞→xx ax a x ,求a 的值; 27. 计算极限n n n n 1)321(lim ++∞→28.求它的定义域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 函数与极限(A )一、填空题 1、设x x x f lg lg 2)(+-=,其定义域为 。
2、设)1ln()(+=x x f ,其定义域为 。
3、设)3arcsin()(-=x x f ,其定义域为 。
4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。
5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。
6、432lim23=-+-→x kx x x ,则k= 。
7、函数xxy sin =有间断点 ,其中 为其可去间断点。
8、若当0≠x 时 ,xxx f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。
9、=++++++∞→)21(lim 222nn nn n n n n 。
10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。
11、=++++∞→352352)23)(1(lim xx x x x x 。
12、3)21(lim -∞→=+e nknn ,则k= 。
13、函数23122+--=x x x y 的间断点是 。
14、当+∞→x 时,x1是比3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。
16、函数xe y 1=在x=0处是第 类间断点。
17、设113--=x x y ,则x=1为y 的 间断点。
18、已知33=⎪⎭⎫⎝⎛πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。
19、设⎪⎩⎪⎨⎧>+<=0)1(02sin )(1x ax x xxx f x 若)(lim 0x f x →存在 ,则a= 。
20、曲线2sin 2-+=x xx y 水平渐近线方程是 。
21、114)(22-+-=x x x f 的连续区间为 。
22、设⎩⎨⎧>≤+=0,cos 0,)(x x x a x x f 在0=x 连续 ,则常数a= 。
二、计算题1、求下列函数定义域 (1)211xy -= ; (2)x y sin = ;(3)xe y 1= ;2、函数)(x f 和)(x g 是否相同?为什么? (1)x x g x x f ln 2)(,ln )(2== ;(2)2)(,)(x x g x x f == ;(3)x x x g x f 22tan sec )(,1)(-== ;3、判定函数的奇偶性(1))1(22x x y -= ; (2)323x x y -= ;(3))1)(1(+-=x x x y ;4、求由所给函数构成的复合函数 (1)22,sin ,x v v u u y === ;(2)21,x u uy +==;5、计算下列极限 (1))2141211(lim n n ++++∞→ ; (2)2)1(321limn n n -++++∞→ ;(3)35lim 22-+→x x x ; (4)112lim 221-+-→x x x x ;(5))12)(11(lim 2xx x -+∞→ ; (6)2232)2(2lim -+→x x x x ;(7)x x x 1sin lim 20→ ; (8)xx x x +---→131lim 21 ;(9))1(lim 2x x x x -++∞→ ;6、计算下列极限 (1)x wx x sin lim 0→ ; (2)xxx 5sin 2sin lim 0→ ;(3)x x x cot lim 0→ ; (4)xx xx )1(lim +∞→ ; (5)1)11(lim -∞→-+x x x x ; (6)x x x 10)1(lim -→ ;7、比较无穷小的阶(1)32220x x x x x --→与,时 ;(2))1(21112x x x --→与,时 ;8、利用等价无穷小性质求极限(1)30sin sin tan lim xx x x -→ ; (2)),()(sin )sin(lim 0是正整数m n x x m n x → ;9、讨论函数的连续性。
在⎩⎨⎧=>-≤-=11,31,1)(x x x x x x f10、利用函数的连续性求极限(1))2cos 2ln(lim 6x x π→; (2))(lim 22x x x x x --++∞→ ;(3)x x x sin lnlim 0→ ; (4)xx x2)11(lim +∞→ ;(5))11(lim ,)1(lim )(1--=+→∞→t f nx x f t nn 求设 ;(6))11ln(lim +-∞→x x x x ;11、设函数⎩⎨⎧≥+<=0,0,)(x x a x e x f x应当怎样选择a ,使得)()(∞+-∞,成为在x f 内的连续函数。
12、证明方程135=-x x 至少有一个根介于1和2之间。
(B )1、设)(x f 的定义域是[0 ,1] ,求下列函数定义域 (1))(xe f y = (2))(ln x f y =2、设⎩⎨⎧>-≤=⎩⎨⎧>≤=0,0,0)(0,,0)(2x x x x g x x o x x f 求)]([,)]([,)]([,)]([x f g x g f x g g x f f3、利用极限准则证明: (1)111lim =+∞→n n (2)1]1[lim 0=+→xx x ;(3)数列 ,222,22,2+++的极限存在 ;4、试比较当0→x 时 ,无穷小232-+xx 与x 的阶。
5、求极限(1))1(lim 2x x x x -++∞→ ; (2)1)1232(lim +∞→++x x x x ; (3)30sin tan lim x xx x -→ ;(4))0,0,0()3(lim 10>>>++→c b a c b a xx x x x ;6、设⎪⎩⎪⎨⎧≤+>=0,0,1sin)(2x x a x xx x f 要使),()(∞+-∞在x f 内连续, 应当怎样选择数a ?7、设⎪⎩⎪⎨⎧≤<-+>=-01,)1ln(0,)(11x x x e x f x 求)(x f 的间断点,并说明间断点类型。
(C )1、已知x x f e x f x -==1)]([,)(2ϕ ,且0)(≥x ϕ ,求)(x ϕ并写出它的定义域。
2、求下列极限:(1)、]ln cos )1ln([cos lim x x x -++∞→ ;(2)、xxx x x cos sin 1lim-+→ ;(3)、求xx x x 2sin 3553lim 2⋅++∞→ ;(4)、已知9)(lim =-+∞→xx a x a x ,求常数a 。
(5)、设)(x f 在闭区间],[b a 上连续 ,且b b f aa f <>)(,)( ,证明:在开区间),(b a 内至少存在一点ξ ,使ξξ=)(f 。
第一章 函数与极限 习 题 答 案(A )一、填空题 (1)]2,1( (2)),1(∞+- (3)[2 ,4](4){}z k k x k x ∈+≤≤,)12(2ππ (5)]2,2[-(6)-3 (7)0;,=∈=x z k k x π (8)2 (9)1(10)充分 (11)21 (12)23- (13)x=1 , x=2 (14)高阶 (15)同阶 (16)二 (17)可去 (18)2 (19)-ln2 (20)y=-2 (21)]2,1(]1,2[ - (22)1 二、计算题1、(1) ),1()1,1()1,(∞+---∞(2) ),0[∞+ (3)),0()0,(∞+-∞2、(1)不同,定义域不同 (2)不同,定义域、函数关系不同(3)不同,定义域、函数关系不同 3、(1)偶函数 (2)非奇非偶函数 (3)奇函数4、(1)[]22)(sin x y = (2)]1[2x y += (3)][sin 2xey = 5、(1)[ 2 ] (2)]21[ (3)-9 (4)0 (5)2 (6)∞ (7)0 (8)22- (9)21 6、(1)w (2)52 (3)1 (4)1-e (5)2e (6)1-e 7、(1)的低阶无穷小是3222x x x x -- (2)是同阶无穷小8、(1)21 (2)⎪⎩⎪⎨⎧>∞=<nm n m nm ,,1,09、不连续10、(1)0 (2)1 (3)0 (4)2e (5)0 (6)-2 11、a=1(B )1、(1)提示:由10≤≤xe 解得:]0,(∞-∈x (2)提示:由1ln 0≤≤x 解得:],1[e x ∈2、提示:分成o x ≤和0>x 两段求。
)()]([x f x f f = ,0)]([=x g g ,0)]([=x g f , )()]([x g x f g =4、(1)提示:n n 11111+<+< (2)提示:xx x x x x 1]1[)11(⋅<<- (3)提示:用数学归纳法证明:222=+<n a5、提示:xx x x x x x 1312232-+-=-+ 令t x =-12(同阶)6、(1)提示:乘以x x ++12 ;21(2)提示:除以x 2 ;e (3)提示:用等阶无穷小代换 ;21(4)提示: xx x x c b a 1)3(++ xc b a c b a x x x x x x x x x c b a 3111111313111-+-+--+-+-⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-+-+-=(3abc )7、提示:)0()(lim )(lim 00f x f x f x x ==+-→→ (0=a )8、1=x 是第二类间断点 ,0=x 是第一类间断点(C )1、解:因为()[]x ex fx -==1)(2ϕϕ ,故)1ln()(x x -=ϕ ,再由0)1ln(≥-x ,得:11≥-x ,即0≤x 。
所以:)1ln()(x x -=ϕ,0≤x 。
2、解:原式=)cos sin 1(cos sin 1lim 20x x x x xx x x ++-+→=xx x x x 20sin sin 21lim +⋅→=)sin (sin lim210x x xxx +⋅→=03、解:因为当∞→x 时 ,xx 2~2sin ,则x x x x 2sin 3553lim 2⋅++∞→=x x x x 23553lim 2⋅++∞→=x x x x 35106lim 22++∞→=564、解:因为:9=x x ax a x )(lim -+∞→=xx x a x a ⎪⎪⎪⎪⎭⎫⎝⎛-+∞→11lim =a a e e -=a e 2 所以92=ae,3ln =a5、证明:令x x f x F -=)()( ,)(x F 在[]b a ,上连续 ,且0)()(>-=a a f a F ,0)()(<-=b b f b F 。