论机械零件的加工精度与表面粗糙度

合集下载

机械加工表面加工质量

机械加工表面加工质量
❖ 脆性材料:加工脆性材料时,其切削呈碎粒状,
由于切屑的崩碎而在加工表面留下许多麻点,使表 面粗糙。
机械加工表面加工质量
(2)切削速度的影响 (3)进给量的影响
加工塑性材料时,切削速度对
表面粗糙度的影响(对积屑瘤和鳞 刺的影响)见如图4-41所示。
此外,切削速度越高,塑性变 形越不充分,表面粗糙度值越小
(1)磨削用量
▪ 砂轮的转速↑ →材料塑性变形↓ → 表面粗
糙度值↓ ;
▪磨削深度↑、工件速度↑ → 塑性变形↑ →表
面粗糙度值↑ ; 为提高磨削效率,通常在开始磨削时采
用较大的径向进给量,而在磨削后期采用较 小的径向进给量或无进给量磨削,以减小表 面粗糙度值。
机械加工表面加工质量
(2)工件材料
•太硬易使磨粒磨钝 →Ra ↑ ; •太软容易堵塞砂轮→Ra ↑ ; •韧性太大,热导率差会使磨
影响显微硬度因素
•塑变引起的冷硬
•金相组织变化引起 的硬度变化
表面物理力学 性能
影响残余应力因素
•冷塑性变形 •热塑性变形 •金相组织变化
影响金相组织变化 因素
•切削热
机械加工表面加工质量
1. 表面层的冷作硬化
(1) 表面层加工硬化的产生
定义:机械加工时,工件表面层金属受到 切削力的作用产生强烈的塑性变形,使晶 格扭曲,晶粒间产生剪切滑移,晶粒被拉 长、纤维化甚至碎化,从而使表面层的强 度和硬度增加,这种现象称为加工硬化, 又称冷作硬化和强化。
机械加工表面加工质量
三、表面层金相组织变化与磨削烧伤
1.表面层金相组织变化与磨削烧伤的产生
切削加工中,由于切削热的作用,在工件的加 工区及其邻近区域产生了一定的温升。
定义:磨削加工时,表面层有很高的温度,当 温度达到相变临界点时,表层金属就发生金相组织 变化,强度和硬度降低、产生残余应力、甚至出现 微观裂纹。这种现象称为磨削烧伤。

机械加工精度名词解释

机械加工精度名词解释

机械加工精度名词解释
机械加工精度指的是针对零件或工件加工过程中所要求的尺寸、形状、位置、表面粗糙度等方面的精确度。

精度是指实际测得结果与理论值之间的偏差或误差程度,常用的机械加工精度名词包括以下几个:
1. 尺寸精度:指零件加工后尺寸测量值与设计尺寸之间的偏差。

这是表征零件尺寸准确程度的指标,通常用公差表示。

2. 形状精度:指零件加工后形状特征与设计要求之间的偏差。

例如,平整度、圆度、直线度等,用来描述零件表面的平整程度以及曲线、直线等特征的精确程度。

3. 位置精度:指零件加工后特定特征之间的相对位置偏差。

常用的位置精度名词包括平行度、垂直度、同轴度等,用来描述零件特征在空间中的位置关系。

4. 表面粗糙度:指加工后零件表面的光洁程度。

常用参数包括Ra(平均粗糙度)、Rz(Z向平均粗糙度)等,用来描述零件表面的粗糙度。

这些机械加工精度的指标对于确保零件的质量和功能至关重要,能够影响到零件的装配性能和使用寿命。

影响机械加工表面粗糙度的几个因素及措施

影响机械加工表面粗糙度的几个因素及措施

职教类影响机械加工表面粗糙度的几个因素及措施摘要:表面粗糙度是零件表面所具有的微小峰谷的不平程度,它是评价零件的一项重要指标。

一般说来,它的波距和波高都比较小,是一种微观的几何形状误差。

对机械加工表面,表面粗糙度是由切削时的刀痕,刀具和加工表面之间的摩擦,切削时的塑性变形,以及工艺系统中的高频振动等原因所造成的。

表面粗糙度是检验零件质量的主要依据,它的选择直接关系到生产成本、产品的质量、使用寿命。

关键词:机械加工表面粗糙度提高措施随着工业技术的飞速发展,机器的使用要求越来越高,一些重要零件在高压力、高速、高温等高要求条件下工作,表面层的任何缺陷,不仅直接影响零件的工作性能,而且还可能引起应力集中、应力腐蚀等现象,将进一步加速零件的失效,这一切都与加工表面质量有很大关系。

因而表面质量问题越来越受到各方面的重视。

一、机械加工表面粗糙度对零件使用性能的影响表面粗糙度对零件的配合精度,疲劳强度、抗腐蚀性,摩擦磨损等使用性能都有很大的影响。

1、表面质量对零件配合精度的影响(1)对间隙配合的影响由于零件表面的凹凸不平,两接触表面总有一些凸峰相接触。

表面粗糙度过大,则零件相对运动过程中,接触表面会很快磨损,从而使间隙增大,引起配合性质改变,影响配合的稳定性。

特别是在零件尺寸和公差小的情况下,此影响更为明显。

(2)对过盈配合的影响粗糙表面在装配压入过程中,会将相接触的峰顶挤平,减少实际有效过盈量,降低了配合的连接强度。

2、表面质量对疲劳强度的影响零件表面越粗糙,则表面上的凹痕就越深明,产生的应力集中现象就越严重。

当零件受到交变载荷的作用时,疲劳强度会降低,零件疲劳损坏的可能性增大。

3、表面质量对零件抗腐蚀性的影响零件表面越粗糙,则积聚在零件表面的腐蚀气体或液体也越多,且通过表面的微观凹谷向零件表层渗透,形成表面锈蚀。

4、表面质量对零件摩擦磨损的影响两接触表面作相对运动时,表面越粗糙,摩擦系数越大,摩擦阻力越大,因摩擦消耗的能量也越大,并且还影响零件相对运动的灵活性。

加工精度和粗糙度的区别技术文件.doc

加工精度和粗糙度的区别技术文件.doc

加工精度科技名词定义中文名称:加工精度英文名称:machining accuracy定义:工件加工后的实际几何参数(尺寸、形状和位置)与设计几何参数的符合程度,表现为加工误差。应用学科:机械工程(一级学科);机械工程(2)总论(二级学科)加工精度是加工后零件表面的实际尺寸、形状、位置三种几何参数与图纸要求的理想几何参数的符合程度。理想的几何参数,对尺寸而言,就是平均尺寸;对表面几何形状而言,就是绝对的圆、圆柱、平面、锥面和直线等;对表面之间的相互位置而言,就是绝对的平行、垂直、同轴、对称等。零件实际几何参数与理想几何参数的偏离数值称为加工误差。加工精度主要用于生产产品程度,加工精度与加工误差都是评价加工表面几何参数的术语。加工精度用公差等级衡量,等级值越小,其精度越高;加工误差用数值表示,数值越大,其误差越大。加工精度高,就是加工误差小,反之亦然。公差等级从IT01,IT0,IT1,IT2,IT3至IT18一共有20个,其中IT01表示的话该零件加工精度最高的,IT18表示的话该零件加工精度是最低的,一般上IT7、IT8是加工精度中等级别。任何加工方法所得到的实际参数都不会绝对准确,从零件的功能看,只要加工误差在零件图要求的公差范围内,就认为保证了加工精度。机器的质量取决于零件的加工质量和机器的装配质量,零件加工质量包含零件加工精度和表面质量两大部分。机械加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数相符合的程度。它们之间的差异称为加工误差。加工误差的大小反映了加工精度的高低。误差越大加工精度越低,误差越小加工精度越高。一、加工精度的内容尺寸精度指加工后零件的实际尺寸与零件尺寸的公差带中心的相符合程度。形状精度指加工后的零件表面的实际几何形状与理想的几何形状的相符合程度。位置精度指加工后零件有关表面之间的实际位置精度差别。尺寸精度、形状精度和位置精度的关系通常在设计机器零件及规定零件加工精度时,应注意将形状误差控制在位置公差内,位置误差又应小于尺寸公差。即精密零件或零件重要表面,其形状精度要求应高于位置精度要求,位置精度要求应高于尺寸精度要求。二、获得加工精度的方法①对工艺系统进行调整试切法调整通过试切—测量尺寸—调整刀具的吃刀量—走刀切削—再试切,如此反复直至达到所需尺寸。此法生产效率低,主要用于单件小批生产。调整法通过预先调整好机床、夹具、工件和刀具的相对位置获得所需尺寸。此法生产率高,主要用于大批大量生产。②减小机床误差1)提高主轴部件的制造精度应提高轴承的回转精度:①选用高精度的滚动轴承;②采用高精度的多油锲动压轴承;③采用高精度的静压轴承应提高与轴承相配件的精度:①提高箱体支撑孔、主轴轴颈的加工精度;②提高与轴承相配合表面的加工精度;③测量及调节相应件的径向跳动范围,使误差补偿或相抵消。2)对滚动轴承适当预紧①、可消除间隙;②、增加轴承刚度; ③、均化滚动体误差。3)使主轴回转精度不反映到工件上③减少传动链传动误差1)传动件数少,传动链短,传动精度高; 2)采用降速传动(i<1),是保证传动精度的重要原则,且越接近末端的传动副,其传动比应越小; 3)末端件精度应高于其他传动件。④减小刀具磨损在刀具尺寸磨损达到急剧磨损阶段前就必须重新磨刀⑤减小工艺系统的受力变形主要从:1)提高系统的刚度,特别是提高工艺系统中薄弱环节的刚度;2)减小载荷及其变化提高系统刚度1、合理的结构设计1)尽量减少连接面的数目; 2)防止有局部低刚度环节出现; 3)应合理选择基础件、支撑件的结构和截面形状。2、提高连接表面的接触刚度1)提高机床部件中零件间结合面的质量; 2)给机床部件以预加载荷; 3)提高工件定位基准面的精度和减小它的表面粗糙度值。3、采用合理的装夹和定位方式减小载荷及其变化1、合理选择刀具几何参数和切削用量,以减小切削力; 2、毛胚分组,尽量使调整中毛胚加工余量均匀。⑥减小工艺系统热变形1、减少热源的发热和隔离热源1)采用较小的切削用量; 2)零件精度要求高时,将粗精加工工序分开; 3)尽可能将热源从机床分离出去,减少机床热变形; 4)对主轴轴承、丝杆螺母副、高速运动的导轨副等不能分离的热源,从结构、润滑等方面改善其摩擦特性,减少发热或用隔热材料; 5)采用强制式风冷、水冷等散热措施。2、均衡温度场3、采用合理的机床部件结构及装配基准1)采用热对称结构——在变速箱中,将轴、轴承、传动齿轮等对称布置,可使箱壁温升均匀,箱体变形减小; 2)合理选择机床零部件的装配基准。4、加速达到传热平衡5、控制环境温度⑦减少残余应力1、增加消除内应力的热处理工序; 2、合理安排工艺过程。三、影响加工精度的原因①加工原理误差加工原理误差是指采用了近似的刀刃轮廓或近似的传动关系进行加工而产生的误差。加工原理误差多出现于螺纹、齿轮、复杂曲面加工中。例如,加工渐开线齿轮用的齿轮滚刀,为使滚刀制造方便,采用了阿基米德基本蜗杆或法向直廓基本蜗杆代替渐开线基本蜗杆,使齿轮渐开线齿形产生了误差。又如车削模数蜗杆时,由于蜗杆的螺距等于蜗轮的周节(即mπ),其中m是模数,而π是一个无理数,但是车床的配换齿轮的齿数是有限的,选择配换齿轮时只能将π化为近似的分数值(π =3.1415)计算,这就将引起刀具对于工件成形运动(螺旋运动)的不准确,造成螺距误差。在加工中,一般采用近似加工,在理论误差可以满足加工精度要求的前提下(《=10%-15%尺寸公差),来提高生产率和经济性。②调整误差机床的调整误差是指由于调整不准确而产生的误差。③机床误差机床误差是指机床的制造误差、安装误差和磨损。主要包括机床导轨导向误差、机床主轴回转误差、机床传动链的传动误差。机床导轨导向误差1、导轨导向精度——导轨副运动件实际运动方向与理想运动方向的符合程度。主要包括: ①导轨在水平面内直线度Δy和垂直面内的直线度Δz(弯曲); ②前后两导轨的平行度(扭曲); ③导轨对主轴回转轴线在水平面内和垂直面内的平行度误差或垂直度误差。 2.、导轨导向精度对切削加工的影响主要考虑导轨误差引起刀具与工件在误差敏感方向的相对位移。车削加工时误差敏感方向为水平方向,垂直方向引起的导向误差产生的加工误差可以忽略;镗削加工时误差敏感方向随刀具回转而变化;刨削加工时误差敏感方向为垂直方向,床身导轨在垂直平面内的直线度引起加工表面直线度和平面度误差。机床主轴回转误差机床主轴回转误差是指实际回转轴线对于理想回转轴线的漂移。主要包括主轴端面圆跳动、主轴径向圆跳动、主轴几何轴线倾角摆动。1、主轴端面圆跳动对加工精度的影响:①加工圆柱面时无影响;②车、镗端面时将产生端面与圆柱面轴线垂直度误差或端面平面度误差;③加工螺纹时,将产生螺距周期误差。2、主轴径向圆跳动对加工精度的影响:①若径向回转误差表现为其实际轴线在y轴坐标方向上作简谐直线运动,镗床镗出的孔为椭圆形孔,圆度误差为径向圆跳动幅值;而车床车出的孔没什么影响;②若主轴几何轴线作偏心运动,无论车、镗都能得到一个半径为刀尖到平均轴线距离的圆。 3.、主轴几何轴线倾角摆动对加工精度的影响:①几何轴线相对于平均轴线在空间成一定锥角的圆锥轨迹,从各截面看相当于几何轴心绕平均轴心作偏心运动,而从轴向看各处偏心值不同;②几何轴线在某一平面内作摆动,从各截面看相当于实际轴线在一平面内作简谐直线运动,而从轴向看各处跳动幅值不同;③实际上主轴几何轴线的倾角摆动为上述两种的叠加。机床传动链的传动误差机床传动链的传动误差是指传动链中首末两端传动元件之间的相对运动误差。④夹具的制造误差和磨损夹具的误差主要指:1)定位元件、刀具导向元件、分度机构、夹具体等的制造误差;2)夹具装配后,以上各种元件工作面间的相对尺寸误差;3)夹具在使用过程中工作表面的磨损。⑤刀具的制造误差和磨损刀具误差对加工精度的影响根据刀具的种类不同而异。1)定尺寸刀具(如钻头、铰刀、键槽铣刀及圆拉刀等)的尺寸精度直接影响工件的尺寸精度。2)成型刀具(如成型车刀、成型铣刀、成型砂轮等)的形状精度将直接影响工件的形状精度。3)展成刀具(如齿轮滚刀、花键滚刀、插齿刀具等)的刀刃形状误差会影响加工表面的形状精度。4)一般刀具(如车刀、镗刀、铣刀),其制造精度对加工精度无直接影响,但刀具易磨损。⑥工艺系统受力变形工艺系统在切削力、夹紧力、重力和惯性力等作用下会产生变形,从而破坏了已调整好的工艺系统各组成部分的相互位置关系,导致加工误差的产生,并影响加工过程的稳定性。主要考虑机床变形、工件变形以及工艺系统的总变形。切削力对加工精度的影响只考虑机床变形,对加工轴类零件来讲,机床受力变形使加工工件呈两端粗、中间细的鞍形,即产生圆柱度误差。只考虑工件变形,对加工轴类零件来讲,工件受力变形使加工后工件呈两端细、中间粗的鼓形。而对加工孔类零件来讲,单独考虑机床或工件的变形,加工后工件的形状与加工的轴类零件相反。夹紧力对加工精度的影响工件装夹时,由于工件刚度较低或夹紧力着力点不当,使工件产生相应的变形,造成的加工误差。⑦工艺系统的热变形在加工过程中,由于内部热源(切削热、摩擦热)或外部热源(环境温度、热辐射)产热使工艺系统受热而发生变形,从而影响加工精度。在大型工件加工和精密加工中, 工艺系统热变形引起的加工误差占加工总误差的40%-70%。工件热变形对加工金的的影响包括工件均匀受热和工件不均匀受热两种⑧工件内部的残余应力残余应力的产生:1)毛胚制造和热处理过程中产生的残余应力;2)冷校直带来的残余应力;3)切削加工带来的残余应力。⑨加工现场环境影响加工现场往往有许多细小金属屑,这些金属屑如果存在与零件定位面或定位孔位置就会影响零件加工精度,对于高精度加工,一些细小到目视不到的金属屑都会影响到精度。这个影响因素会被识别出来但并无十分到位的方法来杜绝,往往对操作员的作业手法依赖很高。四、加工精度的测量方法加工精度根据不同的加工精度内容以及精度要求,采用不同的测量方法。一般来说有以下几类方法: 1、按是否直接测量被测参数,可分为直接测量和间接测量。直接测量:直接测量被测参数来获得被测尺寸。例如用卡尺、比较仪测量。间接测量:测量与被测尺寸有关的几何参数,经过计算获得被测尺寸。显然,直接测量比较直观,间接测量比较繁琐。一般当被测尺寸或用直接测量达不到精度要求时,就不得不采用间接测量。2、按量具量仪的读数值是否直接表示被测尺寸的数值,可分为绝对测量和相对测量。绝对测量:读数值直接表示被测尺寸的大小、如用游标卡尺测量。相对测量:读数值只表示被测尺寸相对于标准量的偏差。如用比较仪测量轴的直径,需先用量块调整好仪器的零位,然后进行测量,测得值是被侧轴的直径相对于量块尺寸的差值,这就是相对测量。一般说来相对测量的精度比较高些,但测量比较麻烦。2、按被测表面与量具量仪的测量头是否接触,分为接触测量和非接触测量。接触测量:测量头与被接触表面接触,并有机械作用的测量力存在。如用千分尺测量零件。非接触测量:测量头不与被测零件表面相接触,非接触测量可避免测量力对测量结果的影响。如利用投影法、光波干涉法测量等。4、按一次测量参数的多少,分为单项测量和综合测量。单项测量;对被测零件的每个参数分别单独测量。综合测量:测量反映零件有关参数的综合指标。如用工具显微镜测量螺纹时,可分别测量出螺纹实际中径、牙型半角误差和螺距累积误差等。综合测量一般效率比较高,对保证零件的互换性更为可靠,常用于完工零件的检验。单项测量能分别确定每一参数的误差,一般用于工艺分析、工序检验及被指定参数的测量。5、按测量在加工过程中所起的作用,分为主动测量和被动测量。主动测量:工件在加工过程中进行测量,其结果直接用来控制零件的加工过程,从而及时防治废品的产生。被动测量:工件加工后进行的测量。此种测量只能判别加工件是否合格,仅限于发现并剔除废品。6、按被测零件在测量过程中所处的状态,分为静态测量和动态测量。静态测量;测量相对静止。如千分尺测量直径。动态测量;测量时被测表面与测量头模拟工作状态中作相对运动。动态测量方法能反映出零件接近使用状态下的情况,是测量技术的发展方向。粗糙度在机械学中,粗糙度指加工表面上具有的较小间距和峰谷所组成的微观几何形状特性。它是互换性研究的问题之一。表面粗糙度一般是由所采用的加工方法和其他因素所形成的,例如加工过程中刀具与零件表面间的摩擦、切屑分离时表面层金属的塑性变形以及工艺系统中的高频振动等。由于加工方法和工件材料的不同,被加工表面留下痕迹的深浅、疏密、形状和纹理都有差别。表面粗糙度与机械零件的配合性质、耐磨性、疲劳强度、接触刚度、振动和噪声等有密切关系,对机械产品的使用寿命和可靠性有重要影响。粗糙度表示方式零件表面经过加工后,看起来很光滑,经放大观察却凹凸不平。表面粗糙度,是指加工后的零件表面上具有的较小间距和微小峰谷所组成的微观几何形状特征,一般是由所采取的加工方法或其他因素形成的。零件表面的功用不同,所需的表面粗糙度参数值也不一样。零件图上要标注表面粗糙度符号,用以说明该表面完工后须达到的表面特性。表面粗糙度高度参数有3种: 1.轮廓算术平均偏差Ra 在取样长度内,沿测量方向(Y方向)的轮廓线上的点与基准线之间距离绝对值的算术平均值。 2.微观不平度十点高度Rz 指在取样长度内5个最大轮廓峰高的平均值和5个最大轮廓谷深的平均值之和。 3.轮廓最大高度Ry 在取样长度内,轮廓最高峰顶线和最低谷底线之间的距离。目前,一般机械制造工业中主要选用Ra。Ra值按下列公式计算: Ra=1/l ∫t0|Y(x)|dx或近似为Ra= 1/n ∑|Y i|。式中,Y为轮廓线上的点到基准线(中线)之间的距离;ι为取样长度。粗糙度多用于表征钢板,因为钢板涂覆前必须要有一定得粗糙度,否则油漆的咬合力不足,容易脱落。机械加工表面粗糙度机械加工表面质量,是指零件在机械加工后被加工面的微观不平度,也叫粗糙度,以Ra\Rz\Ry三种代号加数字来表示,机械图纸中都会有相应的表面质量要求,一般是工件表面粗糙度Ra<0.8um的表面时称:镜面。其加工后的表面质量直接影响被加工件的物理、化学及力学性能。产品的工作性能、可靠性、寿命在很大程度上取决于主要零件的表面质量。一般而言,重要或关键零件的表面质量要求都比普通零件要高。这是因为表面质量好的零件会在很大程度上提高其耐磨性、耐蚀性和抗疲劳破损能力。镜面——是金属切削加工的理想境界,是提高机械部件使用寿命的最有效手段。镜面——是机械切削加工后,得到非常好粗糙度的传统代名词,能清晰倒影出物品影像的金属表面。无论用何种金属加工方法加工,在零件表面总会留下微细的凸凹不平的刀痕,出现交错起伏的峰谷现象,粗加工后的表面用肉眼就能看到,精加工后的表面用放大镜或显微镜仍能观察到。这就是零件加工后的表面粗糙度,过去称为表面光洁度。国家规定表面粗糙度的参数由高度参数、间距参数和综合参数组成。获得镜面的机械加工方法有:去除材料方式、无切削方式(滚压加工)。去除材料加工方式有:磨削、研磨、抛光、电火花。无切削加工方式有:滚压(采用镜面工具)、挤压。。

关于表面粗糙度对机械零件使用性能的影响分析

关于表面粗糙度对机械零件使用性能的影响分析

关于表面粗糙度对机械零件使用性能的影响分析表面粗糙度是指表面上微小凸起和凹陷的高低不平度,通常以微米(μm)为单位。

在机械工程中,表面粗糙度不仅仅是一种质量指标,更是影响零件使用性能的重要因素之一。

高质量的表面粗糙度可以提高零件的使用寿命和性能,而低质量的表面粗糙度则可能导致机械零件的损坏和失效。

对表面粗糙度对机械零件使用性能的影响进行分析,对于提高机械零件的质量和性能具有重要的意义。

表面粗糙度对机械零件使用性能的影响主要体现在以下几个方面:1. 润滑性能表面粗糙度对机械零件的润滑性能具有重要影响。

如果零件表面粗糙度较大,那么在零件与零件之间的接触区域会产生较大的摩擦力,从而降低了零件的润滑性能。

反之,如果零件表面粗糙度较小,接触区域的摩擦力也会相应减小,从而提高了零件的润滑性能。

合适的表面粗糙度有助于提高机械零件的润滑性能,延长零件的使用寿命。

2. 疲劳强度表面粗糙度对机械零件的疲劳强度也有着重要的影响。

当机械零件表面粗糙度较大时,零件在循环负荷作用下容易产生微观裂纹,从而降低了零件的疲劳强度。

而当机械零件表面粗糙度较小时,微观裂纹的产生几率也相应降低,从而提高了零件的疲劳强度。

适当控制表面粗糙度是提高机械零件疲劳强度的有效手段。

表面粗糙度对机械零件使用性能的影响是多方面的,适当控制表面粗糙度有助于提高机械零件的使用性能。

在零件的设计和加工过程中,应该合理控制表面粗糙度,以确保机械零件的质量和性能。

在实际生产中,通过采用合适的加工工艺和技术手段可以有效地控制表面粗糙度,提高机械零件的使用性能。

在机械零件的精密加工过程中,可以采用合适的切削参数,如切削速度、进给速度、切削深度等,以确保零件表面的粗糙度处于合适的范围。

还可以采用研磨、抛光等表面处理工艺,进一步提高机械零件的表面质量和精度。

还可以通过提高材料的硬度和强度,增加表面的涂层保护,以提高机械零件的耐磨性和抗腐蚀性。

也可以通过改进设计结构,减少零件的接触区域,进一步降低摩擦和磨损,提高机械零件的使用寿命。

机械加工中的表面粗糙度与加工精度分析

机械加工中的表面粗糙度与加工精度分析

机械加工中的表面粗糙度与加工精度分析引言:在机械加工过程中,表面粗糙度和加工精度是两个关键参数。

表面粗糙度是指工件表面的不规则度,而加工精度则是衡量加工结果与设计要求的接近程度。

这两个参数直接影响着产品的质量、性能和寿命。

本文将分析机械加工中表面粗糙度与加工精度的关系,并探讨一些改善加工质量的方法。

一、表面粗糙度与加工精度的定义和测量方法1. 表面粗糙度的定义表面粗糙度是指工件表面的不平滑度或不规则度。

它是由加工过程中切削工具与工件表面摩擦及切削引起的微小凹凸所形成的。

表面粗糙度可以以数值形式表示,通常使用Ra(均方根粗糙度)或Rz(最大峰值粗糙度)进行表征。

越小的数值表示表面越光滑。

2. 加工精度的定义加工精度是指工件实际加工结果与设计要求的接近程度。

它通常用公差来表示,是加工过程中所能保持的最大形状偏差。

加工精度的标准可以根据具体的产品需求而定,如汽车制造中的零件加工精度要求较高,需要达到很小的公差。

3. 表面粗糙度的测量方法表面粗糙度的测量可以使用多种仪器和方法。

常见的测量仪器有表面粗糙度仪、激光扫描仪和电子显微镜等。

这些仪器可以测量出工件表面的纹理、高度和形状等参数,并根据国际标准对其进行评价和分类。

二、表面粗糙度与加工精度的关系1. 表面粗糙度对加工精度的影响表面粗糙度对加工精度有直接影响。

当工件表面粗糙度较大时,切削刀具与工件表面的接触面积会增大,切削力也会增加。

这样容易导致加工误差和形状偏差的增大,从而降低加工精度。

2. 加工精度对表面粗糙度的影响加工精度对表面粗糙度也有一定的影响。

在加工过程中,加工工艺参数的选择和控制是保证加工精度的关键。

如果加工参数选择不当,容易造成工件表面过度磨损或过度切削,从而导致表面粗糙度的增加。

三、改善加工精度与表面粗糙度的方法1. 选择合适的加工工艺与刀具在机械加工过程中,选择合适的加工工艺和刀具是提高加工精度和控制表面粗糙度的关键。

不同材料和工件形状适合不同的加工工艺和刀具。

机械加工表面粗糙度及其影响因素

机械加工表面粗糙度及其影响因素

题目机械加工表面粗糙度及其影响因素摘要:在现代工业生产中,许多制件的表面被加工而具有特定的技术性能特征,诸如:制件表面的耐磨性、密封性、配合性质、传热性、导电性以及对光线和声波的反射性,液体和气体在壁面的流动性、腐蚀性,薄膜、集成电路元件以及人造器官的表面性能,测量仪器和机床的精度、可靠性、振动和噪声等等功能,而这些技术性能的评价常常依赖于制件表面特征的状况,也就是与表面的几何结构特征有密切联系。

因此,控制加工表面质量的核心问题在于它的使用功能,应该根据各类制件自身的特点规定能满足其使用要求的表面特征参量。

不难看出,对特定的加工表面,我们总希望用最(或比较)恰当的表面特征参数去评价它,以期达到预期的功能要求;同时我们希望参数本身应该稳定,能够反映表面本质的特征,不受评定基准及仪器分辨率的影响,减少因对随机过程进行测量而带来参数示值误差。

关键词:机械加工表面粗糙度表面质量物理因素Abstract: In modern industrial production in many parts of the surface processing technology and with specific performance characteristics,Such as: parts of the surface wear resistance, tightness, with nature, heat, electrical conductivity and the reflection of light and sound waves, liquids and gases in the wall of liquidity, corrosive, film, integrated circuit components and man-made Organ of the surface, measuring instruments and machine tool accuracy, reliability, vibration and noise, etc. functions, These technical performance evaluation is often dependent on the surface characteristics of the situation in parts, that is, the geometric structure and surface characteristics are closely linked. Therefore, the surface quality control process is the core issue of the use of its functions, should be based on various parts of the characteristics of its provisions to meet the requirements of the use of surface features of the Senate. It is easy to see, the processing of specific surface, we hope to use the most (or comparison) appropriate to the surface characteristics of parameters to assess it, with a view to achieve the desired functional requirements at the same time we hope that the parameters of their own should be stable, to reflect the nature of the surface characteristics, Not to inform the baseline and equipment resolution of the impact and reduce the random process of measuring parameters brought indication error.Keywords:Machining surface roughness surface quality physical factors目录1.绪论 (1)1.1 机械加工表面粗糙度历史 (1)1.2表面粗糙度标准中的基本参数定义 (1)2. 精密加工表面性能 (3)2.1精密加工表面性能评价的内容及其迫切性 (3)3.机械加工表面质量 (3)3.1 机械加工表面定义 (3)3.2 表面粗糙度产生的原因 (3)3.3机械加工表面质量对机械使用性能的影响 (6)3.4 影响粗糙度的因素 (7)3.5 表面粗糙度理论的新进展 (9)3. 6研究加工精度的方法 (13)4.结论语 (14)参考文献 (15)致谢 (16)1. 绪论1.1机械加工表面粗糙度历史表面粗糙度标准的提出和发展与工业生产技术的发展密切相关,它经历了由定性评定到定量评定两个阶段。

机械零件加工存在的问题及对策

机械零件加工存在的问题及对策

机械零件加工存在的问题及对策
随着工业化的发展,机械零件作为机械设备的重要组成部分,其加工质量直接影响着整个设备的性能和使用寿命。

在机械零件加工过程中,经常会出现一些问题,例如加工精度不高、表面粗糙度较大、加工效率低下等,这些问题不仅影响了零件的质量,还增加了生产成本和时间成本。

针对机械零件加工存在的问题,急需采取相应的对策来解决,以提高加工质量和效率。

一、加工精度不高
在机械零件加工过程中,加工精度不高是一个比较常见的问题。

这主要是由于加工设备的精度不高、刀具磨损严重、加工过程中受到振动等因素影响造成的。

对此,可以采取以下对策来解决:
1. 选用高精度的加工设备和刀具,确保加工精度;
2. 加强设备维护保养,及时更换磨损严重的刀具;
3. 采取减少振动的措施,例如增加刚性支撑、改善加工环境等。

二、表面粗糙度较大
1. 适当降低加工速度,提高切削质量;
2. 选择合适的切削液,并及时更换;
3. 定期检查和更换磨损严重的刀具,保持刀具的良好状态。

三、加工效率低下
1. 优化加工工艺,合理安排加工顺序,提高生产效率;
2. 及时更换老化的加工设备,提高生产效率;
3. 加强操作员的培训和技术指导,提高操作技术水平。

四、设备故障频发
设备故障频发也是机械零件加工中的常见问题。

造成设备故障频发的原因主要有设备老化、设备维护不到位、工作环境不清洁等。

对此,可以采取以下对策来解决:
1. 及时更换老化的设备,提高设备可靠性;
2. 加强设备的维护保养工作,确保设备的良好状态;
3. 保持工作环境的清洁整洁,减少设备故障发生的概率。

机械制造中的机械加工表面粗糙度工作原理

机械制造中的机械加工表面粗糙度工作原理

机械制造中的机械加工表面粗糙度工作原理机械加工是指通过削、切、磨等工艺将工件原有形状进行改变以满足一定尺寸、形状和粗糙度要求的加工方法。

在机械制造过程中,机械加工表面粗糙度的控制是十分重要的,它直接影响到零件的功能和使用寿命。

本文将介绍机械加工表面粗糙度的工作原理。

一、表面粗糙度的概念表面粗糙度是指工件表面上凹凸不平的程度,通常用Ra(平均粗糙度)来表示。

在机械加工中,我们常常要求工件表面光洁度高、粗糙度小,以确保零件的密封性、运动性和装配性能。

二、机械加工表面粗糙度的影响因素机械加工表面粗糙度受到多种因素的影响,主要包括以下几个方面:1.切削参数:切削速度、进给量、切削深度等切削参数直接影响到工件表面的质量。

一般来说,切削速度越大、进给量越小、切削深度越小,工件表面的粗糙度就越小。

2.切削工具状况:切削工具的磨损情况对工件表面质量有重要影响。

切削工具磨损过度会导致切削力增大、表面粗糙度加大。

所以,及时更换和修磨切削工具能够有效控制表面粗糙度。

3.工件材料:工件材料的硬度、韧性等性质会影响机械加工的精度和表面质量。

例如,硬度较高的材料可能导致切削刀具的磨损,从而影响表面的粗糙度。

4.切削方式:不同的切削方式,如车削、铣削、磨削等,对工件表面粗糙度的影响也有所不同。

三、机械加工表面粗糙度的控制方法为了能够控制机械加工表面的粗糙度,在实际操作中可以采取以下措施:1.选择合适的工艺参数:根据工件材料、形状和要求,合理选择切削速度、进给量、切削深度等参数,以获得较小的粗糙度。

2.使用高质量的切削工具:选择具有良好刚性和耐磨性的切削工具,并保持其锋利度,以便实现更好的切削效果。

3.优化切削方式:根据工件的特点,选择合适的切削方式。

有时候,可以采用一些先进的切削方式,如超声波切削、电火花加工等,以改善表面粗糙度。

4.后续加工工艺:有时候,机械加工的表面粗糙度无法满足要求,可以考虑通过后续加工工艺来改善。

例如,研磨、抛光等方法可以使工件表面更加光滑。

机械制造中的工件表面质量与粗糙度的控制

机械制造中的工件表面质量与粗糙度的控制

机械制造中的工件表面质量与粗糙度的控制在机械制造过程中,工件的表面质量以及粗糙度的控制是非常重要的。

一个优质的工件表面可以提高产品的性能、延长使用寿命,并且对于某些特殊应用而言,还可以影响产品的功能。

本文将探讨机械制造中如何有效控制工件的表面质量与粗糙度。

一、表面质量的定义与重要性工件的表面质量是指工件表面所呈现出的物理特征,主要包括平整度、光洁度、无缺陷等。

表面质量的好坏直接影响到工件的性能和质量。

1.1 平整度平整度是指工件表面的平整程度,包括平面度、直线度、圆度等指标。

平整度的要求取决于具体的应用场景,通常要求表面平整度高,以保证工件在装配时的精度和稳定性。

1.2 光洁度光洁度是指工件表面的光亮程度,主要由表面的残余油脂、氧化物、氧膜等决定。

在很多应用场景中,如光学仪器、半导体制造等,要求工件表面光洁度高,以确保光学系统的透射和反射性能。

1.3 无缺陷无缺陷是指工件表面不应有裂纹、气泡、疤痕等缺陷。

这些缺陷会降低工件的强度、密封性和耐磨性能。

及早发现和修复缺陷是确保工件表面质量的重要环节。

二、粗糙度的定义与评价工件表面的粗糙度是指表面上的微小不规则形态,包括起伏高度、波动量等指标。

粗糙度的评价常常依据国际标准ISO 4287进行,通过测量和分析,得到粗糙度指标。

2.1 粗糙度参数常用的粗糙度参数有Ra、Rz、Rmax等,它们分别代表不同种类的表面起伏指标。

Ra是平均粗糙度,Rz是有效粗糙度,Rmax是最大峰值高度。

通过选择合适的评价参数,可以更准确地描述工件表面的粗糙状况。

2.2 粗糙度的影响粗糙度对工件性能和功能有很大的影响。

例如,在润滑剂润滑下,较低的粗糙度可以减小接触阻力和摩擦系数,从而提高工件的运动效率。

而对于密封件来说,粗糙度过大会导致泄漏,影响密封性能。

三、控制工件表面质量与粗糙度的方法为了保证工件表面的质量和粗糙度符合要求,可以采取以下几种方法。

3.1 材料选择选择适合的材料是控制表面质量与粗糙度的基础。

表面粗糙度对机械零件使用性能的影响分析

表面粗糙度对机械零件使用性能的影响分析

表面粗糙度对机械零件使用性能的影响分析摘要:随着生产制造业的快速发展,人们对机械的功能及精密程度要求更高,决定机械精密程度的就是组成机械的各个零件,而零件的表面粗糙程度就决定了零件的使用性能了。

零件在进行机械加工后,表面的粗糙程度不同,这就使零件的寿命大大降低了。

本文主要研究分析了机械零件的表面粗糙程度对零件使用性能的影响,从而给出相对应的措施来提升零件使用性能,提高使用寿命。

关键词:粗糙度;机械零件;性能引言机械零件在生产过程中,因表面有细微的峰谷间距,从而机械零件表面就会有一定的的粗糙度。

当粗糙度较低时,表面就会很光滑;当粗糙度较高时,表面就会比较粗糙。

因实际条件无法满足理论的要求,所以零件表面的粗糙程度是或多或少都存在的。

所以,在机械加工零件的时候,我们要确定不同零件的使用场景和现实状况来确定它们的表面粗糙度,提升使用寿命。

一、机械零件热加工处理过程中对于粗糙度的影响热处理包括淬火和渗氮这两种方式,是零件生产工艺中不可或缺的一步。

它不但影响着零件的使用性能,还影响着零件的利用率。

淬火主要包括激光感应淬火、感应加热淬火、火焰加热淬火三种方式,在进行该工艺处理前,首先要检查机械零件表面是否平整,是否有裂纹等瑕疵,同时机械零件的粗糙度也需要设定一个合理的区间。

如果设定的不合理,在该工艺过程中,机械零件的表面会形成介质气模,在机械零件表面产生巨大的温度差,从而导致零件变形严重,甚至产生较大或较多裂痕。

在进行渗氮工艺过程中,如果机械零件的表面粗糙度过高,就会导致多生产的机械零件的渗氮层分布不均匀,从而出现低质量的零件,这些零件就特别容易出现腐蚀等情况,使用寿命低下。

1.机械零件配合中针对表面粗糙度所造成的影响间隙配合、过盈配合以及过度配合这三种配合方式会在机械零件相互作用的过程进行工作,从配合方式上可以判断配合性质。

间隙配合时,机械零件的表面一般粗糙度较大,在配合工作中机械零件的磨损就会较严重,导致机械零件间的空隙不断变大,彼此之间的配合效率逐渐变低。

机械加工表面粗糙度解释及测量

机械加工表面粗糙度解释及测量

較低的光潔度對于盡快加工零件和盡量減 少輔助工作量有明顯的經濟效益。何況 在某些用途中﹐一定的粗糙性可以提高 零件的功能﹐有些零件甚至明確規定了 最大和最小粗糙度的值。舉例來說﹐具 有一定粗糙度的表面常常可以增加漆層 或其它涂敷層的黏附性。
有些多功能零件要求很復雜的表面﹐才能 最好地發揮作用。比如發動機的汽缸內 壁必須足夠光滑﹐以便為活塞環提供良 好的密封表面﹐利于壓縮﹐並防止漏氣 。同時﹐表面上還必須具有尺寸﹑數量 和分布都合適的凹點﹐為的是保持潤滑 油。
Ry(ISO,JIS)
全粗糙度高度(最大高度)---Ry(ISO,JIS); Ry=(Peakmax-Valleymin)sampling
length
Ry(DIN)
全粗糙度高度(最大高度)--Ry(DIN); 在各取樣長度內, 求出各Zi, 而在各 Zi中最大值稱為Ry(DIN)=Rmax;
•Rmax對零件表面的劃傷﹑毛刺之類的缺 陷非常敏感﹐很適合于檢驗這樣的狀態 。然而﹐由于生產過程中的個別劃痕或 毛刺往往不具有代表性﹐所以Rmax不適 于監控工序的穩定性
.(Rmax)
Rq
粗糙度幾何(平方)平均值 (Root mean square roughness, Rq)
下圖所示, Rq=(1/N Σyi2)1/2
Rt
最大高度---Rt, 由全體評價長度算出, Rp 和Rv之和. Rt=(PeakmaxValleymin)assessment length
b. Shoe/Skid VS Skidless type stylus 之用法不同: 如圖所示
Shoe/Skid type:滑動器半徑比波峰間隔 (Sm)大很多,使其運動幾乎成一直線。 若Sm過大則可用Shoe來支撐。優點易 於歸零.

机械零件加工存在的问题及对策

机械零件加工存在的问题及对策

机械零件加工存在的问题及对策机械零件加工是制造业中非常重要的一环,它直接关系到产品的质量和性能。

在实际的生产过程中,机械零件加工存在着许多问题,严重影响了生产效率和产品质量。

本文将就机械零件加工存在的问题进行分析,并提出相应的对策,以期能够改善机械零件加工的质量和效率。

一、存在的问题:1. 加工精度不高。

在机械零件加工中,由于刀具磨损、机床精度、夹紧不牢等原因,导致加工精度不高,无法满足产品的要求。

2. 加工过程中产生振动。

振动会导致加工表面质量下降,对零件的几何形状和尺寸产生影响,严重时还会导致机床的故障。

3. 零件表面粗糙度大。

由于加工条件控制不当、刀具磨损、切削速度过快或过慢等原因,导致零件表面粗糙度大,无法满足产品的要求。

4. 零件变形严重。

在机械零件加工过程中,由于工件材料本身的内应力、切削加热和切削力的作用,会导致零件变形严重,严重影响了产品的装配和使用。

5. 加工效率低。

传统的机械零件加工方式中,操作人员需要进行大量的人工干预,加工效率低下,并且易出现误操作,导致成本增加。

二、对策:1. 提高工艺精度。

通过优化加工工艺参数、选择合适的刀具和工艺装备等手段,提高加工精度,确保零件的尺寸和形位精度满足产品的要求。

2. 加强机床刚性。

采用高刚性的机床和加工中心,减小加工过程中出现的振动,提高加工质量和效率。

3. 优化切削工艺。

合理选择切削速度、进给量和切削深度,确保切削质量,降低零件表面粗糙度,提高加工质量。

4. 控制工件变形。

通过减小切削温度、减小切削力、进行预应力、提高材料的热处理质量等手段,有效控制工件的变形。

5. 自动化生产。

采用数控机床和自动化加工装备,实现加工过程的自动化、智能化,提高加工效率,降低成本,减少人为误操作。

三、结语机械零件加工是制造业中不可或缺的一环,其加工质量和效率直接关系到产品的质量和生产成本。

在实际的生产过程中,机械零件加工存在着许多问题,如加工精度不高、加工过程中产生振动、零件表面粗糙度大、零件变形严重和加工效率低等。

机械零件表面质量影响粗糙度的原因

机械零件表面质量影响粗糙度的原因

机械零件加工质量中,表面质量是衡量一个机械零件是否合格的重要指标之一。

而表面粗糙度则是衡量表面质量的指标。

粗糙度越高,表面质量越差,越容易造成机械设备的损坏。

那么,在机械零件的加工生产中,主要影响粗糙度的原因都有哪些呢?1、切削加工影响表面粗糙度因素在进行切削加工的时候,表面会留下切削层残留面积,其形状是刀具几何形状的的反应,想要减小残留面积的高度,可以减小进给量、主偏角、副偏角并增大刀尖圆弧半径。

除此之外,适当让刀具的前角增大,可以让塑性变形的程度减少,同时配合使用润滑液、提高刀具刃磨质量,还有助于减小切削时的塑性变形并抑制刀瘤、鳞刺的生成,对于减小表面粗糙度还是有一定帮助的。

2、工件材料的性质对塑性材料进行加工时,刀具会对金属产生挤压作用,出现塑性变形现象,在加上刀具会让切屑与工件产生撕裂作用,让金属的表面粗糙度变大,工件材料韧性越好,金属的塑性变形越大,加工表面就会越粗糙。

对脆性材料进行加工时,会产生碎粒切屑,这会在金属加工表面造成污染,留下麻点,让金属的表面粗糙度变大。

3、磨削加工影响表面粗糙度的因素磨削加工表面粗糙度的形成过程与切削加工表面粗糙度形成过程一样。

磨削加工表面粗糙度的形成,也是因为几何因素与表面金属的塑性变形来决定的。

影响磨削表面粗糙的主要因素有:(1)磨削加工中砂轮的粒度与硬度砂轮硬度的选择要根据产品表面精度要求来决定,应让磨粒钝化后及时脱落,露出新的磨粒后继续磨削。

砂轮粒度越细,单位面积上磨粒数越多。

(2)砂轮的修整由于磨削加工中,砂轮在磨削过程中会出现钝化,所以对砂轮应该进行及时修整,确保砂轮的微刃性和等高性。

(3)工件材质工件材料的硬度、塑性、韧性和导热性,对于表面粗糙度都会有一定的影响,工件硬度高,磨粒易钝化。

工件硬度低,砂轮容易阻塞,这些都会造成表面粗糙度增高。

机械加工精度和表面质量

机械加工精度和表面质量
进一步分析:残余应力对零件使用性能的影响大小取决于它 的方向和大小。按性质来分,可以分为拉应力和压应力。
(3)任务提问:什么是金相组织的变化?
答:表面层因切削加工时切削热引起金相组织的变化。
同学们回顾实习课堂的操作,由热 而引起组织变化的现象有哪些?
烧刀现象。银白色转 化为黑色.
学习小结
提高零件表面质量的措施有哪些
3
塑性变形是永久性的变形,不可恢复; 而弹性变形在外界作用力撤消后,可以恢复。
例:同学们喜欢看的武打片中的宝 剑是剑匠千锤百炼而成的,而在锤 炼的过程中,剑面受力而产生塑性 变形,从而提高其硬度,成为一把 好剑。
(2)任务提问:什么是残余应力?
答:表面层因机械加工产生强烈的塑性变形和金相组织的可能 变化而产生的内应力。
教学重点
加工精度及表面质量的基本概念; 表面质量对零件使用性能的影响; 机械加工精度及表面质量的影响因素和改善的措施
新课学习
一、基本概念

加工精度



表面质量
1、加工精度
(1)含义
(符合程度)加工精度
零件加工后的几何参数
与理想零件几何参数
(偏离程度)加工误差
加工误差大,
思考?加工误差对加工精度有何影响?
Ra小
波纹度小
冷作硬化的 程度低
残余压应力 变化小
金相组织 变化小
二、表面质量对零件使用性能的影响
1、 对零件耐磨性的影响 —— 影响因素:材料、热处理、Ra
举图对比分析Ra对零件耐磨性的影响:
分析:两面接触,实际 上是表面上凸锋相互接 触,受力面积小,磨损 加剧
Ra值是否越 小越好?
Ra并不是越小越好。Ra=0 时,即为理想时,接触面 没有凹坑存储润滑油,油 被完全挤出,两接触面间

机械零件技术中几何精度设计的探讨

机械零件技术中几何精度设计的探讨

机械零件技术中几何精度设计的探讨摘要一台机器性能的优势,首先取决于其零件的设计与制造精度。

要保证机械零件的精度,必须对其提出几何精度要求。

该文就机械零件设计过程中几何精度设计的一般原则和方法作了一些探讨。

着重指出形位公差与尺寸公差、表面粗糙度之间的关系,通过其间关系可以比较正确、合理地进行零件的几何精度设计。

关键词几何精度设计;尺寸公差;形位公差;表面粗糙度前言几何精度就是零、部件答应的几何误差,也称为几何公差,简称公差。

几何精度是根据产品的使用功能要求和加工工艺确定的。

几何精度设计知识根据产品的使用功能要求和制造条件确定机械零部件几何要素答应的加工和装配误差。

一般来说,零件上任何一个几何要素的误差都会以不同的方式影响其功能。

例如,曲柄-连杆-滑块机构中的连杆长度尺寸L的误差,将导致滑块的位置和位移误差,从而影响使用功能。

由此可见,对零件每个要素的各类误差都应给出精度要求。

正确合理地给出零件几何要素的公差是工程技术人员的重要任务。

几何精度设计在机械产品的设计过程中具有十分重要的意义。

下面就其中主要问题进行探讨。

零件的几何精度包括:1)零件的尺寸精度;2)外形和位置精度;3)表面精度等。

几何精度数值选择得是否合理,直接关系到零件的使用要求和加工成本。

几何精度设计的方法主要有:类比法、计算法和试验法三种。

类比法(亦称经验法)就是与经过实际使用证实合理的类似产品上的相应要素相比较,确定所设计零件几何要素的精度。

采用类比法进行精度设计时,必须正确选择类比产品,分析它与所设计产品在使用条件和功能要求等方面的异同,并考虑到实际生产条件、制造技术的发展、市场供给信息等诸多因素。

采用类比法进行精度设计的基础是资料的收集、分析与整理。

类比法是大多数零件要素精度设计所采用的方法。

计算法就是根据由某种理论建立起来的功能要求与几何要素精度之间的定量关系,计算确定零件要素的精度。

例如,根据液体润滑理论计算确定滑动轴承的最小间隙、根据弹性变形理论计算确定圆柱结合的过盈、根据机构精度理论和概率设计方法计算确定传动系统中各传动件的精度等等。

机械加工精度

机械加工精度
机床工作时,主轴系统的温度将升高,使主轴轴向膨胀 和径向位移。由于轴承径向热变形不相等,前后轴承的热变 形也不相同,在装卸工件和进行测量时主轴必须停车而使温 度发生变化,这些都会引起主轴回转轴线的位置变化和漂移 而影响主轴回转精度。
27
7、提高主轴回转精度的措施 1)提高主轴部件的制造精度
首先应提高轴承的回转精度.其次是提高箱体支承孔 、主轴轴颈和与轴承相配合有关表而的加工精度。此外, 还可在装配时先测出滚动轴承及主轴锥孔的径向圆跳动, 然后调节径向圆跳动的方位,使误差相互补偿或抵消,以 减少轴承误差对主轴回转精度的影响。 2)对滚动轴承进行预紧,消除间隙
20
★ 主轴径向圆跳动对加工精度的影响(车外圆)
仍考虑最简单的情况,主轴回转中心在y方向上作简谐 直线运动,其频率与主轴转速相同,幅值为2e。则刀尖 运动轨迹接近于正圆。
➢ 结论:主轴径向跳动对 车外圆时,基本不影响加 工表面的加工误差
3 e
径向跳动对车外圆精度影响
21
1
22
★ 主轴端面圆跳动对加工精度的影响 ➢被加工端面不平,与圆柱面不垂直; ➢加工螺纹时,产生螺距周期性误差。
第三章 机械加工精度及其控制
加工质量
加工精度
尺寸精度 形状精度 位置精度
(通常形状误差限制在位置公差内,位 置公差限制在尺寸公差内)
表面质量
表面几何形状精度
表面粗糙度 波度 纹理方向 伤痕(划痕、裂纹、砂眼等)
表面缺陷层
表层加工硬化 表层金相组织变化 表层残余应力
加工质量包含的内容
1
§3-1 概述
两者从不同角度来评定加工零件的几何参数。加工精 度的高低是由加工误差的小大来表示的,保证和提高加工精 度问题,实际上是限制和降低加工误差问题。

机械加工表面粗糙度

机械加工表面粗糙度

机械加工表面粗糙度表面粗糙度,是指加工表面具有的较小间距和微小峰谷不平度。

其两波峰或两波谷之间的距离(波距)很小(在1mm以下),用肉眼是难以区别的,因此它属于微观几何形状误差。

表面粗糙度越小,则表面越光滑。

表面粗糙度的大小,对机械零件的使用性能有很大的影响,粗糙度表示方式零件表面经过加工后,看起来很光滑,经放大观察却凹凸不平。

表面粗糙度,是指加工后的零件表面上具有的较小间距和微小峰谷所组成的微观几何形状特征,一般是由所采取的加工方法和(或)其他因素形成的。

零件表面的功用不同,所需的表面粗糙度参数值也不一样。

零件图上要标注表面粗糙度代(符)号,用以说明该表面完工后须达到的表面特性。

表面粗糙度高度参数有3种:1.轮廓算术平均偏差Ra在取样长度内,沿测量方向(Y方向)的轮廓线上的点与基准线之间距离绝对值的算术平均值。

2.微观不平度十点高度Rz指在取样长度内5个最大轮廓峰高的平均值和5个最大轮廓谷深的平均值之和。

3.轮廓最大高度Ry在取样长度内,轮廓最高峰顶线和最低谷底线之间的距离。

目前,一般机械制造工业中主要选用Ra。

Ra值按下列公式计算:Ra=1/l ∫t0|Y(x)|dx或近似为Ra= 1/n ∑|Yi|。

式中,Y为轮廓线上的点到基准线(中线)之间的距离;ι为粗糙度多用于表征钢板,因为钢板涂覆前必须要有一定得粗糙度,否则油漆的咬合力不足,容易脱落。

机械加工表面粗糙度机械加工表面质量,是指零件在机械加工后被加工面的微观不平度,也叫粗糙度,以Ra\Rz\Ry三种代号加数字来表示,机械图纸中都会有相应的表面质量要求,一般是工件表面粗糙度Ra<0.8um的表面时称:镜面。

其加工后的表面质量直接影响被加工件的物理、化学及力学性能。

产品的工作性能、可靠性、寿命在很大程度上取决于主要零件的表面质量。

一般而言,重要或关键零件的表面质量要求都比普通零件要高。

这是因为表面质量好的零件会在很大程度上提高其耐磨性、耐蚀性和抗疲劳破损能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论机械零件的加工精度与表面粗糙度摘要:机械产品的性能和使用寿命与组成产品的零件加工质量密切相关,零件的加工质量是保证产品质量基础,衡量零件加工质量的主要指标是加工精度和表面粗糙度。

零件的表面质量是机械零件加工质量的重要内容之一,机械零件的表面质量对零件使用时的耐磨性、配合精度、疲劳强度、抗腐蚀性等有很大的影响,提高加工表面的质量,对保证零件的使用性能、提高零件及其机器的寿命具有重要的意义。

本文对机械加工表面质量进行了分析,指出了影响机械加工表面质量的因素,并提出了提高机械加工表面质量的措施,对工程实践有一定的指导作用。

关键词:机械零件表面质量机械加工加工精度表面粗糙度机械零件的加工质量,除加工精度外,表面质量也是极其重要的一个方面。

任何机械加工方法所获得的已加工表面都不可能达到理想状态,总会存在一定程度的微观几何形状误差、划痕、裂纹、表面金相组织变化和表面残余应力等缺陷,这些缺陷会影响零件的使用性能、寿命、可靠性。

因此,机械加工既要保证零件的尺寸、形状和位置精度,又要保证机械加工表面质量。

机械加工表面质量,是指零件在机械加工后被加工面的微观不平度,也叫粗糙度,产品的工作性能、可靠性、寿命在很大程度上取决于主要零件的表面质量。

研究机械加工精度与表面粗糙度的关系,其目的就是为了掌握机械加工中各个工艺对加工表面质量影响的规律,以便利用这些规律来控制加工过程,最终达到改善产品质量、增强产品使用性能的目的。

1、影响机械零件质量的两个重要因素机械零件的机加工质量包含尺寸精度和表面质量,机械零件的表面质量又包含加工表面的几何特点和表面层的物理化学性能两个方面的内容。

1.1 加工精度加工精度是指零件经过加工后的尺寸、几何形状以及各表面的相互位置等参数的实际值与设计理想值相符合的程度,而它们之间的偏离程度就是加工误差,加工误差的大小即反映了加工精度的高低。

加工精度是衡量零件加工质量的主要指标,在机械加工过程中,会有很多因素影响工件的加工质量,如何使工件的加工达到质量要求,以及如何减少各种因素对加工精度的影响,就成为加工前必须考虑的问题。

为提高加工精度,要对影响机械加工精度的因素、产生加工误差的各项原始误差逐一进行分析,提高零件加工所使用机床的几何精度,提高夹具、量具及刀具本身的精度,控制工艺系统受力、受热变形、刀具磨损、测量误差等。

1.2 表面粗糙度表面粗糙度是零件经过机械加工后表面上具有的由较小波峰和峰谷所组成的微观几何形状特点,是由机械加工中切削刀具的运动轨迹形成的。

零件表面几何特点主要指其表面粗糙度、表面波度、表面加工纹理和加工的伤痕。

零件表面粗糙度值的大小,直接影响到两个相互配合表面的配合质量。

两个零件的配合关系有间隙配合、过渡配合和过盈配合三种。

如果两个零件是间隙配合,表面粗糙度值过大,零件的就容易磨损,磨损量加大后必定使两零件的配合间隙增大,显然降低了零件的配合精度;如果两个零件是过盈配合,表面粗糙度值过大,则装配时压入配合表面上的微小波峰被强行挤平,使两零件实际配合得到的过盈量减小,降低了过盈配合表面的结合强度,从而影响到零件联接的可靠性。

零件的表面粗糙度值小,则其运动摩擦系数小,动配合时零件的表面运动灵活性好,工作表面的接触刚度也高,故表面粗糙度值小能够提高零件使用的工作精度。

1.3 零件的加工精度与表面粗糙度的关系机械加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数相符合的程度。

理想的几何参数,对尺寸而言,就是平均尺寸;对表面几何形状而言,就是绝对的圆、圆柱、平面、锥面和直线等;对表面之间的相互位置而言,就是绝对的平行、垂直、同轴、对称等。

零件实际几何参数与理想几何参数的偏离数值称为加工误差。

加工误差的大小反映了加工精度的高低,误差越大加工精度越低,误差越小加工精度越高。

而零件的表面质量是机械加工质量的重要组成部分,表面质量是指机械加工后零件表面层的微观几何结构及表层金属材料性质发生变化的情况。

经机械加工后的零件表面并非理想的光滑表面,它存在着不同程度的粗糙波纹、冷硬、裂纹等表面缺陷,表面粗糙度是微观几何参数的误差。

零件的加工精度与表面粗糙度的关系一般是加工精度要求高,就必须采用一系列高精度的加工方法,而经过高精度的加工后零件表面粗糙度一定低;反之,表面粗糙度低,零件必须采用一系列降低表面粗糙度的加工方法,而低表面粗糙度的加工方法则不一定是高精度的加工方法。

要保证被加工零件的精度和表面粗糙度,机床自身必须具备一定的几何精度、运动精度、传动精度和动态精度。

2、机加工影响表面粗糙度的因素表面粗糙度是构成加工表面几何特征的基本单元,影响表面粗糙度的因素可以分为三类:第一类,与切削刀具及切削用量有关;第二类,与工件材质有关;第三类,与加工条件有关。

用金属切削刀具加工工件表面时,表面粗糙度主要受机械加工工艺因素、几何因素和物理因素三个方面的作用和影响。

2.1 工艺因素切削加工从工艺的角度考虑其对工件表面粗糙度的影响,主要有与切削刀具有关的因素、与工件材质有关的因素和与加工条件有关因素等。

切削用量与刀具或工件转速、吃刀深度和进给量有关,切削加工时减小进给量、主偏角、副偏角以及增大刀尖圆弧半径,均可减小残留面积的高度。

至于工件材料的性质,韧性愈好,金属的塑性变形愈大,加工表面就愈粗糙。

加工脆性材料时,其切屑呈碎粒状,由于切屑的崩碎而在加工表面留下许多麻点,使表面粗糙。

2.2 几何因素从几何的角度考虑,车工刀具的形状和几何角度,特别是刀尖圆弧半径、主偏角、副偏角和切削用量中的进给量等对表面粗糙度有较大的影响。

几何因素所产生的表面粗糙度主要决定于残留面积高度。

2.3 物理因素从切削过程的物理实质考虑,刀具的刃口圆角及后面的挤压与摩擦使金属材料发生塑性变形,严重恶化了表面粗糙度。

在加工塑性材料而形成带状切屑时,在前刀面上容易形成硬度很高的积屑瘤。

它可以代替前刀面和切削刃进行切削,使刀具的几何角度、背吃刀量发生变化。

3、重加工精度轻表面粗糙度的危害随着工业技术的飞速发展,机器的使用要求越来越高,一些重要零件表面层的任何缺陷,不仅直接影响零件的工作性能,而且还可能引起应力集中、加速零件的失效,这一切都与加工表面质量有很大关系。

机械零件的破坏,一般总是从表面层开始的。

产品的性能,尤其是它的可靠性和耐久性,在很大程度上取决于零件表面层的质量。

零件的磨损、腐蚀和疲劳损坏都是发生在零件的表面,或是从零件表面开始的。

零件的表面粗糙度直接影响到零件的工作性能,尤其是它的可靠性和寿命。

因此,必须改变传统上重加工精度轻表面粗糙度的观念。

当前机械技工的教学存在重加工精度轻粗糙度的现象,大多数技工院校机械类专业实训教学都沿用原技工学校教材,该教材特别强调基本技能的训练,实训教学重视加工精度的内容而忽视表面粗糙度的要求。

大多数学生未能准确评定机械加工零件的表面粗糙度等级,由此培养的技工人才往往忽视零件表面质量缺陷对产品质量的危害。

在机械加工中,零件的加工表面产生微观不平、残余应力等各种缺陷,虽然仅存于零件极薄的表面层中,却严重影响着机械零件的精度、耐磨性、配合性、抗腐蚀性和疲劳强度等,从而进一步影响机械的使用性能和使用寿命。

3.1 零件表面质量对耐磨性的影响零件的耐磨性不仅与材料、润滑条件有关,而且还与零件的表面质量有关。

当两个表面接触时,开始时接触表面实际上是一些凸峰顶部接触,实际接触面积是理论接触面积的一小部分。

在外力的作用下,凸峰接触部分将产生很大的压强,当零件作相对运动时,接触处的部分凸峰就会产生塑性变形被磨掉。

实验证明,表面越粗糙,凸峰处压力越大,磨损加快;表面粗糙度值小,零件接触面积大,耐磨性就好;表面粗糙度与初期磨损量之间存在一个最佳值。

3.2 表面质量对零件疲劳强度的影响在交变载荷作用下,零件表面微观不平、划痕等都会引起应力集中而产生疲劳裂纹造成零件的疲劳破坏。

实验表明,对于承受交变载荷的零件,减小其容易产生应力集中部位(如圆角、沟槽处)的表面粗糙度,可以明显提高零件的疲劳强度。

另外,当表面层残余应力为拉应力时,在拉力作用下,会使表面的裂纹扩大而降低疲劳强度;而残余压应力则可以延缓疲劳裂纹扩展,提高零件疲劳强度。

3.3 零件表面质量对配合性质的影响对于间隙配合,如果表面太粗糙,会使配合表面很快磨损而增大配合间隙,降低配合精度,特别对于液压系统、气压系统的元件,会使泄露量增大,造成机器不能正常工作;对于过盈配合而言,如果表面粗糙度值过大,装配时配合表面的波峰会被挤平,减小了实际过盈量,降低了配合件的连接强度,从而影响了配合的可靠性。

3.4 表面质量对零件抗腐蚀性能的影响当零件在有腐蚀性介质的环境下工作时,腐蚀性介质容易吸附和积聚在粗糙表面的谷处,并通过微细裂纹向内渗透。

实践证明,表面粗糙度越高,零件的腐蚀作用越强烈。

此外,表面残余应力对零件的耐腐蚀性也有较大的影响。

4、提高机械零件表面质量的措施通过前面的分析掌握了影响表面粗糙度的因素之后,我们必须根据需要降低加工表面的粗糙度,改善机械加工的表面质量。

提高加工表面质量的措施主要有:4.1 降低切削加工表面粗糙度(1)车工刀具方面:增大刀尖圆弧半径,减小主偏角及副偏角;使用长度比进给量稍大一些的修光刃;提高刀具刃磨质量,减小刀具前、后到面的粗糙值(抛光至Ra1.25μm以下);采用较大的前角加工塑性大的材料;限制副刀刃上的磨损量;选用细粒的硬质合金切削工具钢,用金刚石或矿物陶瓷刀具加工有色金属,高速钢刀具采用TiN涂层等。

(2)工件方面:切削低碳钢、低合金钢时,对工件进行调质处理;加工中碳钢及中碳合金钢时,若采用较高切削速度,工件应为珠光体组织,若采用较低切削速度,工件应为片状珠光体加细晶粒的铁素体组织;易切削钢中应含有硫、铅等元素;灰铸铁中石墨的颗粒尺寸应小。

(3)切削条件方面:以较高的切削速度切削塑性材料,减小进给量;采用高效切削液;提高机床运动精度,增强工艺系统刚度等。

4.2 选取合理的加工方法主要是采用精密、超精密和光整加工。

选用较小的径向进给量,选用较大的砂轮速度和较小的轴向进给速度,工件速度应该低些,采用细粒度砂轮;精细修整砂轮工作表面,使砂轮上磨粒锋利,也可达到较好的磨削效果,选择适宜的磨削液能获得低粗糙度表面。

4.3 减少加工表面层变形强化和残余应力可提高加工表面质量合理选择刀具的几何形状,采用较大的前角和后角,并在刃磨时尽量减小其切削刃刃口半径;使用刀具时,应合理限制其后刀面的磨损宽度;合理选择切削用量,采用较高的切削速度和较小的进给量;加工时采用有效的切削液等,可减少加工表面层变形强化和残余应力,从而可提高加工表面质量。

5、结语由于机械加工表面对机器零件的使用性能如耐磨性、接触刚度、疲劳强度、配合性质、抗腐蚀性能及精度的稳定性等有很大的影响,因此对机器零件的重要表面应提出一定的表面质量要求。

相关文档
最新文档