自动控制原理实验——二阶系统的动态过程分析

合集下载

实验2二阶系统的阶跃响应及稳定性分析实验

实验2二阶系统的阶跃响应及稳定性分析实验

实验室二二阶系统的阶跃响应及稳定性分析实验一.实验目的1.熟悉二阶模拟系统的组成。

2.研究二阶系统分别工作在等几种状态下的阶跃响应。

3.学习掌握动态性能指标的测试方法,研究典型系统参数对系统动态性能和稳定性的影响。

二,实验内容1.ZY17AutoC12BB自动控制原理实验箱。

2.双踪低频慢扫示波器。

四.实验原理典型二阶系统的方法块结构图如图2.1所示:图2.1其开环传递函数为,为开环增益。

其闭环传递函数为,其中取二阶系统的模拟电路如图2.2所示:该电路中该二阶系统的阶跃响应如图所示:图2.3.1,2.3.2,2.3.3,2.3.4和2.3.5分别对应二阶系统在过阻尼,临界阻尼,欠阻尼,不等幅阻尼振荡(接近于0)和零阻尼(=0)几种状态下的阶跃响应曲线。

改变元件参数Rx大小,可研究不同参数特征下的时域响应。

当Rx为50k时,二阶系统工作在临界阻尼状态;当Rx<50K时,二阶系统工作在过阻尼状态;当Rx>50K时,二阶系统工作在欠阻尼状态;当Rx继续增大时,趋近于零,二阶系统输出表现为不等幅阻尼振荡;当=0时,二阶系统的阻尼为零,输出表现为等幅振荡(因导线均有电阻值,各种损耗总是存在的,实际系统的阻尼比不可能为零)。

五. 实验步骤1.利用实验仪器,按照实验原理设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路。

此实验可使用运放单元(一),(二),(三),(五)及元器件单元中的可调电阻。

(1)同时按下电源单元中的按键开关S001,S002,再按下S003,调节可调电位器W001,使T006(-12V—+12V)输出电压为+1V,形成单位阶跃信号电路,然后将S001,S002再次按下关闭电源。

(2)按照图2.2连接好电路,按下电路中所用到运放单元的按键开关。

(3)用导线将连接好的模拟电路的输入端于T006相连接,电路的输出端与示波器相连接。

(4)同时按下按键开关S001,S002时,利用示波器观测该二阶系统模拟电路的阶跃特性曲线,并由实验测出响应的超调量和调节时间,将结果记录下来。

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。

二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。

特征根的实部决定了系统的稳定性,实部小于零时系统稳定。

2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。

三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。

2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。

四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。

根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。

2.连接模拟输入信号。

在搭建的二阶系统的输入端接入一个阶跃信号发生器。

3.连接模拟输出信号。

在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。

4.调整增益和特征根。

通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。

记录实际调整参数的数值。

5.使用MATLAB进行仿真绘制。

根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。

6.对比分析实际曲线与仿真曲线。

通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。

五、实验结果与分析1.实际曲线的绘制结果。

根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。

2.仿真曲线的绘制结果。

利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。

3.实际曲线与仿真曲线的对比分析。

通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。

六、实验讨论与结论1.实验过程中遇到的问题。

自动控制原理实验——二阶系统的动态过程分析

自动控制原理实验——二阶系统的动态过程分析

.实验二二阶系统的动态过程分析一、实验目的1.掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。

2.定量分析二阶系统的阻尼比和无阻尼自然频率n对系统动态性能的影响。

3.加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。

4. 了解和学习二阶控制系统及其阶跃响应的Matlab 仿真和 Simulink 实现方法。

二、实验内容1.分析典型二阶系统 G(s) 的和n变化时,对系统的阶跃响应的影响。

2.用实验的方法求解以下问题:设控制系统结构图如图 2.1 所示,若要求系统具有性能:p% 20%, t p1s,试确定系统参数K 和,并计算单位阶跃响应的特征量t d, t r和 t s。

图 2.1 控制系统的结构图3.用实验的方法求解以下问题:设控制系统结构图如图 2.2 所示。

图中,输入信号r (t)t ,放大器增益 K A 分别取 13.5,200 和 1500。

试分别写出系统的误差响应表达式,并估算其性能指标。

.图 2.2 控制系统的结构图三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。

将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。

2通常,二阶控制系统 G(s) n 2 可以分解为一个比例环节、一个22 ns n惯性环节和一个积分环节,其结构原理如图 2.3 所示,对应的模拟电路图如图 2.4 所示。

图 2.3 二阶系统的结构原理图图 2.4 二阶系统的模拟电路原理图图 2.4 中:u(t )r (t), u (t)c(t) 。

比例常数(增益系数)K R2 ,惯性时间常数 T1 R3C1,积分时间常数R1T2R4C2。

其闭环传递函数为:U c (s)KK TT21 (0.1)U r (s) T2 s(T1s 1) K 21s s KT1 TT1 2又:二阶控制系统的特性由两个参数来描述,即系统的阻尼比和无阻尼自然频率 n 。

《自动控制》一二阶典型环节阶跃响应实验分析报告

《自动控制》一二阶典型环节阶跃响应实验分析报告

自动控制原理实验分析报告姓名:学号:班级:一、典型一阶系统的模拟实验:1.比例环节(P) 阶跃相应曲线。

传递函数:G(S)=-R2/R1=K说明:K为比例系数(1)R1=100KΩ,R2=100KΩ;特征参数实际值:K=-1.(2)(2)R1=100KΩ,R2=200KΩ;即K=-2.〖分析〗:经软件仿真,比例环节中的输出为常数比例增益K;比例环节的特性参数也为K,表征比例环节的输出量能够无失真、无滞后地按比例复现输入量。

2、惯性环节(T) 阶跃相应曲线及其分析。

传递函数:G(S)=-K/(TS+l) K=R2/R1 , T=R2C说明:特征参数为比例增益K和惯性时间常数T。

(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。

(2)、R2=R1=100KΩ , C=0.1µF;特征参数实际值:K=-1,T=0.01。

〖分析〗:惯性环节的阶跃相应是非周期的指数函数,当t=T时,输出量为0.632K,当t=3~4T时,输出量才接近稳态值。

比例增益K表征环节输出的放大能力,惯性时间常数T表征环节惯性的大小,T越大表示惯性越大,延迟的时间越长,反之亦然。

传递函数:G(S)= -l/TS ,T=RC说明:特征参数为积分时间常数T。

(1)、R=100KΩ , C=1µF;特征参数实际值:T=0.1。

(2)R=100KΩ , C=0.1µF;特征参数实际值:T=0.01。

〖分析〗:只要有一个恒定输入量作用于积分环节,其输出量就与时间成正比地无限增加,当t=T时,输出量等于输入信号的幅值大小。

积分时间常数T表征环节积累速率的快慢,T越大表示积分能力越强,反之亦然。

4、比例积分环节(PI) 阶跃相应曲线及其分析。

传递函数:G(S)=K( l+l/TS) K=-R2/R1, T=R2C说明:特征参数为比例增益K和积分时间常数T。

(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。

自控原理二阶系统阶跃响应及性能分析实验报告

自控原理二阶系统阶跃响应及性能分析实验报告

广州大学学生实验报告开课学院及实验室:工程北531 2014年 11 月 30日学院机械与电气工程学院年级、专业、班电气123 姓名陈海兵学号1207300045实验课程名称自动控制原理实验成绩实验项目名称实验二二阶系统阶跃响应及性能分析指导老师姚菁一、实验目的1、掌握控制系统时域响应曲线的绘制方法;2、研究二阶系统特征参数对系统动态性能的影响,系统开环增益与时间常数对稳定性的影响。

3、能够计算阶跃响应的瞬态性能指标,对系统性能进行分析。

二、实验内容实验1、典型二阶系统闭环传递函数(1) 试编写程序,绘制出当ωn=6, ζ分别为0、1,0、4,0、7,1,1、3 时的单位阶跃响应;(2)试编写程序,绘制出当ζ=0、7, ωn 分别为2,4,6,8,10 时的单位阶跃响应;(3) 对上述各种单位阶跃响应情况加以讨论、实验2、设单位反馈系统的开环传递函数为若要求系统的阶跃响应的瞬态性能指标为σp=10%,t s (5%) = 2s、试确定参数K 与a 的值, 并画出阶跃响应曲线,在曲线上标出σp、t s(5%)的数值。

实验3、设控制系统如图2-1所示。

其中(a)为无速度反馈系统,(b)为带速度反馈系统,试(1)确定系统阻尼比为0、5 时的K1值;(2) 计算并比较系统(a)与(b)的阶跃响应的瞬态性能指标;(3)画出系统(a)与(b)阶跃响应曲线,在曲线上标出σp、t s(5%)的数值,以验证计算结果。

图2-1三、使用仪器、材料计算机、MATLAB 软件四、实验过程原始记录(程序、数据、图表、计算等) 1、运行Matlab 软件;2、在其命令窗口中输入有关函数命令或程序。

涉及的主要命令有:step()实验1:为便于比较,可用hold on 指令将多条曲线放在一个图中。

进一步,为清楚起见,用legend 指令在图中加注释。

部分结果如图2-2所示。

图2-2实验2:首先与二阶系统闭环传递函数的标准形式比较,求出参数K1、a与阻尼系数、自然频率的关系,再由对系统的阶跃响应的瞬态性能指标要求,求出参数K1、a,再用step()画出即可。

自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃

自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃

实验一、典型环节及其阶跃响应实验目的1、学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2、学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。

实验内容构成下述典型环节的模拟电路,并测量其阶跃响应。

比例环节的模拟电路及其传递函数示图2-1。

G(S)=-R2/R1惯性环节的模拟电路及其传递函数示图2-2。

G(S)=-K/TS+1 K=R2/R1 ,T=R2*C积分环节的模拟电路及其传递函数示图2-3。

G(S)=1/TS T=RC微分环节的模拟电路及其传递函数示图2-4。

G(S)=-RCS比例加微分环节的模拟电路及其传递函数示图2-5。

G(S)=-K(TS+1) K=R2/R1 T=R2C比例加积分环节的模拟电路及其传递函数示图2-6。

G(S)=K(1+1/TS) K=R2/R1,T=R2C软件使用1、打开实验课题菜单,选中实验课题。

2、在课题参数窗口中,填写相应AD,DA或其它参数。

3、选确认键执行实验操作,选取消键重新设置参数。

实验步骤1、连接被测量典型环节的模拟电路及D/A、A/D连接,检查无误后接通电源。

2、启动应用程序,设置T和N。

参考值:T=0.05秒,N=200。

3、观测计算机屏幕示出的响应曲线及数据记录波形及数据(由实验报告确定)。

实验报告1、画出惯性环节、积分环节、比例加微分环节的模拟电路图,用坐标纸画出所有记录的惯性环节、积分环节、比例加微分环节的响应曲线。

2、由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。

实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频ωn 对系统动态性能的影响,定量分析ζ和ωn与最大超调量Mp和调节时间 ts 之间的关系。

2、进一步学习实验仪器的使用方法。

3、学会根据系统阶跃响应曲线确定传递函数。

二、实验原理及电路典型二阶系统的闭环传递函数为其中ζ和ωn对系统的动态品质有决定的影响。

自动控制原理实验报告

自动控制原理实验报告

北京航空航天大学自动控制原理实验报告学院能源与动力工程学院专业方向飞行器动力工程班级 140416学号 ********学生姓名蓝健文实验一二阶系统的电子模拟及时域响应的动态测试一、实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2.学习在电子模拟机上建立典型环节系统模型的方法。

3.学习阶跃响应的测试方法。

二、实验内容1.建立一阶系统的电子模型,观测并记录在不同时间常数T时的阶跃响应曲线,并测定其过渡过程时间,即调节时间 t s。

2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的阶跃响应曲线,并测定其超调量σ%及过渡过程时间 t s。

三、实验原理1、一阶系统系统传递函数为:ϕ(s)=C(s)R(s)=KTs+1模拟运算电路如图1所示:图 1 由图 1 得U0(s) U i(s)=(R2/R1)R2Cs+1=KTs+1实验当中始终取R2=R1,则K=1,T=R2C,取不同的时间常数T,T=0.25s、T=0.5s、T=1s,记录阶跃响应曲线,测量过渡过程时间 t s。

将参数及指标填在后面数据分析部分的表1中。

2、二阶系统其传递函数为:ϕ(s)=C(s)R(s)=ωn2s+2ζωn2s+ωn2令ωn=1 rad/s,则系统结构如图2所示:图 2根据结构图,建立的二阶系统模拟线路如图3所示:图 3取R2 C1=1 ,R3 C2 =1,则R4 R3=R4C2=12ζ及ζ=1 2R4C2ζ取不同的值ζ=0.25 , ζ=0.5 , ζ=1 ,观察并记录阶跃响应曲线,测量超调量σ% ,计算过渡过程时间 t s。

将参数及各项指标填入数据分析部分的表2中。

以上实验,配置参数时可供选择的电阻R值有100kΩ,470kΩ(可调),2.2MΩ(可调),电容C值有1μF,10μF。

四、实验设备1.数字计算机2.电子模拟机3.万用表4.测试导线五、实验步骤1. 熟悉HHMN-1 型电子模拟机的使用方法,将各运算放大器接成比例器,通电调零。

自动控制原理实验一:二阶系统阶跃响应

自动控制原理实验一:二阶系统阶跃响应

实验一 二阶系统阶跃响应一. 实验目的1. 研究二阶系统的两个重要参数:阻尼比ξ和无阻尼自振角频率n ω对系统动态性能的影响。

2. 学会根据模拟电路,确定系统传递函数。

二. 实验内容二阶系统模拟电路如图2-1所示。

系统特征方程为2210T s KTs ++=,其中T RC =,01R K R =。

根据二阶系统的标准形式可知,=/2K ξ,通过调整K 可使ξ获得期望值。

三. 实验预习1. 分别计算出0.5,0.25,0.5,0.75T ξ==时,系统阶跃响应的超调量p σ和过渡过程时间s t 。

2. 分别计算出0.25,0.2,0.5,1.0T ξ==时,系统阶跃响应的超调量p σ和过渡过程时间s t 。

教材P55给出了计算公式:超调量100%p eσ=⨯过渡过程时间44s nTt ξωξ==(近似值,只适合二阶系统的欠阻尼状态)。

另外,为对实验结果做误差分析,还需计算0.5,1T ξ==时的p σ和s t 。

此时系统为临界阻尼状态,0p σ=,s t 若再用上面给出的式子计算则会使得误差较大。

我们将根据定义采用数值计算的方法计算出s t 。

临界阻尼状态下,二阶系统的单位阶跃响应为()1(1)n tn y t t eωω-=-+,令1()0.98,2n y t Tω===,计算得 2.917()t s =。

根据以上公式计算,将计算结果整理成下表:四. 实验步骤1. 通过改变K ,使ξ获得0,0.25,0.5,0.75,1.0等值,在输入端加同样幅值的阶跃信号,观察过渡过程曲线,记下超调量p σ和过渡过程时间s t ,将实验值和理论值进行比较。

2. 当0.25ξ=时,令0.2,0.5,1.0T =秒秒秒(T RC =,改变两个C ),分别测出超调量p σ和过渡过程时间s t ,比较三条阶跃响应曲线的异同。

五. 数据处理1. 数据整理与计算(1)0.5T =,ξ取不同值其中,记录(0)V 是为了矫正系统误差,因为理论上(0)V 应该等于0。

实验二 二阶系统的动态特性与稳定性分析.

实验二 二阶系统的动态特性与稳定性分析.

自动控制原理实验报告实验名称:二阶系统的动态特性与稳定性分析班级:姓名:学号:实验二 二阶系统的动态特性与稳定性分析一、实验目的1、 掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态2、 分析二阶系统特征参量(ξω,n )对系统动态性能的影响;3、 分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质;4、 了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态;5、 学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink 实现方法。

二、实验内容1、 构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。

2、 用Matlab 和simulink 仿真,分析其阶跃响应动态性能,得出性能指标。

3、 搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响;4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响;5、 将软件仿真结果与模拟电路观测的结果做比较。

三、实验步骤1、 二阶系统的模拟电路实现原理 将二阶系统:ωωξω22)(22nn s G s s n++=可分解为一个比例环节,一个惯性环节和一个积分环节ωωξω)()()()(2C C C C s C C 22262154232154232154215426316320nn s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++=++=++== 2、 研究特征参量ξ对二阶系统性能的影响将二阶系统固有频率5.12n =ω保持不变,测试阻尼系数ξ不同时系统的特性,搭建模拟电路,改变电阻R6可改变ξ的值当R6=50K 时,二阶系统阻尼系数ξ=0.8 当R6=100K 时,二阶系统阻尼系数ξ=0.4 当R6=200K 时,二阶系统阻尼系数ξ=0.2(1)用Matlab 软件仿真实现二阶系统的阶跃响应,计算超调量%σ、峰值时间tp 以及调节时间ts 。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告姓名:学号:班级:实验一 一、二阶系统的电子模拟及时域响应的动态测试一、 实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2. 学习在电子模拟机上建立典型环节系统模型的方法。

3. 学习阶跃响应的测试方法。

二、 实验内容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。

2.建立二阶系统的电子模型,并记录在不同的阻尼比ζ时的阶跃响应曲线,并测定其超调量δ%及过渡过程时间Ts 。

三、 实验原理1.一阶系统系统传递函数为: 模拟运算电路如图1-1所示:图 1-1其中R1=R2,T=R2·C 其中电阻电容的具体取值见表1-12. 二阶系统系统传递函数为: 模拟运算电路如图1-2所示:图1-2其中R2·C1=1,R3·C2=1,R4/R3=ξ21各元器件具体取值如图1-2所示。

222()()()2n n nC s s R s S S ωζωωΦ==++()()()1C s Ks R s TS Φ==+四、实验数据1.一阶系统1)数据表格(取5%误差带,理论上Ts=3T)表1-1T/s 0.25 0.5 1 R2(R1)/Ω250k 500k 1MC/μF 1 1 1Ts实测/s 0.74 1.46 2.99Ts理论/s 0.75 1.5 3 阶跃响应曲线图1-3 图1-4 图1-5 2)响应曲线图1-3 (T=0.25)图1-4 (T=0.5)图1-5 (T=1)2. 二阶系统 1)数据表格表1-2说明:(1)0﹤ζ﹤1,为欠阻尼二阶系统,超调量理论计算公式2/1%100%eπζζσ--=⨯(2)取5%误差带,当ζ值较小(0﹤ζ﹤0.7)采用近似公式 进行估算;当ζ值较大(ζ﹥0.7)采用近似公式 7.145.6-=ξsT 进行估算.2)响应曲线图1-6 (ζ=0.25)ζ0.25 0.5 0.7 1.0 /rad/s 1 1 1 1 R 4/M Ω 2.0 1.0 0.7 0.5 C2/μF 1.0 1.0 1.0 1.0 σ%实测 43.77 16.24 4.00 0.02 σ%理论 44.43 16.30 4.600 Ts 实测/s 13.55 5.47 3.03 4.72 Ts 理论/s 14 7 5 4.75 阶跃响应曲线图1-6图1-7图1-8图1-9ns T ξω5.3=图1-7 (ζ=0.5)图1-8 (ζ=0.7)图1-9 (ζ=1)五、 误差分析1. 对一阶系统阶跃响应实验当T=0.25 时, 1.3%%10075.074.0-75.0=⨯=误差。

自动控制原理实验2

自动控制原理实验2

实验二 二阶系统的瞬态响应一、实验目的1. 通过实验了解参数ζ(阻尼比)、n ω(阻尼自然频率)的变化对二阶系统动态性能的影响;2. 掌握二阶系统动态性能的测试方法。

二、实验设备同实验一。

三、实验内容1. 观测二阶系统的阻尼比分别在0<ζ<1,ζ=1和ζ>1三种情况下的单位阶跃响应曲线;2. 调节二阶系统的开环增益K ,使系统的阻尼比21=ζ,测量此时系统的超调量p δ、调节时间t s (Δ= ±0.05);四、实验原理1. 二阶系统的瞬态响应用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为2222)()(n n n S S S R S C ωζωω++= (2-1) 闭环特征方程:0222=++n n S ωζω其解 122,1-±-=ζωζωn n S ,针对不同的ζ值,特征根会出现下列三种情况:1)0<ζ<1(欠阻尼),22,11ζωζω-±-=n n j S此时,系统的单位阶跃响应呈振荡衰减形式,其曲线如图2-1的(a)所示。

它的数学表达式为:式中21ζωω-=n d ,ζζβ211-=-tg 。

2)1=ζ(临界阻尼)n S ω-=2,1此时,系统的单位阶跃响应是一条单调上升的指数曲线,如图2-1中的(b)所示。

3)1>ζ(过阻尼),122,1-±-=ζωζωn n S此时系统有二个相异实根,它的单位阶跃响应曲线如图2-1的(c)所示。

)t (Sin e 111)t (C d t 2n βωζζω+--=-(a) 欠阻尼(0<ζ<1) (b)临界阻尼(1=ζ) (c)过阻尼(1>ζ)图2-1 二阶系统的动态响应曲线虽然当ζ=1或ζ>1时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取ζ=0.6~0.7,此时系统的动态响应过程不仅快速,而且超调量也小。

自动控制原理实验指导书

自动控制原理实验指导书
了解和掌握典型非线性系统的原理,学会用相轨迹分析非线性系统的瞬间响应和稳态误差
了解和掌握相平面法,学会用相平面法分析非线性三阶系统
二.实验设备及仪器
自动控制原理教学模拟机一台
双踪示波器或虚拟示波器一台
计算机和数字万用表各一台
三.实验内容
典型非线性环节的特性实验(包括继电型、饱和型、死区、间隙)
继电型非线性系统实验(包括不带速度和带速度负反馈)
i=cs+1;
n=0;
while n==0
i=i-1;
if i==1
n=1;
elseif y(i)>1.05*yss%选择5%的误差带
n=1;
end
end;
t1=t(i);
cs=length(t);
j=cs+1;
n=0;
while n==0
j=j-1;
if j==1
n=1;
elseif y(j)<0.95*yss%选择5%的误差带
对实验结果加以讨论:
3,在开环放大倍数K等于原系统的临界Km情况下,采取哪种校正方案使得系统的动态性能最好?
4,在δ%=25%的情况下,采取哪种校正方案可使系统在斜坡信号作用时,稳态误差最小?
实验五.采样系统分析
一.实验目的
了解采样开关,零阶保持器的原理及过程。
学会环采样系统特性分析。
掌握学习用MATLAB仿真软件实现采样系统分析方法。
3.请将记录的波形绘出,测试数据以表格形式列出;
4.比较两种仿真的结果进行误差分析。
附1:MATLAB仿真
已知一个二阶系统的传递函数为:
试绘制该系统的单位阶跃响应曲线,并计算系统的性能指标
MATLAB程序如下所示:

自动控制原理实验报告 典型环节及其阶跃响应 二阶系统阶跃响应 连续系统串联校正

自动控制原理实验报告 典型环节及其阶跃响应 二阶系统阶跃响应 连续系统串联校正

自动控制原理实验报告班级:自动化0906班学生: 伍振希(09213052)张小维(合作)任课教师:苗宇老师目录实验一典型环节及其阶跃响应 (1)一、实验目的 (1)二、实验仪器 (1)三、实验原理 (1)四、实验内容 (1)五、实验步骤 (2)六、实验结果 (3)实验二二阶系统阶跃响应 (6)一、实验目的 (6)二、实验仪器 (6)三、实验原理 (6)四、实验内容 (6)五、实验步骤 (7)六、实验结果 (7)实验三连续系统串联校正 (13)一、实验目的 (13)二、实验仪器 (13)三、实验内容 (13)四、实验步骤 (15)五、实验结果 (15)实验一典型环节及其阶跃响应一、实验目的1. 掌握控制模拟实验的基本原理和一般方法。

2. 掌握控制系统时域性能指标的测量方法。

二、实验仪器1.EL-AT-III型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应:1.比例环节的模拟电路及其传递函数如图1-1。

G(S)= R2/R12.惯性环节的模拟电路及其传递函数如图1-2。

G(S)= - K/TS+1K=R2/R1,T=R2C3.积分环节的模拟电路及传递函数如图1-3。

G(S)=1/TST=RC4.微分环节的模拟电路及传递函数如图1-4。

G(S)= - RCS5.比例微分环节的模拟电路及传递函数如图1-5(未标明的C=0.01uf)。

G(S)= -K(TS+1)K=R2/R1,T=R1C五、实验步骤1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

实验二-二阶系统的动态特性与稳定性分析

实验二-二阶系统的动态特性与稳定性分析

实验⼆-⼆阶系统的动态特性与稳定性分析实验⼆-⼆阶系统的动态特性与稳定性分析⾃动控制原理实验报告实验名称:⼆阶系统的动态特性与稳定性分析班级:姓名:学号:实验⼆⼆阶系统的动态特性与稳定性分析⼀、实验⽬的1、掌握⼆阶系统的电路模拟⽅法及其动态性能指标的测试技术过阻尼、临界阻尼、⽋阻尼状态)对系统动态2、分析⼆阶系统特征参量(ξω,n性能的影响;3、分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性⾄于其结构和参数有关,与外作⽤⽆关”的性质;4、了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态;5、学习⼆阶控制系统及其阶跃响应的Matlab 仿真和simulink实现⽅法。

⼆、实验内容1、构成各⼆阶控制系统模拟电路,计算传递函数,明确各参数物理意义。

2、⽤Matlab和simulink仿真,分析其阶跃响应动态性能,得出性能指标。

3、搭建典型⼆阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型⼆阶系统动态性能和稳定性的影响; 4、搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响; 5、将软件仿真结果与模拟电路观测的结果做⽐较。

三、实验步骤1、⼆阶系统的模拟电路实现原理将⼆阶系统:ωωξω22)(22nn s G s s n++=可分解为⼀个⽐例环节,⼀个惯性环节和⼀个积分环节ωωξω221)()()()(2C C C C s C C 22221542322154215426316320nn s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++=++=++== 2、研究特征参量ξ对⼆阶系统性能的影响将⼆阶系统固有频率5.12n=ω保持不变,测试阻尼系数ξ不同时系统的特性,搭建模拟电路,改变电阻R6可改变ξ的值当R6=50K 时,⼆阶系统阻尼系数ξ=0.8 当R6=100K 时,⼆阶系统阻尼系数ξ=0.4 当R6=200K 时,⼆阶系统阻尼系数ξ=0.2(1)⽤Matlab 软件仿真实现⼆阶系统的阶跃响应,计算超调量%σ、峰值时间tp 以及调节时间ts 。

自动控制原理(3-2)

自动控制原理(3-2)

arccos 1.09(rad )
1 0.7
d n 1 2 3.14(rad / s)
0.65( s ) d
td
n
3.5
0.37( s )
tr
ts
n
4.4
2.15( s ) 0.05
ts
n
2.70( s)
对上式取拉氏反变换,求得单位阶跃响应为:
h(t ) 1 e sin d t cos d t 2 1 1 1 e nt 1 2 cos d t sin d t 1 2
n t


1
1 1 2
e nt sin( d t ) , t 0
式中, arctan( 1 2 ) ,或者
arccos
欠阻尼二阶系统的单位阶跃响应有两部分组成:
稳态分量为1,系统在单位阶跃函数作用下不存在
稳态位臵误差;
瞬态分量为阻尼正弦振荡项,其振荡频率为ωd,
故称为阻尼振荡频率。
t 0
系统的误差为:
e(t ) r (t ) c(t ) 2
n
2

n
1 2 e nt sin 1 2 n t 2arctg 1 2 1
1 2

e t T1 e t T2 h(t ) 1 , t0 T2 T1 1 T1 T2 1
4.无阻尼(ζ=0)二阶系统的单位阶跃响应
h(t ) 1 cos nt , t 0
可见,这是一条平均值为1的正、余弦形式的等幅振 荡,其振荡频率为ωn,故可称为无阻尼振动频率。 实际的控制系统通常都有一定的阻尼比,因此不可能 通过实验方法测得ωn,而只能测得ωd,且小于ωn。

自动控制原理实验报告实验一-一、二阶系统的电子模拟及时域响应的动态测试

自动控制原理实验报告实验一-一、二阶系统的电子模拟及时域响应的动态测试

分组:成绩:__ _______北京航空航天大学自动控制原理实验报告实验一一、二阶系统的电子模拟及时域响应的动态测试学院专业方向班级学号学生姓名指导教师2014年11月目录一、实验目的 (1)二、实验内容 (1)三、实验原理 (1)四、实验设备 (2)五、实验步骤 (2)六、实验数据 (3)1.一阶系统实验数据及图形 (3)2.二阶系统实验数据及图形 (4)七、结论和误差分析 (6)结论: (6)误差分析: (7)八、收获与体会 (7)附录 (7)实验时间2014.11.1 同组同学 无一、实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2.学习在电子模拟机上建立典型环节系统模型的方法。

3.学习阶跃响应的测试方法。

二、实验内容1.建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。

2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的阶跃响应曲线,并测定其超调量σ%及过渡过程时间Ts 。

三、实验原理1.一阶系统实验原理系统传递函数为:()()()1C S Ks R S TS φ==+模拟运算电路如图1所示:图1212R R Uo(s)K ==Ui(s)CSR +1Ts+1在实验中始终取R2=R1,则K=1,T=R2*C 取不同的时间常数T ,T=0.25s ,T=0.5s ,T=1s记录不同的时间常数下阶跃响应曲线,测量并记录其过渡时间Ts (Ts=3T )2.二阶系统实验原理 其传递函数为:222()()()(2)n n n C S S R S S S ωζωωΦ==++令1n ω=弧度/秒,二阶系统模拟线路下图2所示:图2取R2*C1=1,R3*C2=1,则R4/R3=R4*C2=1/(2*ζ)及ζ=1/(2*R4*C2)理论值:3(0.05)s nt ζω≈∆=,%σ100%e =⨯四、实验设备1. HHMN-1 型电子模拟机一台2. PC 机一台3. 数字式万用表一块。

实验二二阶系统地动态特性与稳定性分析报告

实验二二阶系统地动态特性与稳定性分析报告

自动控制原理实验报告实验名称:二阶系统的动态特性与稳定性分析班级:姓名:学号:实验二 二阶系统的动态特性与稳定性分析一、实验目的1、 掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态2、 分析二阶系统特征参量(ξω,n )对系统动态性能的影响;3、 分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质;4、 了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态;5、 学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink 实现方法。

二、实验内容1、 构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。

2、 用Matlab 和simulink 仿真,分析其阶跃响应动态性能,得出性能指标。

3、 搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响;4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响;5、 将软件仿真结果与模拟电路观测的结果做比较。

三、实验步骤1、 二阶系统的模拟电路实现原理 将二阶系统:ωωξω22)(22nn s G s s n++=可分解为一个比例环节,一个惯性环节和一个积分环节ωωξω221)()()()(2C C C C s C C 222621542321542322154215426316320nn s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++=++=++== 2、 研究特征参量ξ对二阶系统性能的影响将二阶系统固有频率5.12n =ω保持不变,测试阻尼系数ξ不同时系统的特性,搭建模拟电路,改变电阻R6可改变ξ的值 当R6=50K 时,二阶系统阻尼系数ξ=0.8 当R6=100K 时,二阶系统阻尼系数ξ=0.4 当R6=200K 时,二阶系统阻尼系数ξ=0.2(1)用Matlab 软件仿真实现二阶系统的阶跃响应,计算超调量%σ、峰值时间tp 以及调节时间ts 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二二阶系统的动态过程分析一、 实验目的1. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。

2. 定量分析二阶系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。

3. 加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。

4. 了解和学习二阶控制系统及其阶跃响应的Matlab 仿真和Simulink 实现方法。

二、 实验内容1. 分析典型二阶系统()G s 的ξ和n ω变化时,对系统的阶跃响应的影响。

2. 用实验的方法求解以下问题:设控制系统结构图如图所示,若要求系统具有性能:%20%,1,p p t s σσ===试确定系统参数K 和τ,并计算单位阶跃响应的特征量d t ,r t 和s t 。

图 控制系统的结构图3. 用实验的方法求解以下问题:设控制系统结构图如图所示。

图中,输入信号()r t t θ=,放大器增益A K 分别取,200和1500。

试分别写出系统的误差响应表达式,并估算其性能指标。

图 控制系统的结构图三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。

将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。

通常,二阶控制系统2 22()2nn nG ssωξωω=++可以分解为一个比例环节、一个惯性环节和一个积分环节,其结构原理如图所示,对应的模拟电路图如图所示。

图二阶系统的结构原理图图二阶系统的模拟电路原理图图中:()(),()()r cu t r t u t c t==-。

比例常数(增益系数)21RKR=,惯性时间常数131T R C=,积分时间常数242T R C=。

其闭环传递函数为:12221112()1()(1)crKU s TTKKU s T s T s K s sT TT==++++(0.1)又:二阶控制系统的特性由两个参数来描述,即系统的阻尼比ξ和无阻尼自然频率n ω。

其闭环传递函数的标准形式为:222()()2n n nC s R s s ωξωω=++ (0.2)比较(0.1)和(0.2)两式可得:n ωξ== 当3412,R R R C C C ====时,有12()T T T RC ===,因此,n ωξ== 可见:(1)在其它参数不变的情况下,同时改变系统的增益系数K 和时间常数T (即调节21R R 的比值和改变RC 的乘积)而保持n ω不变时,可以实现ξ单独变化。

只改变时间常数T 时,可以单独改变n ω。

这些都可以引起控制系统的延迟时间d t 、上升时间r t 、调节时间s t 、峰值时间p t 、超调量%σ和振荡次数N 等的变化。

(2)记录示波器上的响应曲线满足性能要求时的各分立元件值,就可以计算出相应的参数和其它性能指标值。

四、实验要求1. 记录ξ和n ω变化时二阶系统的阶跃响应曲线以及所测得的相应的超调量%σ,峰值时间p t 和调节时间s t 值,分析ξ和n ω对系统性能指标的影响。

2. 画出研究内容2题中对应的模拟电路图,并标明各电路元件的取值。

3. 根据研究内容3题中不同的A K 值,计算出该二阶系统的ξ和n ω,由近似公式求其动态性能,并与仿真结果比较。

五、实验过程1.在command window 中分别输入下列两个程序,即可求出ξ和n ω变化时二阶系统的阶跃响应曲线以及所测得的相应的超调量%σ,峰值时间p t 和调节时间st值。

w n=3;kosai=[::1];figure(1)hold onfor i=kosainum=w n^2;den=[1,2*i*w n,w n^2];step(num,den) ;G=tf(num,den);t=0:10^(-3):*10^(5);c=step(G,t);[y,x,t]=step(num,den,t); %求单位阶跃响应maxy=max(y) %求响应的最大值ys=y(length(t)) %求响应的终值pos=(maxy-ys)/ys %求取超调量n=1;while y(n)<*ysn=n+1;endtd=t(n) %求取延迟时间n=1;while y(n)<ysn=n+1;endtr=t(n) %求上升时间n=1;while y(n)<maxyn=n+1;endtp=t(n) %求取峰值时间l=length(t);while(y(l)>*ys)&(y(l)<*ys)l=l-1;endts=t(l) %求调节时间endtitle('w n=3时, 的变化对单位阶跃响应的影响');w n=2:2:20;kosai=;figure(1)hold onfor w n=w n;num=w n^2;den=[1,2*kosai*w n,w n^2];step(num,den)G=tf(num,den);t=0:10^(-3):*10^(5);c=step(G,t);[y,x,t]=step(num,den,t); %求单位阶跃响应maxy=max(y) %求响应的最大值ys=y(length(t)) %求响应的终值pos=(maxy-ys)/ys %求取超调量n=1;while y(n)<*ysn=n+1;endtd=t(n) %求取延迟时间n=1;while y(n)<ysn=n+1;endtr=t(n) %求上升时间n=1;while y(n)<maxyn=n+1;endtp=t(n) %求取峰值时间l=length(t);while(y(l)>*ys)&(y(l)<*ys)l=l-1;endts=t(l) %求调节时间endtitle(' =时,w n的变化对单位阶跃响应的影响');Wn=3时0246810121416180.20.40.60.811.21.41.61.8 =0.6时,w n 的变化对单位阶跃响应的影响Time (seconds)A m p l i t u d emaxy = ys = pos = td = \tr = tp = = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = 0 td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts =maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts =01234560.20.40.60.811.21.4=0.5时,Wn 的变化对单位阶跃响应的影响Time (seconds)A m p l i t u d emaxy = ys =1 pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts = maxy = ys = pos = td = tr = tp = ts =2.用下列程序求解和w n 。

solve ('exp((-1*x* /((1-x^2)^)=0','x') solve (' (w n *(1- ^2)^-1=0', 'w n ') solve ('(w n )^2-k=0','k')solve ('2*x/w n -(k*t+1)/k=0','t')再用前面提到的程序求动态性能指标 六、思考题1. 分析通常采用系统的阶跃响应特性来评价其动态性能指标的原因。

答:阶跃输入就是在某一时刻,输入突然阶跃式变化,并继续保持在这个幅度上。

阶跃输入容易产生而且简单,同时阶跃输入是一种很剧烈的扰动,如果一个控制系统能够有效地克服阶跃扰动,那么对于其他比较缓和的扰动一般也能满足性能指标要求。

2. 用Matlab 绘制以下问题中系统的输出响应曲线。

设角度随动系统如图所示。

图中,K 为开环增益,0.1T s =为伺服电动机的时间常数。

若要求系统的单位阶跃响应无超调,且调节时间1s t s ≤,K 应取多大此时系统的延迟时间d t 及上升时间r t 各等于多少答:可令=1,w n =5,K=。

代入前面的程序00.51 1.52 2.5w n=4,ξ =1时,单位阶跃响应曲线Time (seconds)A m p l i t u d epos=0 td= tr= tp= ts=。

相关文档
最新文档