专题5.1 统计(精讲精析篇)(原卷版)

合集下载

第22讲 统计—2021-2022学年小升初数学精讲精练专题汇编(知识点精讲+达标检测)

第22讲 统计—2021-2022学年小升初数学精讲精练专题汇编(知识点精讲+达标检测)

提高版(通用)2020-2021学年小升初数学精讲精练专题讲义第22讲统计学问精讲学问点一:统计表1.简洁数据的统计过程:①收集数据:依据实际问题设计简洁的调查表,常用的数据收集方法有调查、试验、测量等。

②整理数据:把收集到的原始数据进行整理。

③描述数据:把整理好的数据呈现出来。

④分析数据:通过观看、比较、计算等方法从数据中发觉并提取信息,进行简洁的推断或猜测,为我们解决问题供应挂念。

2.统计表:把收集到的资料进行数据整理后制成表格,用来分析状况,反映问题,这种表格叫做统计表。

3.统计表分类:单式统计表、复式统计表.只有一个统计项目就用单式统计表,含有两个或两个以上的统计项目就用复式统计表。

学问点二:统计图1.统计图的种类:①条形统计图:单式条形统计图、复式条形统计图②折线统计图:单式折线统计图、复式折线统计图③扇形统计图2. 统计图的类型、意义、特点及作用:重要提示:在绘制统计图时,都要写出标题,写明调查日期或制图日期。

若是复式条形统计图或复式折线统计图,还应有图例3. 统计图的选择:一般来说,假如几个数量是并列的,只要求表示数量的多少,就用条形统计图;假如要表示一个量或几个量的数量增减变化状况和进展变化趋势,就用折线统计图;假如要表示各部分数量与总体数量之间的关系,就用扇形统计图学问点三:平均数1.平均数的意义:平均数是对数据进行计算处理后得到的一个统计量;一组数据之和再除以这组数据的个数,就得到了这组数据的平均数;它表示一组数据的集中趋势或一般水平。

2.常用的数量关系式:平均数=总数量÷总份数总数量=平均数×总份数。

力量提高百分练一、精挑细选(共5题;共5分)1.(1分)(2021·合肥)为了调查某小区居民的用水状况,随机抽取了若干户家庭的月用水量,结果如下表,则关于这若干户家庭的月用水量,下列说法错误的是()。

月用水量(吨) 3 4 5 8户数 2 3 4 1A.平均数是 4.6 B.调查了10户家庭的月用水量C.中位数是4 D.众数是 52.(1分)(2021·苏州)联合国规定每年的6月5日是“世界环境日”,为了协作2021年的“世界环境日”,某校课外活动小组对全校师生开展了以“疼惜环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后,制成了右面统计图。

专题5.1-4轴对称图形及其性质精讲(解析版)

专题5.1-4轴对称图形及其性质精讲(解析版)

B.角平分线的交点为三角形的内心,到各边距离相等,不符合题意;
C.高的交点为垂心,而到各顶点相等的只能是垂直平分线的交点,不符合题意;
D.△ABC 三边垂直平分线的交点上,符合题意.
故选 D.
2.(2020·湖北宜昌)如图,点 E,F,G,Q,H 在一条直线上,且 EF GH ,我们知道按如图所作的直
【答案】1:3 【解析】解:∵DE 垂直平分 AB, ∴AD=BD, ∴S△ADE=S△BDE, ∵∠1=∠2,∠C=∠BDE=90°,BE=BE, ∴△BDE≌△BCE(AAS), ∴S△BDE=S△BCE, ∴S△AED:S△ABC=1:3, 故答案为:1:3. 4.(2020·安徽砀山初二期末)如图,在△ABC 中,AC=5 cm,AB 的垂直平分线交 AC 于点 N,△BCN 的周长是 8 cm,则线段 BC 的长为________ cm.
二、考点点拨与训练
考点 1:轴对称图形的识别 典例:(2020·江苏新沂初三一模)剪纸艺术是我国古老的民间艺术之一,作为一种镂空艺术,它能给人以视 觉上的透空感觉和艺术享受.下列剪纸作品中,是轴对称图形的是( )
A.
B.
C.
D.
【答案】A 【解析】 解:A 选项能够关于一条直线对称,是轴对称图形,故 A 正确; B 选项不是轴对称图形,故 B 错误; C 选项不是轴对称图形,故 C 错误;
D.
【答案】C 【解析】解:A、B、D 中的图形不是轴对称图形, C 中的图形是轴对称图形, 故选:C. 6.(2020·全国初二课时练习)我们理应对我们所得的一切心怀感恩,这是我们强大的基础.少年强则国强, 中国强则中国少年更强,中国强就是因为少年强.为了庆祝祖国生日小强做了以下几幅剪纸作品,其中是轴 对称图形的是( )

统计案例(精讲)(提升版)(原卷版)

统计案例(精讲)(提升版)(原卷版)

8.5 统计案例(精讲)(提升版)思维导图考点一独立性检验【例1】(2022·吉林·梅河口市第五中学高三开学考试)某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了100名学生的问卷成绩(单位:分)进行统计,将数据按照[0,20),[20,40),[40,60),[60,80),[80,100]分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99.5%的把握认为“文科方向”与性别有关?理科方向文科方向总计男40女45考点呈现例题剖析总计 1001人,共抽取4次,记被抽取的4人中“文科方向”的人数为X ,若每次抽取的结果是相互独立的,求X 的分布列和数学期望.参考公式:()()()()22()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.参考临界值:()2P k αχ=0.10 0.05 0.025 0.010 0.005 0.001k2.7063.841 5.024 6.635 7.879 10.828【一隅三反】1.(2022·白山模拟)十三届全国人大四次会议表决通过了关于国民经济和社会发展第十四个五年规划和2035年远景目标纲要的决议,决定批准这个规划纲要,纲要指出:“加强原创性引领性科技攻关”.某企业集中科研骨干,攻克系列“卡脖子”技术,已成功实现离子注入机全谱系产品国产化,包括中束流、大束流、高能、特种应用及第三代半导体等离子注入机,工艺段覆盖至28nm,为我国芯片制造产业链补上重要一环,为全球芯片制造企业提供离子注入机一站式解决方案.此次技术的突破可以说为国产芯片的制造做出了重大贡献.该企业使用新技术对某款芯片进行试生产,在试产初期,生产一件该款芯片有三道工序,每道工序的生产互不影响,这三道工序的次品率分别为118,119,120.附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.()2P K k≥0.0500.0100.0050.001 k 3.841 6.6357.87910.828(①P①100X(2)某手机生产厂商将该款芯片投入到某新款手机上使用,并对部分芯片做了技术改良,推出了两种型号的手机,甲型号手机采用没有改良的芯片,乙型号手机采用改良了的芯片,现对使用这两种型号的手机用户进行回访,就他们对开机速度进行满意度调查.据统计,回访的100名用户中,使用甲型号手机的有30人,其中对开机速度满意的有15人;使用乙型号手机的有70人,其中对开机速度满意的有55人.完成下列22⨯列联表,并判断是否有99.5%的把握认为该项技术改良与用户对开机速度的满意度有关.甲型号乙型号合计满意不满意合计2.(2022·陕西咸阳·三模(理))2022年北京冬奥组委发布的《北京2022年冬奥会和冬残奥会经济遗产报告(2022)》显示,北京冬奥会已签约45家赞助企业,冬奥会赞助成为一项跨度时间较长的营销方式.为了解该45家赞助企业每天销售额与每天线上销售时间之间的相关关系,某平台对45家赞助企业进行跟踪调查,其中每天线上销售时间不少于8小时的企业有20家,余下的企业中,每天的销售额不足30万元的企业占35,统计后得到如下22⨯列联表:销售额不少于30万元销售额不足30万元合计线上销售时间不少于8小时 17 20 线上销售时间不足8小时合计45售时间有关?(2)按销售额在上述赞助企业中采用分层抽样方法抽取5家企业.在销售额不足30万元的企业中抽取时,记“抽到线上销售时间不少于8小时的企业数”为X ,求X 的分布列和数学期望. 附: ()20P K k ≥0.050 0.010 0.001 0k3.841 6.635 10.828参考公式:()()()()2 n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.考点二 线性回归方程【例2-1】(2022·齐齐哈尔模拟)某单位为了解夏季用电量与月份的关系,对本单位2021年5月份到8月份的日平均用电量y (单位:千度)进行了统计分析,得出下表数据:月份(x )5 6 7 8 日平均用电量(y )1.93.4t7.11.7877ˆ.0y x =-t 的值为( )A .5.8B .5.6C .5.4D .5.2【例2-2】(2022·湖南模拟)《中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见》,这是21世纪以来第18个指导“三农”工作的中央一号文件.文件指出,民族要复兴,乡村必振兴.为助力乡村振兴,某电商平台为某地的农副特色产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到如下数据:单价x (元/件) 8 8.2 8.4 8.6 8.8 9 销量y (万件)908483807568附:参考公式:回归方程ˆˆˆybx a =+,其中()()()iii ii 1i 1222iii 1i 1ˆnnx x y y x y nxyb x x xnx ====---==--∑∑∑∑,ˆˆay bx =-. 参考数据:614066i ii x y==∑,621434.2i i x ==∑.(1)(i )根据以上数据,求y 关于x 的线性回归方程;(ii )若该产品成本是7元/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润.(2)为了解该产品的价格是否合理,在试销平台上购买了该产品的顾客中随机抽了400人,阅读“购买后的评价”得知:对价格满意的有300人,基本满意的有50人,不满意的有50人.为进一步了解顾客对该产品价格满意度形成的原因,在购买该产品的顾客中随机抽取4人进行电话回访,记抽取的4人中对价格满意的人数为随机变量X ,求随机变量X 的分布列和数学期望.(视频率为相应事件发生的概率)【一隅三反】1.(2022·安徽三模)对某位同学5次体育测试的成绩(单位:分)进行统计得到如下表格:第x 次 1 2 3 4 5 测试成绩y3940484850根据上表,可得关于的线性回归方程为ˆ3ˆy x a =+,下列结论不正确的是( )A .ˆ36a= B .这5次测试成绩的方差为20.8 C .y 与x 的线性相关系数0r < D .预测第6次体育测试的成绩约为542.(2022·安徽模拟)新冠疫情期间,口罩的消耗量日益增加,某药店出于口罩进货量的考虑,连续9天统计了第i (i 1239)x =,,,,天的口罩的销售量i y (百件),得到的数据如下:99i i i=1i=145171x y ==∑∑,,()99922ii i i i=1i=1i=1312528510953x x y y y ==-=∑∑∑,,. 参考公式:相关系数()()()()iii=122iii=1i=1nnnx x y y r x x y y --=--∑∑∑数据()i i ()i 123x y n =,,,,,,其回归直线ˆˆˆy bx a =+的斜率和截距的最小二乘估计分别为()()()iii i1222i i11ˆˆˆnn i inni i x x y y x y nxybay bx x x xnx ===---===---∑∑∑∑, (1)若用线性回归模型ˆˆˆybx a =+拟合y 与x 之间的关系,求该回归直线的方程; (2)统计学家甲认为用(1)中的线性回归模型(下面简称模型1)进行拟合,不够精确,于是尝试使用非线性模型(下面简称模型2)得到i x 与i y 之间的关系,且模型2的相关系数20989r =.,试通过计算说明模型1,2中,哪一个模型的拟合效果更好. 3.(2022·湖南模拟)《中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见》,这是21世纪以来第18个指导“三农”工作的中央一号文件.文件指出,民族要复兴,乡村必振兴.为助力乡村振兴,某电商平台为某地的农副特色产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到如下数据:单价x (元/件) 8 8.2 8.4 8.6 8.8 9 销量y (万件)908483807568附:参考公式:回归方程ˆˆˆybx a =+,其中()()()iiiii 1i 1222iii 1i 1ˆnnx x y y x y nxyb x x xnx ====---==--∑∑∑∑,ˆˆay bx =-. 参考数据:614066i ii x y==∑,621434.2i i x ==∑.(1)(i )根据以上数据,求y 关于x 的线性回归方程;(ii )若该产品成本是7元/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润.(2)为了解该产品的价格是否合理,在试销平台上购买了该产品的顾客中随机抽了400人,阅读“购买后的评价”得知:对价格满意的有300人,基本满意的有50人,不满意的有50人.为进一步了解顾客对该产品价格满意度形成的原因,在购买该产品的顾客中随机抽取4人进行电话回访,记抽取的4人中对价格满意的人数为随机变量X,求随机变量X的分布列和数学期望.(视频率为相应事件发生的概率)考点三非线性回归方程【例3】(2022·福建·三明一中模拟预测)当前,新一轮科技革命和产业变革蓬勃兴起,以区块链为代表的新一代信息技术迅猛发展,现收集某地近5年区块链企业总数量相关数据,如下表年份20172018201920202021编号x12345企业总数量y(单位:千个) 2.156 3.7278.30524.27936.224(1)根据表中数据判断,y a bx=+与e dxy c=(其中 2.71828e=…为自然对数的底数),哪一个回归方程类型适宜预测未来几年我国区块链企业总数量?(给出结果即可,不必说明理由),并根据你的判断结果求y关于x的回归方程;(2)为了促进公司间的合作与发展,区块链联合总部决定进行一次信息化技术比赛,邀请甲、乙、丙三家区块链公司参赛.比赛规则如下:①每场比赛有两个公司参加,并决出胜负;①每场比赛获胜的公司与未参加此场比赛的公司进行下一场的比赛;①在比赛中,若有一个公司首先获胜两场,则本次比赛结束,该公司获得此次信息化比赛的“优胜公司”.已知在每场比赛中,甲胜乙的概率为12,甲胜丙的概率为13,乙胜丙的概率为35,若首场由甲乙比赛,求甲公司获得“优胜公司”的概率.参考数据:5174.691i i y ==∑,51312.761i i i x y ==∑,5110.980i i z ==∑,5140.457i i i x z ==∑(其中ln z y =). 附:样本(),(1,2,,)i i x y i n =的最小二乘法估计公式为1221ˆni ii nii x y nx ybxnx==-=-∑∑,ˆa y bx=-.【一隅三反】1.(2022·山西二模)数据显示,中国在线直播用户规模及在线直播购物规模近几年都保持高速增长态势,下表为2017-2021年中国在线直播用户规模(单位:亿人),其中2017年-2021年对应的代码依次为1-5.年份代码x 1 2 3 4 5 市场规模y3.984.565.045.866.36参考数据: 5.16y =, 1.68v =,145.10i ii v y==∑,其中i i v x =.参考公式:对于一组数据()11v y ,,()22v y ,,…,()n n v y ,,其回归直线ˆˆˆybv a =+的斜率和截距的最小二乘估计公式分别为1221ˆni ii ni i v y nvybv nv ==-=-∑∑,ˆˆay bv =-. (1)由上表数据可知,可用函数模型ˆˆyx a =拟合y 与x 的关系,请建立y 关于x 的回归方程(ˆa ,ˆb 的值精确到0.01);(2)已知中国在线直播购物用户选择在品牌官方直播间购物的概率为p ,现从中国在线直播购物用户中随机抽取4人,记这4人中选择在品牌官方直播间购物的人数为X ,若()()34P X P X ===,求X 的分布列与期望.2.(2022·广东广州·一模)人们用大数据来描述和定义信息时代产生的海量数据,并利用这些数据处理事务和做出决策,某公司通过大数据收集到该公司销售的某电子产品1月至5月的销售量如下表. 月份x1 2 3 4 5 销售量y (万件)4.95.86.88.310.2该公司为了预测未来几个月的销售量,建立了y 关于x 的回归模型:ˆv . (1)根据所给数据与回归模型,求y 关于x 的回归方程(ˆu 的值精确到0.1);(2)已知该公司的月利润z (单位:万元)与x ,y 的关系为z x x=,根据(1)的结果,问该公司哪一个月的月利润预报值最大? 参考公式:对于一组数据()()()1122,,,,,,n n x y x y x y ,其回归直线ˆˆˆy bx a =+的斜率和截距的最小二乘估计公式分别为()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-.11 / 113.(2022·广东肇庆·二模)下表是我国从2016年到2020年能源消费总量近似值y (单位:千万吨标准煤)的数据表格: 年份2016 2017 2018 2019 2020 年份代号x1 2 3 4 5 能源消费总量近似值y (单位:千万吨标准煤) 442 456 472 488 498以x 为解释变量,y 为预报变量,若以11为回归方程,则相关指数210.9946R ≈,若以22ˆln ya b x =+为回归方程,则相关指数220.9568R ≈. (1)判断11ˆyb x a =+与22ˆln y a b x =+哪一个更适宜作为能源消费总量近似值y 关于年份代号x 的回归方程,并说明理由;(2)根据(1)的判断结果及表中数据,求出y 关于年份代号x 的回归方程.参考数据:512356i i y ==∑,517212i i i x y ==∑.参考公式:回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为:()()()1122211ˆn ni i i ii i n n ii i i x x y y x y nxy b x x x nx ====---==--∑∑∑∑,ˆˆa y bx =-.。

2024中考数学一轮复习核心知识点精讲—统计

2024中考数学一轮复习核心知识点精讲—统计

2024中考数学一轮复习核心知识点精讲—统计1.能通过实际问题,辨认总体、个体、样本等基本概念.2.掌握三种统计图的画法,明确它们的优缺点及相互关系.特别是扇形统计图与条形统计图结合应用.3.会求一组数据的样本平均数、方差、标准差、中位数、众数等.能根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观念。

考点1:全面调查与抽样调查1.有关概念1)全面调查:为一特定目的而对所有考察对象进行的全面调查叫做全面调查.2)抽样调查:为一特定目的而对部分考察对象进行的调查叫做抽样调查.2.调查的选取:当受客观条件限制,无法对所有个体进行全面调查时,往往采用抽样调查.3.抽样调查样本的选取:1)抽样调查的样本要有代表性;2)抽样调查的样本数目要足够大.总体、个体、样本及样本容量总体:所要考察对象的全体叫做总体.个体:总体中的每一个考察对象叫做个体.样本:从总体中抽取的部分个体叫做样本.样本容量:样本中个体的数目叫做样本容量。

考点2:几种常见的统计图表1.条形统计图:条形统计图就是用长方形的高来表示数据的图形.特点:(1)能够显示每组中的具体数据;(2)易于比较数据之间的差别.2.折线统计图:用几条线段连成的折线来表示数据的图形.特点:易于显示数据的变化趋势.3.扇形统计图:用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比的大小,这样的统计图叫扇形统计图.百分比的意义:在扇形统计图中,每部分占总体的百分比等于该部分所对扇形的圆心角的度数与360°的比.扇形的圆心角=360°×百分比.4.频数分布直方图1)每个对象出现的次数叫频数.2)每个对象出现的次数与总次数的比(或者百分比)叫频率,频数和频率都能够反映每个对象出现的频繁程度.3)频数分布表、频数分布直方图和频数折线图都能直观、清楚地反映数据在各个小范围内的分布情况.4)频数分布直方图的绘制步骤:①计算最大值与最小值的差;②决定组距与组数;③确定分点,常使分点比数据多一位小数,并且把第一组的起点稍微减小一点;④列频数分布表;⑤画频数分布直方图:用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图.考点3:众数、中位数、平均数、方差1.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.3.平均数1)平均数:一般地,如果有n 个数1x ,2x ,…,n x ,那么,121()n x x x x n=+++…叫做这n 个数的平均数,x 读作“x 拔”.2)加权平均数:如果n 个数中,1x 出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里12k f f f n +++=…),那么,根据平均数的定义,这n 个数的平均数可以表示为1122k kx f x f x f x n+++=…,这样求得的平均数x叫做加权平均数,其中f 1,f 2,…,f k 叫做权.4.方差.通常用“2s ”表示,即2222121[()()()]n s x x x x x x n=-+-++-….在一组数据1x ,2x ,…,n x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数【题型1:数据的收集方式】【典例1】(2020•贵阳)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A .直接观察B .实验C .调查D .测量【答案】C【解答】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C .【变式1-1】(2020•扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A .①②③B .①③⑤C .②③④D .②④⑤【答案】C【解答】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【题型2:与统计有关的概念】【变式1-2】(2023•辽宁)下列调查中,适宜采用全面调查方式的是()A.了解某种灯泡的使用寿命B.了解一批冷饮的质量是否合格C.了解全国八年级学生的视力情况D.了解某班同学中哪个月份出生的人数最多【答案】D【解答】解:A、了解某种灯泡的使用寿命,适宜采用抽样调查方式,故此选项不符合题意;B、了解一批冷饮的质量是否合格,适宜采用抽样调查方式,故此选项不符合题意;C、了解全国八年级学生的视力情况,适宜采用抽样调查方式,故此选项不符合题意;D、了解某班同学中哪个月份出生的人数最多,适宜采用全面调查方式,故此选项符合题意;故选:D.【变式1-3】(2023•郴州)下列问题适合全面调查的是()A.调查市场上某品牌灯泡的使用寿命B.了解全市人民对湖南省第二届旅发大会的关注情况C.了解郴江河的水质情况D.神舟十六号飞船发射前对飞船仪器设备的检查【答案】D【解答】解:A.调查市场上某品牌灯泡的使用寿命,适合抽样调查,故选项不符合题意;B.了解全市人民对湖南省第二届旅发大会的关注情况,适合抽样调查,故选项不符合题意;C.了解郴江河的水质情况,适合抽样调查,故选项不符合题意;D.神舟十六号飞船发射前对飞船仪器设备的检查,适合全面调查,故选项符合题意;故选:D.【变式1-4】(2023•聊城)4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是()A.1500名师生的国家安全知识掌握情况B.150C.从中抽取的150名师生的国家安全知识掌握情况D.从中抽取的150名师生【答案】C【解答】解:样本是所抽取的150名师生的国家安全知识掌握情况.故选:C.【题型3:用各种统计图描述数据】【典例3】(2023•成都)文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有300人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.【答案】(1)300,补全条形统计图见解答;(2)144°;(3)360名.【解答】解:(1)本次调查的师生共有:60÷20%=300(人),“文明宣传”的人数为:300﹣60﹣120﹣30=90(人),补全条形统计图如下:故答案为:300;(2)在扇形统计图中,“敬老服务”对应的圆心角度数为:360°×=144°;(3)1500×80%×=360(名),答:估计参加“文明宣传”项目的师生人数大约为360名.【变式3-1】(2023•扬州)空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图【答案】C【解答】解:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是扇形统计图.故选:C.【变式3-2】(2022•福建)2021年福建省的环境空气质量达标天数位居全国前列.如图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是()A.F1B.F6C.F7D.F10【答案】D【解答】解:根据题意可得,F10地区环境空气质量综合指数约为1.9,是10个地区中最小值.故选:D.【变式3-3】(2023•大连)2023年5月18日,《大连日报》公布《下一站,去博物馆!》问卷调查结果.本次调查共收回3666份有效问卷,其中将“您去博物馆最喜欢看什么?”这一问题的调查数据制成扇形统计图,如图所示.下列说法错误的是()A.最喜欢看“文物展品”的人数最多B.最喜欢看“文创产品”的人数占被调查人数的14.3%C.最喜欢看“布展设计”的人数超过500人D.统计图中“特效体验及其他”对应的圆心角是23.76°【答案】C【解答】解:由题意得:A.最喜欢看“文物展品”的人数最多,占58.25%,说法正确,故本选项不符合题意;B.最喜欢看“文创产品”的人数占被调查人数的14.3%,说法正确,故本选项不符合题意;C.最喜欢看“布展设计”的人数为:3666×9.82%≈360(人),原说法错误,故本选项符合题意;D.统计图中“特效体验及其他”对应的圆心角是:360°×6.6%=23.76°,说法正确,故本选项不符合题意.故选:C.【题型4:平均数】【典例4】(2023•湖州)某住宅小区6月1日~6月5日每天用水量情况如图所示,那么这5天平均每天的用水量是()A.25立方米B.30立方米C.32立方米D.35立方米【答案】B【解答】解:由折线图可知,该小区五天的用水量分别是:30、40、20、30、30.所以5天的平均用水量为:=30(立方米).故选:B.【变式4-1】(2023•镇江)一组数据:2、3、3、4、a,它们的平均数为3,则a为3.【答案】3.【解答】解:由题意(2+3+3+4+a)=3,∴a=3.故答案为:3.【变式4-2】(2023•长沙)睡眠管理作为“五项管理”中重要的内容之一,也是学校教育重点关注的内容.某老师了解到班上某位学生的5天睡眠时间(单位:小时)如下:10,9,10,8,8,则该学生这5天的平均睡眠时间是9小时.【答案】见试题解答内容【解答】解:(10+9+10+8+8)÷5=9(小时).即该学生这5天的平均睡眠时间是9小时.故答案为:9.【变式4-3】(2023•湘潭)某校组织青年教师教学竞赛活动,包含教学设计和现场教学展示两个方面.其中教学设计占20%,现场展示占80%.某参赛教师的教学设计90分,现场展示95分,则她的最后得分为()A.95分B.94分C.92.5分D.91分【答案】B【解答】解:由题意可得,90×20%+95×80%=94(分),即她的最后得分为94分,故选:B.【题型5:中位数与众数的计算】【典例5】(2023•甘孜州)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示.成绩/米 1.50 1.60 1.65 1.70 1.75人数23541这些运动员成绩的众数和中位数分别为()A.1.65米,1.65米B.1.65米,1.70米C.1.75米,1.65米D.1.50米,1.60米【答案】A【解答】解:由表可知1.65m出现次数最多,有5次,所以众数为1.65m,这15个数据最中间的数据是第8个,即1.65m,所以中位数为1.65m,故选:A.【变式5-1】(2023•达州)一组数据2,3,5,2,4,则这组数据的众数和中位数分别为()A.3和5B.2和5C.2和3D.3和2【答案】C【解答】解:数据从小到大排列为:2,2,3,4,5,所以中位数为3;数据2出现了2次,最多,所以这组数据的众数为2.故选:C.【变式5-2】(2023•黄石)我市某中学开展“经典诵读”比赛活动,810班在此次比赛中的得分分别是:9.1,9.8,9.1,9.2,9.9,9.1,9.9,9.1,这组数据的众数和中位数分别是()A.9.1,9.1B.9.1,9.15C.9.1,9.2D.9.9,9.2【答案】B【解答】解:将数据9.1,9.8,9.1,9.2,9.9,9.1,9.9,9.1按照从小到大排列是:9.1,9.1,9.1,9.1,9.2,9.8,9.9,9.9,则这组数据的众数是9.1,中位数是(9.1+9.2)÷2=9.15,故选:B.【变式5-3】(2023•黑龙江)已知一组数据1,0,﹣3,5,x,2,﹣3的平均数是1,则这组数据的众数是()A.﹣3B.5C.﹣3和5D.1和3【答案】C【解答】解:∵数据1,0,﹣3,5,x,2,﹣3的平均数是1,∴1+0﹣3+5+x+2﹣3=7×1,解得x=5,则这组数据为1,0,﹣3,5,5,2,﹣3,∴这组数据的众数为﹣3和5,故选:C.【变式5-4】(2023•盘锦)为了解全市中学生的视力情况,随机抽取某校50名学生的视力情况作为其中一个样本,整理样本数据如图.则这50名学生视力情况的中位数和众数分别是()A.4.8,4.8B.13,13C.4.7,13D.13,4.8【答案】A【解答】解:把这50名学生视力情况从小到大排列,排在中间的两个数分别是4.8、4.8,故中位数为=4.8;在这50名学生视力情况中,4.8出现的次数最多,故众数为4.8.故选:A.【题型6:方差】【典例6】(2023•广西)甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:S甲2=2.1,S乙2=3.5,S丙2=9,S丁2=0.7,则成绩最稳定的是()A.甲B.乙C.丙D.丁【答案】D【解答】解:∵,,,,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.【变式6-1】(2023•眉山)已知一组数据为2,3,4,5,6,则该组数据的方差为()A.2B.4C.6D.10【答案】A【解答】解:=×(2+3+4+5+6)=4,s2=×[(2﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(6﹣4)2]=2.故选:A.【变式6-2】(2023•朝阳)某校在甲、乙、丙、丁四名同学中选中一人参加今年5月份举办的教育系统文艺展演独唱大赛,经过三轮初赛,他们的平均成绩都是88.5分,方差分别是s甲2=1.5,s乙2=2.6,s丙2=1.7,s丁2=2.8,则这四名同学独唱成绩最稳定的是甲.【答案】甲.【解答】解:∵S甲2=1.5,S乙2=2.6,S丙2=1.7,S丁2=2.8,∴S甲2<S丙2<S乙2<S丁2,∴在平均成绩相等的情况下,这四名同学独唱成绩最稳定的是甲.故答案为:甲.【变式6-3】(2023•凉山州)若一组数据x1,x2,x3,…,x n的方差为2,则数据x1+3,x2+3,x3+3,…,x n+3的方差是()A.2B.5C.6D.11【答案】A【解答】解:设一组数据x1,x2,x3,…,x n的平均数为,则方差为[...+]=2,∴数据x1+3,x2+3,x3+3,…,x n+3的平均数为(+3),方差为[+...+]=[...+]=2.故选:A.一.选择题(共9小题)1.为了了解2015年我县九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩,下列说法正确的是()A.2015年我县九年级学生是总体B.样本容量是1000C.1000名九年级学生是总体的一个样本D.每一名九年级学生是个体【答案】B【解答】解:A、2015年我县九年级学生是总体,说法错误,应为2015年我县九年级学生学业水平考试的数学成绩是总体,故此选项错误;B、样本容量是1000,说法正确,故此选项正确;C、1000名九年级学生是总体的一个样本,说法错误,应为1000名九年级学生学业水平考试的数学成绩是总体的一个样本,故此选项错误;D、每一名九年级学生是个体,说法错误,应为每一名九年级学生学业水平考试的数学成绩是个体,故此选项错误;故选:B.2.从全市5000份数学试卷中随机抽取400份试卷,其中360份成绩合格,那么可以估计全市数学成绩合格的学生大约有多少人?()A.4500B.4000C.3600D.4800【答案】A【解答】解:5000×=4500(人).故选:A.3.小东5分钟内共投篮60次,共进球15个,则小东进球的频率是()A.0.25B.60C.0.26D.15【答案】A【解答】解:∵小东5分钟内共投篮60次,共进球15个,∴小东进球的频率是:=0.25.故选:A.4.学校食堂午餐供应6元、8元和10元三种价格的盒饭,如图是食堂某月销售三种午餐盒饭数量的统计图,则该月食堂销售午餐盒饭的平均价格为()A.7.9元B.8元C.8.9元D.9.2元【答案】C【解答】解:10×60%+8×25%+6×15%=6+2+0.9=8.9(元).故该月食堂销售午餐盒饭的平均价格为8.9元.故选:C.5.下列调查中,最适合采用全面调查(普查)的是()A.调查全国中小学生对第二次太空授课的满意度B.调查全国人民,掌握新冠防疫知识情况C.了解某类型医用口罩的质量D.检查神舟飞船十三号的各零部件【答案】D【解答】解:A.调查全国中小学生对第二次太空授课的满意度,适合抽样调查,故本选项不符合题意;B.调查全国人民,掌握新冠防疫知识情况,适合抽样调查,故本选项不符合题意;C.了解某类型医用口罩的质量,适合抽样调查,故本选项不符合题意;D.检查神舟飞船十三号的各零部件,事件重大,适合全面调查,故本选项符合题意.故选:D.6.一组数据2,1,4,x,6的平均值是4,则x的值为()A.3B.5C.6D.7【答案】D【解答】解:∵一组数据2,1,4,x,6的平均值是4,∴(2+1+4+x+6)÷5=4,解得x=7,故选:D.7.小雨同学参加了学校举办的“抗击疫情,你我同行”主题演讲比赛,她的演讲内容、语言表达和形象风度三项得分分别为80分,90分,85分,若这三项依次按照50%,30%,20%的百分比确定成绩,则她的成绩是()A.82分B.83分C.84分D.85分【答案】C【解答】解:根据题意得:80×50%+90×30%+85×20%=40+27+17=84(分).故选:C.8.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数分别是()A.5、6B.5、5C.6、5D.6、6【答案】A【解答】解:因为5出现的次数最多,所以众数是5,将这组数据按从小到大进行排序后,第9个数和第10个数的平均数即为中位数,所以中位数是,故选:A.9.某鞋店在做市场调查时,为了提高销售量,商家最应关注鞋子型号的()A.众数B.平均数C.中位数D.极差【答案】A【解答】解:由于众数是数据中出现最多的数,故鞋业销售商最关注的是销售量最多的鞋号即众数.故选:A.二.填空题(共6小题)10.要统计某城市2021年1﹣12月的天气变化情况,选择折线统计图较好.【答案】折线.【解答】解:要统计某城市2021年1﹣12月的天气变化情况,选择折线统计图较好.故答案为:折线.11.有60个数据,共分成4组,第1、2组的频数分别为25,19,第4组的频率是0.15,则第3组的频数是7.【答案】7.【解答】解:∵有60个数据,共分成4组,第4组的频率是0.15,∴第4组的频数是:60×0.15=9,故第3组的频数是:60﹣25﹣19﹣9=7.故答案为:7.12.如图是某同学6次数学测验成绩的折线统计图,则该同学这6次成绩的最低分是60分.【答案】60.【解答】解:由折线统计图得,该同学这6次成绩的最低分是60分.故答案为:60.13.跳高训练时,甲、乙两名同学在相同条件下各跳了10次,统计他们的平均成绩都是1.36米,且方差为S2甲=0.4,S2乙=0.3,则成绩较为稳定的是乙(填“甲”或“乙”).【答案】见试题解答内容【解答】解:∵S2甲=0.4,S2乙=0.3,∴S2甲>,S2乙,∴乙同学的成绩较为稳定.故答案为乙.14.某班学生参加学校组织的“垃圾分类”知识竞赛,将学生成绩制成如图所示的频数分布直方图(每组数据包括左端值不包括右端值),其中成绩为“优良”(80分及80分以上)的学生有26人.【答案】见试题解答内容【解答】解:由图象可得,成绩为“优良”(80分及80分以上)的学生有:14+12=26(人),故答案为:26.15.一个容量为100的样本,最大值为142,最小值是60,取组距为10,则可以分为9组.【答案】9.【解答】解:(142﹣60)÷10=8余2,所以分成9组,故答案为:9.三.解答题(共2小题)16.为落实“双减”政策,某校利用课后服务开展了“书香校园”的读书活动,活动中,为了解学生对书籍种类(A:艺术类,B:科技类,C:文学类,D:体育类)的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的学生必须选择而且只能在这四种类型中选择一项)将数据进行整理并绘制成两幅不完整的统计图.(1)这次调查中,一共调查了200名学生;(2)在扇形统计图中,“D”部分所对应的圆心角的度数为54度;并补全条形统计图.(3)若全校有4800名学生,请估计喜欢B(科技类)的学生有多少名?【答案】(1)200名;(2)54°;补全条形统计图见解答;(3)1680名.【解答】解:(1)40÷20%=200(名),故答案为:200;(2)D所占百分比为×100%=15%,扇形统计图中“D”所在扇形的圆心角的度数为:360°×15%=54°,C的人数是:200×30%=60(名),补图如下:故答案为:54;(3)4800×=1680(名),答:估计喜欢B(科技类)的学生有1680名.17.某地旅游部门为了促进本地生态特色城镇和新农村建设,将甲、乙,丙三家民宿的相关资料放到某网络平台上进行推广宣传.该平台邀请部分曾在这三家民宿体验过的游客参与调查,得到了这三家民宿的“综合满意度”评分,评分越高表明游客体验越好,现从这三家民宿“综合满意度”的评分中各随机抽取10个评分数据,并对所得数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两家民宿“综合满意度”评分的折线图:b.丙家民宿“综合满意度”评分:2.6,4.7,4.5,5.0,4.5,4.8,4.5,3.8,4.5,3.1c.甲、乙、丙三家民宿“综合满意度”评分的平均数、中位数:甲乙丙平均数m 4.5 4.2中位数 4.5 4.7n根据以上信息,回答下列问题:(1)表中m的值是 4.5,n的值是 4.5;(2)设甲、乙、丙三家民宿“综合满意度”评分的方差分别是s甲2,s乙2,s丙2,直接写出s甲2,s乙2,s丙2之间的大小关系;(3)根据“综合满意度”的评分情况,该平台打算将甲、乙、丙三家民宿中的一家置顶推荐,你认为该平台会将这三家民宿中的哪家置顶推荐?说明理由(至少从两个方面说明).【答案】(1)4.5,4.5;(2)<;(3)推荐乙,理由:乙的方差最小,数据稳定,平均分比丙高.【解答】解:(1)甲家民宿“综合满意度”评分:3.2,4.2,5.0,4.5,5.0,4.9,4.5,4.2,5.0,4.5,∴m=(3.2+4.2+5.0+4.5+5.0+4.9+4.5+4.2+5.0+4.5)=4.5,丙家民宿“综合满意度”评分:2.6,4.7,4.5,5.0,4.5,4.8,4.5,3.8,4.5,3.1,从小到大排列为:2.6.3.1.3.8.4.5.4.5.4.5.4.5.4.7.4.8.5.∴中位数n==4.5,故答案为:4.5,4.5;(2)根据折线统计图可知,乙的评分数据在4分与5分之间波动,甲的数据在3.2分和5分之间波动,根据丙的数据可以在2.6至5分之间波动,∴<;(3)推荐乙,理由:乙的方差最小,数据稳定,平均分比丙高,答案不唯一,合理即可.一.选择题(共11小题)1.今年3月份某校举行学雷锋志愿服务活动,为了解全校学生一周学雷锋志愿服务的次数,随机抽取了50名学生进行调查,依据调查结果绘制了如图所示的折线统计图,下列关于该校学生一周学雷峰志愿服务次数说法正确的是()A.众数是5B.中位数是7C.中位数是9D.众数是13【答案】A【解答】解:因为5出现了13次,出现的次数最多,所以该校一周学雷峰志愿服务次数的众数是5;该校一周学雷峰志愿服务次数最中间的两个数字都为6,所以该组数据的中位数为6;故选项A正确,符合题意.故选:A.2.如图是甲、乙两名射击运动员10次射击成绩的折线统计图,记甲10次成绩的方差为S,乙10次成绩的方差为S,根据折线图判断下列结论中正确的是()A.S>S B.S<SC.S=S D.无法判断【答案】A【解答】解:由折线统计图得乙运动员的成绩波动较大,所以S>S.故选:A.3.某次数学测试,抽取部分同学的成绩(得分为整数),整理制成如图所示的频数分布直方图,根据图示信息,下列对这次数学测试描述不正确的是()A.本次抽查了50名学生的成绩B.估计测试及格率(60分以上为及格)为92%C.抽取学生的成绩的中位数落在第三组D.抽取学生的成绩的众数是第三组的数【答案】D【解答】解:本次抽取的学生人数为4+10+18+12+6=50(人),则选项A正确,不符合题意;估计测试及格率(6(0分)以上为及格)为,则选项B正确,不符合题意;将抽取学生的成绩从小到大进行排序后,第25个数和第26个数的平均数即为中位数,∵4+10=14<25,4+10+18=32>26,∴抽取学生的成绩的中位数落在第三组,选项C正确,不符合题意;因为不能确定出现次数最多的数在哪一组,所以抽取学生的成绩的众数不一定是第三组的数,选项D不正确,不符合题意;故选:D.4.如图,是九(1)班45名同学每周课外阅读时间的频数分布直方图(每组含前一个边界值,不含后一个边界值),由图可知,每周课外阅读时间不小于6小时的人数是()A.6人B.8人C.14人D.36人【答案】C【解答】解:由频数分布直方图知,每周课外阅读时间不小于6小时的人数是8+6=14(人),故选:C.5.为了解某市九年级男生的身高情况,随机抽取了该市100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x≤160160<x≤170170<x≤180x>180人数1542385根据以上结果,全市约有3万名男生,估计全市男生的身高不高于180cm的人数是()A.28500B.17100C.10800D.1500【答案】A【解答】解:估计全市男生的身高不高于180cm 的人数是30000×=28500(名),故选:A .6.一个不透明的盒子中装有10个小球(白色或黑色),它们除了颜色外其余都相同,每次摸球试验前,都将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中,如表是一组统计数据:摸球次数(n )50100150200250300500摸到白球的次数(m )286078104123152251摸到白球的频率(m /n )0.560.600.520.520.490.510.50由表可以推算出盒子白色小球的个数是()A .4个B .5个C .6个D .7个【答案】B【解答】解:∵通过大量重复试验后发现,摸到白球的频率稳定于0.5,∴10×0.5=5,即白色小球的个数是5个.故选:B .7.一组数据:3,4,4,5,如果再添加一个数据4,那么会发生变化的统计量是()A .平均数B .中位数C .众数D .方差【答案】D【解答】解:原数据的3,4,5,4的平均数为=4,中位数为4,众数为4,方差为×[(3﹣4)2+(4﹣4)2×2+(5﹣4)2]=0.5;新数据3,4,4,4,5的平均数为=4,中位数为4,众数为4,方差为×[(3﹣4)2+(4﹣4)2×3+(5﹣4)2]=0.4;故选:D.8.如图,在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法错误的是()A.众数是90分B.方差是10C.平均数是91分D.中位数是90分【答案】B【解答】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故D正确;∵平均数是(85×2+100×1+90×5+95×2)÷10=91;故C正确;方差是:×(90﹣91)2+(100﹣91)2]=19≠10;故B错误.综上所述,B选项符合题意,故选:B.9.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,C.,D.,【答案】D【解答】解:由平均数定义可知:,因为a1,a2,a3,a4,a5是5个正数,且a1>a2>a3>a4>a5,所以将这组数据按从小到大排列为0,a5,a4,a3,a2,a1,由于有偶数个数,取最中间两个数的平均数,∴其中位数为,故选:D.10.超市里五种型号的书包价格分别为50,60,80,90,110(单位:元),降价促销后,每种型号书包价格都降了10元.降价前的五个数据与降价后的五个数据相比,不变的是()A.众数B.中位数C.方差D.平均数【答案】C【解答】解:降价前书包价格分别为50,60,80,90,110,中位数是80,平均数是=78,方差是×[(78﹣50)2+(78﹣60)2+(78﹣80)2+(78﹣90)2+(78﹣110)2]=456,没有众数,降价后书包价格分别为40,50,70,80,100,中位数是70,。

(精品教案)《统计》讲课稿范文(通用5篇)

(精品教案)《统计》讲课稿范文(通用5篇)

(精品教案)《统计》讲课稿范文(通用5篇)《统计》讲课稿范文(通用5篇)作为一名教学工作者,总归要编写讲课稿,借助讲课稿能够有效提升自个儿的教学能力。

优秀的讲课稿都具备一些啥特点呢?下面是小编收集整理的《统计》讲课稿范文(通用5篇),仅供参考,希翼可以帮助到大伙儿。

【教材分析】《统计》是义务教育课程标准实验教科书数学(人教版)下册第9单元的内容。

原教材上是一幅教师带领学生举行实地观看、统计的插图。

关于没有条件、别能实地统计的学校,这部分内容又该如何上呢?我将教材中的盆花变成纸花,一排一排钉在黑板上,便于学生数数、统计。

巩固练习中,原教材是让学生统计全班每人的生日。

但关于农村小学低年级的儿童来讲,大多数学生全然记别得自个儿的生日。

所以,我设计了几份统计表供学生举行练习。

【学生分析】全班54名学生。

学生的思维比较活跃,有一定合作交流学习的能力。

教师所要做的算是设计、组织学生举行有价值的统计活动。

【教学目标】1、初步体验数据的收集、整理、描述和分析过程,会用简单的办法收集整理数据。

2、初步认识条形统计图和简单的统计表;能依照统计表中的数据提出并回答简单的咨询题。

3、培养合作意识。

【教学流程】一、激趣、引入、感知。

师:小朋友,今天我们竞赛一下,看哪组同学表现得最好,老师将送给他们红五星。

你们看,(出示各XXX花)有一位一年级的小朋友在学校各方面的表现都别错,得到了那么多的花!这些花美丽吗?这些花有几种颜群?讲讲有哪些颜XXX?怎么样才干懂各种颜群的花有几朵?(让学生自个儿想方法。

)师生共同数出红花的朵数。

师:我们刚刚数数的过程算是对数据举行统计。

(板书:统计)师:大伙儿想把各群的花有几朵统计下来吗?老师给大伙儿请来一具好帮手,看例1。

【创设与学生日子实际相同的学习情境,激发了学生的学习积极性。

继续引入课题,朴实自然,也渗透了思想教育。

】二、教学例1。

教师出示条形统计图,并讲明:图中的四根条形柱分不表示下面所列花的朵数。

《统计》 讲义

《统计》 讲义

《统计》讲义一、什么是统计在我们的日常生活和工作中,常常会听到“统计”这个词。

那到底什么是统计呢?简单来说,统计就是对数据的收集、整理、分析和解释的过程。

比如说,一个学校想要了解学生的考试成绩情况,就需要对每个学生的各科成绩进行收集,然后按照班级、年级等进行分类整理,通过计算平均分、最高分、最低分等指标来进行分析,最后得出关于学生学习情况的结论,这就是一个简单的统计过程。

再比如,一家企业想要知道自己产品在市场上的销售情况,会收集各个地区的销售数据,包括销售量、销售额、销售渠道等,整理这些数据后,分析不同地区、不同时间段的销售趋势,从而判断产品的市场表现,为后续的生产和营销策略提供依据。

统计并不仅仅是简单地罗列数据,更重要的是从数据中发现规律、趋势和问题,为决策提供有价值的信息。

二、统计的重要性统计在各个领域都发挥着至关重要的作用。

在经济领域,政府需要通过统计来了解国家的经济运行状况,包括国内生产总值(GDP)、通货膨胀率、失业率等重要指标。

企业也需要统计来分析市场需求、预测销售趋势、评估投资风险等,以制定合理的发展战略。

在医学领域,统计可以帮助研究人员评估药物的疗效、分析疾病的发病率和死亡率,为医疗决策提供依据。

例如,在新冠疫情期间,通过对感染人数、康复人数、死亡人数等数据的统计和分析,政府能够制定相应的防控措施,合理调配医疗资源。

在社会科学领域,统计可以用于研究人口结构、教育水平、收入分配等问题,帮助我们了解社会的发展变化。

在自然科学领域,实验数据的统计分析可以帮助科学家验证假设、发现新的规律。

总之,无论是宏观的国家决策,还是微观的个人生活,统计都在其中扮演着不可或缺的角色。

它能够帮助我们更好地理解世界,做出更明智的决策。

三、统计中的数据收集数据收集是统计的第一步,也是非常关键的一步。

如果收集的数据不准确或者不完整,那么后续的分析和结论就可能出现偏差。

数据收集的方法有很多种,常见的包括普查和抽样调查。

《统计》 讲义

《统计》 讲义

《统计》讲义一、什么是统计在我们的日常生活和工作中,常常会听到“统计”这个词。

那么,究竟什么是统计呢?简单来说,统计就是对数据的收集、整理、分析和解释的过程。

想象一下,我们要了解一个班级学生的学习情况。

我们可以收集每个学生的考试成绩,这就是数据收集。

然后,把这些成绩按照从高到低进行排序,或者计算平均分、及格率等,这就是数据整理。

接着,通过分析这些数据,比如比较不同学科的成绩差异,或者观察成绩的分布情况,来发现一些规律和趋势,这就是数据分析。

最后,根据分析的结果,得出关于这个班级学习状况的结论,比如哪个学科需要加强教学,或者哪些学生需要更多的帮助,这就是数据解释。

统计不仅仅局限于学术领域,它在商业、医疗、政府、体育等各个领域都有着广泛的应用。

比如,企业通过统计销售数据来了解市场需求,制定营销策略;医院通过统计病人的病历数据来研究疾病的发病规律,提高治疗效果;政府通过统计人口数据来规划公共服务设施的建设。

二、统计的基本步骤1、数据收集这是统计工作的第一步,也是非常关键的一步。

数据的质量和完整性直接影响到后续的分析结果。

数据收集的方法有很多种,常见的有普查、抽样调查、问卷调查、实验等。

普查就是对研究对象的全体进行调查,比如全国人口普查。

这种方法可以得到全面、准确的信息,但往往需要耗费大量的人力、物力和时间。

抽样调查则是从研究对象的总体中抽取一部分样本进行调查,通过对样本的分析来推断总体的情况。

抽样方法要科学合理,以保证样本具有代表性。

问卷调查是通过设计一系列问题,让被调查者回答来获取数据。

在设计问卷时,要注意问题的清晰性、合理性和有效性。

实验则是在控制其他因素不变的情况下,改变某个因素,观察其对结果的影响。

2、数据整理收集到的数据往往是杂乱无章的,需要进行整理。

这包括对数据进行分类、编码、录入等操作。

比如,将学生的成绩按照学科、分数段进行分类,给不同的类别赋予相应的代码,然后将数据录入到电子表格中。

3、数据分析这是统计的核心环节。

专题05 自然环境的整体性与差异性-备战2025年高考《地理》真题题源解密(新高考)(解析版)

专题05 自然环境的整体性与差异性-备战2025年高考《地理》真题题源解密(新高考)(解析版)

专题05 自然环境的整体性与差异性 考情概览:解读近年命题思路和内容要求,统计真题考查情况。

2024年真题研析:分析命题特点,探寻常考要点,真题分类精讲。

近年真题精选:分类精选近年真题,把握命题趋势。

知识速记:归纳串联解题必备知识,总结易错易混点。

名校模拟探源:精选适量名校模拟题,发掘高考命题之源。

考向考查统计命题解读2024年高考地理,自然环境的整体性与差异性主要以植被和土壤为出发点,考查自然环境要素之间的相互关系,及地域分异规律。

如全国甲卷9~11题、湖南卷18题、湖北卷1~3题、广西卷14~16题、北京卷18题,主要以自然要素间的相互影响,考查自然环境的整体性;浙江卷(1月)3~4题、黑吉辽卷8~9题、湖南卷19题、北京卷16题,考查地域分异规律;福建卷14~16题、黑吉辽卷4~5题、新课标卷6~8题、湖南卷9~11题,考查植被和土壤的成因、影响因素等。

自然地理的整体性与差异性知识点综合性非常强,所有与自然地理相关的知识点都可以从该角度进行考查,要求考生对自然地理知识点整体把握、提高综合分析运用能力,是历年各考区的考查重点。

考向一自然环境的整体性(2024·高考·全国甲卷)下图所示剖面位于青藏高原东缘的黄河岸边,该剖面含有丰富的环境演化信息。

剖面中的泥沼土层是在相对静水环境下形成的。

据此完成下面小题。

1.风沙与泥沼土互层中,与风沙层相比,泥沼土层沉积物()A.颗粒较粗,有机质较少B.颗粒较细,有机质较少C.颗粒较粗,有机质较多D.颗粒较细,有机质较多2.推测灰绿色泥沼土层上部(深度约230~260厘米)出现的波状形变形成于()A.冻融造成的变形B.构造挤压变形C.流水不均匀沉积D.风沙差异沉积3.距今约15~8千年,该地区气候变化总体趋势是()A.持续升温B.持续降温C.波动升温D.波动降温【答案】1.D 2.A 3.C【解析】1.根据材料信息可知,泥沼土是在相对静水环境下形成的,水的流速较低,与风沙层相比,颗粒较细,AC错误。

统计学专题知识讲座

统计学专题知识讲座
提前完毕计划时间=(60-54)+2÷[(58-38) ÷90]=6个月零9天
暨南大学
B.合计法:若计划指标是按整个计划期内合计完
毕量来要求旳,宜用合计法计算。公式为:
计划完毕相对数=(计划期间合计完毕数÷同期计
划要求旳合计数)×100%
提前完毕计划时间=(计划期月数-实际完毕月数)
+超额完毕计划数÷平均每日计划数
暨南大学
〔例9〕两个类型相同旳工业企业,甲企业全员劳动生产率为 18542元∕人.年,乙企业全员劳动生产率为21560元∕人.年, 则两个企业全员劳动生产率旳比较相对数为:
18542÷21560=86%
(3)比较相对数旳特点: 1.分子分母旳数值分别属于不同旳总体。 2.分子分母是同类指标。 3.分子分母能够互换。
暨南大学
3.百分比相对数
(1)百分比相对数是将总体内某一部分与另一部分数值对比 所得到旳相对数。 (2)其公式为: 百分比相对数=总体中某一部分数值÷总体中另一部分数值
〔 例8〕我国第四次人口普查成果表白,1990年7月1日零时,我国男性 人数为584949922人,女性人数为548732579人,则男性对女性旳百分比 是106.6%。
+超额完毕计划数÷(达标月(季)日均产量-上年同月
(季)日均产量)
暨南大学
〔例4〕某种产品按五年计划要求,最终一年产量应 达200万吨,计划执行情况如下:
第 第 第三 第 第 第 第 第 第 第 第 第 5
时一 年
二 年
年上 三 四 四 四 四 五 五 五 五
六个 月
年 下



年年年


年 合
六 一 二 三 四一二 三 四 计

《统计》知识点总结+典型例题+练习(含答案)

《统计》知识点总结+典型例题+练习(含答案)

统计考纲要求1.理解总体、个体、样本等概念.2.会指出具体问题中的总体、个体、样本、样本容量.3.了解简单随机抽样、系统抽样、分层抽样等三种抽样方法.4.会根据特征选用合适的抽样方法抽取样本.5.理解用样本的频率分布估计总体.6.理解用样本均值、方差和标准差估计总体的均值、方差和标准差.知识点一:总体与样本1.定义:在统计中,所研究对象的全体叫做总体,组成总体的每个对象叫做个体.2.定义:被抽取出来的个体的集合叫做总体的样本,样本所含个体的数目叫做样本容量. 知识点二:抽样1.简单随机抽样定义:我们采用抽签的方法,将总体按照某种顺序编号,写在小纸片上.将小纸片揉成小团,放到一个不透明的袋子中,充分搅拌后,再从中逐个抽出10个小纸团.最后根据编号找到个体.这种抽样叫做简单随机抽样.注意:简单随机抽样必须保证总体的每个个体被抽到的机会是相同的.也就是说,简单随机抽样是等概率抽样.2.系统抽样定义:当总体所含的个体较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分中抽取一定数目的个体.这种抽样叫做系统抽样(或机械抽样).主要步骤:从容量为N的总体中,用系统抽样抽取容量为n的样本,按照下面的步骤进行:(1)编号:将总体的N个个体编号;(2)确定间隔:可以考虑用Nn(取整数)作间隔分段,将总体分成n段;(3)抽样:按照一定的规则抽取样本.如抽每段的第k个顺序号的个体(k为小于Nn的整数),得到容量为n的样本.3.分层抽样当总体是由有明显差异的几个部分组成时,可将总体按差异情况分成互不重叠的几个部分——层,然后按各层个体总数所占的比例来进行抽样,这种抽样叫做分层抽样. 对分层抽样的每一层进行抽样时,可采用简单随机抽样或系统抽样. 知识点三:用样本估计总体 1.用样本的频率分布估计总体频率频率的定义:各组内数据的个数,叫做该组的频数.每组的频数与全体数据的个数之比叫做该组的频率.频率分布直方图:根据频数分布表中各组的频率,得到频率分布表,由频率分布表画出频率分布直方图.用样本的频率分布估计总体的步骤为: (1)选择恰当的抽样方法得到样本数据;(2)计算数据最大值和最小值、确定组距和组数,确定分点并列出频率分布表; (3)绘制频率分布直方图;(4) 观察频率分布表与频率分布直方图,根据样本的频率分布,估计总体中某事件发生的概率.2.用样本均值、标准差估计总体 (1)平均数或均值定义:如果有n 个数1x ,2x ,…,n x ,那么121()n x x x x n=+++叫做这n 个数的平均数或均值,x 读作“x 拔”. 均值反映出这组数据的平均水平. (2)样本方差定义:如果样本由n 个数1x ,2x ,…,n x 组成,那么样本的方差为 2222121()()()1n s x x x x x x n ⎡⎤=-+-++-⎣⎦-. (3)样本标准差由于样本方差的单位是数据的单位的平方,使用起来不方便.因此,人们常使用它的算术平方根来表示个体与样本均值之间偏离程度,叫做样本标准差.即(+-n s x .题型一 总体、个体、样本、样本容量例1 某地区为了掌握7岁儿童身高状况,随机抽取200名儿童测试身高,请指出其中的总体、个体、样本与样本容量.解答:该地区所有7岁儿童的身高是总体,每一个7岁儿童的身高是个体,被抽取的200名7岁儿童的身高是样本,样本容量是200.题型二抽样例2某中职学校为了解2009级新生的身体发育情况,从1000名新生中,利用系统抽样,抽取一个容量为50的样本.请你来完成这个抽样.解答:将这1000名学生编号(也可以利用新生录取号),由于100020 50,所以取每段间隔为20,将编号分成50段,规定各段抽取第16个顺序号的学生,得到容量为50的样本.其学生号码依次为16,36,56,76, (996)题型三用样本均值、标准差估计总体例3 科研人员在研究地里的麦苗长势时,随机抽取20株,测得各株高为(单位:mm): 61675867656459625866645960635860 62606363求样本均值、样本方差、样本标准差.分析:应用公式解答:样本均值61.95,样本方差约为8.68,样本标准差约为2.95.一、选择题1.要能清楚的表示各部分在总体中所占的百分比,应选择().A 扇形统计图B 折线统计图C条形统计图 D 表框统计2.某社区有400个家庭,其中高等收入家庭120户,中等收入家庭180户,低收入家庭100户,为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本记作①;某校高一年级有12名女排球运动员,要从中选出3人调查学习情况记作②.那么,完成上述2项调查应采用的抽样方法是( ).A. ①用随机抽样法,②用系统抽样法B.①用分层抽样法,②用随机抽样法C.①用系统抽样法,②用分层抽样法D.①用分层抽样法,②用系统抽样法3. 以下物征数中能反映一组数据波动大小的是().A极差B平均数C方差D以上都不是4.某同学参加跳远比赛前,若教练想对他10次的训练成绩进行了分析以判断他的成绩是否稳定,则教练需要知道该同学这10次成绩的( ).A平均数 B.方差 C.频数 D.频率5.数据5,7,7,8,10,11的平均值是( ).A.2B. 4C.8D. 16.一组数据:5,7,7,a,10,11,它们的平均值是8,则a的值是( ).A2 B.4 C.8 D.17.扇形统计图中,占圆面积40%的扇形的圆心角的度数是(B )A 162°B 144°C 150°D 120°8.用随机数表法从100名学生(男生25人)中抽选20人进行问卷调查,某男生被抽到的概率是( C ).A.1100B.125C.15D.149. 为了了解1200名学生对课改试验的意见,计划从中抽取一个容量为30的样本,若采用系统抽样的方法,则分段间隔为( ).A.40B.30C.20D.1210. 数据-1,-2,0,1,2的标准差是()A 1B 2 C、0 D二、判断题1.数据1,2,3,2 的众数是2, ( )2.为了了解某校学生早餐就餐情况,四位同学做了不同的调查:小华向初一年级的三个班级的全体同学做了调查;小明向初二年级的三个班级的全体同学做了调查;小华向初三年级的全体同学做了调查;小珍分别向初一(1)班、初二(1)、初三(1)班的全体同学做了调查,则小华同学的抽样调查较科学.()3.要了解一批灯泡的使用寿命,从中抽取60只灯泡进行试验,在这个问题中,样本是抽取的60只灯泡.()4.为了考查某地区初中毕业生的数学毕业会考情况,从中抽查了200名考生的数学成绩,在这个问题中总体是被抽查的200名考生.()5.某校一个年级有12个班,每个班有50名学生,每班的学号都是1~50,为了了解学生的课外兴趣爱好,要求对每班学号为20的学生进行问卷调查,那么这里采用的抽样方法是抽签法.()6.某职业学校高一年级有机电、财经、医护这三个专业,其学生人数之比是5∶3∶2,若用分层抽样的方法抽取容量为100的样本,则应从医护专业中抽取20个个体.()7. 为了知道一锅汤的味道,妈妈从锅里舀了一勺汤尝尝,这种调查方式是抽样调查.()8.若数据1,2,5,3,4的平均数为3.()9.青年歌手大奖赛共有10名选手参赛,并请了7名评委,下表是7名评委给参加最后决赛的两位选手甲评定的成绩,去掉一个最高分和一个最低分后,甲、乙选手剩余数据的平均成绩分别为84.()10. 有四位同学从编号为1-50的总体中抽取8个个体组成一个样本,他们选取的样本中个体编别为:①05,10,15,20,25,30,35,40;②43,44,45,46,47,48,49,50;③1,3,5,7,9,11,13,15,17;④43,25,2,17,35,9,24,19.认为样本④较具有随机性.()三、填空题1.从某工厂生产的某一批零件中,随机抽取10件,测得长度为(单位:cm):79、81、80、78、79、81、79、82、79、78,则总体是_______,个体是_______,样本是_______,样本容量是_______.2.0,-1,1,-2,1 的中位数是为________.3.数据2,4,6,8 的平均数是是________.4.小新家今年6月份头6天用米量如下表:请你运用统计知识,估计小新家6月份(30天)用米量为________千克。

5.1长度与时间的测量(原卷版+解析)

5.1长度与时间的测量(原卷版+解析)

第五章物体的运动§5-1 长度与时间的测量【学习目标】1.认识时间和长度的测量工具及国际单位;2. 会正确使用相关测量工具进行测量,并正确记录测量结果;3.知道测量长度的几种特殊方法;4. 知道误差与错误的区别。

【典例精析】知识点一、长度的测量例题1、请完成下列单位换算.(1)25mm=nm.(2)450cm=km.(3)1.5ℎ=s.跟踪训练:下列单位换算中正确的是()A. 3.6km=3.6km×1000m=3600mB. 3.6km=3.6km×1000=3600cmC. 3.6km=3.6×1000m=3600mD. 3.6km=3.6×1000=3600m例题2、某同学测量长度的方法如图所示,他在测量中的错误有:(1)________________________________________________________________________.(2)________________________________________________________________________.(3)________________________________________________________________________.跟踪训练:“握手礼”是中华传统礼节之一,“新冠”疫情期间,为更符合卫生防疫要求,某班同学倡导“夸赞礼”并绘制成宣传画如图所示,图中行“夸赞礼”两位同学的面部间距d约为()A. 0.5mB. 1.5mC. 3mD. 4.5m知识点二、测量长度的几种特殊方法例题3、将粗细均匀的金属丝在圆柱形杆上紧密排绕n圈,如图所示,线圈的长度L是cm,.测量时,如果第一次n取20圈,第二次n取50圈,比较两次测出的金属则金属丝的直径d=Ln丝的直径,第次的测量误差较小.跟踪训练:如图所示,是长度测量中常用的几种特殊测量,其中测量过程有误的是() A. B.C. D.知识点三、时间的单位和测量工具例题4、机械秒表的读数为______。

专题5.1 统计(精讲精析篇)(解析版)

专题5.1 统计(精讲精析篇)(解析版)

专题5.1统计(精讲精析篇)提纲挈领点点突破热门考点01 随机抽样1.简单随机抽样的特点(1)抽取的个体数较少;(2)是逐个抽取;(3)是不放回抽取;(4)是等可能抽取.只有四个特点都满足的抽样才是简单随机抽样.2.抽签法与随机数法的适用情况(1)抽签法适用于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况. (2)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法. 3.分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之求解:根据分层抽样就是按比例抽样,列比例式进行计算. (3)分层抽样的计算应根据抽样比构造方程求解,其中“抽样比=样本容量总体容量=各层样本数量各层个体数量”.提醒:分层抽样时,每层抽取的个体可以不一样多,但必须满足抽取n i =n ·N iN (i =1,2,…,k )个个体(其中i是层数,n 是抽取的样本容量,N i 是第i 层中个体的个数,N 是总体容量).【典例1】(2019·山东省泰安实验中学高一开学考试)总体由编号为01,02, ,29,30的30个个体组成,现从中9抽取一个容量为6的样本,请以随机数表第1行第3列开始,向右读取,则选出来的第6个个体的编号为()70 29 17 12 13 40 33 12 38 26 13 89 51 0356 62 18 37 35 96 83 50 87 75 97 12 55 93A.12 B.13 C.03 D.40【答案】C【解析】从随机数表第1行第3列开始由左到右依次选取两个数字中小于30的编号依次为29,17,12,13,26,03,则第6个个体的编号为26.故选C.【典例2】(2020·横峰中学高三其他(理))某中学高二年级共有学生2400人,为了解他们的身体状况,用分层抽样的方法从中抽取一个容量为80的样本,若样本中共有男生42人,则该校高二年级共有女生()A.1260 B.1230 C.1200 D.1140【答案】D【解析】设女生总人数为:x人,由分层抽样的方法可得:抽取女生人数为:804238-=人,所以80382400x=,解得:1140x=故选:D【典例3】下列抽取样本的方式属于简单随机抽样的个数为()①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.A.0B.1 C.2 D.3【答案】A【解析】①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样.因为它是有放回抽样;③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样.因为不是等可能抽样.故选A.【总结提升】1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.2.分层抽样的前提和遵循的两条原则(1)前提:分层抽样使用的前提是总体可以分层,层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体数在总体的个体数中所占比例抽取.(2)遵循的两条原则:①将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则;②分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比等于抽样比.3. 两种抽样方法的特点、联系及适用范围热门考点02 茎叶图及其应用1.当数据个数较少时,用茎叶图可精确地记录每个数据.如果数据是两位数,那么茎表示十位数,叶表示个位数,如果数据是三位数,那么茎表示百位数和十位数,叶表示个位数.2.茎叶图的绘制需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.(3)数据分布一般是茎从上到下由小到大,叶从茎侧向外按从小到大排列.3.茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.【典例4】(2017·山东卷)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A .3,5B .5,5C .3,7D .5,7【答案】A 【解析】由茎叶图,可得甲组数据的中位数为65,从而乙组数据的中位数也是65,所以y =5. 由乙组数据59,61,67,65,78,可得乙组数据的平均值为66,故甲组数据的平均值也为66, 从而有56+62+65+74+70+x 5=66,解得x =3.【典例5】(2019·济南模拟)中国诗词大会的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成就按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词达人”称号的人数为( )A .2B .4C .5D .6【答案】A 【解析】由茎叶图可得,获“诗词达人”称号的有8人,据该次比赛的成就按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词达人”称号的人数为108240⨯= (人). 【特别提醒】茎叶图是统计中用来表示数据的一种图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数. ①“叶”位置只有一个数字,而“茎”位置的数字位数一般不需要统一; ②茎叶图上重复出现的数据要重复记录,不能遗漏.热门考点03 频率分布直方图1.频率、频数、样本容量的计算方法 (1)频率组距×组距=频率. (2)频数样本容量=频率,频数频率=样本容量, 样本容量×频率=频数. (3)各个小方形的面积总和等于1 . 2.频率分布表的画法第一步:求极差,决定组数和组距,组距=极差/组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; 第三步:登记频数,计算频率,列出频率分布表. 3.频率分布直方图中数字特征的计算(1)最高的小长方形底边中点的横坐标即是众数. (2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.(4)在很多题目中,频率分布直方图中各小长方形的面积之和为1,是解题的关键,常利用频率分布直方图估计总体分布.【典例6】(2017北京,文17)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数学.科网不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【答案】(Ⅰ)0.4;(Ⅱ)5人;(Ⅲ)3 2 .【解析】(Ⅰ)根据频率分布直方图可知,样本中分数不小于70的频率为(0.020.04)100.6+⨯=,所以样本中分数小于70的频率为10.60.4-=.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(Ⅱ)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=,分数在区间[40,50)内的人数为1001000.955-⨯-=.学科%网所以总体中分数在区间[40,50)内的人数估计为5 40020100⨯=.【典例7】(2016高考四川文科)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),……[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.a ;(Ⅱ)36000;(Ⅲ)2.04.【答案】(Ⅰ)0.30【解析】(Ⅰ)由频率分布直方图,可知:月用水量在[0,0.5]的频率为0.08×0.5=0.04.同理,在[0.5,1),(1.5,2],[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(Ⅱ)由(Ⅰ),100位居民月均水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300000×0.13=36000. (Ⅲ)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5所以2≤x<2.5.由0.50×(x–2)=0.5–0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.【总结提升】1.两个主要考查角度:(1)利用频率分布直方图求频率、频数. (2)利用频率分布直方图估计总体2.熟记结论:(1)在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1;(2) 频率组距×组距=频率;(3)频数/样本容量=频率,此关系式的变形为频数/频率=样本容量,样本容量×频率=频数 3.易错防范:频率分布直方图的纵坐标是频率组距,而不是频率热门考点04 样本的数字特征众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平;中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平; 平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定. 标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.【典例8】(2020·全国高考真题(文))设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( ) A .0.01 B .0.1C .1D .10【答案】C 【解析】因为数据(1,2,,)i ax b i n +=,的方差是数据(1,2,,)i x i n =,的方差的2a 倍,所以所求数据方差为2100.01=1⨯ 故选:C【典例9】(2020·全国高考真题(理))在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【答案】B对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组的标准差最大. 故选:B.【典例10】(2019年高考全国Ⅱ卷文)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.【答案】(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)这类企业产值增长率的平均数与标准差的估计值分别为30%,17%. 【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比(2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i ii s n y y ==-∑ 222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%. 【总结提升】1.众数、中位数、平均数、方差的意义及常用结论(1)平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(2)方差的简化计算公式:s 2=1n [(x 21+x 22+…+x 2n )-n x 2]或写成s 2=1n (x 21+x 22+…+x 2n )-x 2,即方差等于原数据平方的平均数减去平均数的平方. 2.主要命题角度:(1)样本的数字特征与频率分布直方图交汇 (2)样本的数字特征与茎叶图交汇①在使用茎叶图时,一定要观察所有的样本数据,弄清楚这个图中数字的特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.②茎叶图既可以表示两组数据,也可以表示一组数据,用它表示的数据是完整的数据,因此可以从茎叶图中看出数据的众数(数据中出现次数最多的数)、中位数(中间位置的一个数,或中间两个数的平均数)等. (3)样本的数字特征与优化决策问题交汇:利用样本的数字特征解决优化决策问题的依据①平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定. ②用样本估计总体就是利用样本的数字特征来描述总体的数字特征.巩固提升1.(2020·四川省宜宾市第四中学校高三二模(文))某公司生产A ,B ,C 三种不同型号的轿车,产量之比依次为2:3:4,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n 的样本,若样本中A 种型号的轿车比B 种型号的轿车少8辆,则n =( ) A .96 B .72C .48D .36【答案】B 【解析】 由题意得23872.99n n n -=-∴=选B. 2.(2017课标1,文2)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( ) A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B 【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B3.(河南省洛阳市2019届高三第三次统考)已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A .100,10B .100,20C .200,10D .200,20【答案】D【解析】由题得样本容量为(350020004500)2%100002%200++⨯=⨯=, 抽取的高中生人数为20002%40⨯=人,则近视人数为400.520⨯=人,故选D .4.(2020·四川省棠湖中学高三一模(文))新冠肺炎期间某商场开通三种平台销售商品,收集一月内的数据如图1;为了解消费者对各平台销售方式的满意程度,该商场用分层抽样的方法抽取4%的顾客进行满意度调查,得到的数据如图2.下列说法错误的是( )A.样本容量为240B.若样本中对平台三满意的人数为40,则40%m= C.总体中对平台二满意的消费者人数约为300D.样本中对平台一满意的人数为24人【答案】B【解析】选项A,样本容量为60004%240⨯=,该选项正确;选项B,根据题意得平台三的满意率4040%25004%=⨯,40m=,不是40%m=,该选项错误;选项C,样本可以估计总体,但会有一定的误差,总体中对平台二满意人数约为150020%300⨯=,该选项正确;选项D,总体中对平台一满意人数约为20004%30%24⨯⨯=,该选项正确.故选:B.5.(2020·河南省高一期末)已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差2s为()A.52B.3 C.72D.4【答案】C【解析】因为7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的平均数为x,方差为2s,由平均数和方差的计算公式可得75558x⨯+==,()227455782s⨯+-==.故选:C.6.(广东省汕头市2019届高三第二次模拟(B 卷))在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分【答案】D【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为40000.251000⨯=,故B 正确;由频率分布直方图可得:平均分等于450.1550.15650.2750.3850.15⨯+⨯+⨯+⨯+⨯+950.170.5⨯=,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为0.05701071.670.3+⨯≈,故D 错误.故选D . 7.(福建省泉州市2019届高三第二次(5月)质检)已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则 A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s ><【答案】A【解析】由题意,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则222221248175[(70)(70)(70)(6070)(9070)]50x x x =-+-++-+-+-22212481[(70)(70)(70)500]50x x x =-+-++-+, 22222212481[(70)(70)(70)(8070)(7070)]50s x x x =-+-++-+-+-22212481[(70)(70)(70)100]7550x x x =-+-++-+<,所以275s <.故选A .8.(2020·双峰县第一中学高一月考)甲、乙、丙、丁四名同学在某次军训射击测试中,各射击10次.四人测试成绩对应的条形图如下:以下关于四名同学射击成绩的数字特征判断不正确...的是( ) A .平均数相同 B .中位数相同 C .众数不完全相同 D .丁的方差最大【答案】D 【解析】由图的对称性可知,平均数都为5;由图易知,四组数据的众数不完全相同,中位数相同;记甲、乙、丙、丁图所对应的方差分别为22221234,,,s s s s ,则()()2221450.5650.51s =-⨯+-⨯=,()()()22222450.3550.4650.30.6s =-⨯+-⨯+-⨯=,()()()()()2222223350.3450.1550.2650.1750.3 2.6s =-⨯+-⨯+-⨯+-⨯+-⨯=,()()()()()2222224250.1450.3550.2650.3850.1 2.4s =-⨯+-⨯+-⨯+-⨯+-⨯=,所以丙的方差最大. 故选:D .9.(河南省郑州市2019届高三第三次质量检测)某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y +的值是( )A .12B .14C .16D .18【答案】A【解析】因为中位数为12,所以4x y +=,数据的平均数为1(223420191910x y ⨯+++++++++2021)11.4+=,要使该总体的标准差最小,即方差最小,所以22(1011.4)(1011.4)x y +-++-=2222.8( 1.4)( 1.4)2()0.722x y x y +--+-≥=,当且仅当1.4 1.4x y -=-,即2x y ==时取等号,此时总体标准差最小,4212x y +=,故选A .10.(2020·全国高三(理))某学校近几年来通过“书香校园”主题系列活动,倡导学生整本阅读纸质课外书籍.下面的统计图是该校2013年至2018年纸质书人均阅读量的情况,根据统计图提供的信息,下列推断不合理的是( )A .从2013年到2016年,该校纸质书人均阅读量逐年增长B .2013年至2018年,该校纸质书人均阅读量的中位数是46.7本C .2013年至2018年,该校纸质书人均阅读量的极差是45.3本D .2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的2倍 【答案】D 【解析】对于A ,根据统计图分析可知,从2013年到2016年,该校纸质书人均阅读量分别是:15.5,38.5,43.3,58.4是逐年增长的,故A 是合理的;对于B ,2013年至2018年,该校纸质书人均阅读量按从小到大的顺序排列为:15.5,38.5,43.3,50.1,58.4,60.8,其中位数为43.350.146.72+=本,故B 是合理的;对于C ,因为最大阅读量为60.8本,最小阅读量为15.5本,所以极差为60.815.545.3-=本,故C 是合理的;对于D ,2013年至2018年,该校后三年纸质书人均阅读量总和为58.450.160.8169.3++=本,前三年纸质书人均阅读量总和为15.538.543.397.3++=本,169.397.32194.6≠⨯=, 故D 是不合理的. 故选:D.11.(2020·双峰县第一中学高一月考)某学校随机抽查了本校20个学生,调查他们平均每天进行体育锻炼的时间(单位:min ),根据所得数据的茎叶图,以5为组距将数据分为8组,分别是[0,5),[5,10),…,[35,40],作出频率分布直方图如图所示,则原始的茎叶图可能是( )A .B .C .D .【答案】B 【解析】从题设中提供的频率分布直方图可算得在区间[0,5),[5,10)内各有0.012051⨯⨯=个,答案A 被排除;在区间[10,15)内有0.042054⨯⨯=个;在区间[15,20)内有0.022052⨯⨯=个;在区间[20,25)内有0.042054⨯⨯=个;在区间[25,30),[30,35)内各有0.032053⨯⨯=个,答案C 被排除;在区间[35,40)内有0.022052⨯⨯=个,答案D 被排除;依据这些数据信息可推知,应选答案B .12. 已知一组正数x 1,x 2,x 3的方差s 2=13(x 21+x 22+x 23-12),则数据x 1+1,x 2+1,x 3+1的平均数为 .【答案】3【解析】由方差的计算公式可得s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]=1n [x 21+x 22+…+x 2n -2(x 1+x 2+…+x n )·x +n x 2] =1n (x 21+x 22+…+x 2n -2n x 2+n x 2) =1n (x 21+x 22+…+x 2n )-x 2, ∴由题意x 1,x 2,x 3的方差s 2=13(x 21+x 22+x 23-12),知x 2=4,又x 1,x 2,x 3均为正数,故x =2.所以数据x 1+1,x 2+1,x 3+1的平均数是2+1=3,故答案为3.13.(2020·广东省深圳外国语学校高三月考(文))已知一组数1,2,m ,6,7的平均数为4,则这组数的方差为______. 【答案】265【解析】 依题意12674,45m m ++++==.所以方差为()()()()()22222114244464745⎡⎤-+-+-+-+-⎣⎦[]126944955=+++=. 故答案为:265. 14.(2020·重庆市凤鸣山中学高三月考(文))2018年俄罗斯世界杯将至,本地球迷协会统计了协会内180名男性球迷,60名女性球迷在观察场所(家里、酒吧、球迷广场)上的选择,制作了如图所示的条形图,用分层抽样的方法从中抽取48名球迷进行调查,则其中选择在酒吧观赛的女球迷人数为__________人.【答案】4 【解析】总球迷是180+60=240人家里的女性球迷是120×25%=30人 球迷广场女性:80×12.5%=10人 所以在酒吧观赛的女球迷是60-30-10=20人 抽样中,选择在酒吧观赛的女球迷人数为2048=4240⨯ 人 15.(2020·甘肃省会宁县第四中学高一期中)某网站举行“卫生防疫”的知识竞赛网上答题,共有120000人通过该网站参加了这次竞赛,为了解竞赛成绩情况,从中抽取了100人的成绩进行统计,其中成绩分组区间为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,其频率分布直方图如图所示,请你解答下列问题:(1)求m 的值;(2)成绩不低于90分的人就能获得积分奖励,求所有参赛者中获得奖励的人数;(3)根据频率分布直方图,估计这次知识竞赛成绩的平均分(用组中值代替各组数据的平均值). 【答案】(1)0.03m =(2)6000人(3)76分 【解析】(1)由频率分布直方图的性质,可得()100.0050.020.040.0051m ⨯++++=, 解得0.03m =.(2)由频率分布直方图,可得成绩在[]90,100之间的频率为100.0050.05⨯=, 所以可估计所有参赛者中获得奖励的人数约为1200000.056000⨯=人. (3)根据频率分布直方图的平均数的计算公式,可得平均分的估计值为550.05650.2750.4850.3950.0576⨯+⨯+⨯+⨯+⨯=分.16.(2020·上林县中学高一开学考试)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照(0.0.5),(0.5,1),(4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图的a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.【答案】(1) 0.3a =; (2)36000;(3)2.04. 【解析】(Ⅰ)由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a , 解得a=0.30.(Ⅱ)由(Ⅰ)100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36000. (Ⅲ)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5所以2≤x<2.5.由0.50×(x–2)=0.5–0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.。

人教版高中数学必修一精品讲义5.1 任意角和弧度制(精讲)(解析版)

人教版高中数学必修一精品讲义5.1 任意角和弧度制(精讲)(解析版)

5.1 任意角和弧度制考点一 基本概念的辨析【例1】(2020·河南宛城·南阳中学高一月考)下列说法正确的个数是( ) ①小于90︒的角是锐角; ②钝角一定大于第一象限角;③第二象限的角一定大于第一象限的角; ④始边与终边重合的角为0︒. A .0B .1C .2D .3【正确答案】A【详细解析】对①,小于90︒的角不是锐角,如10-︒不是锐角,故①错; 对②,390角是第一象限的角,大于任何钝角()90180αα<<,故②错; 对③,第二象限角中的210-角小于第一象限角中的30角,故③错; 对④,始边与终边重合的角的度数是()360k k Z ⋅∈,故④错.故选:A . 【一隅三反】1.(2020·全国高一课时练习)下列说法正确的是( ) A .终边相同的角一定相等 B .钝角一定是第二象限角 C .第四象限角一定是负角 D .小于90︒的角都是锐角【正确答案】B【详细解析】终边相同的角不一定相等,所以该选项错误; 钝角一定是第二象限角,所以该选项正确; 第四象限角不一定是负角,如116π是第四象限的角,但是不是负角,所以该选项错误; 小于90︒的角不都是锐角,如3π-.所以该选项错误.故选B 2.(2020·浙江高一课时练习)下列命题中正确的是( ). A .终边与始边重合的角是零角 B .90°~180°间的角不一定是钝角 C .终边和始边都相同的两个角相等 D .第二象限的角大于第一象限的角【正确答案】B【详细解析】终边与始边重合的角还有360°角,720°角等,故A 错误;90°~180°间的角包括90°角,故90°~180°间的角不一定是钝角,故B 正确; 终边和始边都相同的两个角相差360,k k Z ︒⋅∈,故C 错误;120°角是第二象限角,它小于第一象限的角400°角,故D 错误.故选:B 3.(2020·陕西大荔·高一期末)下列说法正确的是( ) A .第二象限角大于第一象限角B .不相等的角终边可以相同C .若α是第二象限角,2α一定是第四象限角D .终边在x 轴正半轴上的角是零角 【正确答案】B【详细解析】A 选项,第一象限角36030120︒+︒>︒,而120︒是第二象限角,∴该选项错误; B 选项,36030︒+︒与30终边相等,但它们不相等,∴该选项正确; C 选项,若α是第二象限角,则()222k k k Z ππαππ+<<+∈,∴()4242k k k Z ππαππ+<<+∈是第三象限角或第四象限角或终边在y 轴负半轴上的轴线角,∴该选项错误;D 选项,360︒角的终边在x 轴正半轴上,但不是零角,∴该选项错误.故选:B .考点二 角度与弧度的转换【例2】(2020·汪清县汪清第六中学高一期中(文))把下列各角的弧度数化为度数,度数化为弧度数. (1)712π; (2)136π- ; (3)1125° ;(4)-225°. 【正确答案】(1)105; (2)390-; (3)254π; (4)54π-. 【详细解析】根据弧度制与角度制的互化公式,1801,1180rad rad ππ==,可得:(1)771801051212πππ=⨯=; (2)131366180390πππ⨯==---; (3)25112511251804ππ=⨯=rad ;(4)52252251804ππ-=-⨯=-rad .【一隅三反】1.(2020·全国高一课时练习)把下列角度化成弧度:(1)36︒; (2)150︒-; (3)1095︒; (4)1440︒. 【正确答案】(1)5π(2)56π-(3)7312π(4)8π 【详细解析】(1)361805ππ︒⨯=;(2)51501806ππ-︒⨯=-;(3)73109518012ππ︒⨯=;(4)14408180ππ︒⨯=. 2.(2020·甘肃城关·兰州一中高一期中)315︒=___________弧度,7π12弧度=________. 【正确答案】7π4105︒ 【详细解析】180π︒=73153151804ππ︒=⨯=,77180π=1051212⨯︒=︒,故正确答案为:7π4;105︒3.(2020·土默特左旗金山学校高一月考(理))下列转化结果错误的是( ) A .30化成弧度是6πB .103π-化成度是600-︒ C .6730'︒化成弧度是27π D .85π化成度是288︒ 【正确答案】C【详细解析】30化成弧度是6π,A 正确103π-化成度是600-︒,B 正确; 6730'︒是367.567.51808ππ︒=⨯=,C 错误;85π化成度是288︒,D 正确.故选:C. 考点三 终边相同【例3】(2020·全国高一课时练习)(1)把-1480°写成()2k k Z απ+∈的形式,其中02απ≤≤; (2)在[]0,720︒︒内找出与25π角终边相同的角. 【正确答案】(1)()16259ππ+⨯-;(2)72°,432°. 【详细解析】(1)∵74148014801809ππ-︒=-⨯=-, 而74161099πππ-=-+,且02απ≤≤,∴169πα=. ∴()161480259ππ-︒=+⨯-.(2)∵221807255πππ⎛⎫=⨯︒=︒ ⎪⎝⎭,∴终边与25π角相同的角为()72360k k θ=︒+⋅︒∈Z , 当0k =时,72θ=︒;当1k =时,432θ=︒. ∴在[]0,720︒︒内与25π角终边相同的角为72°,432°. 【一隅三反】1.(2020·汪清县汪清第六中学高一期中(文))已知角2025α=︒.(1)将角α改写成2k βπ+( k Z ∈,02βπ≤<)的形式,并指出角α是第几象限的角; (2)在区间[)5,0π-上找出与角α终边相同的角. 【正确答案】(1)5104παπ=+,是第三象限角;(2)19113,,444πππ---. 【详细解析】(1)2025α=︒=45520251018044ππππ⨯==+,54π是第三象限角,∴α是第三象限角.(2)由55204k πππ-≤+<得25588k -<<-,因为k Z ∈,∴3,2,1k =---,对应角依次为19113,,444πππ---. 2.(2020·全国高一课时练习)把下列各角度化为弧度,并写成02π-的角加上2()k k π∈Z 的形式. ( 1)64︒-; ( 2)400︒; ( 3)72230︒'-【正确答案】( 1)74245ππ-;( 2)229ππ+;( 3)143672ππ-+. 【详细解析】( 1)16746424545πππ︒-=-=-; ( 2)202400299πππ︒==+; ( 3)144528914372230722.5621807272ππππ︒'︒-=-=-⨯=-=-+. 3.(2019·陕西榆阳·榆林十二中高一月考)用弧度制写出角的终边在下图中阴影区域内的角的集合.(1)(2)【正确答案】(1)55{|22,}66x k x k k Z ππππ-+≤≤+∈;(2){|,}42x k x k k Z ππππ+≤≤+∈ 【详细解析】(1)51506π-=-,51506π=,用弧度制表示终边在图中阴影区域内的角的集合为 55{|22,}66x k x k k Z ππππ-+≤≤+∈.(2)454π=,52254π=,用弧度制表示终边在图中阴影区域内的角的集合为{|22,}42x k x k k Z ππππ+≤≤+∈53{|22,}42x k x k k Z ππππ+≤≤+∈{|,}42x k x k k Z ππππ=+≤≤+∈.考点四 象限的判断【例4】(2020·全国高一课时练习)已知下列各角:①120- ②240- ③180 ④495,其中第二象限角的是( ) A .①② B .①③C .②③D .②④【正确答案】D【详细解析】①120-表示由x 轴非负半轴绕原点顺时针旋转120,落在第三象限; ②240-表示由x 轴非负半轴绕原点顺时针旋转240,落在第二象限; ③180表示由x 轴非负半轴绕原点逆时针旋转180,落在x 轴非正半轴;④495表示由x 轴非负半轴绕原点逆时针旋转495,且495360135=+,495的终边和135的终边相同,所以落在第二象限.故选:D【一隅三反】1.(2020·周口市中英文学校高一期中)角2912π的终边所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【正确答案】A 【详细解析】因为295=21212πππ+,角512π是第一象限角,所以角2912π的终边所在的象限是第一象限. 故选A.2.(2020·全国高二)若α是第二象限角,则180α-是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【正确答案】A【详细解析】α为第二象限角,不妨取120α=,则180α-为第一象限角,故选A .3.(2020·全国高一课时练习)在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角. (1)-150°;(2)650°;(3)-950°15′.【正确答案】(1)210︒,第三象限的角;(2)290︒,第四象限的角;(3)12945︒',第二象限的角; 【详细解析】(1)150360210-︒=-︒+︒,210︒是第三象限的角,150∴-︒是第三象限的角; (2)650360290︒=︒+︒,290︒是第四象限的角,650∴︒是第四象限的角;(3)95015108012945-︒'=-︒+︒',12945︒'是第二象限的角,95015∴-︒'是第二象限的角.考点五 扇形【例5】(2020·浙江高一课时练习)已知一扇形的圆心角为(0)αα>,所在圆的半径为R . (1)若60α︒=,10R cm =,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?【正确答案】(1)103cm π,()2503cm π⎛-⎝;(2)2rad α=. 【详细解析】(1)设扇形的弧长为l ,弓形面积为S ,则603πα︒==,10R =,101033l cm ππ=⨯=,()221105*********S cm ππ⎛=⨯⨯-=- ⎝.(2)设扇形弧长为l ,则220l R +=,即10202101l R R π⎛⎫=-<< ⎪+⎝⎭,∴扇形面积2211(202)10(5)2522S IR R R R R R ==-⋅=-+=--+, ∴当5R cm =时,S 有最大值225cm ,此时10l cm =,2rad lRα==.因此当2rad α=时,这个扇形面积最大.【一隅三反】1.(2020·赤峰二中)《九章算术》是我国古代的数学巨著,其中《方田》章给出了计算弧田面积所用的经验公式为:弧田面积12=⨯(弦×矢+矢2),弧田(如图阴影部分所示)是由圆弧和弦围成,公式中的“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为23π,矢为4的弧田,按照上述方法计算出其面积是( )A .4+B .8+C .8+D .8+【正确答案】D【详细解析】设半径为r ,圆心到弦的距离为d ,则121cos 232d r r π⎛⎫=⋅⨯=⎪⎝⎭, 11422r d r r r -=-==8,4r d ∴==∴所以弦长为==∴弧田面积为()214482⨯+=+故选:D.2.(2020·辽宁沈阳·高一期中)一个半径是R 的扇形,其周长为3R ,则该扇形圆心角的弧度数为( ) A .1B .3C .πD .3π 【正确答案】A【详细解析】设扇形的弧长为l ,则23R l R +=,得l R =,则扇形圆心角的弧度数为1lR=.故选:A. 3.(2020·上海高一课时练习)在扇形AOB 中,半径等于r . (1)若弦AB 的长等于半径,求扇形的弧长l ;(2)若弦AB ,求扇形的面积S【正确答案】(1)3r π; (2)213r π【详细解析】(1)如图所示:设AOB α∠=,若弦AB 的长等于半径,则3πα=所以扇形的弧长3παl r r(2)如图所示:若弦AB 倍,则32sin 2AC AOCOAr, 因为0απ<<,所以3AOC π∠=, 所以223παAOC, 所以扇形的面积为22111223απS lr r r .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题5.1统计(精讲精析篇)提纲挈领点点突破热门考点01 随机抽样1.简单随机抽样的特点(1)抽取的个体数较少;(2)是逐个抽取;(3)是不放回抽取;(4)是等可能抽取.只有四个特点都满足的抽样才是简单随机抽样.2.抽签法与随机数法的适用情况(1)抽签法适用于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况. (2)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法. 3.分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之求解:根据分层抽样就是按比例抽样,列比例式进行计算. (3)分层抽样的计算应根据抽样比构造方程求解,其中“抽样比=样本容量总体容量=各层样本数量各层个体数量”.提醒:分层抽样时,每层抽取的个体可以不一样多,但必须满足抽取n i =n ·N iN (i =1,2,…,k )个个体(其中i是层数,n 是抽取的样本容量,N i 是第i 层中个体的个数,N 是总体容量).【典例1】(2019·山东省泰安实验中学高一开学考试)总体由编号为01,02, ,29,30的30个个体组成,现从中9抽取一个容量为6的样本,请以随机数表第1行第3列开始,向右读取,则选出来的第6个个体的编号为()70 29 17 12 13 40 33 12 38 26 13 89 51 0356 62 18 37 35 96 83 50 87 75 97 12 55 93A.12 B.13 C.03 D.40【典例2】(2020·横峰中学高三其他(理))某中学高二年级共有学生2400人,为了解他们的身体状况,用分层抽样的方法从中抽取一个容量为80的样本,若样本中共有男生42人,则该校高二年级共有女生()A.1260 B.1230 C.1200 D.1140【典例3】下列抽取样本的方式属于简单随机抽样的个数为()①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.A.0B.1 C.2 D.3【总结提升】1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.2.分层抽样的前提和遵循的两条原则(1)前提:分层抽样使用的前提是总体可以分层,层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体数在总体的个体数中所占比例抽取.(2)遵循的两条原则:①将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则;②分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比等于抽样比.3. 两种抽样方法的特点、联系及适用范围分层抽样可能性相等;②每次抽出个体后不再将它放回,即不放回抽样将总体分成几层,分层进行抽取各层抽样时,采用简单随机抽样总体由差异明显的几部分组成热门考点02 茎叶图及其应用1.当数据个数较少时,用茎叶图可精确地记录每个数据.如果数据是两位数,那么茎表示十位数,叶表示个位数,如果数据是三位数,那么茎表示百位数和十位数,叶表示个位数.2.茎叶图的绘制需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.(3)数据分布一般是茎从上到下由小到大,叶从茎侧向外按从小到大排列.3.茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.【典例4】(2017·山东卷)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7D.5,7【典例5】(2019·济南模拟)中国诗词大会的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成就按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词达人”称号的人数为()A .2B .4C .5D .6【特别提醒】茎叶图是统计中用来表示数据的一种图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数. ①“叶”位置只有一个数字,而“茎”位置的数字位数一般不需要统一; ②茎叶图上重复出现的数据要重复记录,不能遗漏.热门考点03 频率分布直方图1.频率、频数、样本容量的计算方法 (1)频率组距×组距=频率. (2)频数样本容量=频率,频数频率=样本容量, 样本容量×频率=频数. (3)各个小方形的面积总和等于1 . 2.频率分布表的画法第一步:求极差,决定组数和组距,组距=极差/组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; 第三步:登记频数,计算频率,列出频率分布表. 3.频率分布直方图中数字特征的计算(1)最高的小长方形底边中点的横坐标即是众数. (2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.(4)在很多题目中,频率分布直方图中各小长方形的面积之和为1,是解题的关键,常利用频率分布直方图估计总体分布.【典例6】(2017北京,文17)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数学.科网不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【典例7】(2016高考四川文科)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),……[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.【总结提升】 1.两个主要考查角度:(1)利用频率分布直方图求频率、频数. (2)利用频率分布直方图估计总体2.熟记结论:(1)在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1;(2) 频率组距×组距=频率;(3)频数/样本容量=频率,此关系式的变形为频数/频率=样本容量,样本容量×频率=频数 3.易错防范:频率分布直方图的纵坐标是频率组距,而不是频率热门考点04 样本的数字特征众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平;中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平; 平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定. 标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.【典例8】(2020·全国高考真题(文))设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( ) A .0.01B .0.1C .1D .10【典例9】(2020·全国高考真题(理))在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【典例10】(2019年高考全国Ⅱ卷文)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.【总结提升】1.众数、中位数、平均数、方差的意义及常用结论(1)平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(2)方差的简化计算公式:s2=1n[(x21+x22+…+x2n)-n x2]或写成s2=1n(x21+x22+…+x2n)-x2,即方差等于原数据平方的平均数减去平均数的平方.2.主要命题角度:(1)样本的数字特征与频率分布直方图交汇(2)样本的数字特征与茎叶图交汇①在使用茎叶图时,一定要观察所有的样本数据,弄清楚这个图中数字的特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.②茎叶图既可以表示两组数据,也可以表示一组数据,用它表示的数据是完整的数据,因此可以从茎叶图中看出数据的众数(数据中出现次数最多的数)、中位数(中间位置的一个数,或中间两个数的平均数)等.(3)样本的数字特征与优化决策问题交汇:利用样本的数字特征解决优化决策问题的依据①平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.②用样本估计总体就是利用样本的数字特征来描述总体的数字特征.巩固提升1.(2020·四川省宜宾市第四中学校高三二模(文))某公司生产A,B,C三种不同型号的轿车,产量之比依次为2:3:4,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n的样本,若样本中A种型号的轿车比B种型号的轿车少8辆,则n=()A.96 B.72 C.48 D.362.(2017课标1,文2)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(河南省洛阳市2019届高三第三次统考)已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A.100,10 B.100,20C.200,10 D.200,204.(2020·四川省棠湖中学高三一模(文))新冠肺炎期间某商场开通三种平台销售商品,收集一月内的数据如图1;为了解消费者对各平台销售方式的满意程度,该商场用分层抽样的方法抽取4%的顾客进行满意度调查,得到的数据如图2.下列说法错误的是()A.样本容量为240B.若样本中对平台三满意的人数为40,则40%mC.总体中对平台二满意的消费者人数约为300D.样本中对平台一满意的人数为24人5.(2020·河南省高一期末)已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差2s为()A.52B.3 C.72D.46.(广东省汕头市2019届高三第二次模拟(B卷))在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分7.(福建省泉州市2019届高三第二次(5月)质检)已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则 A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s ><8.(2020·双峰县第一中学高一月考)甲、乙、丙、丁四名同学在某次军训射击测试中,各射击10次.四人测试成绩对应的条形图如下:以下关于四名同学射击成绩的数字特征判断不正确...的是( ) A .平均数相同B .中位数相同C .众数不完全相同D .丁的方差最大9.(河南省郑州市2019届高三第三次质量检测)某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y +的值是( )A.12B.14C.16D.1810.(2020·全国高三(理))某学校近几年来通过“书香校园”主题系列活动,倡导学生整本阅读纸质课外书籍.下面的统计图是该校2013年至2018年纸质书人均阅读量的情况,根据统计图提供的信息,下列推断不合理的是()A.从2013年到2016年,该校纸质书人均阅读量逐年增长B.2013年至2018年,该校纸质书人均阅读量的中位数是46.7本C.2013年至2018年,该校纸质书人均阅读量的极差是45.3本D.2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的2倍11.(2020·双峰县第一中学高一月考)某学校随机抽查了本校20个学生,调查他们平均每天进行体育锻炼的时间(单位:min),根据所得数据的茎叶图,以5为组距将数据分为8组,分别是[0,5),[5,10),…,[35,40],作出频率分布直方图如图所示,则原始的茎叶图可能是( )A.B.C .D .12. 已知一组正数x 1,x 2,x 3的方差s 2=13(x 21+x 22+x 23-12),则数据x 1+1,x 2+1,x 3+1的平均数为 . 13.(2020·广东省深圳外国语学校高三月考(文))已知一组数1,2,m ,6,7的平均数为4,则这组数的方差为______.14.(2020·重庆市凤鸣山中学高三月考(文))2018年俄罗斯世界杯将至,本地球迷协会统计了协会内180名男性球迷,60名女性球迷在观察场所(家里、酒吧、球迷广场)上的选择,制作了如图所示的条形图,用分层抽样的方法从中抽取48名球迷进行调查,则其中选择在酒吧观赛的女球迷人数为__________人.15.(2020·甘肃省会宁县第四中学高一期中)某网站举行“卫生防疫”的知识竞赛网上答题,共有120000人通过该网站参加了这次竞赛,为了解竞赛成绩情况,从中抽取了100人的成绩进行统计,其中成绩分组区间为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,其频率分布直方图如图所示,请你解答下列问题:(1)求m 的值;(2)成绩不低于90分的人就能获得积分奖励,求所有参赛者中获得奖励的人数;(3)根据频率分布直方图,估计这次知识竞赛成绩的平均分(用组中值代替各组数据的平均值).16.(2020·上林县中学高一开学考试)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照(0.0.5),(0.5,1),(4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图的a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月用水量的中位数.。

相关文档
最新文档