七年级数学下册综合训练题

合集下载

北师大版数学七年级下册综合训练100题-含答案

北师大版数学七年级下册综合训练100题-含答案

北师大版数学七年级下册综合训练100题含答案(题型:单选、多选、填空、解答题)一、单选题1.如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为()A.40°B.50°C.140°D.150°2.下列各组中的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.4,5,9D.3,9,73.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.如图,直线DE经过点A,DE∥BC,∥B=45°,∥1=65°,则∥2=()A.65°B.70°C.75°D.80°5.下列计算正确的是()A.(a2)3=a5B.a2a3=a6C.a6÷a3=a3D.a2+a3=a5 6.下面不是轴对称图形的是()A.B.C.D .7.下列说法中是真命题的有( )∥一条直线的平行线只有一条.∥过一点与已知直线平行的直线只有一条.∥因为a∥b ,c∥b ,所以a∥c .∥经过直线外一点有且只有一条直线与已知直线平行.A .1个B .2个C .3个D .4个 8.下列计算中 , 正确的是 ( )A .()2236a a =B .()4312a a =C .2510a a x =D .632a a a ÷= 9.下列说法正确的是( )A .“一个不透明的袋中装有5个红球,从中摸出一个球是红球”是随机事件B .“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件C .在一次抽奖活动中,“中奖的概率是”表示抽奖100次就一定会中奖D .“抛掷一枚硬币,硬币落地时正面朝上”是确定事件10.若23a =,25b =,215c =,则( )A .a b c +=B .1a b c ++=C .2a b c +=D .22a b c += 11.如图,AC BC ⊥,直线EF 经过点C ,若134∠=︒,则2∠的大小为( )A .56°B .66°C .54°D .46° 12.能把一个任意三角形分成面积相等的两部分是( )A .角平分线B .中线C .高D .A 、B 、C 都可以13.计算:⋅2a a 的结果是( )A .3aB .2aC .aD .22a 14.计算a 3•a 2的结果是( )A .a 5B .a 6C .a 3+a 2D .3a 215.一次数学活动中,检验两条纸带∥、∥的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带∥沿AB折叠,量得∥1=∥2=50°;小丽对纸带∥沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带∥的边线平行,纸带∥的边线不平行B.纸带∥、∥的边线都平行C.纸带∥的边线不平行,纸带∥的边线平行D.纸带∥、∥的边线都不平行16.下列运算正确的是()A.a4+a2=a6B.(﹣2a2)3=﹣6a8C.6a﹣a=5D.a2•a3=a517.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x则余下阴影部分的面积是A.2ab ax bx x--+B.2ab ax bx x---C.22ab ax bx x--+D.22ab ax bx x---18.新型冠状病毒的直径约为1mm8000,将18000用科学记数法表示为10na⨯的形式,下列说法正确的是()A.a,n都是负数B.a是正数,n是负数C.a,n都是正数D.a是负数,n是正数19.如图,AD是∥ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:∥∥ABD和∥ACD面积相等;∥∥BAD=∥CAD;∥∥BDF∥∥CDE;∥BF∥CE;∥CE=AE.其中正确的有()A .1个B .2个C .3个D .4个 20.如图,DC EF AB ∥∥,EH DB ∥,则图中与∥AHE 相等的角有( )A .3个B .4个C .5个D .6个 21.下列计算正确的是( )A .9a 3·2a 2=18a 5B .2x 5·3x 4=5x 9C .3 x 3·4x 3=12x 3D .3y 3·5y 3=15y 9 22.下列运算中,计算结果正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .a 2y 3÷y =a 2y 2D .(a 2b )2=a 2b 223.若1,2a b ab -==-,则()()22a b +-的值为( )A .8B .8-C .4D .4- 24.如图,已知CD =CA ,∥D =∥A ,添加下列条件中的( )仍不能证明∥ABC ∥∥DEC .A .∥DEC =∥B B .∥ACD =∥BCEC .CE =CBD .DE =AB 25.下列计算正确的是( )A .448a a a +=B .428a a a ⋅=C .()325a a =D .()2326ab a b = 26.下列运算正确的是( ).A .6a ÷2a =3aB .22532a a a -=C .235()a a a -⋅=D .527a b ab +=27.如图,E ,F 是四边形ABCD 的对角线BD 上的两点,AE ∥CF ,AB ∥CD ,BE =DF ,则下列结论:∥AE =CF ,∥AD =BC ,∥AD ∥BC ,∥∥BCF =∥DAE ,其中正确的个数为( )A .1个B .2个C .3个D .4个 28.1001010.254-⨯计算结果正确的是( ).A .1-B .1C .4D .4- 29.下列运算中,正确的是( )A .6530a a a =B .1836a a a ÷=C .22(2)4a a =D .336+a a a = 30.如图,在∥ABC 和∥DEF 中,给出以下六个条件中,以其中三个作为已知条件,不能判断∥ABC 和∥DEF 全等的是( ) ∥AB=DE ;∥BC=EF ;∥AC=DF ;∥∥A=∥D ;∥∥B=∥E ;∥∥C=∥F ;A .∥∥∥B .∥∥∥C .∥∥∥D .∥∥∥二、多选题31.下列说法正确的是( )A .过任意一点可作已知直线的一条平行线B .同一平面内两条不相交的直线是平行线C .在同一平面内,过直线外一点只能画一条直线与已知直线垂直D .平行于同一直线的两直线平行32.如图,1=2∠∠,=BC EF ,要添加一个条件使ABC DEF ≌△△.添加的条件可以是( )A .B E ∠=∠ B .A D ∠=∠C .AB ED = D .AB ED ∥ 33.以下列数字为长度的各组线段中,能构成三角形的有( )A .1,2,3B .2,3,4C .3,4,5D .4,5,6 34.下列说法中,不正确的是( )A .相等的两个角是直角B .一个角的补角一定是钝角C .若∥1+∥2+∥3=180°,则它们互补D .一个角的余角一定是锐角35.如图,下列结论中正确的是( ).A .∥1与∥2是同旁内角B .∥5与∥6是同旁内角C .∥1与∥4是内错角D .∥3与∥5是同位角36.在自习课上,小红为了检测同学们的学习效果,提出如下四种说法,其中错误的说法是( )A .三角形有且只有一条中线B .三角形的高一定在三角形内部C .三角形的两边之差大于第三边D .三角形按边分类可分为等腰三角形和不等边三角形37.下列运算错误的是( )A .()222436xy x y =B .22124x x -= C .725()()x x x -÷-=- D .()223632xy xy xy ÷=38.(多选)已知22(1)36x k x +-+是一个完全平方式,则k 的值为( ) A .7- B .5- C .5D .739.下列生活中的做法与其背后的数学原理对应正确的是( )A .砌墙时,在两端钉钉子,沿中间的拉线砌墙(两点确定一条直线)B .在景区两景点之间设计“曲桥”(垂线段最短)C .工人师傅砌门时,常用一根木条固定长方形门框(三角形具有稳定性)D .车轱辘设计为圆形(圆上的点到圆心的距离相等)40.下列说法中正确的是( )A .两个三角形关于某直线对称,那么这两个三角形全等B .两个图形关于某直线对称,且对应线段相交,则交点必在对称轴上C .两个图形关于某直线对称,对应点的连线不一定垂直对称轴D .若直线l 同时垂直平分','AA BB ,那么线段''AB A B =41.下列计算正确的是( )A .21211()24xy xy xy -⎛⎫⋅= ⎪⎝⎭B .22(23)(23)23a b a b a b +⋅-=-C .422()a a a --÷=-D .32ab ab ab -=42.已知α∠和∠β互余,给出下列表示∠β的补角的式子,其中正确的有( ) A .180β︒-∠ B .90α︒+∠ C .2αβ∠+∠ D .2βα∠+∠ 43.下列每组中的两个图形,不是全等图形的是 ( )A .B .C .D .44.如图,已知CD AB ⊥于点D ,现有四个条件:∥AD ED =;∥A BED ∠=∠;∥C B ∠=∠;∥CD BD =.那么能得出ADC EDB ≌的条件是( )A.∥∥B.∥∥C.∥∥D.∥∥45.代数式2(1)1--+能配成完全平方式,则k的值不可能是()x k xA.2或1B.2-或1-C.3或1-D.1-或3-46.如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD∥∥ACE,添加一个条件可行的是()A.AD=AE B.BD=CE C.BE=CD D.∥BAD=∥CAE 47.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论,其中正确的有()A.AB∥CD;B.AB=BC;C.AB∥BC;D.AO=OC 48.在△ABC和△AˊB′C′中,已知∥A=∥A′,AB=A′B′,下面判断中正确的是()A.若添加条件AC=A′C′,则△ABC∥∥A′B′C′B.若添加条件BC=B′C′,则△ABC∥∥A′B′C′C.若添加条件∥B=∥B′,则△ABC∥∥A′B′C′D.若添加条件∥C=∥C′,则△ABC∥∥A′B′C′49.如图,AD 是ABC 的中线,E 、F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF 、CE ,下列说法正确的有( )A .BAD CAD ∠=∠B .ABD △和ACD 的面积相等C .BDF CDE ∆∆≌D .BF CE三、填空题50.已知三角形的三边长分别为3,8,x ,若x 为偶数,则x=_____________________.51.计算:x 6÷x 3=_________.52.如图,AB∥CD ,∥B+∥2=160°,则∥1= _______53.口袋里有大小相同的8个红球、4个白球和4个黄球,从中任意摸出1个球,摸出红球的可能性是____.54.如果直线a//b ,且直线c a ⊥,则直线c 与b 的位置关系_______ (“平行”或“垂直”) 55.两条直线互相垂直时,所得的四个角中有__________个直角.56.已知:如图,C 为BD 上一点,AB AD =.只需添加一个条件则可证明ABC ADC △≌△.这个条件可以是_____.(写出一个即可).57.已知6732α'∠=︒,则α∠的的补角等于__________.58.如图,直线AB ,CD 交于点O ,OE 平分BOC ∠,123∠=︒,则AOD ∠=_________︒.59.已知一张纸的厚度大约为0.0089cm ,这个数用科学记数法表示为______cm . 60.已知ab 2=﹣1,则(﹣ab )(a 2b 5﹣ab 3﹣b )的值为 ___.61.已知3m a =,9n a =,则2m n a +的值为______.62.如图,35A ∠=︒,65C '∠=︒,ABC 与A B C '''关于直线l 对称,则∥B=______.63.若三角形两条边的长分别是3、7,第三条边的长是整数,则第三条边长的最大值是________.64.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测到小岛A 在它北偏东62°的方向上,观测到小岛B 在它南偏东38°的方向上,则∥AOB 的余角的度数是_____.65.若7a b -=,12ab =-,则22a b += ______ .66.202020198(0.125)⨯-=______67.某商场举办有奖销售活动,每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是_____.68.如图,AD ,BE ,CF 是△ABC 的三条中线,则AB=2__________,BD=__________,AE= 12__________.69.如图所示,直线PQ∥MN ,C 是MN 上一点,CE 交PQ 于A ,CF 交PQ 于B ,且∥ECF =90°,如果∥FBQ =50°,则∥ECM 的度数为__________;70.如图为6个边长相等的正方形的组合图形,则123-+=∠∠∠__.71.边长为3,x ,5的三条线段首尾顺次相接组成三角形,则x 的取值范围是 _______;若x 为整数,则组成三角形的周长的最大值是 ____________.72.将 0.000103 用科学记数法表示为___________.73.如图,在△ABC 中,AC =6,BC =8,若AC ,BC 边上的中线BE ,AD 垂直相交于O 点,则AB =_____.74.因式分解:281n -=__________________.75.计算:2(615)3x xy x -÷=_________.76.已知多项式(mx+5)(1﹣2x )展开后不含x 的一次项,则m 的值是________ . 77.若16=p a ,38a =,则3-p a 的值为______.78.如图,AD 是∥ABC 的中线,AB =8 cm ,∥ABD 与∥ACD 的周长差为2 cm ,则AC =________cm.79.已知//AB CD ,点M 、N 分别为AB 、CD 上的点,点E 、F 、G 为AB 、CD 内部的点,连接FM 、FN 、EM 、EN 、CM 、GN ,ME NE ⊥于E ,35BMF BME ∠=∠,35DNF DNE ∠=∠,MG 平分AMF ∠,NG 平分CNF ∠,则MGN ∠(小于平角)的度数为______.四、解答题80.如图,∥1=∥2,∥3=100°,求∥4的度数.81.先化简再求值:2(1)(1)(1)x x x +---,其中x =1.82.阅读材料并解答问题:七年级第一学期课本中有这样一个思考题:“你能根据图1中的图形来说明完全平方公式吗?”说明如下:图1中的面积可以表示为2()a b +;图1中的面积又可以表示为222a ab b ++;所以这个图形说明了完全平方公式222()2a b a ab b +=++除了完全平方公式可以用图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示.(1)请写出图2所表示的代数恒等式:__________________________________; (2)请画一个图形,使它的面积能表示22(3)()34a b a b a ab b ++=++.83.先化简,再求值:22(2)()(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中x =﹣3,y =﹣1.84.如图,某英语单词由四个字母组成,且四个字母都关于直线l 对称,请把这个单词填完整,并说出这个英语单词的汉语意思.85.下面是小明同学设计的“作一个角等于已知角”的尺规作图过程:已知:C ∠.求作:一个角,使它等于C ∠.作法:如图:∥在C ∠的两边上分别任取一点A 、B ;∥以点A 为圆心,AC 为半径画弧;以点B 为圆心,BC 为半径画弧;两弧交于点D ; ∥连结AD 、BD .所以D ∠即为所求作的角.请根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下列证明.证明:连结AB ,∥DA=AC ,DB=_____,AB =_______,∥∥DAB ∥∥CAB ( )(填推理依据).∥∥C =∥D .86.计算:m 2m 4+(m 3)2﹣m 8÷m 2.87.如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,OF 平分BOD ∠,15BOF =︒∠.求COE ∠的度数.88.如图,已知线段a ,求作以a 为底、以12a 为高的等腰三角形,这个等腰三角形有什么特征?89.计算:23244a a a a -+-+-()()()()90.计算(1) ()()2212324-⎛⎫-+⨯-- ⎪⎝⎭ (2)化简,再求值()()()2222x x x -+--+,其中3x =.91.将幂的运算逆向思维可以得到m n m n a a a +=⋅,m n m n a a a -=÷,()mn m n a a =,()m m m a b ab =,在解题过程中,根据算式的结构特征,逆向运用幂的运算法则,常可化繁为简,化难为易,使问题巧妙获解. (1)2021202115()5⨯= ______ ; (2)若1139273m m ⨯⨯=,求m 的值;92.先化简,再求值:()()()2122x x x +++-,其中=1x -.93.如图,点B 、点D 在线段AE 上,且AD BE =,CD 平分ACB ∠.(1)尺规作图:在线段DE 的上方作DEF ,使得DEF BAC ∠=∠,EF AC =;(2)在(1)的条件下,若60A ∠=︒,40FDE ∠=︒,求BCD ∠的度数.94.今年疫情期间,为防止疫情扩散,人们见面的机会少了,但是随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷,为此,孙老师设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种)进行调查.将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次参与调查的共有 人;在扇形统计图中,表示“微信”的扇形圆心角的度数为 ;其它沟通方式所占的百分比为 .(2)将条形统计图补充完整;(3)如果我国有13亿人在使用手机.∥请估计最喜欢用“微信”进行沟通的人数;∥在全国使用手机的人中随机抽取一人,用频率估计概率,求抽取的恰好使用“QQ”的概率是多少?95.(1)计算: 2015021π--+.(2)543()()()a b b a b a -÷-÷-96.如图,正方形ABCD 的对角线AC 的长度为3,E 为与点D 不重合的动点,以DE 为一边作正方形DEFG .设1DE d =,点F G 、与点C 的距离分别为23d d 、.(1)求证:ADE CDG ≌△△(2)求123d d d ++的最小值.97.已知:如图,C 是线段AB 上一点,分别以AC .BC 为边作等边∥DAC 和等边∥ECB ,AE 与BD .CD 相交于点F 、G ,CE 与BD 相交于点H .(1)求证:∥ACE∥∥DCB;(2)求∥AFB的度数.98.先化简下面代数式,再求值:(x+2)(x-2)+x(3-x),其中+1.99.如图:在平面直角坐标系中,∥ABC的三个顶点都在格点上.(1)画出∥ABC关于y轴对称的图形∥A1B1C1;(2)直接写出A1,B1,C1三点的坐标;(3)求∥ABC的面积.参考答案:1.C【分析】由于拐弯前、后的两条路平行,用平行线的性质求解即可.【详解】解:∥拐弯前、后的两条路平行,∥140B C ∠=∠=︒(两直线平行,内错角相等).故选:C .【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.2.D【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,针对每一个选项进行计算,可选出答案.【详解】解:A 、∥3+4<8,∥不能组成三角形,故本选项不符合题意;B 、∥5+6=11,∥不能组成三角形,故本选项不符合题意;C 、∥4+5=9,∥不能组成三角形,故本选项不符合题意;D 、∥3+7>9,∥能组成三角形,故本选项符合题意.故选:D .【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.D【分析】轴对称图形:如果一个图形沿着一条直线对折后两端完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.中心对称图形:把一个图形绕某一个点旋转180︒,如果旋转后的图形能够和原来的图形互相重合.那么这个图形叫做中心对称图形.【详解】A 、是轴对称图形,不是中心对称图形;B 、是轴对称图形,也是中心对称图形;C 、是轴对称图形,不是中心对称图形;D 、不是轴对称图形,是中心对称图形.故选D.【点睛】此题考查的是轴对称图形和中心对称图形的判定,利用它们的定义判断一个图形是轴对称图形还是中心对称图形是解决此题的关键.4.B【分析】由DE ∥BC ,可得:45,DAB B ∠=∠=︒再利用平角的含义可得答案. 【详解】解: DE ∥BC ,∥B =45°,∥1=65°,45,DAB B ∴∠=∠=︒2=180170,DAB ∴∠︒-∠-∠=︒故选:.B【点睛】本题考查的是平角的定义,平行线的性质,掌握两直线平行,内错角相等是解题的关键.5.C【分析】根据幂的运算性质即可完成.【详解】A 、(a 2)3=a 6,故选项错误;B 、a 2a 3=a 5,故选项错误;C 、a 6÷a 3=a 3,故选项正确;D 、a 2与a 3不是同类项,不能合并,故选项错误;故选:C .【点睛】本题考查了幂的运算性质,关键是熟练掌握幂的运算性质.6.B【分析】如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,就称此图形是轴对称图形,这条直线称为对称轴;根据轴对称图形的概念逐项判断即可.【详解】A 、是轴对称图形,不符合题意;B 、不是轴对称图形,故符合题意;C 、是轴对称图形,不符合题意;D 、是轴对称图形,不符合题意;故选:B【点睛】本题考查了轴对称图形的识别,掌握轴对称图形的概念是关键.7.B【详解】试题分析:∥一条直线的平行线只有一条是错误的;∥经过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的. ∥因为a∥b ,a∥c ,所以b∥c ,正确.∥满足平行公理的推论,正确.故选B .考点:1.平行线;2.垂线.8.B【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,积的乘方逐项分析判断即可求解.【详解】A.()2239a a =故该选项不正确,不符合题意;B.()4312a a =故该选项正确,符合题意;C.257a a a ⋅=故该选项不正确,不符合题意;D.633a a a ÷=故该选项不正确,不符合题意;故选: B .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,积的乘方,掌握以上运算法则是解题的关键.9.B【详解】试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件. 解:A 、“一个不透明的袋中装有5个红球,从中摸出一个球是红球”是必然事件,故A 错误;B 、“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件,故B 正确;C 、在一次抽奖活动中,“中奖的概率是”表示抽奖100次可能中奖,故C 错误;D 、“抛掷一枚硬币,硬币落地时正面朝上”是不确定事件,故D 错误;故选B .考点:随机事件;概率的意义.10.A【分析】根据同底数幂乘法的逆运算进行计算即可【详解】解:∥23a =,25b =,215c =,∥21535222+==⨯=⨯=a b c a b∥a b c +=故选:A【点睛】本题考查了同底数幂乘法的逆运算,熟练掌握法则是解题的关键11.A【分析】根据,∥1,∥2,和∥ACB 为180°,且∥ACB 为90°,所以∥1和∥2互余,由∥1度数可求出∥2度数.【详解】解:∥AC BC ⊥,∥90ACB ∠=︒,∥由图可知12180ACB ∠+∠+∠=︒,且90ACB ∠=︒,∥1290∠+∠=︒,∥2901903456∠=︒-∠=︒-︒=︒,故选:A .【点睛】本题考查,补角与余角的概念,能够根据图形中的角的位置关系求出角的度数关系式解决本题的关键.12.B【分析】根据等底同高的三角形的面积相等解答.【详解】解:三角形的中线把三角形分成等底等高的两个三角形,面积相等, 所以,能把一个任意三角形分成面积相等的两部分是中线.故选:B .【点睛】本题考查了三角形的面积,熟记等底同高的三角形的面积相等是解题的关键. 13.A【分析】利用同底幂乘法的运算法则计算可得.【详解】+==2213a a a a ⋅故选:A【点睛】本题考查同底幂的乘法,同底幂的乘法法则和乘方的运算法则容易混淆,需要注意.14.A【详解】根据同底数幂的乘法法则可得,原式= a 5,故选A.15.C【分析】直接利用翻折变换的性质结合平行线的判定方法得出答案.【详解】如图∥所示:∥∥1=∥2=50°,∥∥3=∥2=50°,∥∥4=∥5=180°-50°-50°=80°,∥∥2≠∥4,∥纸带∥的边线不平行;如图∥所示:∥GD与GC重合,HF与HE重合,∥∥CGH=∥DGH=90°,∥EHG=∥FHG=90°,∥∥CGH+∥EHG=180°,∥纸带∥的边线平行.故选C.【点睛】此题主要考查了平行线的判定以及翻折变换的性质,正确掌握翻折变换的性质是解题关键.16.D【分析】根据合并同类项法则、积的乘方、合并同类项法则、同底数幂的乘法法则运算即可求解.【详解】解:A.a4与a2不是同类项,所以不能合并,故本选项不合题意;B.(﹣2a2)3=﹣8a6,故本选项不合题意;C.6a﹣a=5a,故本选项不合题意;D.a2•a3=a5,故本选项符合题意.故选:D.【点睛】本题考查了合并同类项法则、积的乘方、同底数幂的乘法法则,正确记忆运算法则是解题关键.17.A【分析】由图可知,阴影部分的长是a-x,宽是b-x,然后根据长方形的面积公式求解即可.【详解】由题意得(a -x )(b -x )=2ab ax bx x --+.故选A .【点睛】本题考查了多项式与多项式的乘法的应用,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.18.B【分析】用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为整数,据此判断即可. 【详解】解:41.251800010-=⨯ 0,0a n ∴><故选B【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a 与n 的值是解题的关键.19.C【详解】解:∥∥AD 是∥ABC 的中线,∥BD =CD ,∥∥ABD 和∥ACD 面积相等;故∥正确;∥若在∥ABC 中,当AB ≠AC 时,AD 不是∥BAC 的平分线,即∥BAD ≠∥CAD .即∥不一定正确;∥∥AD 是∥ABC 的中线,∥BD =CD ,在∥BDF 和∥CDE 中,∥BD =CD ,∥BDF =∥CDE ,DF =DE ,∥∥BDF ∥∥CDE (SAS ).故∥正确;∥∥∥BDF ∥∥CDE ,∥∥CED =∥BFD ,∥BF ∥CE ;故∥正确;∥∥∥BDF ∥∥CDE ,∥CE =BF ,∥只有当AE=BF时,CE=AE.故∥不一定正确.综上所述,正确的结论是:∥∥∥,共有3个.故选C.20.C【分析】根据平行线的性质进行推导解答即可.【详解】解:如图,∥EG BD∥,∥∥1=∥DBA,∥∥,∥AB EF DC∥∥1=∥GEF,∥DBA=∥2,∥DBA=∥3,∥DBA=∥BDC,∥∥1=∥GEF=∥DBA=∥2=∥3=∥BDC,∥图中和∥1相等的角共有5个.故选C.【点睛】本题考查的是平行线的性质,熟悉平行线的性质:“两直线平行,同位角相等”和“两直线平行,内错角相等”,是能够正确解答本题的关键.21.A【分析】根据单项式的乘法法则计算求解即可得出答案.【详解】解:A.325⋅=,故A正确,符合题意;a a a9218B.549x x x⋅=,故B错误,不符合题意;236C.336x x x⋅=,故C错误,不符合题意;3412D.336⋅=,故D错误,不符合题意.3515y y y故选A.【点睛】本题主要考查了单项式与单项式相乘,熟练掌握单项式与单项式相乘的法则是解题的关键.22.C【分析】分别计算选项中的每一项a2•a3=a5,(a2)3=a6,(a2b)2=a4b2,即可求解.【详解】a2•a3=a5,故A不正确;(a2)3=a6,故B不正确;(a2b)2=a4b2,故D不正确;故选:C.【点睛】考核知识点:幂的运算.理解幂的乘方公式是关键.23.B【分析】先利用多项式乘以多项式展开所求的式子,再将已知条件作为整体直接代入求解即可.【详解】解:(a+2)(b−2)=ab−2a+2b−4=ab−2(a−b) −4将a−b=1,ab=−2代入得,ab−2(a−b) −4=−2−2×1 −4=−8.故选:B.【点睛】本题考查了多项式的乘法、多项式化简求值,掌握多项式的乘法法则是解题关键.需注意的是,这类题的考点是将已知条件作为一个整体代入求值,而不是求出a和b 的值.24.C【分析】结合题意,根据全等三角形的性质,对各个选项逐个分析,即可得到答案.【详解】增加∥DEC=∥B,得:DEC BD ACD CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∥∥DEC∥∥ABC,即选项A可以证明;∥∥ACD=∥BCE∥ACD ACE BCE ACE∠+∠=∠+∠,即DCE ACB∠=∠∥D ACD CADCE ACB∠=∠⎧⎪=⎨⎪∠=∠⎩∥∥DEC∥∥ABC,即选项B可以证明;增加∥DEC=∥B,得:D A CD CA CE CB ∠=∠⎧⎪=⎨⎪⎩=∥不能证明∥DEC∥∥ABC,即选项C不可以证明;增加DE=AB,得:DE ABD A CD CA=⎧⎪∠=∠⎨⎪=⎩∥∥DEC∥∥ABC,即选项D可以证明;故选:C.【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的判定性质,从而完成求解.25.D【分析】直接利用合并同类项法则以及同底数幂的乘法运算法则、积的乘方运算法则分别计算得出答案.【详解】A、a4+a4=2a4,故此选项错误;B、a4•a2=a6,故此选项错误;C、(a2)3=a6,故此选项错误;D、(ab3)2=a2b6,正确.故选D.【点睛】此题主要考查了合并同类项以及同底数幂的乘法运算、积的乘方运算,正确掌握相关运算法则是解题关键.26.C【详解】试题分析:根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2•a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.27.D【分析】根据全等三角形的判定得出∥ABE与∥CDF全等,进而利用全等三角形的性质判断即可.【详解】解:∥AE∥CF,AB∥CD,∥∥AEF=∥CFE,∥ABE=∥CDF,∥∥AEB=∥CFD,在∥ABE与∥CDF中ABE CDFBE DFAEB CFD∠=∠⎧⎪=⎨⎪∠=∠⎩,∥∥ABE∥∥CDF(ASA),∥AE=CF,∥BE=DF,∥BE+EF=DF+EF,即BF=DE,在∥ADE与∥CBF中AE CFAED CFB DE BF=⎧⎪∠=∠⎨⎪=⎩,∥∥ADE∥∥CBF(SAS),∥AD=BC,∥ADE=∥CBF,∥BCF=∥DAE∥AD∥BC,故选:D.【点睛】此题主要考查了全等三角形的判定,利用两边且夹角对应相等得出三角形全等是解题关键.28.D【分析】根据积的乘方运算法则计算即可.【详解】−0.25100×4101=−0.25100×4100×4=−(0.25×4)100×4=−1100×4=−1×4=−4.故选D .【点睛】本题主要考查了积的乘方,积的乘方,等于每个因式乘方的积.29.C【分析】分别根据合并同类项的法则、同底数幂的乘法、积的乘方和幂的乘方运算法则逐项判断即得答案.【详解】A 、6511a a a ⋅=故本选项运算错误,不符合题意;B 、18318315a a a a -÷==,故本选项运算错误,不符合题意;C 、22(2)4a a =,故本选项运算正确,符合题意;D 、333+2a a a =,故本选项运算错误,不符合题意.故选:C .【点睛】本题考查了合并同类项的法则和幂的运算性质,属于基础题型,熟练掌握幂的运算性质是解题的关键.30.D【详解】根据全等三角形的判定方法对组合进行判断即可.解:在∥ABC 和∥DEF 中,AB=DE ,∥B=∥C ,BC=EF ,∥∥ABC ∥∥DEF (SAS );∥A 不符合题意;在∥ABC 和∥DEF 中,AB=DE , BC=EF ,AC=DF ,∥∥ABC ∥∥DEF (SSS );∥B 不符合题意; 在∥ABC 和∥DEF 中,∥A=∥D ,∥C=∥F ,AB=DE ,∥∥ABC ∥∥DEF (AAS ),∥C 不符合题意; 在∥ABC 和∥DEF 中,D②③④不能判断∥ABC 和∥DEF 全等,故选D .“点睛”本题考查了全等三角形的判定方法对各选项分析判断利用排除法求解.31.BCD【分析】根据平行线的定义及平行公理进行判断.【详解】A. 若点在直线上,则不可以作出已知直线的平行线,因此 “过任意一点可作已知直线的一条平行线”说法错误;B. “同一平面内两条不相交的直线是平行线”说法正确;C. “在同一平面内,过直线外一点只能画一条直线与已知直线垂直”说法正确;D. “平行于同一直线的两直线平行”说法正确;故选BCD.【点睛】本题主要考查平行线的定义及平行公理,熟练掌握公理、定理是解决本题的关键.32.ABD【分析】已知一边和一角对应相等,再添加任意对对应角相等,或已知角的另一边相等就可以由AAS 、ASA 或SAS 判定两个三角形全等.【详解】解:选项A 中B ∠与E ∠是对应角,能与已知构成ASA 的判定,可以判定三角形全等,故选项A 符合题意;选项B 中A D ∠=∠是对应角,结合已知可以由AAS 判定ABC DEF ≌△△,故选项B 符合题意;选项C 中AB ED =是对应边,但不是两边及其夹角相等,无法判定ABC DEF ≌△△,故选项C 不合题意;选项D 中由已知//AB ED 可得B E ∠=∠,是对应角,结合已知可以由ASA 判定ABC DEF ≌△△,故选项D 符合题意;故选:ABD .【点睛】本此题考查了三角形全等的判定方法,解题的关键是熟练掌握三角形全等的判定方法.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL (直角三角形). 33.BCD【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项判断即可.【详解】解:A .123+=不能组成三角形,该项不符合题意;B .234+>,该项符合题意;C .345+>,该项符合题意;D .456+>,该项符合题意;故选:BCD .【点睛】本题考查三角形的成立条件,掌握三角形的三边关系是解题的关键. 34.ABC【分析】根据余角及补角的定义可逐项判断求解.【详解】解:A 、相等的两个角不一定是直角,故错误,符合题意;B 、一个钝角的补角是锐角,原说法错误,符合题意;C 、补角是指两个角,原说法错误,符合题意;D 、一个角的余角一定是锐角,说法正确,不符合题意;故选:ABC .【点睛】本题考查了余角和补角,熟知定义是解题的关键,属于基础题.35.AD【分析】根据“三线八角”的概念,结合图形找出他们之间的关系即可.【详解】解:A 、根据图形可知,1∠与2∠是同旁内角,该选项符合题意;B 、根据图形可知,5∠与6∠是内错角,该选项不符合题意;C 、根据图形可知,1∠与4∠不是内错角关系,该选项不符合题意;D 、根据图形可知,∥3与∥5是同位角,该选项符合题意;故选:AD .【点睛】本题考查“三线八角”的概念,能读图识图,从图形中结合“三线八角”的概念准确找到内错角、同位角和同旁内角是解决问题的关键.36.ABC【分析】三角形有三条中线对∥进行判断;钝角三角形三条高,有两条在三角形外部,对∥进行判断;根据三角形三边的关系对∥进行判断;根据三角形的分类对∥进行判断.【详解】解:A .三角形有3条中线,选项A 的说法是错误的;B .三角形的高不一定在三角形内部,选项B 的说法是错误的;C .三角形的两边之差小于第三边,选项C 的说法是错误的;D .三角形按边分类可分为等腰三角形和不等边三角形是正确的.故答案为:ABC .【点睛】本题考查了三角形的有关概念,属于基础题型.要注意等腰三角形与等边三角形两个概念的区别,掌握三角形有三条中线;钝角三角形三条高,有两条在三角形外部,三角形三边的关系;三角形的分类是解题关键.37.ABD【分析】由积的乘方判断,A 由负整数指数幂的含义判断,B 由同底数幂的除法判断,C 由积的乘方与单项式除以单项式判断,D 从而可得答案.【详解】解:()222439xy x y =,故A 符合题意; 2221222=,x x x -=⨯故B 符合题意;。

初中七下数学知识和能力综合训练题6套(有参考解答)

初中七下数学知识和能力综合训练题6套(有参考解答)

七年级下学期数学知识和能力训练题1一、选择题: 1、已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2m ﹣n 的值是( ) A 、4 B 、2 C 、﹣2 D 、﹣42、当x =3时,代数式3x 2﹣5ax +10的值为7,则a 等于( ) A 、2 B 、﹣2 C 、1 D 、﹣13、已知△ABC 中,∠B 是∠A 的2倍,∠C 比∠A 大20°,则∠A 等于( ) A 、40° B 、60° C 、80° D 、 90° 二、填空题1、小玉买书用48元钱,付款时恰好用了1元和5元的纸币共12张.那么1元的纸币用了 张;2、已知不等式组 的解集为﹣1<x <2,则(m +n )2019= ;3、已知△ABC 中,∠A=21∠B=31∠C ,则△ABC 为 三角形。

三、解答题1、是否存在负整数k 使得关于x 的方程5x ﹣3k =9的解是非负数?若存在请求出k 的值,若不存在请说明理由.2.已知当x =﹣1时,代数式ax 3+bx +1的值为﹣2009,则当x =1时,代数式ax 3+bx +1的值为多少?3.试确定实数a 的取值范围,使不等式组 恰有两个整数解. x +2>m+nx -1< m -1 ⎩⎨⎧312++x x >0⎩⎨⎧> 345++a x ax ++)1(34七年级下学期数学知识和能力训练题1解答参考一、选择题:1、已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2m ﹣n 的值是( ) A 、4 B 、2 C 、﹣2 D 、﹣4【主要考查学生对二元一次方程组的解的认识及用消元思想解二元一次方程组的熟练程度,难度较低.】选A. 解:将⎩⎨⎧==12y x 代入方程组,得⎩⎨⎧=-=+1282m n n m ,解得⎩⎨⎧==23n m ,故2m ﹣n =2×3﹣2=4. 2、当x =3时,代数式3x 2﹣5ax +10的值为7,则a 等于( ) A 、2 B 、﹣2 C 、1 D 、﹣1【主要考查学生对方程的解的认识及简单的解一元一次方程,难度低.】选A. 解:由题意,得3×32﹣5a ×3+10=7,解得a =2.3、已知△ABC 中,∠B 是∠A 的2倍,∠C 比∠A 大20°,则∠A 等于( ) A 、40° B 、60° C 、80° D 、 90°【主要考查学生将方程思想应用到图形问题中,及对三角形内角和定理的理解,难度不大.】选A.解:由已知,得∠B=∠A ×2,∠C=∠A+20°,又∵△ABC 中,∠A+∠B+∠C=180°,∴∠A+2∠A+∠A+20°=180°,解得∠A=40°.二、填空题:1、小玉买书用48元钱,付款时恰好用了1元和5元的纸币共12张.那么1元的纸币用了 张;【主要考查学生对方程思想在实际生活中的应用,难度不大.但可以练练“一题多解”】 解:(法一)设1元纸币有x 张,则5元纸币有(12﹣x )张.由题意,列方程x +5(12﹣x )=48,解得x =3. 故1元的纸币用了3张.(法二)设1元纸币有x 张,5元纸币有y 张.由题意,列方程组⎩⎨⎧=+=+48512y x y x ,解得⎩⎨⎧==93y x ,故1元的纸币用了3张.(法三)假设12张纸币都是5元的,则应为60元,实际少了60-48=12元,少的钱就是1元和5元之间的差距造成的,所以1元纸币有12÷(5﹣1)=3张.2、已知不等式组 的解集为﹣1<x <2,则(m +n )2019= ;【主要考查学生对一元一次不等式组及其解集的理解,有一定的综合性】解:由不等式组变形,得 ,∵该不等式组的解集为﹣1<x <2,∴⎩⎨⎧-=-+=122n m m ,解得⎩⎨⎧-==12n m∴(m +n )2019=(2﹣1)2019=12019=1.x +2>m+nx -1< m -1 ⎩⎨⎧x < mx >m+n -2⎩⎨⎧3、已知△ABC 中,∠A=21∠B=31∠C ,则△ABC 为 三角形。

人教版2020—2021学年七年级数学下册全册综合复习测试题(含答案)

人教版2020—2021学年七年级数学下册全册综合复习测试题(含答案)

人教版七年级数学下册全册综合测试题一、选择题(本大题共6小题,每小题3分,共18分) 1.下列调查中,最适合用全面调查的是( ) A .检测100只灯泡的质量情况B .了解在如皋务工人员月收入的大致情况C .了解某班学生喜爱体育运动的情况D .了解全市学生观看“开学第一课”的情况 2.在平面直角坐标系中,点(-7,0)在( ) A .x 轴正半轴上B .x 轴负半轴上 C .y 轴正半轴上D .y 轴负半轴上3.不等式组⎩⎪⎨⎪⎧x -1<3,x +3≥1的解集在数轴上表示正确的是()图14.如果5x 3m -2n -2y n -m +11=0是二元一次方程,那么( ) A .m =3,n =4 B .m =1,n =2 C .m =-1,n =2 D .m =2,n =1 5.如图2,直线a∥b ,一块含60°角的三角尺ABC (∠A =60°)按图所示放置.若∠1=43°,则∠2的度数为( )图2A .101°B .103°C .105°D .107°6.如图3,一个点在第一象限及x 轴,y 轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,且每秒移动一个单位长度,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,那么第2021秒时,点所在位置的坐标是( )图3A .(3,44)B .(37,44)C .(44,37)D .(44,3)二、填空题(本大题共6小题,每小题3分,共18分) 7.4的算术平方根为________.8.在平面直角坐标系中,已知点A (1,3),点B (1,5),那么AB =________.9.去年某市空气质量良好(二级以上)的天数与全年天数(365天)之比达到60%,如果今年(365天)这样的比值要超过80%,那么今年空气质量良好的天数比去年至少要增加________天.10.为了解某市13565名七年级学生每天做家庭作业所用的时间,从中随机抽取了150名学生进行调查,则本次调查的样本容量是________.11.已知⎩⎪⎨⎪⎧x =m ,y =n 是方程组⎩⎪⎨⎪⎧2x +y =6,x +2y =-3的解,则m +n 的值是________. 12.在平面直角坐标系中,三角形ABC 的面积为3,三个顶点的坐标分别为A (-1,-1),B (-3,-3),C (a ,b ),且a ,b 均为负整数,点C 在如图4所示的网格中,则点C 的坐标是____________________.图4三、解答题(本大题共5小题,每小题6分,共30分) 13.(1)计算:|-3|-(-1)+3-27-4;(2)如图5所示,EF ∥BC ,AC 平分∠BAF ,∠B =80°,求∠C 的度数.图514.解方程组:⎩⎪⎨⎪⎧3x -2(y +1)=6,3x +2y =10.15.解不等式组:⎩⎪⎨⎪⎧4x -7<5(x -1),x -13≥12x -1.16.已知2a -1的算术平方根是7,a -4b 的立方根是-4. (1)求a 和b 的值; (2)求2a +b 的平方根.17.某校进行“垃圾分一分,环境美十分”的主题宣传活动,随机调查了部分学生对垃圾分类知识的了解情况.调查选项分为“A.非常了解,B.比较了解,C.基本了解,D.不了解”四种,并将调查结果绘制成如图6所示的两幅不完整的统计图.图6请根据图中提供的信息,解答下列问题: (1)把两幅统计图补充完整; (2)本次调查了________名学生;(3)根据上述调查数据,请你提出一条合理化建议.四、解答题(本大题共3小题,每小题8分,共24分)18.如图7,已知∠A=∠ADE.(1)若∠EDC=4∠C,求∠C的度数;(2)若∠C=∠E,求证:BE∥CD.图719.如图8,已知在平面直角坐标系内,点A(-3,2),B(2,-4),把点A 向下平移4个单位长度得到点C.(1)在平面直角坐标系内画出点A,B;(2)写出点C的坐标;(3)画出三角形ABC,并求三角形ABC的面积.图820.我们定义:若整式M与N满足M+N=k(k为整数),则称M与N为关于k的平衡整式.例如,若2x+3y=4,我们称2x与3y为关于4的平衡整式.(1)若2a-5与4a+9为关于1的平衡整式,求a的值;(2)若3x-10与y为关于2的平衡整式,2x与5y+10为关于5的平衡整式,求x +y的值.五、解答题(本大题共2小题,每小题9分,共18分)21.红瓜子和萝卜干是信丰的土特产.小华去市场购买了6千克红瓜子和3千克萝卜干共用了108元;小平以同样的单价购买了5千克红瓜子和2千克萝卜干共用了88元.(1)求红瓜子和萝卜干的单价分别是多少;(2)已知小红想要购买红瓜子和萝卜干共20千克,如果她想购买红瓜子的千克数超过萝卜干的千克数的4倍,且她身上只有296元,请问她有哪几种购买方案.(红瓜子和萝卜干的千克数都取整数)22.如图9,在平面直角坐标系xOy中,长方形ABCD的四个顶点A,B,C ,D的坐标分别为(1,1),(1,2),(-2,2),(-2,1).对该长方形及其内部的每一个点都进行如下操作:把每个点的横坐标都乘同一个实数a,纵坐标都乘3,再将得到的点向右平移m(m>0)个单位长度,向下平移2个单位长度,得到长方形A′B′C′D′及其内部的点,其中点A,B,C,D的对应点分别为A′,B′,C′,D′.(1)点A′的横坐标为________(用含a,m的式子表示).(2)若点A′的坐标为(3,1),点C′的坐标为(-3,4).①求a,m的值;②若对长方形ABCD内部(不包括边界)的点E(0,y)进行上述操作后,试判断得到的对应点E′是否仍然在原来的长方形ABCD内部(不包括边界).图9六、解答题(本大题共12分)23.一个数学小组将一个直角三角形ABC(∠ACB=90°)放进平面直角坐标系中,进行探究活动.点C在第三象限,且AC过坐标原点O,AB交x轴于点G,作直线DM平行于x轴,DM交y轴于点D,交BC于点E,交AB于点F.(1)如图10①,若∠AOG=50°,求∠CEF的度数;(2)如图②,在AC上取一点N,使∠NEC+∠CEF=180°.求证:∠NEF=2∠AOG.图10参考答案1.C 2.B 3.C 4.A 5.B 6.D7. 2 8.2 9.74 10.150 11.112.(-4,-1)或(-1,-4)或(-5,-2)13.解:(1)原式=3+1-3-2=-1.(2)∵EF∥BC,∴∠B+∠BAF=180°,∠C=∠CAF.∵∠B=80°,∴∠BAF =180°-∠B =100°.∵AC 平分∠BAF ,∴∠CAF =12∠BAF =50°, ∴∠C =50°.14.解:方程组整理,得⎩⎪⎨⎪⎧3x -2y =8,①3x +2y =10.②①+②,得6x =18,解得x =3.把x =3代入①,得9-2y =8,解得y =12. ∴原方程组的解为⎩⎪⎨⎪⎧x =3,y =12.15.解:⎩⎪⎨⎪⎧4x -7<5(x -1),①x -13≥12x -1.②解不等式①,得x >-2. 解不等式②,得x≤4.∴不等式组的解集为-2<x≤4.16.解:(1)∵2a -1的算术平方根是7, ∴2a -1=(7)2=7,解得a =4. ∵a -4b 的立方根是-4,∴a -4b =(-4)3=-64,即4-4b =-64,解得b =17.(2)∵2a +b =2×4+17=25,∴2a +b 的平方根为±5.17.解:(1)调查的总人数为5÷10%=50(人).B 选项所占的百分比为25÷50×100%=50%.C 选项的人数为50×26%=13(人).D 选项的人数为50-5-25-13=7(人).D 选项所占的百分比为7÷50×100%=14%.补全的统计图如图所示.(2)50(3)答案不唯一,如根据对垃圾分类知识的了解情况,对于垃圾分类知识“非常了解”占的比例比较小,需要进一步加强宣传的力度.18.解:(1)∵∠A =∠ADE ,∴DE ∥AC , ∴∠EDC +∠C =180°.∵∠EDC =4∠C ,∴4∠C +∠C =180°, 解得∠C =36°.(2)证明:∵∠A =∠ADE , ∴DE ∥AC , ∴∠E =∠ABE. 又∵∠C =∠E , ∴∠C =∠ABE , ∴BE ∥CD.19.解:(1)如图所示,点A ,B 即为所求.(2)C(-3,-2).(3)画三角形ABC 如图.如图,过点B 作BD ⊥AC ,交AC 的延长线于点D ,则易得BD =5,∴S 三角形ABC =12AC·BD =12×4×5=10.20.解:(1)由题意,得2a -5+4a +9=1,解得a =-12.(2)由题意,得⎩⎪⎨⎪⎧3x -10+y =2,2x +5y +10=5,解得⎩⎪⎨⎪⎧x =5,y =-3,则x +y =2.21.解:(1)设红瓜子的单价为x 元/千克,萝卜干的单价为y 元/千克.依题意,得⎩⎪⎨⎪⎧6x +3y =108,5x +2y =88,解得⎩⎪⎨⎪⎧x =16,y =4. 答:红瓜子的单价为16元/千克,萝卜干的单价为4元/千克.(2)设购买红瓜子a 千克,则购买萝卜干(20-a)千克.依题意,得⎩⎪⎨⎪⎧16a +4(20-a )≤296,a >4(20-a ), 解得16<a≤18,所以a 可以取17,18.则有两种购买方案:方案一:购买红瓜子17千克,购买萝卜干3千克;方案二:购买红瓜子18千克,购买萝卜干2千克.22.解:(1)a +m(2)①由A(1,1),A ′(3,1),可得a +m =3.①由C(-2,2),C′(-3,4),可得-2a +m =-3.②联立①②,得⎩⎪⎨⎪⎧a +m =3, -2a +m =-3,解得⎩⎪⎨⎪⎧a =2,m =1, ∴a 的值为2,m 的值为1.②根据题意,得E′(1,3y -2).可知无论y 取何值,点E′一定落在直线AB 上,所以得到的对应点E′不在原来的长方形ABCD 内部.23.解:(1)如图,过点C 作CH ∥x 轴,则∠ACH =∠AOG =50°.∵∠ACB =90°,∴∠ECH =40°.∵DM ∥x 轴,∴CH ∥DM ,∴∠ECH +∠CEF =180°,∴∠CEF=180°-∠ECH=140°.(2)证明:由(1)及题意得∠AOG=∠ACH=90°-∠ECH,∠ECH+∠CEF=∠ECH+∠NEC+∠NEF=180°.∵∠NEC+∠CEF=180°,∴∠NEC=∠ECH,∴2∠ECH+∠NEF=180°,则∠NEF=180°-2∠ECH=2(90°-∠ECH)=2∠AOG.。

2022—2023年人教版七年级数学(下册)期末综合检测卷及答案

2022—2023年人教版七年级数学(下册)期末综合检测卷及答案

2022—2023年人教版七年级数学(下册)期末综合检测卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b 7.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( ) A .m >2 B .m ≥2 C .m ≥2且m ≠3 D .m >2且m ≠38.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.方程()()()()32521841x x x x +--+-=的解是_________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:3416 5633 x yx y+=⎧⎨-=⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、D6、A7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、150°3、<4、3x=.5、±46、±3三、解答题(本大题共6小题,共72分)1、612 xy=⎧⎪⎨=-⎪⎩2、0.3、(1) C(5,﹣4);(2)90°;(3)略4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。

七年级数学下册综合算式专项练习题使用分配律的乘法运算(含有负数)

七年级数学下册综合算式专项练习题使用分配律的乘法运算(含有负数)

七年级数学下册综合算式专项练习题使用分配律的乘法运算(含有负数)在数学中,乘法是一项基本运算。

而分配律则是乘法运算中的重要性质之一。

在本篇文章中,我们将介绍一些综合算式专项练习题,这些题目将帮助我们更好地理解和应用分配律的乘法运算。

同时,这些练习题也包含了负数的运算,帮助我们更深入地理解数学中的负数概念。

让我们开始吧!1. 计算下列表达式:(-3) × (4 + 5)解答:首先,根据分配律,我们可以将这个算式分解为两个部分,即(-3) ×4和(-3) × 5。

然后,我们分别计算这两个部分:(-3) × 4 = -12(-3) × 5 = -15最后,将这两个部分的结果相加:-12 + (-15) = -27因此,(-3) × (4 + 5) = -27。

2. 计算下列表达式:(-2) × (-7 + 3)解答:× (-7)和(-2) × 3。

然后,我们分别计算这两个部分:(-2) × (-7) = 14(-2) × 3 = -6最后,将这两个部分的结果相加:14 + (-6) = 8因此,(-2) × (-7 + 3) = 8。

3. 计算下列表达式:(-5) × (10 - 2)解答:按照分配律,我们将这个算式分解为两个部分,即(-5) × 10和(-5) ×(-2)。

然后,我们分别计算这两个部分:(-5) × 10 = -50(-5) × (-2) = 10最后,将这两个部分的结果相加:-50 + 10 = -40因此,(-5) × (10 - 2) = -40。

4. 计算下列表达式:2 × (-6 + 3)解答:× (-6)和2 × 3。

然后,我们分别计算这两个部分:2 × (-6) = -122 ×3 = 6最后,将这两个部分的结果相加:-12 + 6 = -6因此,2 × (-6 + 3) = -6。

初一下学期数学综合卷及答案

初一下学期数学综合卷及答案

七 年 级 数 学 试 题一、选择题(共10个小题。

每小题2分,共20分)1.下列计算正确的是( ).A 、3332x x x ⋅=B .235()x x =C .358x x x +=D .444()xy x y =2.下列命题中正确的有( ).①相等的角是对顶角; ②若a//b ,b//c ,则a ∥c ;③同位角相等; ④邻补角的平分线互相垂直.A 、0个B .1个C .2个D .3个3.已知a<b ,则下列不等式一定成立的是( ).A 、55a b +>+B .22a b -<-C .3322a b > D 、770a b -<4.如图,由AD ∥BC 可以得到的结论是( ).A 、∠1=∠2B .∠1=∠4C 、∠2=∠3D .∠3=∠45.利用数轴确定不等式组102x x +≥⎧⎨<⎩的解集,正确的是( ).6.已知点A(1,0), B(0,2),点P 在x 轴上,且△PAB 的面积为5,则点P 的坐标为( )A 、(-4,0)B 、(6,0)C 、(-4,0)或(6,0)D 、无法确定7.一个多边形的每一个外角都等于40。

,那么这个多边形的内角和为( ).A 、1260°B .900°C 、1620°D .360°8.已知(2)(1)x kx --化简后的结果中不含有x 的一次项,则k 的值为( ).A 、一1B .—12 C 、12 D .19.若关于x ,y 的二元一次方程组42x y k x y k -=⎧⎨+=⎩的解也是二元一次方程210x y -=的解,则k 的值为( ). A 、2 B .一2 C 、0.5 D .一0.510.已知正整数a 、b 、c 中,c 的最大值为6,且a <b <c ,则以a 、b 、c 为三边的三角形共有( ).A 、4个B .5个C .6个D .7个二、填空题(共6个小题,每小题3分.共18分)11.如图,AB ∥CD ,∠A=32°,∠C=70°,则∠F=___________。

七年级数学下册综合算式专项练习题带有括号乘方开方和绝对值的代数式求值

七年级数学下册综合算式专项练习题带有括号乘方开方和绝对值的代数式求值

七年级数学下册综合算式专项练习题带有括号乘方开方和绝对值的代数式求值在七年级数学下册的学习中,综合算式是一个重要的内容,特别是包含括号、乘方、开方和绝对值的代数式求值。

在这篇文章中,将通过一系列的专项练习题来帮助同学们更好地理解和掌握这部分知识。

1. 题目一:求值计算计算并求出下列各题的值:a) 7 + (3 - 1)b) |4 - 7|c) 3^2 + 4^3d) √9 + 5 - 2^22. 题目二:带有乘方的求值计算并求出下列各题的值:a) (2 + 3)^2b) (4 - 2)^3c) (5 + 1)^0d) (2^3 - 5)^23. 题目三:带有开方的求值计算并求出下列各题的值:a) √25 + √16b) √(100 - 64)c) √(12^2 + 5^2)d) √48 - √274. 题目四:带有绝对值的求值计算并求出下列各题的值:a) |2 - 5| + |4 - 1|b) 2 - |3 - 6|c) 5 + |6 - 8|d) |2^3 - 5| - |6 - 9|通过以上的练习题,我们可以逐步学习和掌握带有括号、乘方、开方和绝对值的代数式的求值方法。

首先,要注意括号的运算优先级高于其他的运算符号,所以在计算时需要先处理括号内的内容。

其次,乘方运算表示将一个数自乘若干次,要注意计算次序。

开方运算表示某个数的正平方根,要注意对于负数的情况,结果为非实数。

最后,绝对值表示一个数的大小,与其正负无关,要注意取绝对值后的结果。

在计算过程中,同学们需要按照题目给出的具体要求进行计算,并将答案写在相应的题目后面。

综合算式的求值是数学学习中的重要内容之一,它可以帮助我们提高对代数式的理解和运算能力。

同学们在做题过程中要注意分清运算符号的优先级,进行正确的计算。

此外,对于括号、乘方、开方和绝对值这些特殊情况,要注意它们对于整个表达式的影响,并灵活运用相应的运算规则。

通过反复的练习和探索,相信同学们可以逐渐掌握带有括号、乘方、开方和绝对值的代数式求值方法,为进一步的数学学习打下坚实的基础。

2023-2024学年人教版数学七年级下册暑假综合练习题五(含解析)

2023-2024学年人教版数学七年级下册暑假综合练习题五(含解析)

五、2021-2022学年人教版数学七年级下册暑假综合练习题1.在平面直角坐标系中,将点()3,1P 向下平移2个单位长度,得到的点'P 的坐标为( )A.()3,1−B.(3,3)C.(1,1)D.(5,1)2.在平面直角坐标系中,点2(2,3)P x +−所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限 3.如图,直线a b ,170350∠=︒∠=︒,,则2∠=( )A.80°B.70°C.60°D.50°4.比较三个数-3,-π,( )A.π3−>−>B.π3>−>−C.3π>−>−D.3π−>−>5.如果方程组216x y x y +=⎧⎨+=⎩★,的解为6x y =⎧⎨=⎩,■,那么被“★”“■”遮住的两个数分别是( ) A.10,4 B.4,10 C.3,10 D.10,36.下列说法,其中错误的有( )9±;3的平方根;③8−的立方根为2−;2=±.A.1个B.2个C.3个D.4个7.党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是( )A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务8.不等式组542(1)2532132x x x x +−⎧⎪+−⎨−>⎪⎩,…的解集是( ) A.2x ≤ B.2x ≥− C. 22x −<… D. 22x −<…9.若x a y b=⎧⎨=⎩是方程2340x y −+=的解,则695a b −+=___________. 10.一个数值转换器的运算程序如图所示:若输入有效的x 值后,始终无法输出y 值,则满足要求的x 的值为______.11.为了支援边远山区贫困学校的同学读书,某校开展捐书活动,七(1)班同学积极参与,现将捐书数量绘制成频数分布直方图(如图所示),如果捐书数量在3.5 4.5~组别所占的百分比是30%,那么捐书数量在4.5~5.5组別的人数是__________.12.将不足40只鸡放入若干个笼中.若每个笼里放4只,则有1只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只,则有__________只鸡.13.如图,已知EF AC ⊥,垂足为F ,DM AC ⊥,垂足为M ,DM 的延长线交AB 于点B ,且1C ∠=∠,点N 在AD 上,且23∠=∠,试说明//AB MN .答案以及解析1.答案:A解析:将点()3,1P 向下平移2个单位长度,得到的点'P 的坐标为()3,12−,即()3,1−.2.答案:D解析:220x +>,30−<,∴点2(2,3)P x +−所在的象限是第四象限.故选D.3.答案:C解析:如图,过点A 作AB a ,则24∠=∠.∵,a b a AB ∴AB b ,∴5170∠=∠=︒,∴2418035()180507060()∠=∠=︒−∠+∠=︒−︒+︒=︒.4.答案:D解析:2π9.87≈,3π∴<,3π∴−>−> D.5.答案:A解析:把6x y =⎧⎨=⎩,■代入216x y +=,得2616⨯+=■,解得4=■.把64x y =⎧⎨=⎩,代入xy =★,得6410=+=★.故选A.6.答案:B9,9的平方根是3±,故①错误3的平方根,故②正确;8−的立方根为2−,故③正确2=,故④错误.其中错误的有①④两个.7.答案:A解析:本题考查了条形统计图的相关知识.2019年末,农村贫困人口比上年末减少166********−=(万人),所以选项A 是错误的,其他三个选项都是正确的.故选A.8.答案:D 解析:542(1)25321,32x x x x +−⎧⎪⎨+−−>⎪⎩①②…解不等式①,得2x ≥−,解不等式②,得2x <,所以不等式组的解集是22x −≤<.故选D.9.答案:7−解析:把x a y b =⎧⎨=⎩代入方程2340x y −+=,可得2340a b −+=,234a b ∴−=−,6953(23)57a b a b ∴−+=−+=−10.答案:0,1 解析:0和1的算术平方根是它们本身,且0和1是有理数,∴当0x =或1时,始终无法输出y 值.11.答案:16 解析:捐书数量在3.5~4.5组别的频数是12,所占的百分比是30%, ∴捐书的总人数为1230%40÷=,∴捐书数量在4.5~5.5组别的人数是()40412816−++=.12.答案:37解析:设有x 个笼.根据题意,得415(2),415(2)3x x x x +>−⎧⎨+<−+⎩解得811x <<.当9x =时,49137⨯+=.当10x =时,410141⨯+=(舍去).故有9个笼,37只鸡 .13.答案:因为,EF AC DM AC ⊥⊥,所以90CFE CMD ∠=∠=︒(垂直的定义),所以//EF DM (同位角相等,两直线平行),所以3CDM ∠=∠(两直线平行,同位角相等).因为23∠=∠(已知),所以2CDM ∠=∠(等量代换),所以//MN CD (内错角相等,两直线平行),所以AMN C ∠=∠(两直线平行,同位角相等).因为1C ∠=∠(已知),所以1AMN ∠=∠(等量代换), 所以//AB MN (内错角相等,两直线平行).结束。

苏科版七年级数学下册数学综合练习(幂的运算、整式乘法和因式分解、二元一次方程组)(含答案)

苏科版七年级数学下册数学综合练习(幂的运算、整式乘法和因式分解、二元一次方程组)(含答案)

苏科版七年级数学下册数学综合练习(幂的运算、整式乘法与因式分解、二元一次方程组)一.选择题(共12小题)1.下列由2和3组成的四个算式中,值最小的是( )A .23-B .23÷C .32D .32- 2.若2(0.2)a -=-,2b =-,2(2)c =-,则a 、b 、c 大小为( ) A .a b c << B .a c b << C .b c a << D .c b a << 3.下列计算正确的是( )A .824a a a ÷=B .448a a a +=C .22(3)9a a -=D .222()a b a b +=+4.下列各式从左到右的变形属于因式分解且分解正确的是( ) A .2(1)(1)1x x x +-=- B .222(2)(2)x y x y x y -=+- C .221(2)1a a a a ++=++D .2244(2)a a a -+-=--5.分解因式2242x x -+的最终结果是( )A .2(2)x x -B .22(1)x -C .22(21)x x -+D .2(22)x - 6.“龟鹤同池,龟鹤共100只,共有脚350只,问龟鹤各多少只?”设龟有x 只,鹤有y 只,则下列方程组中正确的是( ) A .10024350x y x y +=⎧⎨+=⎩B .10042350x y x y +=⎧⎨+=⎩C .10042350x y x y -=⎧⎨+=⎩D .10024350x y x y -=⎧⎨+=⎩7.如果多项式1x +与2x bx c -+的乘积中既不含2x 项,也不含x 项,则b 、c 的值是( ) A .1b c == B .1b c ==- C .0b c == D .0b =,1c =8.如图,用四个完全一样的长、宽分别为x 、y 的长方形纸片围成一个大正方形ABCD ,中间是空的小正方形EFGH .若AB a =,EF b =,判断以下关系式:①x y a +=;②x y b -=;③222a b xy -=;④22x y ab -=;⑤22222a b x y ++=,其中正确的个数有( )A .2个B .3个C .4个D .5个9.小亮解方程组2212x y x y +=⎧⎨-=⎩●的解为5x y =⎧⎨=⎩å,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为( )A .4和6B .6和4C .2和8D .8和2-10.如图,宽为50cm 的长方形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )A .2400cmB .2500cmC .2600cmD .2300cm11.关于x ,y 的方程组225y x mx m +=⎧⎨+=⎩的解满足6x y +=,则m 的值为( )A .1-B .2C .1D .412.454545(32)(3)(32)(2)(1)(34)x x x x x x x x x +-+++-+++-与下列哪一个式子相同( )A .45(34)x x - (21)x +B .45(34)(23)x x x --+C .45(34)x x - (23)x +D .45(34)(21)x x x --+二.填空题(共12小题)13.2(2)-= 4 ,22-= ,2(2)--= .14.一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为 . 15.若4n x =,9n y =,则()n xy = .16.分解因式:2214x y -= 11()()22x y x y +- . 17.若正有理数m 使得二次三项式2236x mx -+是一个完全平方式,则m = .18.若多项式26x x b --可化为2()1x a +-,则b 的值是 .19.已知:3a b +=-,2ab =,则22a b ab += .20.若关于x 、y 的二元一次方程组2231x y ax y a -=⎧⎨+=-⎩的解满足1x y +=,则a 的值为 .21.已知4s t +=,则228s t t -+= 16 .22.已知237x y =+,则32x y -= .23.某地准备对一段长120m 的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm ,乙工程队平均每天疏通河道ym ,则()x y +的值为 20 . 24.已知代数式24x x +可以利用完全平方公式变形为2(2)4x +-,进而可知24x x +的最小值是4-,依此方法,代数式226212x y x y ++-+的最小值是 . 三.解答题(共16小题) 25.计算:(1)0121(1)()22π-----;(2)2423(3)(2)a a a -+-g .26.计算:(1)230111(3)(3.14)()20π----÷--.(2)332(24)(0.5)a b ab ab --g. (3)已知2410x x +-=,求代数式22(2)(2)(2)x x x x +-+-+的值.27.因式分解: (1)2242x x -+ (2)4234x x --.28.分解因式: (1)3269x x x -+ (2)2(2)2x x --+.(3)22222()4x y x y +-.29.先化简后求值:(1)2(2)(2)(1)x x x +---,其中1x =-; (2)2(2)()3()2()a b a b a a b a b ++-+++,其中34a =,14b =-.30.解下列方程组:(1)123x y x y =+⎧⎨-=⎩;(2)1123232x y x y +⎧-=⎪⎨⎪-=⎩.31.解下列方程组:(1)524235x y x y -=⎧⎨-=-⎩;(2)042325560a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩.32.已知5x y +=,3xy =. (1)求(2)(2)x y --的值;(2)求224x xy y ++的值.33.某家商店的帐目记录显示,某天卖出26支牙刷和14盒牙膏,收入264元;一天,以同样的价格卖出同样的39支牙刷和21盒牙膏,收入393元.该商店的会计人员稍加演算就发现上述记录有误. (1)请思考为什么上述记录有误?你能用二元一次方程组的知识来解释吗?(2)若第一次记录是正确的,则第二次卖39支牙刷和21盒牙膏应收入 元.34.小明和小红学习了用图形面积研究整式乘法的方法后,分别进行了如下数学探究:把一根铁丝截成两段,探究1:小明截成了两根长度不同的铁丝,并用两根不同长度的铁丝分别围成两个正方形,已知两正方形的边长和为20cm ,它们的面积的差为240cm ,则这两个正方形的边长差为 2cm .探究2:小红截成了两根长度相同的铁丝,并用两根同样长的铁丝分别围成一个长方形与一个正方形,若长方形的长为x m ,宽为y m ,(1)用含x 、y 的代数式表示正方形的边长为 ;(2)设长方形的长大于宽,比较正方形与长方形面积哪个大,并说明理由.35.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积. 方法1: 2()m n - 方法2:(2)观察图②请你写出下列三个代数式:2()m n +,2()m n -,mn 之间的等量关系. ; (3)根据(2)题中的等量关系,解决如下问题: ①已知:5a b -=,6ab =-,求:2()a b +的值;②已知:0a >,21a a-=,求:2a a +的值.(2)该商场售完这500箱矿泉水,可获利多少元?37.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?6公里与8.5公里,两人付给滴滴快车的乘车费相同. (1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算俩人各自的实际乘车时间.39.在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五g 四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?40.体育器材室有A 、B 两种型号的实心球,1只A 型球与1只B 型球的质量共7千克,3只A 型球与1只B 型球的质量共13千克.(1)每只A 型球、B 型球的质量分别是多少千克?(2)现有A 型球、B 型球的质量共17千克,则A 型球、B 型球各有多少只?参考答案与试题解析一.选择题(共12小题)1.A ; 2.A ; 3.C ; 4.D ; 5.B ; 6.B ; 7.A ; 8.C ; 9.D ; 10.A ; 11.A ; 12.D ; 二.填空题(共12小题)13.:4;14;14. 14.6.5×10﹣6; 15.36; 16.(xy )(xy ); 17.6; 18.﹣8; 19.﹣6; 20.12;21.16; 22.72; 23.20; 24.2;一.选择题(共12小题)1.下列由2和3组成的四个算式中,值最小的是( )A .23-B .23÷C .32D .32-【解答】解:A 、原式1=-;B 、原式23=;C 、原式8=;D 、原式18=,121883∴-<<<,则值最小的为23-, 故选:A .2.若2(0.2)a -=-,2b =-,2(2)c =-,则a 、b 、c 大小为( ) A .a b c << B .a c b << C .b c a << D .c b a <<【解答】解:2(0.2)25a -=-=-Q , 2b =-,2(2)4c =-=, a b c ∴<<, 故选:A .3.下列计算正确的是( )A .824a a a ÷=B .448a a a +=C .22(3)9a a -=D .222()a b a b +=+【解答】解:A 、同底数幂的除法底数不变指数相减,故A 错误; B 、合并同类项系数相加字母及指数不变,故B 错误; C 、积的乘方等于乘方的积,故C 正确;D 、和的平方等余平方和加积的二倍,故D 错误; 故选:C .4.下列各式从左到右的变形属于因式分解且分解正确的是( ) A .2(1)(1)1x x x +-=-B .222(2)(2)x y x y x y -=+-C .221(2)1a a a a ++=++D .2244(2)a a a -+-=-- 【解答】解:A 、是整式的乘法,故A 错误; B 、分解错误,故B 错误;C 、没把一个多项式转化成几个整式积的形式,故C 错误;D 、把一个多项式转化成几个整式积的形式,故D 正确; 故选:D .5.分解因式2242x x -+的最终结果是( ) A .2(2)x x -B .22(1)x -C .22(21)x x -+D .2(22)x -【解答】解:原式222(21)2(1)x x x =-+=-. 故选:B . 6.“龟鹤同池,龟鹤共100只,共有脚350只,问龟鹤各多少只?”设龟有x 只,鹤有y 只,则下列方程组中正确的是( ) A .10024350x y x y +=⎧⎨+=⎩B .10042350x y x y +=⎧⎨+=⎩C .10042350x y x y -=⎧⎨+=⎩D .10024350x y x y -=⎧⎨+=⎩【解答】解:设龟有x 只,鹤有y 只,由题意得:10042350x y x y +=⎧⎨+=⎩, 故选:B .7.如果多项式1x +与2x bx c -+的乘积中既不含2x 项,也不含x 项,则b 、c 的值是( ) A .1b c == B .1b c ==- C .0b c == D .0b =,1c =【解答】解:根据题意得:232232(1)()(1)()x x bx c x bx cx x bx c x b x c b x c +-+=-++-+=+-+-+, 由结果不含2x 项,也不含x 项,得到10b -=,0c b -=, 解得:1b =,1c =, 故选:A .8.如图,用四个完全一样的长、宽分别为x 、y 的长方形纸片围成一个大正方形ABCD ,中间是空的小正方形EFGH .若AB a =,EF b =,判断以下关系式:①x y a +=;②x y b -=;③222a b xy -=;④22x y ab -=;⑤22222a b x y ++=,其中正确的个数有( )A .2个B .3个C .4个D .5个【解答】解:由图形可得:①大正方形的边长=长方形的长+长方形的宽,故x y a +=正确; ②小正方形的边长=长方形的长-长方形的宽,故x y b -=正确;③大正方形的面积-小正方形的面积4=个长方形的面积,故224a b xy -=错误; ④根据①知x y a +=,根据②知x y b -=,则22x y ab -=,正确;⑤22222222()2242a b a b x y x y xy a -++=+-=-⨯=,正确. 所以正确的个数为4. 故选:C .9.小亮解方程组2212x y x y +=⎧⎨-=⎩●的解为5x y =⎧⎨=⎩å,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为( )A .4和6B .6和4C .2和8D .8和2-【解答】解:5x =Q 是方程组的解, 2512y ∴⨯-=,2y ∴=-, 22528x y ∴+=⨯-=,∴●是8,★是2-.故选:D .10.如图,宽为50cm 的长方形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )A .2400cm B .2500cm C .2600cm D .2300cm【解答】解:设一个小长方形的长为xcm ,宽为ycm ,则可列方程组5042x y x y x +=⎧⎨+=⎩,解得4010x y =⎧⎨=⎩,则一个小长方形的面积24010400cm cm cm =⨯=. 故选:A .11.关于x ,y 的方程组225y x mx m +=⎧⎨+=⎩的解满足6x y +=,则m 的值为( )A .1-B .2C .1D .4【解答】解:解方程组225y x m x m +=⎧⎨+=⎩得5249x m y m =-⎧⎨=-⎩,6x y +=Q ,52(49)6m m ∴-+-= 1m =-, 故选:A .12.454545(32)(3)(32)(2)(1)(34)x x x x x x x x x +-+++-+++-与下列哪一个式子相同( )A .45(34)x x - (21)x +B .45(34)(23)x x x --+C .45(34)x x - (23)x +D .45(34)(21)x x x --+【解答】解:454545(32)(3)(32)(2)(1)(34)x x x x x x x x x +-+++-+++-454545(32)[(3)(2)](1)(34)x x x x x x x x =+-++-+++- 4545(32)(34)(1)(34)x x x x x x =+-+++-45(34)(21)x x x =--+. 故选:D .二.填空题(共12小题)13.2(2)-= 4 ,22-= ,2(2)--= . 【解答】解:2(2)4-=;2211224-==;2211(2)(2)4--==-. 故答案为:4;14;14.14.一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为 66.510-⨯ .【解答】解:60.0000065 6.510-=⨯. 故答案为:66.510-⨯.15.若4n x =,9n y =,则()n xy = 36 .【解答】解:4n x =Q ,9n y =,()n xy ∴ n n x y =g 49=⨯ 36=.故答案为:36.16.分解因式:2214x y -= 11()()22x y x y +- . 【解答】解:22111()()422x y x y x y -=+-.故答案为:11()()22x y x y +-.17.若正有理数m 使得二次三项式2236x mx -+是一个完全平方式,则m = 6 .【解答】解:2236x mx -+Q 是一个完全平方式, 6m ∴=±,m Q 为正有理数, 6m ∴=, 故答案为:618.若多项式26x x b --可化为2()1x a +-,则b 的值是 8- .【解答】解:2226(3)9()1x x b x b x a --=---=+-Q , 3a ∴=-,91b --=-, 解得:3a =-,8b =-. 故答案为:8-.19.已知:3a b +=-,2ab =,则22a b ab += 6- . 【解答】解:3a b +=-Q ,2ab =, ∴原式()6ab a b =+=-. 故答案为:6-20.若关于x 、y 的二元一次方程组2231x y ax y a -=⎧⎨+=-⎩的解满足1x y +=,则a 的值为 12 .【解答】解:由题意得:221x y x y -=⎧⎨+=⎩,解得10x y =⎧⎨=⎩,把10x y =⎧⎨=⎩代入31ax y a +=-中得:031a a +=-,解得:12a =,故答案为:12.21.已知4s t +=,则228s t t -+= 16 . 【解答】解:4s t +=Q , 228s t t ∴-+()()8s t s t t =+-+ 4()8s t t =-+ 4()s t =+ 16=.故答案为:16.22.已知237x y =+,则32x y -=72. 【解答】解:237x y =+Q ,即3722x y =+,3722x y ∴-=.故答案为:7223.某地准备对一段长120m 的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm ,乙工程队平均每天疏通河道ym ,则()x y +的值为 20 .【解答】解:设甲工程队平均每天疏通河道xm ,乙工程队平均每天疏通河道ym ,由题意,得4912083120x y x y +=⎧⎨+=⎩, 解得:128x y =⎧⎨=⎩.20x y ∴+=. 故答案为:20.24.已知代数式24x x +可以利用完全平方公式变形为2(2)4x +-,进而可知24x x +的最小值是4-,依此方法,代数式226212x y x y ++-+的最小值是 2 .【解答】解:222222621269212(3)(1)2x y x y x x y y x y ++-+=+++-++=++-+,2(3)0x +Q …,2(1)0y -…,22(3)(1)2x y ∴++-+的最小值是2. 故答案为:2.三.解答题(共16小题) 25.计算:(1)0121(1)()22π-----;(2)2423(3)(2)a a a -+-g . 【解答】解:(1)原式1241=+-=-; (2)原式66698a a a =-=. 26.计算:(1)230111(3)(3.14)()20π----÷--.(2)332(24)(0.5)a b ab ab --g. (3)已知2410x x +-=,求代数式22(2)(2)(2)x x x x +-+-+的值.【解答】解:(1)原式1(27)120127206=---÷-=-+-=;(2)原式3322533511(24)()42a b ab a b a b a b =-=-g ;(3)原式222244448x x x x x x =++-++=++, 把2410x x +-=,得到241x x +=, 则原式189=+=. 27.因式分解: (1)2242x x -+ (2)4234x x --. 【解答】解:(1)原式222(21)2(1)x x x =-+=-; (2)原式222(4)(1)(2)(2)(1)x x x x x =-+=+-+.28.分解因式: (1)3269x x x -+ (2)2(2)2x x --+. (3)22222()4x y x y +-.【解答】解:(1)原式22(69)(3)x x x x x =-+=-; (2)原式2244256(2)(3)x x x x x x x =-+-+=-+=--; (3)原式222222(2)(2)()()x y xy x y xy x y x y =+++-=+-. 29.先化简后求值:(1)2(2)(2)(1)x x x +---,其中1x =-;(2)2(2)()3()2()a b a b a a b a b ++-+++,其中34a =,14b =-.【解答】解:(1)2(2)(2)(1)x x x +--- 22421x x x =--+- 25x =-,当1x =-时,原式2(1)57=⨯--=-;(2)2(2)()3()2()a b a b a a b a b ++-+++222222233242a ab ab b a ab a ab b =+++--+++ 244ab b =+,当34a =,14b =-时,原式231114()4()4442=⨯⨯-+⨯-=-.30.解下列方程组:(1)123x y x y =+⎧⎨-=⎩;(2)1123232x y x y +⎧-=⎪⎨⎪-=⎩. 【解答】解:(1)123x y x y =+⎧⎨-=⎩①②,把①代入②得:223y y +-=,即1y =, 把1y =代入①得:2x =,则方程组的解为21x y =⎧⎨=⎩;(2)方程组整理得:328232x y x y -=⎧⎨-=⎩①②,①-②得:6x y +=③,③2⨯+①得:520x =,即4x =, 把4x =代入③得:2y =, 则方程组的解为42x y =⎧⎨=⎩.31.解下列方程组:(1)524235x y x y -=⎧⎨-=-⎩;(2)042325560a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩.【解答】解: (1)524235x y x y -=⎧⎨-=-⎩①②①3⨯-②2⨯得:1122x =,解得:2x =,把2x =代入①得:1024y -=,解得:3y =,即原方程组的解是23x y =⎧⎨=⎩;(2)042325560a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩①②③②-①得:333a b +=,1a b +=④,③-①得:24660a b +=,410a b +=⑤,由④和⑤组成方程组1410a b a b +=⎧⎨+=⎩, 解方程组得:32a b =⎧⎨=-⎩,把3a =,2b =-代入①得:320c ++=,解得:5c =-,即方程组的解是325a b c =⎧⎪=-⎨⎪=-⎩.32.已知5x y +=,3xy =.(1)求(2)(2)x y --的值;(2)求224x xy y ++的值.【解答】解:(1)5x y +=Q ,3xy =,∴原式2()431043xy x y =-++=-+=-;(2)5x y +=Q ,3xy =,∴原式2()225631x y xy =++=+=.33.某家商店的帐目记录显示,某天卖出26支牙刷和14盒牙膏,收入264元;一天,以同样的价格卖出同样的39支牙刷和21盒牙膏,收入393元.该商店的会计人员稍加演算就发现上述记录有误.(1)请思考为什么上述记录有误?你能用二元一次方程组的知识来解释吗?(2)若第一次记录是正确的,则第二次卖39支牙刷和21盒牙膏应收入 396 元.【解答】解:设1支牙刷x 元,1盒牙膏y 元.根据题意,得26142643921393x y x y +=⎧⎨+=⎩, 化简得137132137131x y x y +=⎧⎨+=⎩, 13:137:7132:131=≠Q ,∴方程组无解.所以记录有误.(2)由(1)知,137132x y +=,则3(137)3132396x y +=⨯=(元).即:第二次卖39支牙刷和21盒牙膏应收入396元.故答案是:396.34.小明和小红学习了用图形面积研究整式乘法的方法后,分别进行了如下数学探究:把一根铁丝截成两段,探究1:小明截成了两根长度不同的铁丝,并用两根不同长度的铁丝分别围成两个正方形,已知两正方形的边长和为20cm ,它们的面积的差为240cm ,则这两个正方形的边长差为 2cm .探究2:小红截成了两根长度相同的铁丝,并用两根同样长的铁丝分别围成一个长方形与一个正方形,若长方形的长为x m ,宽为y m ,(1)用含x 、y 的代数式表示正方形的边长为 ;(2)设长方形的长大于宽,比较正方形与长方形面积哪个大,并说明理由.【解答】解:探究1:设两个正方形的边长分别为a ,b ,则20a b +=,2240a b -=()()40a b a b +-=20()40a b --=,2()a b cm -=,故答案为:2cm .探究二:(1)2242x y x y ++=;故答案为:2x y +; (2)22()()24x y x y xy +--= x y >Q , ∴2()04x y ->, ∴2()2x y xy +>, ∴正方形的面积大于长方形的面积.35.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积.方法1: 2()m n -方法2:(2)观察图②请你写出下列三个代数式:2()m n +,2()m n -,mn 之间的等量关系. ;(3)根据(2)题中的等量关系,解决如下问题:①已知:5a b -=,6ab =-,求:2()a b +的值;②已知:0a >,21a a-=,求:2a a +的值. 【解答】解:(1)方法21:()m n -;方法22:()4m n mn +-;(2)22()()4m n m n mn -=+-;故答案为:2()m n -;2()4m n mn +-;22()()4m n m n mn -=+-;(3)①解:5a b -=Q ,6ab =-,222()()454(6)25241a b a b ab ∴+=-+=+⨯-=-=;②解:由已知得:222222()()4189a a a a a a+=-+=+=g g , 0a >Q ,20a a+>, 23a a∴+=.(2)该商场售完这500箱矿泉水,可获利多少元?【解答】解:(1)设购进甲矿泉水x 箱,购进乙矿泉水y 箱,依题意,得:500253514500x y x y +=⎧⎨+=⎩, 解得:300200x y =⎧⎨=⎩. 答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(3525)300(4835)2005600-⨯+-⨯=(元).答:该商场售完这500箱矿泉水,可获利5600元.37.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度; (2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?【解答】解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:6()90(64)()90x y x y +=⎧⎨+-=⎩, 解得:123x y =⎧⎨=⎩. 答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时.(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90)a -千米,依题意,得:90123123a a -=+-, 解得:2254a =. 答:甲、丙两地相距2254千米.6公里与8.5公里,两人付给滴滴快车的乘车费相同.(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算俩人各自的实际乘车时间.【解答】解:(1)设小王的实际行车时间为x 分钟,小张的实际行车时间为y 分钟,由题意得:1.860.3 1.88.50.30.8(8.57)x y ⨯+=⨯++⨯-10.80.316.50.3x y ∴+=+0.3() 5.7x y -=19x y ∴-=∴这两辆滴滴快车的实际行车时间相差19分钟.(2)由(1)及题意得:1911.58.52x y y x -=⎧⎪⎨=+⎪⎩ 化简得19317x y y x -=⎧⎨-=⎩①② ①+②得236y =18y ∴=③ 将③代入①得37x =∴小王的实际乘车时间为37分钟,小张的实际乘车时间为18分钟.39.在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五g 四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?【解答】解:(1)设跳绳的单价为x 元/条,毽子的单件为y 元/个,可得:30607201050360x y x y +=⎧⎨+=⎩, 解得:164x y =⎧⎨=⎩, 答:跳绳的单价为16元/条,毽子的单件为4元/个;(2)设该店的商品按原价的a 折销售,可得:(100161004)180010a ⨯+⨯⨯=, 解得:9a =,答:该店的商品按原价的9折销售.40.体育器材室有A 、B 两种型号的实心球,1只A 型球与1只B 型球的质量共7千克,3只A 型球与1只B 型球的质量共13千克.(1)每只A 型球、B 型球的质量分别是多少千克?(2)现有A 型球、B 型球的质量共17千克,则A 型球、B 型球各有多少只?【解答】解:(1)设每只A 型球、B 型球的质量分别是x 千克、y 千克,根据题意可得:7313x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩, 答:每只A 型球的质量是3千克、B 型球的质量是4千克;。

七下数学综合训练2

七下数学综合训练2

七下数学综合练习题(2)1、计算:(1); (2).(3)2、求x,y 的值:(1)(2y ﹣3)2﹣64=0; (2)64(x +1)3=27.3、实数a 、b 在数轴上的位置如图所示,请化简:.4、设2+的整数部分和小数部分分别是x 、y ,试求x 、y 的值与x ﹣1的算术平方根.5、已知:a 是﹣3的整数部分,b 是﹣3的小数部分,求:(1)a ,b 的值;(2)(﹣a )3+(b+4)2的平方根.6、已知x x x y 93113+---=,求323-+y x 的平方根.7. 已知:点 P (2 m +4,m -1).试分别根据下列条件,求出 P 点的坐标. (1)点 P 在 y 轴上; (2)点 P 在 x 轴上; (3)点 P 的纵坐标比横坐标大 3; (4)点 P 在过 A (2,-3)点,且与 x 轴平行的直线上.8. 如图,已知12l l ∥,射线MN 分别和直线12,l l 交于点,A B ,射线ME 分别和直线12,l l 交于点,C D ,点P 在射线MN 上运动(P 点与,,A B M 三点不重合), 设PDB α∠=,PCA β∠=,CPD γ∠=.(1)如果点P 在,A B 两点之间运动时,,,αβγ之间有何数量关系?请说明理由; (2)如果点P 在,A B 两点之外运动时,,,αβγ之间有何数量关系?9.问题:已知线段AB ∥CD ,在AB 、CD 间取一点P (点P 不在直线AC 上),连接PA 、PC ,试探索∠APC 与∠A 、∠C 之间的关系 (1) 端点A 、C 同向:如图1,点P 在直线AC 右侧时,∠APC -(∠A ﹢∠C )=_________度 如图2,点P 在直线AC 左侧时,∠APC ﹢(∠A ﹢∠C )=_________度 (2) 端点A 、C 反向:如图3,点P 在直线AC 右侧时,∠APC 与(∠A -∠C )有怎样的等量关系?写出结论并证明 如图4,点P 在直线AC 左侧时,∠APC -(∠A -∠C )=_________度10.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P 1(x 1,y 1)、P 2(x 2,y 2),其两点间的距离公式当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2-x 1|或|y 2-y 1|. (1)已知A (2,4)、B (-3,-8),试求A 、B 两点间的距离;(2)已知A 、B 在平行于y 轴的直线上,点A 的纵坐标为5,点B 的纵坐标为-1,试求A 、B 两点间的距离. (3)已知A (0,6)、B (-3,2)、C (3,2),你能判断线段AB 、BC 、AC 中哪两条是相等的?并说明理由.11.如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b 满足a=b -3+3-b -1,现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD . (1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.12. 对有序数对(m ,n )定义“f 运算”:)21,21(),(b n a m n m f -+=,其中a 、b 为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A (x ,y )规定“F 变换”:点A (x ,y )在F 变换下的对应点即为坐标为f (x ,y )的点A ′. (1)当a =0,b =0时,f (-2,4)=________________;(2)若点P (4,-4)在F 变换下的对应点是它本身,则a =_______,b=_______.14、 先阅读下例,再解答问题. 例:解不等式112>-x x解:把不等式112>-x x 进行整理,得,0112>--x x 即0121>--x x,则有①⎩⎨⎧>->-01201x x 或②⎩⎨⎧<-<-01201x x 解不等式组①得121<<x :解不等式组②知其无解,故原不等式的解集为121<<x 请根据以上解不等式的思想解不等式2223<-+x x15.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①310x -=,②2103x +=,③()315x x -+=-中,不等式组2531-2x x x x -+-⎧⎨-+⎩>,> 的关联方程是 ;(填序号) (2)若不等式组1212x x x ⎧-⎪⎨⎪++⎩<1,>-3的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可)(3)若方程32x x -=,1322x x ⎛⎫+=+ ⎪⎝⎭都是关于x 的不等式组2x x m x m -⎧⎨-⎩<2,≤的关联方程,直接写出m 的取值范围.16、某项工程若由甲、乙两队承包,252天可以完成,需支付1800元;若由乙、丙两队承包,343天可以完成,需支付1500元;若由丙、甲两队承包,276天可以完成,需支付1600元;(1)问甲、乙、丙三队的工作效率分别是多少?(2)在保证一个星期内完成这项工程的前提下,选择哪个队单独承包费用最少17.某初中2012年九月开学时,七年级有学生x 人,八年级学生比七年级学生少10%,九年级学生比七年级学生少20人.2013年九月开学时,各年级学生变化情况如下:七年级学生比上届七年级学生多20人;上届七年级学生除了5%转校以外,都升入到本校八年级就读,同时从其它学校转入10人到本校八年级就读;上届八年级学生除了10人转校以外,都升入到本校九年级就读,没有从其它学校转入本校就读九年级的学生.(1)用含有x 的式子表示2012年九月开学时该校学生总数是 ;(2)该学校最多能提供30个教室,每个教室最多能容纳50名学生,请你通过计算说明,2013年九月开学时学生总数和2012年九月开学时学生总数是否相等.18.已知x ,y 都是有理数,且满足方程:2x ﹣y=6y +﹣20,求x 与y 的值.19.如图,在平面直角坐标系中,点O 为坐标原点,点A (3a ,2a )在第一象限,过点A 向x 轴作垂线,垂足为点B ,连接OA ,S △AOB =12,点M 从O 出发,沿y 轴的正半轴以每秒2个单位长度的速度运动,点N 从点B 出发以每秒3个单位长度的速度向x 轴负方向运动,点M 与点N 同时出发,设点M 的运动时间为t 秒,连接AM ,AN ,MN . (1)求a 的值; (2)当0<t <2时,①请探究∠ANM ,∠OMN ,∠BAN 之间的数量关系,并说明理由;②试判断四边形AMON 的面积是否变化?若不变化,请求出其值;若变化,请说明理由.(3)当OM=ON时,请求出t的值.。

沪科版数学七年级下册综合训练50题-含答案

沪科版数学七年级下册综合训练50题-含答案

沪科版数学七年级下册综合训练50题(填空、解答题)一、填空题1.已知3,4m n a a ==,则32m n a -的值为________.2.若,那么=______. 【答案】.3.当x =_____时,代数式27x x -与77x x -的值相等.所以x =0是原方程的根,当x =7时,x -7=0,所以x =7不是原方程的根.所以原方程的解为:x =0.故答案为:0.【点睛】本题考查了分式方程的解法.掌握其解法是解决此题关键.4﹣5.(填“>”、“=”、“<”)5.化简计算:(1)2(32)x y -=_______,(2)32()a a ⋅-=_______. 【答案】 229412x y xy +- 5a【分析】分别根据完全平方公式,同底数幂的乘法法则计算即可.【详解】解:(1)2(32)x y -=229412x y xy +-;(2)32()a a ⋅-=32a a ⋅=5a ,故答案为:(1)229412x y xy +-;(2)5a .【点睛】本题考查了整式的混合运算,解题的关键是掌握运算法则.6.分解因式232a a a --=_________________;【答案】()21a a --【分析】先提取公因式-a ,再对余下的多项式利用完全平方公式继续分解.【详解】解:232a a a --=()221a a a --+=()21a a --.故答案为()21a a --. 【点睛】本题考查用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 7.不等式组8x x m <⎧⎨>⎩有解,m 的取值范围是________ 【答案】m <8【详解】解:由题意得:m <8.故答案为m <8.8.计算:01012tan 60()(3)2π-+-+-.9.在实数范围内分解因式a 2-12=______.【答案】【详解】直接利用平方差公式分解因式a 2-12=a 2-(2)2, =(a -2)(a +2); 10.如图折成正方体后,如果相对面所对应的值相等,那么x 的平方根与y 的算术平方根之积为___.【答案】± 【详解】解:依题意得x-y 的相对面是1,的相对面是3, ∵,,∵x=2,y=1,∵x 的平方根与y 的算术平方根之积为.11.若(x 2+x-1)(px+2)的乘积中,不含x 2项,则p 的值是 ________.【答案】 2.-【分析】先按照多项式乘以多项式,再把同类项合并,利用不含2x 项即这一项的系数为0,即可得到答案.【详解】解:()()232212222x x px px x px x px +-+=+++--()()32222px p x p x =+++--而上式不含2x 项,20p ∴+=,2,p ∴=-故答案为: 2.-【点睛】本题考查的是多项式的乘法运算,同时考查多项式的概念中的项的次数,及不含某项的条件,掌握以上知识是解题的关键.12.用计算器计算:(结果保留4个有效数字)____,___,___.13.如图,直线a ,b 分别与直线c ,d 相交,且∵1+∵3=135°,∵2﹣∵3=45°,若∵3=α,则∵4的度数为_____.【答案】180°﹣α【分析】如图,由∵1+∵3=135°,∵2﹣∵3=45°,可得∵1+∵2=180°,根据∵1+∵5=180°,可得∵2=∵5,由此可得a∵b ,从而得∵3=∵6=α,根据邻补角的定义即可求得∵4=180°﹣α.【详解】解:如图,∵∵1+∵3=135°,∵2﹣∵3=45°,∵∵1+∵3+∵2﹣∵3=135°+45°=180°,∵∵1+∵2=180°,∵∵1+∵5=180°,∵∵2=∵5,∵a∵b ,∵∵3=∵6=α,∵∵4=180°﹣α,故答案为180°﹣α.【点睛】本题考查了平行线的判定与性质、邻补角的定义,熟练掌握平行线的判定与性质定理是解题的关键.14.如图是一把剪刀,若=60AOB COD ∠+∠︒,则=AOC ∠________.【答案】150︒【分析】利用对顶角的性质得出=30AOB COD ∠=∠︒,进而利用一个角与它的邻补角的和为180︒求解即可得出结果.【详解】=60AOB COD ∠+∠︒,=30AOB COD ∴∠=∠︒(对顶角相等).180********AOC AOB ∴∠=︒-∠=︒-︒=︒,故答案为:150︒【点睛】本题考查相交线(邻补角、对顶角)的性质的理解.主要涉及互为对应角的两个角其大小一定相等;一个角与它的邻补角的和等于180︒知识点.明确两条直线相交所形成的邻补角和对顶角的位置和数量关系是解本题的关键.15.若x ,y 为实数,且20x +=,则()2017x y +=______. 【答案】1【分析】根据非负性得出x 、y 的值,进而解答即可.【详解】解:由题意可得:x +2=0,y -3=0,可得:x =-2,y =3,把x =-2,y =3代入()20172017(23)1x y +=-+=,故答案为:1【点睛】此题考查非负性和乘方运算,关键是根据非负性得出x 、y 的值.16.17.用“∵”定义一种新的运算:对于任意有理数a 和b ,2a b a b =-★,如:22323431=-=-=★.则()()262022--=★★______. 【答案】2026【分析】直接利用新定义,进而代入即可得出答案.【详解】解:()()262022--★★=()()2262022⎡⎤---⎣⎦★=()()462022--★=()()22022--★=()()222022---=42022+=2026故答案为:2026.【点睛】本题主要考查了有理数的混合运算,正确运用新定义分析是解题关键. 18.已知6m x =,=3n x ,则2m n x -的值为______. 6m x =,2m n x -∴=故答案为:【点睛】本题主要考查了同底数指数幂的除法和幂的乘方,掌握同底数指数幂的除法19.满足不等式组31332x -+-≤≤的整数解是________.20.211()2---- =_____.21.直接写出计算结果:(1)202110(1)(0.1)(3)π--+---=____;(2)10110152()(2)125-⨯=____; (3)12121()x x x a a a -+-⋅÷=____;(4)102×98=____.故答案为:9996.【点睛】本题考查了实数的运算,平方差公式,同底数幂的乘除法,幂的乘方与积的乘方,零指数幂,负整数指数幂,熟练掌握各运算法则是解题关键.22.已知23x =,25y =求:2x y -=_____________.23.对于有理数a ,b ,定义一种新运算“”,规定:||||a b a b a b =++-.(1)计算:2(4)-=__________;(2)若a ,b 在数轴上的位置如图所示.则化简ab =__________. 2(4)2-=)由数轴的定义得:0a <a b a b =+a b b --+2a -.故答案为:【点睛】本题考查了新定义下的绝对值运算、数轴,理解新定义,掌握绝对值运算是24.若α∠与∠β的两边分别平行,且(210),(320)x x αβ∠=+∠=-︒︒,则∠β的度数为________. 【答案】94°或70°【分析】根据已知得出,(2x +10)+(3x -20)=180或2x +10=3x -20,求出x =38或x =30,进而求出∵β的度数.【详解】解:∵∵α与∵β的两边分别平行,且∵α=(2x +10)°,∵β=(3x -20)°, ∵(2x +10)+(3x -20)=180或2x +10=3x -20,∵x =38或x =30.∵当x =38时,∵β=(3x -20)°=94°,当x =30时,∵β=(3x -20)°=70°,故答案为:94°或70°.【点睛】本题考查了平行线性质的应用.注意:当两个角的两边分别平行时,这两个角互补或相等.25.把多项式324a ab - 分解因式的结果是___________.【答案】()()22a a b a b +-【分析】先利用提公因式法分解因式,再利用平方差公式分解即可得到答案.【详解】解:324a ab -()224a a b =-()222a a b ⎡⎤=-⎣⎦ ()()22a a b a b =+-,故答案为:()()22a a b a b +-.【点睛】本题考查分解因式,涉及到提公因式法分解因式和公式法分解因式,综合运用提公因式法及平方差公式分解因式是解决问题的关键.26.已知()()123a a ++=,则()()2212a a +++=___________. 【答案】7【分析】将第一个式子化简,整体代入化简后的第二个式子即可.【详解】∵(a+1)(a+2)=3,∵a 2+3a+2=3,∵a 2+3a=1∵(a+1)2+(a+2)2=[(a+1)+(a+2)]2-2(a+1)(a+2)=(2a+3)2-2×3=4a 2+12a+9-6=4(a 2+3a )+3=4×1+3=7故答案是:7.【点睛】本题考查了整式的混合运算,整体代入思想是解答本题的关键.27.计算:02015312(1)(1)()2π--+-⨯-= 【答案】7.【详解】试题分析:先将各个式子化简求值,然后合并即可.试题解析:原式=21(1)28+⨯--+=2+1-2+8=7.考点:实数的混合运算.28.随着2022年北京冬奥会的日益临近,人们越来越感受到冰雪运动的独特魅力,冬奥会周边及相关物品也不断带给人们惊喜,深受人们的喜爱.某玩具商购进甲、乙两款以冬奥会运动项目为主题的立体拼图,甲、乙两款拼图的数量比为9:2.已知销售每套甲款拼图的利润率为30%,销售每套乙款拼图的利润率为40%,当把所有拼图销售完毕,该玩具商得到的总利润率为34%.该玩具商又购进新的一批甲、乙两款拼图,两款拼图每套的进价与售价均与前一次相同;同时,该玩具商还购进一批丙款拼图,每套丙款拼图的进价为每套甲款拼图进价的2倍,并按进价提高35%进行销售.已知第二次购进的甲、乙、丙三款拼图的数量比为5:3:3,并且所有拼图全部销售完毕,则该玩具商在第二次销售中得到的总利润率为__________. 【答案】36%【分析】设甲款拼图的成本为10a ,乙款拼图的成本为10b ,第一次购进两种甲款款拼图的数量为9k , 乙款拼图的数量为2k .根据销售每套甲款拼图的利润率为30%,可求甲款利润10a ×30%=3a ,根据销售每套乙款拼图的利润率为40%,可求乙款利润10b ×40%=4b ,根据该玩具商得到的总利润率为34%.得出3b a =.设第二次购进的甲、乙、丙三款拼图的数量分别为5,3,3m m m ,可得甲、乙、丙三种拼图的成本,利润,拼图数量如表所示:利用三种拼图总利润÷三种拼图总成本×100%得出总利润率即可.【详解】解:设甲款拼图的成本为10a ,乙款拼图的成本为10b ,第一次购进两种甲款∵第二次销售的总利润率3512373100%36% 105303203a m a m a ma m a m a m⋅+⋅+⋅=⨯=⋅+⋅+⋅.故答案为:36%.【点睛】本题考查二元一次方程,列代数式,整式的乘除混合运算,利润率=利润÷成本×100%,掌握列代数式,利润率=利润÷成本×100%,整式的乘除混合运算,根据利润率列二元一次方程是解题关键.29.若多项式225x mx++能用完全平方公式因式分解,则m的值为______.【答案】±10【分析】利用完全平方公式的结构特征判断即可确定出m的值.【详解】∵多项式x2+mx+25能用完全平方公式分解因式,∵m=±10.故答案为±10.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.30.已知m=2n≠0,则+﹣= .【答案】.【详解】试题分析:把m=2n代入原式计算即可得到结果.解:∵m=2n ,∵原式=+﹣=+1﹣=.故答案为.考点:分式的化简求值.二、解答题31.化简:(1)()()12x x ++ (2)24232()a a a ⋅+【答案】(1)232x x ++;(2)63a【分析】(1)根据多项式乘多项式的法则即可求出答案;(2)先计算同底数幂的乘法,幂的乘方,再合并.【详解】解:(1)()()12x x ++=222x x x +++=232x x ++;(2)24232()a a a ⋅+=662a a +=63a【点睛】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.32.解不等式组513(1)132122x x x x +>-⎧⎪⎨+≤+⎪⎩①② ,并把它的解集在数轴上表示出来.将解集表示在同一数轴上如下:∵不等式组的解集为x≥1.点睛:本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.空心圈表示不包含该点,实心点表示包含该点.33.如图,两个圆的圆心为O,大圆半径OC,OD交小圆于点A,B,判断AB与CD的位置关系,并说明原因.AB CD,理由见详解AB CD.OD=,∠、OCD)-∠COD,AB CD.【点睛】主要考查平行线的判定;三角形内角和定理;圆的认识,掌握平行线的判定;三角形内角和定理;圆的基本概念是解题的关键.34.计算:(1)2﹣2×(43×80)(2)a(a+1)﹣(a+1)2【答案】(1)16;(2)﹣a﹣1【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结35.已知:3x y +=,6xy =求:(1)22x y xy +(2)()2x y - 【答案】(1)18;(2)-15【分析】(1)先提取公因式xy ,然后把3x y +=,6xy =代入计算即可;(2)根据完全平方公式把()2x y -变形为()24x y xy +-,然后把3x y +=,6xy =代入计算即可.【详解】(1)∵3x y +=,6xy =,∵22x y xy +=xy(x+y)=18.(2)∵3x y +=,6xy =,∵()2x y -=()24x y xy +-=9-24=-15.【点睛】本题考查了因式分解的应用,以及完全平方公式的变形求值,熟练掌握因式分解的方法以及完全平方公式是解答本题的关键.36.计算:(1)()()()2412525x x x +--+(2)21111a a a ⎛⎫-÷ ⎪+-⎝⎭ 【答案】(1)8x 29+;(2)1a -【分析】(1)由题意根据完全平方和公式和平方差公式计算,进而进行合并同类项即可;(2)根据题意先对括号内通分,进而因式分解和变除为乘,然后计算分式的乘法即可.【详解】解:(1)()()()2412525x x x +--+ ()()22421425x x x =++--22484425x x x =++-+37.解不等式组:.【答案】【详解】试题分析:分别解两个不等式,然后求它们的公共部分即可.试题解析:解不等式,得.解不等式,得.所以,原不等式组的解集是.考点:解不等式组38.党中央决定从2021年起全面实施乡村振兴,某企业帮扶火红村发展林果产业,先后两次购进同种果树苗,第一次购树苗用去12000元,第二次用去10000元,第一次树苗的单价是第二次树苗单价的1.5倍,第二次购进树苗的数量比第一次多100棵.(1)求第二次购进树苗的单价.(2)第一次树苗的成活率是75%,第二次树苗的成活率是80%,计划三年后第一次产果要不少于56000千克,问平均每棵树至少要产果多少千克?【答案】(1)20(2)80【分析】(1)设第二次购进树苗的单价为x元,则第一次购进树苗的单价为1.5x元,由题意:第一次购树苗用去12000元,第二次用去10000元,第二次购进树苗的数量比第一次多100棵.列出分式方程,解方程即可;(2)设平均每棵树要产果y千克,由题意:第一次树苗的成活率是75%,第二次树苗的成活率是80%,计划三年后第一次产果要不少于56000千克,列出一元一次不等式,解不等式即可.39.4月23日是“世界读书日”,梅州某学校为了更好地营造读书好、好读书、读好书的书香校园.学校图书馆决定去选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果学校图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该学校图书馆最多可以购买甲和乙图书共多少本?【答案】(1)甲图书每本价格是50元,乙图书每本价格为20元(2)该学校图书馆最多可以购买甲和乙图书共38本【分析】(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,由题意:用800元单独购买甲图书比用800元单独购买乙图书要少24本,列出分式方程,解方程即可;40.某市在实施“棚户区”改造工程中,计划推出A、B两种户型.根据预算,建成1套A种户型和3套B种户型住房共需资金145万元,建成3套A种户型和1套B种户型住房共需资金115万元.(1)在危旧房改造中建成一套A种户型和一套B种户型住房所需资金分别是多少万元?(2)某棚户区有200套住房需要改造,改造资金由国家危旧房补贴和地方财政共同承担,若国家危旧房补贴拨付的改造资金不超过3260万元,地方财政投入资金不少于2455万元,其中国家危旧房补贴投入到A、B两种户型的改造资金分别为每套15万元和20万元.∵请问有多少种改造方案;∵设这项改造工程总投入资金W万元,建成A种户型m套,当m取何值时,总投入W 有最小值?最小总投入是多少?【答案】(1)在危旧房改造中建成一套A种户型住房需资金25万元,建成一套B种户型住房需资金40万元;(2)∵共有7种改造方案;∵当m取154时,总投入W有最小值,最小总投入是5690万元【分析】(1)设在危旧房改造中建成一套A种户型住房需资金x万元,建成一套B种用,解题关键是:(1)找准等量关系,正确列出二元一次方程组;(2)①根据各数量之间的关系,正确列出一元一次不等式组;②根据各数量之间的关系,找出W关于m 的函数关系式.41.若任意一个三位数t的百位数字为a,十位数字为b,个位数字为c,那么可将这个三位数表示为t=abc(a≠0),且满足t=100a+10b+c,我们把三位数各位上的数字的乘积叫做原数的积数,记为P(t).重新排列一个三位数各位上的数字,必可以得到一个最大的三位数和一个最小的三位数,此最大三位数与最小三位数之差叫做原数的差数,记为F(t),例如:264的积数P(264)=48,差数F(264)=642﹣246=396.(1)根据以上材料:F(258)=;(2)若一个三位数t=4ab,且P(t)=0,F(t)=135,求这个三位数.42.在平面直角坐标系中(单位长度为1cm),已知点M(0,m),N(n,0),且20m n-=.(1)求m,n的值,并在如图的平面直角坐标系中标出M,N的位置(2)在坐标轴上是否存在若点P,使得.PMN的面积为6,若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)36mn=⎧⎨=⎩坐标位置见解析(2)存在,P的坐标为:(2,0)或(10,0),(0,1)43.化简:2222225321x y x x y y x x y xy ⎛⎫++÷ ⎪---⎝⎭.44.先化简,再求值:(1﹣1a )•22a ,其中1.31a 时,原式=313311-=+-45.以下是小华化简分式11x x x x x x -⎛⎫-÷ ⎪++⎝⎭的过程:(1)小华的解答过程在第 步出现错误.(2)请你帮助小华写出正确的解答过程,并计算当x =5时分式的值.46.已知8-的平方等于a ,b 立方等于27-,2c +的算术平方根为3.(1)写出a ,b ,c 的值;(2)求21252a b c -+的平方根.47.先化简,再求值:,其中. 【答案】,333+ 试题解析:原式===当时,原式=.48.如图,长方形ABCD 由若干个大小相同的小正方形构成 .点E ,F ,G 都落在小正方形的顶点上.(1)若小正方形的边长是1,求图中阴影部分的面积;(2)若梯形AFED 的面积是10 ,求长方ABCD 的面积.所以,长方ABCD 的面积等于57428354a a ⨯=⨯=. 【点睛】本题考查了阴影部分的面积和有理数的计算,观察图形,列出阴影部分的面积表达式是解题的关键.49.解方程:(1)2232122x x x x x--+=-- (2)()32011x x x x +-=--。

七年级下学期数学综合练习题

七年级下学期数学综合练习题

七年级下学期期末综合练习卷一、填空题1.已知直线AB C D∥20= ,则BED=∠度.2.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于 .3.点A(-3,4)关于y轴的对称点的坐标是:4.已知点P在第二象限两坐标轴所成角的平分线上,且到x轴的距离为3,则点P的坐标为____________5.如果p(a+b,ab)在第二象限,那么点Q (a,-b) 在第象限.6.已知线段MN=4,MN∥y轴,若点M坐标为(-1,2),则N点坐标为 .7.已知x +4y-3z = 0,且4x-5y + 2z = 0,x:y:z 为8.某多边形内角和与外角和共1080°,则这个多边形的边数是_______。

9.如图(3),∠1+∠2+∠3 +∠4+∠5+∠6+∠7= °10.若不等式组⎩⎨⎧>>2xxm解集为x>2,则m的取值范围是11.在直角坐标系中,点P(6-2x,x-5)在第四象限,•则x的取值范围是().12、若0)3y2x3(1yx22=--++-,则x-y的值是_________。

13.已知关于x的不等式组321x ax-≥⎧⎨-≥-⎩的整数解共有5个,则a的取值范围是.14. 若点M(x-1,y+1)与N(2x-2,3y–2)关于X轴对称,则x= ,y= ; 15已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是_____。

16.若x m-n-2y m+n-2=2007,是关于x,y的二元一次方程,则m,n的值分别是17.如果点M(a+3,a+1)在直角坐标系的x轴上,那么点M的坐标为18.不等式2x+1>3x-2的非负整数解是_______________。

19如果一个角的两边与另一个角的两边分别平行,那么这两个角的关系是_________。

20. 已知两边相等的三角形一边等于7cm,另一边等于11cm,则周长是 ________.D(第2题图)1234567二、解答题1.已知,如图,CD ⊥AB ,GF ⊥AB ,∠B =∠ADE ,试说明∠1=∠2.2.已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=500,求:∠BHF 的度数.(8分)3.如图,AB ∥DE ,那么∠B 、∠BCD 、∠D 有什么关系?4.本题10分)已知:如图∠1=∠2,∠C =∠D ,∠A =∠F 相等吗?试说明理由.6.如图,A 点在B 处的北偏东40°方向,C 点在B 处的北偏东85°方向,A 点在C 处的北偏西45°方向,求∠B AC 及∠B CA 的度数.7、已知:如图,在A B C ∆中,A D 是B C 边上的高,A E 是B A C ∠平分线.50B ∠=,10DAE ∠=。

七年级数学下册综合算式专项练习题合并同类项练习

七年级数学下册综合算式专项练习题合并同类项练习

七年级数学下册综合算式专项练习题合并同类项练习在数学学习中,解决算式中的合并同类项问题是很重要的一部分。

通过合并同类项,我们可以简化算式、化繁为简,更好地理解和解决问题。

本文将提供一些七年级数学下册综合算式专项练习题,帮助同学们加深对合并同类项的理解和掌握。

练习一:合并同类项1. 合并下列各式的同类项:3x + 4y - 2x - 7y解答:将同类项分别相加,得:(3x - 2x) + (4y - 7y)合并同类项后,化简得:x - 3y2. 合并下列各式的同类项:7a - 5b + 3a + 2b解答:将同类项分别相加,得:(7a + 3a) + (-5b + 2b)合并同类项后,化简得:10a - 3b练习二:应用合并同类项解决问题1. 小明一周从周一到周五,每天都在自己的果园摘橙子。

下表是小明一周内所摘橙子的数量(单位:个):|周一|周二|周三|周四|周五||---|---|---|---|---||12|8|5|10|7|小明一周内一共摘了多少个橙子?解答:将每天摘的橙子数量相加,得:12 + 8 + 5 + 10 + 7 = 42所以,小明一周内一共摘了42个橙子。

2. 假设一辆汽车以每小时60公里的速度行驶,已经行驶了3小时15分钟。

请计算汽车行驶的总里程。

解答:首先,将3小时15分钟转换成小时:15分钟 = 15 ÷ 60 = 0.25小时汽车行驶的总时间为3小时 + 0.25小时 = 3.25小时使用速度乘以时间的公式,计算行驶的总里程:60公里/小时 × 3.25小时 = 195公里所以,汽车行驶的总里程为195公里。

练习三:拓展练习1. 合并下列各式的同类项:2x^2 - 3x^2 + 5x^2 + 4x^3 + 2x - x^2解答:将同类项分别相加,得:(2x^2 - 3x^2 + 5x^2 - x^2) + 4x^3 + 2x合并同类项后,化简得:3x^2 + 4x^3 + 2x2. 合并下列各式的同类项:3a^2b - 2ab + 5a^2b + 4b - a^2b解答:将同类项分别相加,得:(3a^2b + 5a^2b - a^2b) - 2ab + 4b合并同类项后,化简得:7a^2b - 2ab + 4b通过这些练习题的训练,我们可以更好地理解和掌握合并同类项的方法和技巧。

沪科版数学七年级下册综合训练50题(含答案)

沪科版数学七年级下册综合训练50题(含答案)

沪科版数学七年级下册综合训练50题含答案(填空、解答题)_一、填空题1.因式分解:()()2a x y y x -+-=______.2.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm ,这个数量用科学记数法可表示为210n ⨯cm ,则n =________. 3.如图,,AC BC CD AB ⊥⊥上于点D ,图中线段__________的长表示点A 到BC 的距离.4.计算:-1+2-1=_______.5.已知()26=ma a ,那么m =___________. 6.单项式224m n 与312m n 的公因式是_________.7.(1)定义“*”是一种运算符号,规定a b=2a b *-+2015,则()1*-2=________. (2)宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,则买地毯至少需要___________________ 元.821x -,则x 的值为___________.9.如图,直线a 、b 被直线c 所截,且a ∥b .若135∠=︒,则2∠= _____.10.计算:12x 2y (2x+4y )=__________. 11.如图,EF AB ⊥于点F ,CD AB ⊥于点D ,E 是AC 上一点,12∠=∠,则图中互相平行的直线______.12.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A -B -C 横穿双向行驶车道,其中AB =BC =12米,在绿灯亮时,小敏共用22秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小敏通过AB 时的速度.设小敏通过AB 时的速度是x 米/秒,根据题意列方程为_____.13.计算:()202320224000.25⨯-=_______.14.2π-的相反数是__________.15.如图,l 1l 2,l 3l 4,若∠1=70°,则∠2的度数为______________.16.计算:8a 3b 3·(-2ab )3=_____________17.因式分解:2364x -=_____.18.计算:201820190.5(2)⨯-=_________.190,则(a ﹣b )2的平方根是_____.20.若21(2)||03x y -++=,则x y =_______. 21.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草,则道路的面积是________平方米.22.若实数a 、b 、c 在数轴上对应点的位置如图,则化简:﹣b|=_____.23.小明在进行两个多项式的乘法运算时,不小心把乘以2x y +错抄成乘以2x ,结果得到2()x xy -,则正确的计算结果是__________.24.已知:123412311111111111n n y y y y y x y y y y -====⋅⋅⋅=-----,,,,,,请计算2021y =___(用含x 的代数式表示)25.关于x 的不等式组0321x a x -≥⎧⎨->⎩有3个整数解,则a 的取值范围是________. 26.实数,,a b cc =__________.27.不等式2x >的解集是_______. 28.若分式()2x 1x 1+-的值大于零,则 x 的取值范围是_______________29.分解因式:4x 2-y 2=________________.二、解答题30.已知2a-1的平方根是5±, b+2的立方根是2,求a+2b+10的平方根.31.先化简,再求值:25(3)(2)22x x x x +--÷++,其中x 是整数,且满足-5<x <-1.32.计算题:(1)()()2031323-⎛⎫-++- ⎪⎝⎭. (2)()()()2323373345a a a a a -⋅+-⋅+- (3)()()()2122x x x +---(4)()()2323a b c a b c +--+. 33.解不等式组212324x x x -≤+⎧⎨-<⎩34.计算:(1)(4a 3b+6a 2b 2﹣ab 3)÷2ab .(2)(3x+2)(2x 2﹣x+1).35.计算:(1)()(202022112π-⎛⎫-+++- ⎪⎝⎭ (2)()()2232x y xy xy +÷36.解方程:.37.如图,点E 在AB 上,点F 在CD 上,12B C ∠=∠∠=∠,.求证:AB CD ∥.38.计算:(1)()324y -; (2)()()()2913232x x x +-+-; (3)322x x =-. 39.先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中1x =,2y =. 40.解方程:3532x x x x -+=-41.(10(1(2)解不等式1332x x +-≤,并把解集在数轴上表示出来.42.求下列各式中的x(1)2121049x -= (2)8x 3 +27 = 043.计算:(1)3(1)x y ++(2)23222y xy x y x xy+++ 44.计算:0(1|2(2021)--+-45.计算:-(-1)2 01846.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 ;(请选择正确的一个)A 、a 2﹣2ab +b 2=(a ﹣b )2B 、a 2﹣b 2=(a +b )(a ﹣b )C 、a 2+ab =a (a +b )(2)应用你从(1)选出的等式,完成下列各题:∠已知x 2﹣4y 2=12,x +2y =4,求x ﹣2y 的值.∠计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣2119)(1﹣2120).47.(1)计算2(2)2(3)--⨯-+(2)解不等式2(1)23x x -+≤,并写出非正整数解(3)解方程组25113101x y x y -=⎧⎨+=-⎩ (4)解不等式组3(2)64113x x x x --≥⎧⎪-⎨+>⎪⎩,并把解集在数轴上表示出来 48.解方程(组):(1)345214135x y x y +=⎧⎪+-⎨=+⎪⎩(2)2310212393x x x x ----=- 49.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?参考答案:1.()()()11x y a a --+【分析】先提取公因式()x y -,再利用平方差公式分解因式即可.【详解】解:()()()()()()()()()222111a x y y x a x y x y x y a x y a a -+-=---=--=--+,故答案为:()()()11x y a a --+.【点睛】本题考查提公因式法、公式法分解因式,正确理解题意是解题的关键. 2.-7【分析】科学记数法表示较小的数,一般形式为10n a -⨯,其中1≤a <10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,填出答案即可.【详解】0.0000002cm=7210-⨯cm .故答案为:7-.【点睛】本题考查用科学记数法表示较小的数,熟练掌握科学记数法是本题的关键. 3.AC【分析】直线外一点到直线的垂线段的长度,叫做点到直线的距离.据此可得表示点A 到BC 的距离的线段.【详解】解:由AC BC ⊥于C 可得,线段AC 的长表示点A 到BC 的距离.故答案为:AC .【点睛】本题主要考查了点到直线的距离,直线外一点到直线的垂线段的长度,叫做点到直线的距离.4.-12【分析】根据负整数指数幂和有理数的加法进行计算即可.【详解】-1+2-1=11122故答案为12- 【点睛】本题考查的是有理数的加法,掌握负整数指数幂的运算法则是关键.5.3【分析】根据幂的乘方进行计算即可求解.【详解】解:∠()26=ma a ,∠26m=,m=.解得3故答案为:3.【点睛】本题考查了幂的乘方运算,掌握幂的乘方,底数不变指数相乘是解题的关键.6.4m2n2【分析】找到系数的公共部分,再找到因式的公共部分即可.【详解】解:由于4和12的公因数是4,m2n2和m3n2的公共部分为m2n2,所以4m2n2与12m3n2的公因式是4m2n2.故答案为4m2n2.【点睛】本题主要考查公因式的确定,找到两式的公共部分是解题的关键.7.2019;800.【分析】(1)利用已知的新定义计算即可得到结果;(2)根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.*-+2015【详解】解:(1)∠a b=2a b1*-2=2-(-2)+2015=2019;∠()(2)如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为6米,4米,∠地毯的长度为6+4=10米,地毯的面积为10×2=20平方米,∠买地毯至少需要20×40=800元.故答案为(1)2019;(2)800.【点睛】(1)本题考查有理数的混合运算,熟练掌握运算法则是解本题的关键.(2)本题考查平移的性质,,解题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.8.0;1±;【分析】首先将原方程两边3次方,然后移项,再通过因式分解法解方程即可得出结论. 【详解】解:3221x 1x -=-,2231x (1x )∴-=-,()232(1x )1x 0∴---=, ()21x ∴-[22(1x )1--]0=,()()()()221x 1x 1x 11x 10∴+--+--=,()()()22x 1x 1x 2x 0∴-+--=,2x 0∴-=或1x 0+=或1x 0-=或22x 0-=,解得x 0=或x 1=±或x =故答案为0;1±;【点睛】本题考查了因式分解的实际应用,属于基础知识的考查,难度不大. 9.145°##145度【分析】运用平行线的性质定理和邻补角的概念可得所求结果.【详解】解:∠a ∥b ,∠∠1=∠3,∠∠1=35°,∠∠3=35°,∠∠2=180°-∠3=145°,【点睛】本题考查利用平行线的性质定理,比较简单,灵活掌握数形结合思想是解题的关键.10.x 3y+2x 2y 2【详解】试题分析:原式利用单项式乘以多项式法则计算即可得到结果.原式=x 3y+2x 2y 2,故答案为x 3y+2x 2y 2.考点:单项式乘多项式11.EF CD ∥,DE BC ∥【分析】由EF AB ⊥,CD AB ⊥,可得,EF CD ∥再证明,AED ACB 可得.DE BC ∥ 【详解】解: EF AB ⊥,CD AB ⊥, ,EF CD ∥,AEF ACD12,∠=∠,AED ACB,DE BC ∥故答案为:,EF CD ∥DE BC ∥【点睛】本题考查的是平行线的判定,掌握“在同一平面内,垂直于同一直线的两直线平行”是解本题的关键.12.1212221.2x x+= 【分析】设小敏通过AB 时的速度是x 米/秒,则通过BC 的速度是1.2x 米/秒,根据题意列出分式方程解答即可.【详解】解:设小敏通过AB 时的速度是x 米/秒, 依题意可得:1212221.2x x +=, 故答案为:1212221.2x x+=. 【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.13.20221004- 【分析】根据同底数幂相乘和积的乘方的逆应用计算即可.【详解】解:()202320224000.25⨯-, =()20232022141004⎛⎫-⨯⨯ ⎪⎝⎭,=20222022202310044--⨯⨯, =20221004-.故答案为:2022 1004-.【点睛】本题考查了同底数幂相乘和积的乘方的逆应用,解决本题的关键是掌握以上的运算法则.14.2π【分析】直接根据相反数的意义进行解答.【详解】解:∠-(-2π)=2π.∠-2π的相反数是2π.故答案为:2π.【点睛】本题考查了一个数相反数的求法,求一个数的相反数就是在这个数的前面添加一个负号.15.70︒【分析】根据平行线的性质和对顶角的性质求解即可.【详解】解:如下图所示,标出∠3与∠4.∠l3l4,∠1=70°,∠∠3=∠1=70°.∠l1l2,∠∠4=∠3=70°.∠∠2与∠4是对顶角,∠∠2=∠4=70°.故答案为:70°.【点睛】本题考查平行线的性质,对顶角的性质,熟练掌握这些知识点是解题的关键.16.-64a6b6.【详解】试题分析:先计算积的乘方,再进行单项式的乘法运算.试题解析:8a3b3•(-2ab)3=8a3b3•(-8a3b3)=-64a6b6.考点:1.单项式乘单项式;2.幂的乘方与积的乘方.17.()()43131x x +-【分析】先提取公因式4,再利用平方差公式进行分解.【详解】解:()()()2236449143131x x x x -=-=+-,故答案为:()()43131x x +-.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:∠提公因式法;∠公式法;∠十字相乘法;∠分组分解法.因式分解必须分解到每个因式都不能再分解为止.18.-2【分析】根据同底数幂的乘法的逆运算和积的乘方的逆运算法则解答即可.【详解】解:原式()()()()20182018201820.52220.52⨯-=⨯-⨯-=-⎡⎤⎣⨯⎦=-.故答案为:﹣2.【点睛】本题考查了同底数幂的乘法的逆运算和积的乘方的逆运算,属于常考题型,熟练掌握同底数幂的乘法和积的乘方运算法则是解题的关键.19.±4【分析】根据非负数的性质列出方程求出a 、b 的值,代入所求代数式计算即可.【详解】根据题意得a -1=0,b -5=0,解得:a =1,b =5,则(a -b )2=16,则平方根是:±4.故答案是:±4.【点睛】本题考查了非负数的性质.掌握几个非负数的和为0时,这几个非负数都为0是解题关键.20.19 【分析】由平方与绝对值的非负性解得x 、y 的值,再计算幂的乘方即可解题. 【详解】21(2)||03x y -++= 1=2=-3x y ∴, 211()39x y ∴=-=故答案为:19. 【点睛】本题考查平方的非负性、绝对值的非负性、幂的乘方等知识,是重要考点,难度较易,掌握相关知识是解题关键.21.79【分析】可以根据平移的性质,此小路相当于一条横向长为50米与一条纵向长为30米的小路,道路的面积=横纵小路的面积-小路交叉处的面积,计算即可.【详解】解:由题意可得,道路的面积为:(30+50)×1−1=79(m 2).故答案为:79【点睛】此题考查生活中的平移现象,解题关键在于掌握运算公式.22.﹣5a+4b ﹣3c .【分析】直接利用数轴结合二次根式、绝对值的性质化简得出答案.【详解】由数轴可得:a+c <0,b-c >0,a-b <0,故原式=-2(a+c )+b-c-3(a-b )=-2a-2c+b-c-3a+3b=-5a+4b-3c .故答案为-5a+4b-3c .【点睛】此题主要考查了二次根式以及绝对值的性质,正确化简是解题关键. 23.22x y - 【分析】错乘2x ,得到(x 2-xy )可求出没错乘之前的结果,再乘以2x y +即可, 【详解】解:由题意可得:被除式为:2()x xy -÷2x =2x-2y , ∠(2x-2y) ×2x y +=(x-y)(x+y)=22x y - 故答案为:22x y -.【点睛】本题考查了多项式乘以多项式的计算方法,根据逆运算得出正确的计算算式是解决问题的关键.24.12x x --【分析】先根据分式的混合运算顺序和运算法则计算出y 2、y 3、y 4,据此得出其循环规律,再进一步求解可得.【详解】∠111y x =-, ∠2111111111211x x y y x x x --====------,()321122112112x y x x y x x x -====--------, ()431111121y y x x ===----, ∠这列式子的结果以11x -、12x x --、2x -为周期,每3个数一循环, ∠2021÷3=673…2, ∠2021212x y y x -==-, 故答案为:12x x --. 【点睛】本题主要考查了数字的变化规律与分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则及数列的循环规律.25.32a -<≤-【分析】先解出不等式组,根据它有3个整数解求出a 的取值范围.【详解】解:解不等式组得1a x ≤<,∠它有3个整数解,∠解是-2,-1,0,∠32a -<≤-.故答案是:32a -<≤-.【点睛】本题考查函参不等式组求参数问题,解题的关键是掌握解不等式组的方法. 26.0【分析】由数轴可知,0b c a <<<,则0,0a b b c +<-<,即可化简算术平方根求值.【详解】解:由数轴可知,0b c a <<<,则0,0a b b c +<-<,||()()0c a a b c b c a a b c b c -+++-=--++-=,故答案为:0.【点睛】此题考查数轴上数的大小关系,算术平方根的性质,整式的加减计算.27.x <-0不等号要变号)把系数化为1,再利用平方差公式进行分母有理化即可.【详解】0 ∠x <∠x <-故填:x <-.【点睛】本题考查一元一次不等式的解法,最简二次根式,熟练利用平方差公式进行分母有理化是关键.28.x >-1【分析】根据两数相除,同号得正,异号得负,分式的分母不为0解答.【详解】∠()210x -≥而x-1≠0∠210x∠分式()2x 1x 1+-的值大于零∠x+1>0x >-1故答案为:x >-1【点睛】本题考查的是分式的值,掌握分式有意义的条件及判定分式值的符号的方法是关键.29.【详解】试题分析:4x 2-y 2=()222x y -=考点:分解因式 点评:本题考查因式分解,考生需要掌握提公因式法和公式法来进行因式分解,本题比较基础,难度不大30.【分析】根据平方根、立方根的概念列出方程组求出a、b,再计算a+2b+10的平方根即可.【详解】由题意,得212528 ab-=⎧⎨=⎩+解得136 ab=⎧⎨=⎩故a+2b+10所以a+2b+10的平方根为【点睛】本题考查了立方根,平方根.掌握立方根和平方根是解题的关键.31.33xx-+,7【分析】根据分式的运算法则进行化简,再代入求值即可.【详解】解:原式=22 4522(3) x xx x--+⋅++=33xx-+,∠x是整数,且满足-5<x<-1,x≠-2,x≠-3,∠当4x=-时原式=4343---+=7.【点睛】本题主要考查分式化简求值,熟练掌握分式的混合运算法则是解题的关键.32.(1)2(2)9100a-(3)36x-(4)2224129a b bc c-+-【分析】(1)根据零指数幂、负整数指数幂和乘方运算法则进行计算即可;(2)根据幂的乘方、积的乘方和同底数幂的乘法运算法则进行化简计算即可;(3)根据完全平方公式和多项式乘多项式运算法则进行计算即可;(4)根据平方差公式和完全平方公式进行运算即可.【详解】(1)解:()()2031323-⎛⎫-++- ⎪⎝⎭ ()211813=++-⎛⎫ ⎪⎝⎭11819=+-198=+-2=;(2)解:()()()2323373345a a a a a -⋅+-⋅+- ()63279916125a a a a a =⋅+⋅+-999916125a a a9100a ;(3)解:()()()2122x x x +--- ()22244x x x x =----+22244x x x x =---+-36x =-;(4)解:()()2323a b c a b c +--+()()2323a b c a b c =+---⎡⎤⎡⎤⎣⎦⎣⎦()2223a b c =--()2224129a b bc c =--+2224129a b bc c =-+-. 【点睛】本题主要考查了整式混合运算,解题的关键是熟练掌握零指数幂、负整数指数幂和乘方运算法则,平方差公式和完全平方公式,多项式乘多项式和单项式乘多项式运算法则.33.2x <【分析】先求出不等式组中每一个不等式的解集,然后再求出它们的公共部分就是不等式组的解集.【详解】解:解不等式∠得:3x ≤由∠得 2x <∠ 不等式的解集是2x <【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间. 34.(1)2a 2+3ab ﹣12b 2;(2)6x 3+x 2+x+2.【分析】(1)利用多项式除以单项式的运算方法直接进行求解即可;(2)利用多项式乘多项式的方法进行求解即可.【详解】解:(1)原式=2a 2+3ab ﹣12b 2;(2)原式=6x 3﹣3x 2+3x+4x 2﹣2x+2=6x 3+x 2+x+2.【点睛】本题主要考查整式的乘除,熟练掌握整式的乘除运算是解题的关键. 35.(1)6(2)2xy +y 2【分析】(1)先根据-1的偶次幂,0指数幂,负指数幂,分别对每一项进行化简,再合并即可.(2)按照多项式除以单项式法则进行计算即可.(1)()(202022112π-⎛⎫-++- ⎪⎝⎭=1+1+4=6 (2)()()2232x y xy xy +÷=2x 2y 2÷xy +xy 3÷xy =2xy +y 2【点睛】本题考查了整式的运算,-1的偶次方,0指数幂,负指数幂,熟练掌握相关法则是解题的关键.36.x=﹣1是分式方程的解【详解】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解:去分母得:1=2x ﹣1+4,解得:x=﹣1,经检验x=﹣1是分式方程的解.考点:解分式方程.37.证明见解析【分析】涉及到平行线,无论是性质还是判定需从三类角:同位角、内错角和同旁内角出发去思考,根据平行线的判定和性质求证即可.【详解】证明:∠∠1=∠2(已知), 又∠1=∠4(对顶角相等),∠∠2=∠4(等量代换),∠CE BF ∥(同位角相等,两直线平行),∠∠3=∠C (两直线平行,同位角相等),又∠∠B =∠C (已知),∠∠3=∠B (等量代换),∠AB CD ∥(内错角相等,两直线平行).【点睛】此题考查平行线的判定和性质,熟练掌握平行线的判定和性质是解决问题的关键.38.(1)664y -(2)1813x +(3)4x =-【分析】(1)根据积的乘方和幂的乘方法则计算即可;(2)根据完全平方公式和平方差公式去括号,再进行加减运算即可;(3)将分式方程化为整式方程求解,再检验即可.【详解】(1)解:()326464y y -=-; (2)解:()()()2913232x x x +-+-()()22292132x x x ⎡⎤=++--⎣⎦ 22918994x x x =++-+1813x =+;(3)解:322x x=- 等式两边同时乘(2)x x -,得:32(2)x x =-,解得:4x =-,经检验4x =-是原方程的解,∠该分式方程的解为4x =-.【点睛】本题考查幂的混合运算,整式的混合运算,解分式方程.掌握幂的混合运算和整式的混合运算法则,解分式方程的步骤是解题关键.39.1x y--;1. 【分析】先进行因式分解,然后根据分式的混合运算法则化简,最后代入计算即可. 【详解】解:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭()()222x y x y x x y x y x y ⎡⎤-=-÷⎢⎥---⎢⎥⎣⎦ 1122x y x y x y y ⎛⎫-=-⋅ ⎪--⎝⎭ 12122x y x y x y y x y y--=⋅-⋅-- ()21x y y x y y-=-- ()()2x y x y y x y y x y --=--- ()2x y x y y x y --+=- ()y y x y -=- 1x y=-- 当1x =,2y =时, 原式1112=-=- 【点睛】本题考查分式的混合运算,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.40.x=﹣1与x=6都为分式方程的解 【分析】设3x x -=y ,方程变形后求出y 的值,进而确定出x 的值. 【详解】设3x x -=y ,方程化为y+1y =52,去分母得:2y 2-5y+2=0,即(2y-1)(y-2)=0,解得:y=12或y=2, 即3x x -=12或3x x -=2, 解得:x=-1或x=6,经检验x=-1与x=6都为分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 41.(1)-1(2)x≥﹣1【分析】(1)分别根据数的开方及0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算;(2)根据不等式的性质,先计算出x 的取值范围,再在数轴上表示出来.【详解】(1)原式=﹣2﹣1+2=﹣1;(2)去分母得,x+1﹣6≤6x ,移项得,x ﹣6x≤6﹣1,合并同类项得,﹣5x≤5,系数化为1得,x≥﹣1.在数轴上表示为:【点睛】本题考查解一元一次不等式,熟知不等式的基本性质是解答此题的关键. 42.(1)1117x =,2117x =-;(2)32x =- 【分析】(1)根据平方根的意义开平方求解即可;(2)根据立方根的意义开立方即可求解.【详解】(1)解:x 2=12149,x =所以x 1=117,x 2=-117。

七年级数学下册综合算式专项练习题带有字母的算式

七年级数学下册综合算式专项练习题带有字母的算式

七年级数学下册综合算式专项练习题带有字母的算式一、练习题1. 已知 a = 3, b = 5,计算下列各式的值:a +b = 3 + 5 = 8a -b = 3 - 5 = -2a ×b = 3 × 5 = 15a ÷b = 3 ÷ 5 (保留分数形式)2. 分解因式:a² - b² = (a + b)(a - b)3² - 2² = (3 + 2)(3 - 2) = 53. 已知 a = 2, b = 4,计算下列各式的值:2a + 3b = 2 × 2 + 3 × 4 = 4 + 12 = 164a - 2b = 4 × 2 - 2 × 4 = 8 - 8 = 04. 求未知数 x:2x + 5 = 17解得 x = (17 - 5) ÷ 2 = 12 ÷ 2 = 65. 求未知数 y:3y - 4 = 14解得 y = (14 + 4) ÷ 3 = 18 ÷ 3 = 66. 求未知数 z:2(z + 3) = 16解得 z + 3 = 16 ÷ 2 = 8解得 z = 8 - 3 = 57. 解方程组:2x + 3y = 113x - 2y = 1通过加法,消去 y 的系数:(2x + 3y) + (3x - 2y) = 11 + 15x = 12解得 x = 12 ÷ 5将 x 的值代入其中一个方程,求得 y 的值:2(12 ÷ 5) + 3y = 11(24 ÷ 5) + 3y = 113y = 11 - (24 ÷ 5)解得 y = (55 - 24) ÷ 158. 解方程组:3x + 2y = 162x - 3y = -8通过加法,消去 x 的系数:(3x + 2y) + (2x - 3y) = 16 + (-8)5y = 8解得 y = 8 ÷ 5将 y 的值代入其中一个方程,求得 x 的值:3x + 2(8 ÷ 5) = 163x + (16 ÷ 5) = 163x = 16 - (16 ÷ 5)解得 x = (80 - 16) ÷ 15二、思考题1. 若 a + b = 12,且 a - b = 4,则求 a 和 b 的值。

冀教版七年级数学下册全册综合测试题

冀教版七年级数学下册全册综合测试题

冀教版七年级数学下册全册综合测试题一、选择题(本大题共16小题,共42分.1~10小题各3分,11~16小题各2分.每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式3x-1≥x+3的解集是()A.x≤4B.x≥4C.x≤2D.x≥22.下面是一名学生所做的4道练习题:①a3+a3=a6;②4m-4=;③a÷a-2=a3;④(-0.1b)·(-10b2)3=-b7.其中正确的个数为()A.1B.2C.3D.43.不等式3x-6≥0的解集在数轴上表示正确的是()A B C D4.若一个三角形的两边长分别为5和8,则其第三条边长可能是()A.14B.10C.3D.25.已知xy2=-2,则-xy(x2y5-xy3-y)的值为()A.2B.6C.10D.146.如图,直线AB,CD相交于点O,EO⊥CD于点O.已知∠AOD=160°,则∠BOE的大小为()A.20°B.60°C.70°D.160°7.下列因式分解正确的是()A.-x2+4x=-x(x+4)B.x2+xy+x=x(x+y)C.x(x-y)+y(y-x)=(x-y)2D.x2-4x+4=(x+2)(x-2)8.已知m为正整数,二元一次方程组有整数解,则m2的值为()A.1或49B.49C.4或49D.49.若(x-5)(2x-n)=2x2+mx-15,则m,n的值分别是()A.m=-7,n=3B.m=7,n=-3C.m=-7,n=-3D.m=7,n=310.如图,在△ABC中,AD是BC边上的中线,△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为()A.19 cmB.22 cmC.25 cmD.31 cm11.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果的售价为4元/千克,乙种水果的售价为6元/千克,且乙种水果比甲种水果少买了2千克,求小亮的妈妈各买了甲、乙两种水果多少千克.设小亮的妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A. B. C. D.12.若关于x的一元一次不等式组有解,但没有整数解,则a的取值范围是()A.2≤a<3B.a>2C.a≤3D.a<313.规定一种新运算:a*b=2a+3b,a#b=3a+2b,则4x2*4xy-6y2#6xy因式分解的结果是()A.2(2x-3y)2B.2(2x+3y)(2x-3y)C.2(4x2-9y2)D.2(x+4y)(x-4y)14.已知直线a∥b,将一块含45°角的三角尺ABC(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2=()A.80°B.70°C.85°D.75°第14题图第15题图15.如图,在△ABC中,BO,CO分别平分∠ABC,∠ACB,且BO,CO相交于点O,CE为∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,给出以下结论:①∠1=2∠2;②∠BOC=3∠2;③∠BOC=90°+∠1;④∠BOC=90°+∠2.正确的是() A.①②③ B.①③④C.①④D.①②④16.在长方形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2所示的两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD-AB=2时,S2-S1的值为()A.2aB.2bC.2a-2bD.-2b二、填空题(本大题共3小题,共11分.17小题3分;18~19小题各有2个空,每空2分)17.如图,直线c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2的度数为.第17题图第18题图第19题图18.如图,长方形ABCD中,AB=5 cm,AD=9 cm,现将该长方形沿BC方向平移,得到长方形A1B1C1D1,若重叠部分A1B1CD的面积为20 cm2,则长方形ABCD向右平移的距离为cm,四边形ABC1D1的周长为cm.19.如图,已知在△ABC中,∠A=155°,第1步:在△ABC的上方确定点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB.第2步:在△A1BC的上方确定点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA……则∠A1的度数为;照此继续,最多能进行步.三、解答题(本大题共7小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)把下列各式分解因式:(1)-2a3+16a2-32a; (2)(3x+2)2+6(3x+2)+9-4x2.21.(本小题满分8分)解不等式组请结合题意,完成本题的解答.(1)解不等式①,得,依据是;(2)解不等式③,得;(3)把不等式①,②和③的解集在数轴上表示出来;(4)写出从(3)的图中得到的不等式组的解集.22.(本小题满分9分)(1)解二元一次方程组(2)已知x2-2x-1=2,求代数式(x-1)2+x(x-4)+(x-2)(x+2)的值.23.(本小题满分10分)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2-6a-14b+58=0.(1)求a,b的值;(2)求△ABC周长的最小值.24.(本小题满分10分)如图1,在△ABC中,∠A=60°,∠CBM,∠BCN是△ABC的两个外角,∠CBM,∠BCN的平分线分别为BD,CD,且BD,CD相交于点D.(1)求∠BDC的度数;(2)在图1中,过点D作DE⊥BD交AN于点E,垂足为D,过点B作BF∥DE交DC的延长线于点F(如图2),试说明:BF是∠ABC的平分线.25.(本小题满分11分)某小区正在紧张建设中,现有大量的沙石需要运输,“建安”车队有载重量分别为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“建安”车队中载重量为8吨、10吨的卡车各有多少辆.(2)随着工程的进展,“建安”车队需要一次性运输沙石165吨以上,为了完成任务,准备增购这两种卡车共6辆,则该车队共有多少种购买方案?请你一一写出.26.(本小题满分11分)(1)如图1,MN,EF是两个互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,由科学实验知∠1=∠2(提示:反射角等于入射角).若光线BC经镜面EF反射后的反射光线为CD,试判断AB与CD的位置关系,并给予说明.尝试探究:(2)如图2,两块互相垂直的平面镜相交于点O,有一束光线MN射在其中一块平面镜上,经另外一块平面镜反射后的反射光线为EF,则MN与EF平行吗?若平行,请给予说明.拓展提升:(3)如图3,两面镜子的夹角为α(0°<α<90°)时,进入光线与离开光线的夹角为β(0°<β<90°).试探索α与β的数量关系,直接写出答案:.参考答案20(1)21632=-2a(a2-8a+16)=-2a(a-4)2.(2)(3x+2)2+6(3x+2)+9-4x2=(3x+2+3)2-4x2=(3x+5)2-4x2=(3x+5+2x)(3x+5-2x)=(5x+5)(x+5)=5(x+1)(x+5).21. (1)x≥-3不等式的基本性质3(2)x<2(3)如图所示.(4)-2<x<2.22. (1)方程组整理,得①+②×2,得11x=22,解得x=2,把x=2代入①,得y=3,则原二元一次方程组的解为(2)(x-1)2+x(x-4)+(x-2)(x+2)=x2-2x+1+x2-4x+x2-4=3x2-6x-3.∵x2-2x-1=2,∴原式=3x2-6x-3=3(x2-2x-1)=3×2=6.23. (1)∵a2+b2-6a-14b+58=(a2-6a+9)+(b2-14b+49)=(a-3)2+(b-7)2=0,∴a-3=0,b-7=0,解得a=3,b=7.(2)∵a,b,c是△ABC的三边长,且由(1)知a=3,b=7,∴b-a<c<a+b,即4<c<10.要使△ABC的周长最小,只需使边长c最小,又∵c是正整数,∴c的最小值是5,∴△ABC周长的最小值为3+5+7=15.24. (1)在△ABC中,∠A=60°,∴∠ABC+∠ACB=120°,又∵∠ABM=∠ACN=180°,∴∠CBM+∠BCN=360°-120°=240°.∵∠CBM,∠BCN的平分线分别为BD,CD,∴∠CBD=∠CBM,∠BCD=∠BCN,∴在△BCD中,∠CBD+∠BCD=(∠CBM+∠BCN)=×240°=120°,∴∠BDC=180°-120°=60°.(2)如图,∵DE⊥BD,BF∥DE,∴∠DBF=180°-90°=90°,即∠2+∠3=90°,∴∠1+∠4=90°,又∵∠3=∠4,∴∠1=∠2,∴BF是∠ABC的平分线.25. (1)设“建安”车队中载重量为8吨、10吨的卡车分别有x辆、y辆.根据题意,得解得答:“建安”车队中载重量为8吨的卡车有5辆,载重量为10吨的卡车有7辆.(2)设载重量为8吨的卡车增加了z辆,则载重量为10吨的卡车增加了(6-z)辆.依题意,得8(5+z)+10(7+6-z)>165,解得z<.∵z≥0且为整数,∴z的可能取值为0,1,2.∴该车队共有3种购车方案:①载重量为8吨的卡车购买1辆,载重量为10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,载重量为10吨的卡车购买4辆;③不购买载重量为8吨的卡车,载重量为10吨的卡车购买6辆.26. (1)AB∥CD.理由如下:∵∠1=∠2,∴∠ABC=180°-2∠2.∵光线BC经镜面EF反射后的反射光线为CD,∴∠BCE=∠DCF,∴∠BCD=180°-2∠BCE,又∵MN∥EF,∴∠2=∠BCE,∴∠ABC=∠BCD,∴AB∥CD.(2)MN∥EF.理由如下:如图,由题意可知∠1=∠2,∠3=∠4,∠NOE=90°,∴∠2+∠3=∠1+∠4=90°.∵∠1+∠2+∠MNE=180°,∠3+∠4+∠NEF=180°,∴∠MNE+∠NEF=180°,∴MN∥EF.(3) 2α+β=180°如图,∵∠1=∠2,∠3=∠4,∴∠5=180°-2∠2,∠6=180°-2∠3.∵∠2+∠3=180°-α,∴β=180°-∠5-∠6=2(∠2+∠3)-180°=2(180°-α)-180°=180°-2α, ∴α与β的数量关系为2α+β=180°.。

北师大版数学七年级下册综合训练100题含答案

北师大版数学七年级下册综合训练100题含答案

北师大版数学七年级下册综合训练100题含答案(题型:单选、多选、填空、解答题)一、单选题1.如图,ABC DEC ≌△△,A D ∠=∠,AC DC =,则下列结论:①BC CE =;①AB DE =;①ACE DCA ∠=∠;①DCA ECB ∠=∠.成立的是( )A .①①①B .①①①C .①①①D .①①①①2.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.下列图形中,既是中心对称图形,又是轴对称图形的是( ).A .B .C .D .4.如图,AC 与 BD 相交于点 O ,OA OD =,OB OC =,不添加辅助线,判定ABO DCO △≌△的依据是( )A .SSSB .SASC .AASD .ASA5.如图所示,直线12l l //,且12,l l 被直线3l 所截, 1235∠=∠=︒,PA PB ⊥,则3∠的度数是( )A .55︒B .60︒C .65︒D .50︒6.计算3()a a ⋅-的结果是( ) A .3aB .3a -C .4aD .4a -7.下列说法正确的是( )A .掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是s 甲2=0.4,s 乙2=0.6,则乙的射击成绩较稳定C .“明天降雨的概率为12”,表示明天有半天都在降雨D .在3张卡片上分别写有实数0,13是138.已知①AOB=60°,其角平分线为OM ,①BOC=20°,其角平分线为ON ,则①MON 的大小为( ) A .20°B .40°C .20°或40°D .30°或10°9.2019年下半年猪肉价格上涨,是因为猪周期与某种病毒叠加导致,生物学家发现该病毒的直径约为0.00000032mm ,数据0.00000032用科学记数法表示正确的是( ) A .73.210⨯B .83.210⨯C .73.210-⨯D .83.210-⨯10.如图,A ,B ,C ,D 是四个村庄,B ,D ,C 在一条东西走向公路的沿线上,BD =1km ,DC =1km ,村庄A 和C ,A 和D 间也有公路相连,且公路AD 是南北走向,AC =3km ,只有A 和B 之间由于间隔了一个小湖,无直接相连的公路.现决定在湖面上造一座桥,测得AE =1.2km ,BF =0.7km ,则建造的桥长至少为( )A .1.2kmB .1.1kmC .1kmD .0.7km11.下列计算正确的是( ) A .()2239x x -=- B .()()933422x x x -÷-=C .236a a a =D .()32628a a -=-12.在一个不透明的口袋中,装有5个红球和3个绿球,这些球除了颜色外都相同,从口袋中随机摸出一个球,它是红球的概率是( ) A .5 8B .3 8C .1D .1 213.如图,图中直角的个数有( )A .2个B .3个C .4个D .5个14.下面四个图形中,1∠与2∠是同位角的是( )A .B .C .D .15.如图,在①ABC 中,CD 为AB 边上的中线,过点A 作CD 的垂线交CD 的延长线于点E ,过点B 作BF ①CD 于点F .若①ACE 的面积为12,①ADE 的面积为3,则①BCF 的面积为( )A .9B .6C .4.5D .316.下列各式中,计算正确的是( ) A .0(2018)0-=B .1(3)3--=C .2(3)6-=-D .2110100-=17.下列运算正确的是( ) A .428a a a ⋅=B .()326a a -=C .()22ab ab =D .3222a a a ÷=18.如果2n 3273⨯=,则n 的值为( ) A .6B .1C .5D .819.根据下列条件,能画出唯一的三角形ABC 的是( ) A .3AB =,4BC =,8AC = B .4AB =,3BC =,30A ∠=︒ C .5AB =,6AC =,50A ∠=︒D .30A ∠=︒,70B ∠=︒,80C ∠=︒20.如图,已知①A =①C =90°,AB 和CD 相交于点E .现要添加一个条件,使得ADE CBE ≌则下列条件中不符合要求的是( )A .①ADE =①CBEB .AD =BC C .AE =CED .①EDB =①EBD21.下列计算正确的是( ) A .268a a a ⋅= B .842a a a ÷= C .224236a a a +=D .()2239a a -=-22.已知三角形的两边长分别是4、7,则第三边长a 的取值范围是( ) A .3<a <11B .3≤a≤11C .a >3D .a <1123.如图,AB①EF,①ABC=75°,①CDF=135°,则①BCD的度数为()A.20°B.45°C.35°D.30°24.若x2﹣mx+25是一个完全平方式,则m的值为()A.5B.10C.±5D.±1025.已知等腰三角形ABC60-=,则此三角形的周长为()BCA.12B.15C.12或15D.不能确定26.如图,直线AB和CD交于点O,EO①AB,垂足为O,若①EOC=35°,则①AOD 的度数为()A.115°B.125°C.135°D.140°27.下列事件中,是随机事件的是()A.从一只装有红球的袋子里摸出黄球B.抛出的蓝球会下落C.抛掷一枚质地均匀的骰子,向上一面点数是2D.抛掷一枚质地均匀的骰子,向上一面点数是1028.下列运算结果为a6的是()A.a3•a2B.a9﹣a3C.(a2)3D.a18÷a3 29.如图,直线a,b被直线c所截,a①b,①1=①2,若①3=40°,则①4等于A.40°B.50°C.70°D.80°二、多选题30.如图,EA ①DF ,AE =DF ,要使①AEC ①①DFB ,可以添加的条件有( )A .AB =CD B .AC =BD C .①A =①D D .①E =①F31.如图,在方格中,以AB 为一边作ABP ,使之与ABC 全等,则在1P ,2P ,3P ,4P 四个点中,符合条件的点P 有( )A .1PB .2PC .3PD .4P32.下列四幅图中,①1和2 是同位角的是( )A .B .C .D .33.下列说法中,不正确的是( ) A .相等的两个角是直角B .一个角的补角一定是钝角C .若①1+①2+①3=180°,则它们互补D .一个角的余角一定是锐角34.下列作图语句不正确的是( ) A .作射线AB ,使AB=aB .作①AOB =①aC .延长直线AB 到点C ,使AC=BCD .以点O 为圆心作弧 35.下列四种图形中,一定是轴对称图形的有( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形36.下列运算正确的是( ) A .222()x y x y +=+ B .347x x x += C .347·x x x =D .22(3)9x x -=37.下列计算不正确的是( ) A .551023a a a += B .22422a a a = C .352()a a =D .()22349a b a b -=38.如图,下列结论中正确的是( ).A .①1与①2是同旁内角B .①5与①6是同旁内角C .①1与①4是内错角D .①3与①5是同位角39.下列说法中正确的是( )A .在同一平面内不相交的两条直线叫做平行线;B .过一点有且只有一条直线与已知直线平行.C .两直线平行,同旁内角互补.D .两条直线被第三条直线所截,同位角相等. 40.如图,下列结论正确的是( )A .123∠=∠+∠B .124∠∠∠=+C .1245∠=∠+∠+∠D .245∠=∠+∠41.下列计算中,正确的有( ) A .(3xy 2)3=9x 3y 6B .(﹣2x 3)2=4x 6C .(﹣a 2m )3=a 6mD .2a 2•a ﹣1=2a42.下列运算错误的是( ) A .()222436xy x y =B .22124x x -=C .725()()x x x -÷-=-D .()223632xy xy xy ÷=43.将一直角三角板与两边平行的纸条按如图所示放置,下列结论,正确的是( )A .①2=①3B .①1+①3=90°C .①2+①4=180°D .①4+①5=180°44.下列各式计算错误的是( ) A .2445m m m += B .()()22339a b b a a b +-=+-C .()33339ab a b -=-D .()3422p p p ⋅-=-45.下列说法正确的是( )A .钟表在9:00时,它的时针和分针所成的角度为90°B .互余且相等的两个角,各为45°C .到线段两个端点距离相等的点叫做线段的中点D .1∠的补角是它的4倍,则136∠=︒46.在△ABC 和△A ˊB′C′中,已知①A =①A ′,AB=A ′B ′,下面判断中正确的是( ) A .若添加条件AC=A′C′,则△ABC ①①A ′B ′C ′ B .若添加条件BC=B ′C ′,则△ABC ①①A′B′C ′ C .若添加条件①B =①B ′,则△ABC ①①A′B′C ′ D .若添加条件 ①C =①C ′,则△ABC ①①A′B′C ′47.如图,若判断ACD ABE ≅△△,则需要添加的条件是( )A .AEB ADC ∠=∠,C B ∠=∠ B .AC AB =,AD AE = C .AEB ADC ∠=∠,CD BE =D .AC AB =,CD BE =48.如图,点P 在直线m 上移动,A ,B 是直线n 上的两个定点,且直线m n ∥.对于下列各值,不会随点P 的移动而变化的是( )A .点P 到直线n 的距离B .PAB 的周长C .PAB 的面积D .APB ∠的大小49.如图,AD 是ABC 的角平分线,DE ,DF 分别是ABD △和ACD 的高,连接EF 交AD 于点G .下列结论正确的为( )A .AD 垂直平分EFB .EF 平分ADC .AD 平分EDF ∠ D .当BAG ∠为60︒时,AEF △是等边三角形三、填空题50.2019年12月以来,新型冠状病毒(2019-nCoV )的肆虐影响了我们的生活,至今仍处在疫情防控中,新冠病毒的直径大约是100纳米(1纳米=910-米),用科学记数法表示为__________.51.如图,A ∠与______互补,可以判定//AB CD ,B ∠与______互补,可以判定//AD BC .52.若212020m m --=,则()()45m m +-=____________.53.如图,在ABC 中,30C ∠=︒,点D 在线段CB 的延长线上,105ABD ∠=︒,则A ∠=______.54.如图,在ABC 中,D 是BC 延长线上一点,45B ∠=︒,130ACD ∠=︒,则A ∠=______(度).55.如图所示,在长方形纸片ABCD 中,E 为BC 边上一点,将纸片沿EM ,EN 折叠,使点B 落在点B '处,点C 落在点C '处.若=40B EC ︒''∠,则MEN ∠=__________.56.已知,实数m 满足()()991002m m --=,则()()2299100m m -+-=_________.57.如果一个角与它的余角之比为1:2,那么这个角为_____度.58.如图,将长方形ABCD 沿EF 折叠,使得点C 恰好落在AB 边上的点M 处,若①BFM :①EFM =4:7,则①BMF 的度数为_______.59.如图,直线a①m ,直线b①m ,若①1=60°,则①2的度数是_______.60.计算:()()202220230.254⨯-=______.61.计算:21()5--+20210=_____. 62.如图,AB CD ,=120BAE ∠, =30DCE ∠,则=AEC ∠_________度.63.将一块含有30°角的直角三角板和一把直尺按如图所示方式摆放,若①1=85°,则①2的度数是_____.64.如图所示,直线AB ,CD 相交于点O ,EO AB ⊥于点O ,若60EOD ∠=︒,则BOC ∠的度数是________.65.如图所示,如果2100∠=︒,那么1∠的内错角等于_______________.66.在长方形ABCD 中()AD AB >,将两张边长分别为(),55a a >的正方形纸片按如图①,图①两种方式放置(图①①中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图①中阴影部分的面积为1S ,图①中阴影部分的面积为2S ,若217S S -=,则AD AB -=_________.67.如图,①ABC ①①DFE ,点B 、E 、C 、F 在同一直线上,BE =2cm ,BF =11cm ,则EC 的长度是__________.68.一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是___. 69.已知2mn = 2m+n, 则(2m-1)(n-1)=_________70.比较大小552_______443.71.某辆汽车油箱中有油40升,开始行驶后每小时耗油8升,则油箱剩余油量y (升)与行驶时间x (小时)之间的关系式是______.72.若BD 、CD 分别平分∠ABC 和∠ACB ,∠A =50°,则∠BDC 的度数为_____.73.下列有四个结论.其中正确的是____________.①若31x x (﹣)=,则x 的值可能是4或0;①若211x x ax +(﹣)(﹣)的运算结果中不含2x 项,则a =﹣1; ①若a +b =5,ab =4,则a ﹣b =3;①若84x y a b =,=,则322x y +可表示ab .74.如图,边长为(m+2)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为2,则另一边长是________.(用含m 的代数式表示)75.为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出频数分布表,如下表所示,则表中的a =_________.76.计算(﹣x 3y )2的结果是_____.77.已知x 2-x-1=0,则代数式-x 3+2x 2+2 015的值为___________.78.若三角形的两边长是5 和2 ,且第三边的长度是偶数,则第三边长可能是_____________.79.如图,ABE ,BCD △均为等边三角形,点A ,B ,C 在同一条直线上,连接AD ,EC ,AD 与EB 相交于点M ,BD 与EC 相交于点N ,连接OB ,下列结论正确的有_________.①AD EC =;①BM BN =;①MN AC ;①EM MB =;①OB 平分AOC ∠四、解答题80.先化简,再求值:2(2)(2)(2)x x x +---,其中14x = 81.如图,已知在ΔABC 中AB=AC ,∠BAC =90°,分别过B ,C 两点向过A 的直线作垂线,垂足分别为E ,F .求证:EF=BE +CF .82.解方程x (2x +1)(2x ﹣1)﹣2x (2x 2﹣1)=4.83.如图是由16个相同的小正方形组成的正方形网格,其中的两个小正方形已被涂黑.请你用四种不同的方法分别在图①、①、①、①中涂黑三个空白的小正方形,使涂黑的部分成为轴对称图形.84.如图,已知平面上三点A ,B ,C ,请按要求画图,并回答问题:(1)画直线AC ,射线BA ;(2)延长AB 到 D ,使得BD=AB ,连接CD ;(3)过点C 画CE AB ⊥,垂足为E ;(4)通过测量可得,点C 到AB 所在直线的距离约为________cm(精确到0.1 cm). 85.计算:(1)()2()()a b a b a b +-+-;(2)()()()()3223622232x y x y xy xy x y y x --÷--+-. 86.如图,已知AB ①CD ,①A =①D ,求证:①CGE =①BHF .87.已知2490x x +-=,求代数式()()()22-31-(-2)-1-(-2)++÷x x x x x x x 的值. 88.如图,90B C ∠=∠=︒,BAE CED ∠=∠,且AB CE =.(1)试说明:ADE 是等腰直角三角形;(2)若2CDE BAE ∠=∠,求CDE ∠的度数.89.长方形的长为acm ,宽为bcm ,如果将原长方形的长和宽各增加2cm ,得到的新长方形面积记为S 1,如果将原长方形的长和宽分别减少3cm ,得到的新长方形面积记为S 2.(1)求S 1、S 2;(2)如果S 1比S 2大100cm2,求原长方形的周长;(3)若ab =300,a +b =35,求将原长方形的长和宽分别减少8厘米得到新长方形的面积.90.已知:α∠和线段a .求作:ABC ,使2AB a =,3BC a =,ABC α∠=∠.(不要求写作法)91.阅读下列材料并回答问题:我们知道,两数和的平方公式“()2222a b a ab b +=++”可以用平面图形的面积来表示(如图1).实际上,有些代表恒等式也可以用平面图形的面积表示,例如,()()2a b a b ++可以用图形2或3的面积表示.1 23 4(1).请写出图形4所表示的一个代数恒等式:______;(2).试画出一个平面图形,使它的面积能够表示代数恒等式:()()a b c d ac ad bc bd ++=+++;(3).请依照上述方法另写出一个关于x 、y 的代数恒等式,并设计画出一个与之相对应的平面图形.(要求:与上述所列举的代数恒等式不同)92.如图,已知:P 是①BAC 的平分线上的一点,PB①AB 于点B,PC①AC 于点C . (1)说明①APB①①APC 的理由;(2)说明PB=PC 的理由.93.已知2m =3, 2n =5,求 23m +2n 的值.94.先化简,再求值: (x - 2 y )2- (x + y )(x - y) - 5 y 2,其中 x =12, y = -2. 95.如图,ABC ∆的底边BC 的长是12cm ,当顶点A 在BC 的垂线PD 上由点D 向上移动时,三角形的面积起了变化,(1)在这个变化的过程中,自变量是 ,因变量是 . (2)如果AD 为x (cm ),面积为y (2cm ),可表示为y=(3)当AD=BC 时 ,ABC ∆的面积为96.观察下列等式:第1个等式:()2321111121⨯+--=⨯;第3个等式:()2323313323⨯+--=⨯;第4个等式:()2324414424⨯+--=⨯;第5个等式:()2325515525⨯+--=⨯;……(1)请直接写出第6个等式:___________;(2)请根据上述等式的规律,猜想出第n 个等式(用含n 的式子表示,n 为正整数),并证明你的猜想.97.小明在学习了“平行线的判定和性质”知识后,对下面问题进行探究:在平面内,直线AB∥CD ,E 为平面内一点,连接BE 、CE ,根据点E 的位置探究①B 和①C 、∥BEC 的数量关系.(1)当点E 分别在如下图①、图①和图①所示的位置时,请你直接写出三个图形中相应的①B 和①C 、∥BEC 的数量关系:图①中: ;图①中: , 图①中: .(2)请在以上三个结论中选出一个你喜欢的结论加以证明.(3)运用上面的结论解决问题:如图①,AB∥CD ,BP 平分①ABE ,CP 平分①DCE ,∥BEC=100°,∥BPC 的度数是 .(直接写出结果,不用写计算过程)图① 图① 图① 图①98.在▱ABCD 中,点P 和点Q 是直线BD 上不重合的两个动点,AP①CQ ,AD=BD . (1)如图①,求证:BP+BQ=BC ;(2)请直接写出图①,图①中BP 、BQ 、BC 三者之间的数量关系,不需要证明; (3)在(1)和(2)的条件下,若DQ=2,DP=6,则BC= .99.观察推理:如图1,△ABC中,①ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD①l,AE①l,垂足分别为D、E.(1)求证:△AEC①①CDB;(2)类比探究:如图2,Rt△ABC中,①ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积;(3)拓展提升:如图3,①E=60°,EC=EB=4cm,点O在BC上,且OC=3cm,动点P从点E沿射线EC以2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间.参考答案:1.B【分析】根据全等三角形的性质直接判定①①,则有DCE ACB ∠=∠,然后根据角的和差关系可判定①①.【详解】解:①ABC DEC ≌△△,①,,BC EC AB DE ACB DCE ==∠=∠,故①①正确;①,DCA DCE ACE BCE ACB ACE ∠=∠-∠∠=∠-∠,①DCA ECB ∠=∠,故①错误,①正确,综上所述:正确的有①①①;故选B .【点睛】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键. 2.C【分析】根据轴对称图形与中心对称图形的定义直接判断即可得出答案.【详解】解:A. 不是轴对称图形,是中心对称图形,此选项错误;B. 是轴对称图形,不是中心对称图形,此选项错误;C. 既是轴对称图形,也是中心对称图形,此选项正确;D. 既不是轴对称图形,也不是中心对称图形,此选项错误.故选:C.【点睛】本题考查的知识点是识别轴对称图形与直线对称图形,容易题.选错的原因是没有掌握轴对称图形及中心对称图形的识别.3.B【分析】根据轴对称图形和中心对称图形的定义,逐一判断选项,即可得到答案.【详解】A .既不是中心对称图形,也不是轴对称图形,不符合题意,B .既是中心对称图形,又是轴对称图形,符合题意,C .是轴对称图形,但不是中心对称图形,不符合题意,D .是中心对称图形,但不是轴对称图形,不符合题意.故选B .【点睛】本题主要考查轴对称图形和中心对称图形的定义,掌握轴对称图形和中心对称图形的定义是解题的关键.4.B【分析】根据全等三角形的判定定理SAS 求解即可.【详解】解:在ABO 和DCO 中,OA OD AOB DOC OB OC =⎧⎪∠=∠⎨⎪=⎩,①()SAS ABO DCO ≌△△, 故选:B .【点睛】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键. 5.A【分析】先根据直角三角形的性质求出BAP ∠的度数,再根据平行线的性质(两直线平行,同旁内角互补)即可得.【详解】1235,PA PB ∠=∠︒⊥=90255BAP ∠=︒-∠=∴︒12//l l123180BAP ∴∠+∠+∠+∠=︒,即3535553180︒+︒+︒+∠=︒解得355∠=︒故选:A .【点睛】本题考查了直角三角形的性质、平行线的性质等知识点,掌握理解平行线的性质是解题关键.6.D【分析】根据同底数幂的乘法运算法则,运算求解即可.【详解】解:根据同底数幂的乘法运算法则可得:334()a a a a a ⋅-=-=-故选:D .【点睛】此题主要考查了同底数幂的乘法运算,解题的关键是熟练掌握相关运算法则. 7.D【分析】根据概率公式判断和方差公式判断即可.【详解】A 、掷一枚均匀的骰子,骰子停止转动后6点朝上是随机事件,故本项错误; B 、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是s 甲2=0.4,s 乙2=0.6,则甲的射击成绩较稳定,故本选项错误;C 、“明天降雨的概率为12”,表示明天可能降雨,故本项错误;D 、在3张卡片上分别写有实数0,1313,故本选项正确; 故选:D .【点睛】本题考查概率与事件,方差的概念,关键在于对基本概念的熟悉.8.C【详解】解:本题需要分两种情况进行讨论,当射线OC 在①AOB 外部时,①MON=①BOM+①BON=30°+10°=40°;当射线OC 在①AOB 内部时,①MON=①BOM -①BON=30°-10°=20°;故选:C .【点睛】本题考查角平分线的性质、角度的计算,注意分类讨论是本题的解题关键. 9.C【分析】科学记数法是一种记数的方法。

初一数学下册综合算式专项练习题含有括号的多项式运算

初一数学下册综合算式专项练习题含有括号的多项式运算

初一数学下册综合算式专项练习题含有括号的多项式运算在初中数学的学习过程中,我们不可避免地会接触到各种各样的数学题目,其中包括多项式运算。

多项式运算的一个重要知识点就是含有括号的多项式运算。

本文将通过综合算式专项练习题的方式来详细介绍和解析含有括号的多项式运算。

练习题一:计算下列各式的值:1. (3x - 2y) + (4y + x)2. (2a + b) - (a + 3b)3. (4 - x) + (x - 3)4. (5x + 7) - (2x - 1)解答:1. 将每个括号内的项按照同类项进行合并,得到:3x - 2y + 4y + x。

合并同类项,得到:4x + 2y。

2. 将每个括号内的项按照同类项进行合并,得到:2a + b - a - 3b。

合并同类项,得到:a - 2b。

3. 将每个括号内的项按照同类项进行合并,得到:4 - x + x - 3。

合并同类项,得到:4 - 3。

4. 将每个括号内的项按照同类项进行合并,得到:5x + 7 - 2x + 1。

合并同类项,得到:3x + 8。

练习题二:计算下列各式的值:1. (2x + 3) - (x - 4)2. (3a - 2b) + (4b + 5a)3. (5 - 2x) - (3x + 1)4. (6y + 2z) - (y + 3z)解答:1. 将每个括号内的项按照同类项进行合并,得到:2x + 3 - x + 4。

合并同类项,得到:x + 7。

2. 将每个括号内的项按照同类项进行合并,得到:3a - 2b + 4b + 5a。

合并同类项,得到:8a + 2b。

3. 将每个括号内的项按照同类项进行合并,得到:5 - 2x - 3x - 1。

合并同类项,得到:5 - 5x - 1。

4. 将每个括号内的项按照同类项进行合并,得到:6y + 2z - y - 3z。

合并同类项,得到:5y - z。

通过以上综合算式专项练习题,我们可以熟悉含有括号的多项式运算的步骤与方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册数学综合训练
一.选择题:(下面每小题都给出编号为A,B,C,D的四个答案,其中有且只有一个是符合题意的,请选择符合题意的答案的编号,填在题后的括号内,本题共20分,每小题2分,选错,多选,不选都给零分)
1.以下列各组线段长为边,能组成三角形的是()
A .1cm,2cm,4cm B.2cm,3cm,6cm
C.4cm,6cm, 8cm
D. 5cm,6cm ,12cm
2.下列运算正确的是()
A.a5·a6=a30 B.(a5)6=a30 C. a5+a6=a11 D. a5÷a6=
5
6
4.下列事件中,是不可能事件的是()
A.晚上19:00打开电视,在播放新闻,
B.水往高处流
C.丁丁买彩票中了特等奖 ,
D.在0O C度
5.如图,某同学把一块三角形的玻璃打碎成三片,现在他
要到玻璃店去配一块完全一样形状的玻璃.那么最省
事的办法是带( )去配.
A.①
B.②
C.③
D.①和②
6.化简
x2-y2
(x-y)2
的结果是()
A.
x+y
x-y
B.1 C.
x-y
x+y D.x-y
7.4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,那么她所旋转的牌从左数起是()
A.第一张
B.第二张
C.第三张
D.第四张
3.把一个正方形三次对折后沿虚线剪下,
如图所示:
则所得的图形是( )
①③

第5题图
8.计算[(-x )3]2÷(-x 2)3所得的结果是(x ≠0)( )
A.-1
B.-x 10
C.0
D.-x 12 9.甲,乙两人进行百米跑比赛,当甲离终点还有1米时,乙离终点还有2米,那么,当甲到达终点时,乙离终点还有( )米 (假设甲乙的速度保持不变)
A.9899
B. 10099
C. 1
D. 9998
10.如图,宽为50 cm 的矩形图案由
10个全等的小长方形拼成,其中一个小长方形的面积为( )
A. 400 cm 2
B. 500 cm 2
C. 600 cm 2
D. 4000 cm 2
二.填空题:(把正确答案填在空格内,本题共30分,每小题3分) 11.七年级(1)班共有48名少先队员要求参加志愿者活动,根据实际需要,少先队大队部从中随机选择12名少先队员参加这次活动,该班少先队员小明能参加这次活动的概率是_________.
12.若代数式x 2―4
x ―2
的值为0,则x =____________;
当b= 时,分式1
4+b
无意义。

13.如图,平面镜A 与B 之间夹角为110°,光
线经平面镜A 反射到平面镜B 上,再反射出
去,若21∠=∠,则1∠的度数为 . 14.若非零实数a ,b 满足a 2 =ab - 14 b 2,则b
a
=___________.
15.小华要从长度分别为5cm 、6cm 、11cm 、16cm 的四根小木棒中选出三
根摆成一个三角形,
那么他选的三根木棒的长度分别是:_ , , (单位:cm). 16.方程组325
28x y x y +=⎧⎨
-=⎩
的解为
17.观察下列图形:
其中既是轴对称图形又是中心对称图形的为 (填序号)
21
110°A
B (第13题图) 第10题图
① ②④ ⑤ ⑥
18.分式方程:1x+1 =2
5-x
的解为
19.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/
时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意可列出方
程为
20. 如图,G 是△AFE 两外角平分线的交点,
P 是△ABC 的两外角平分线的交点, F,C 在AN 上,又B,E 在AM 上; 如果∠FGE =66O ,那么∠P = 三.解答题:(下面每小题必须有解题过程,本题共50分) 21.计算:(每小题3分,共12分) ⑴a -5a ⑵1-x -y x+y ⑶1x +1 1-x ⑷9-x 21+x ÷ x+3―x ―1
22.因式分解(每小题3分,共12分) ⑴a 2b -b 3 ⑵1-n +m -mn
⑶x 2―2x +1―y 2
⑷(x -y)2+(x +y)(x -y) 23.(每小题3分,共6分)
⑴分析图6①,②,④中阴影部分的分布规律,按此规律在图6③中画出其中的阴影部分.
⑵由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图)。

请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形。

A
B E F G C
M
N P
24.(本题6分)请你用三角板、圆规或量角器等工具,画∠POQ=60°,在它的边OP上截取OA=50 mm,OQ上截取OB=70 mm,连结AB,画∠AOB的平分线与AB交于点C,并量出AC和OC 的长 . (结果精确到1 mm,不要求写作法).
25.(本题6分)西部山区某县响应国家“退耕还林”号召,将该县一部分耕地改还为林地。

改还后,林地面积和耕地面积共有180km2, 耕地面积是林地面积的25%。

试分别求出改还后耕地与林地面积?
26.(本题6分)七年级(1)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其它两位同学进行交流的情景:
根据他们的对话,试请你分别求出A、B两个超市今年“五一节”期间的销售额?
答案
1.C
2.B
3.C
4.B
5.C
6.A
7.A
8.A
9.B 10.A 11.1
4 12.-2 ,-4 13.35O 14.2 15. 6,11,16 16.x=3,y=-2 17. ③⑥ 18.x=1 19.312x -1= 312
x+26
20.66O
21.⑴a 2-5a ⑵2y x+y ⑶1
x -x 2
⑷x -3
22.⑴b(a -b)(a+b) ⑵(1+m)(1-n)⑶(x ―1―y)(x -1+y) ⑷2x(x -y) 23.⑴
⑵略
24.略25.改还后耕地面积为36平方公里,林地面积为144平方公里 26.A, B 两超市今年五一节的销售额分别为115万元,55万元.。

相关文档
最新文档