电机的模型与仿真.

合集下载

三相异步电机新模型及其仿真与实验

三相异步电机新模型及其仿真与实验

三相异步电机新模型及其仿真与实验1 引言近年来,由于电机控制技术和控制装置的发展,异步电动机的应用范围越来越广泛。

变频调速技术的不断完善,使得异步电动机也能应用于过去只能使用直流电动机的领域,并有逐渐取代直流电动机的趋势。

异步电动机的变频调速控制技术要求对异步电动机实施反馈控制,异步电动机的模型对能否获得正确的控制策略有很大的影响。

至今为止,在三相异步电动机的控制和故障诊断研究[1-3]中,绝大多数采用的是著名的PARK模型。

然而,PARK模型要在电机三相参数是对称状态时才是正确的。

当电机内部发生故障时,这个条件一般不满足。

实践证明:变频调速控制系统在电机內部故障时会产生无效甚至有害的控制后果。

电机模型不合适是重要原因之一。

很多学者为建立模拟三相异步电机內部故障的模型做了大量工作[4-5],经典的是基于有限元计算得到的模型,这类模型可以对电机参数不对称的状态进行详细地模拟[4]。

但这类模型一般都很复杂,不适用于在线应用。

三相异步电动机还有另一种模型,即原始的相轴线模型(ABC坐标模型,方程式(1),(2))。

这种模型在电机三相参数不对称时仍然可以使用。

但是,这种模型的缺点是其部分参数随着电机定、转子间相对位置的变化而变化,是由一组线性变系数微分方程构成的模型。

从应用的角度来看,由于异步电机的转差,定、转子间的相对位置不断变化。

要在线检测定、转子间的相对位置并用到实时控制中去是困难的。

所以,在三相异步电动机的变频调速控制中没有采用这套模型。

针对这个问题,人们提出了很多方案[6-9]:如把不对称相等值成同其它绕组对称的绕组与一附加绕组之和的方法[6];采用参数辨识的方法[7]等等。

但由于这些方法的基础仍是采用PARK模型,只是对其修修补补,因而效果不好。

笔者在从事三相异步电动机的故障诊断研究中,也遇到了没有合适的电机模型的问题。

通过对三相电机运行的物理机理的分析和研究,构造了一个变换函数[10]。

使用该变换函数,得到了三相异步电机的新模型。

电机仿真模型

电机仿真模型

图1.5电机内部关系框图由于负载的变化,电流的瞬间增大或减小,电动机的功率也是瞬间变化的,在程序实现时,因为电压是固定的,知道了功率,也就知道了电流。

可以看出,电动机的功率是跟随转速的,将时间划分为多个4,可以做定性分析。

在盘内,可认为电动机给定转速3是固定不变的,通过电动机实际转速和给定转速之间的转速差来决定电动机的功率P,从而决定电流大小。

跟随过程如图 1.6所示<图1.6转速跟随过程转速每隔4改变一次,这个时间可以任意设定。

虫设定的过小,曲线变化细腻,但电流不断变化,计算量很大,浪费大量CPU时间;4设定的过大,会出现电流的大起大落,引起控制系统的不稳定。

根据转差率控制思想,转差越大,要求输出的转矩越大,从本质上说,要求电动机电流越大。

根据转差率控制公式T em = K Aw其中:T em为电磁转矩,K为转矩转差系数, 符合公式:T em= P/N = V UI/3 (1.6)在转速跟随过程中,加速度是由电磁转矩克服负载产生的。

电动机的运动方程为2T em _T L = (mr + J M) a (1.7)其中:TL为负载转矩,mr2为负载折算到转轴的转动惯量,a为转轴加速度。

将式1.3带入到1.4中,得到转速差和电流关系K Aw *31/3通过不停的计算转速差,来获得所需的功率(1.5)Aw= 3 - 3*。

电磁转矩和功率之间(1.8)电朗机怖i*反筒电压U图1.7 PWM控制信号因为电动机转动过程中,电流和电压之间的相位是不断变化的,所以相位的调整很有必要。

如果只是在开始阶段调整一次,随着时间的堆积,误差会积累,最终导致电流相位发生偏移,导致电流信号错误,导致控制板认为电动机发生故障。

相位的调整以电压相位为基准,对于异步电机,在功率因数和转差的基础上进行调整,对于同步电机,要根据转矩角来调整,也可认为电流电压同相位,不影响调试效果。

在电流电压同相位的基础上,进行相位的实时调整。

调整示意图如图1.9所示。

三相永磁同步电机(PMSM)矢量控制建模与仿真

三相永磁同步电机(PMSM)矢量控制建模与仿真

目录1 引言 (1)1.1 课题的背景与意义 (1)1.1.1 课题背景 (1)1.1.2 课题意义 (1)1.2 永磁电机发展概况 (1)2 机电能量转换和拉格朗日方程 (2)2.1 机电能量转换 (2)2.2 三相同步电机电磁转矩 (7)2.3 拉格朗日方程 (9)3 三相永磁同步电机的数学模型 (11)3.1 三相PMSM的基本数学模型 (11)3.2 三相PMSM的坐标变换 (13)3.2.1 Clark变换 (13)3.2.2 Park变换 (14)3.3 同步旋转坐标系下PMSM的数学模型 (14)4 三相永磁同步电机的矢量控制 (16)4.1 转速环PI调节器的参数整定 (16)4.2 电流环PI调节器的参数整定 (17)4.3 三相PMSM矢量控制系统的仿真 (19)4.3.1 仿真建模 (19)4.3.2 仿真结果分析 (22)总结 (23)参考文献 (23)三相永磁同步电机矢量控制建模与仿真摘要:永磁同步电机具有体积小、效率和功率因数高等优点,因此越来越多的应用在各种功率等级的场合。

永磁同步电机的控制是永磁同步电机应用的关键技术,永磁同步电机的结构特点使得采用矢量控制系统有很大的优势。

本文首先分析了永磁同步电机矢量控制的发展概况,然后从机电能量转换的角度出发,解释三相永磁同步电机的机电能量转换原理,推导拉格朗日运动方程。

此外,列写出永磁同步电机在三相静止坐标系和dq坐标系下的数学模型。

基于Simulink建立了转速电流双闭环矢量控制系统的仿真模型,通过对仿真结果分析,验证了永磁同步电机矢量控制系统性能的优越性。

关键词:永磁同步电机,矢量控制,Simulink1 引言1.1 课题的背景与意义1.1.1 课题背景交流电机的控制性能在磁场定向矢量控制技术提出后才有了质的飞跃。

磁场定向矢量控制技术采用的是励磁电流和转矩电流的解稱控制,兼顾磁场和转矩的控制,克服了交流电机自身耦合的缺点。

无刷直流电机的建模与仿真

无刷直流电机的建模与仿真

无刷直流电机的建模与仿真摘要:该文在分析无刷直流电机(bldcm)数学模型和工作原理的基础上,利用matlab软件的simulink和psb模块,搭建无刷直流电机及整个控制系统的仿真模型。

该bldcm控制系统的构建采用双闭环控制方法,其中的电流环采用滞环电流跟踪pwm,速度环采用pi控制。

仿真和试验分析结果证明了本文所采用方法的有效性,同时也证明了验证其他电机控制算法合理性的适用性,为实际电机控制系统的设计和调试提供了新的思路。

关键词:bldcm控制系统;无刷直流电机;数学模型;matlab;电流滞环中图分类号: tp391 文献标识码:a 文章编号:1009-3044(2013)05-1172-03随着现代科技的不断发展,无刷直流电动机应用技术越发成熟,应用领域也越发广泛,用户对无刷直流电动机使用增多的同时,对其控制系统的设计要求也变得越来越高。

包括低廉的设计和搭建成本、短的开发周期、合适的控制算法、优良的控制性能等。

而科学合理的无刷直流电动机控制系统仿真模型的建立,对控制系统的直观分析、具体设计,快速检验控制算法,降低直流电机控制系统的设计成本,拥有十分重要的意义。

直流无刷电动机利用电子换向原理和高磁性材料,取代了传统的机械换相器和机械电刷,解决了有刷直流电动机换向器可维护性差和较差的可靠性的致命缺点,使得直流电动机的良好控制性能得到维持,直流电动机得到更好的应用。

伴随着如今功率集成电路技术和微电子技术的发展,控制领域相继出现了大量无刷直流电动机专用驱动和控制芯片,解决高性能无刷电动机驱动控制问题所提出的解决方案也变得更加丰富和科学,无刷直流电机在控制领域显示出前所未有的广阔应用前景[1]。

通过无刷直流电动机控制系统的仿真模型来检验各种控制算法,优化整个控制系统的方法,可以在短时间内得到能够达到预期效果的控制系统。

在对无刷直流电机电流滞环控制和数学模型等分析的基础之上,可以利用simulink中所提供的各种模块,构建出bldcm 控制系统的仿真模型,从而实现只利用simulink中的模块建立bldcm控制系统仿真模型。

永磁同步电机建模与仿真

永磁同步电机建模与仿真

安徽矿业职业技术学院成人教育毕业设计(2020届)题目永磁同步电机建模与仿真指导教师专业年级学号姓名刘李二〇二0年四月三十日安徽矿业职业技术学院成人教育毕业设计(论文)任务书专业年级学生学号姓名刘李任务下达时期:2019年12月21日设计(论文)日期:2019年12月21日至2020年4月30日设计(论文)题目:永磁同步电机建模与仿真设计(论文)主要内容和要求:本设计的主要内容本文共分为四章,主要针对永磁同步电机的建模与仿真进行相关研究。

第一章主要概述了永磁同步电机的应用与发展现状;第二章介绍了同步电机的理论基础,简要介绍了同步电机的原理和结构及起动运行;第三章介绍了永磁同步电机的控制策略;第四章着重介绍了永磁同步电机的建模与仿真,用MATLAB软件对其进行了仿真研究;最后对全文进行了总结。

指导教师签字:安徽矿业职业技术学院成人教育毕业设计(论文)指导教师评阅书指导教师评语(包含①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等);建议成绩:指导教师签字:年月日安徽矿业职业技术学院成人教育毕业设计(论文)答辩及综合成绩专业年级学生学号学生姓名摘要永磁同步电机是一种利用永磁体建立励磁磁场的小功率同步电动机。

它以体积小,损耗低,效率高等优点广泛应用于伺服驱动系统。

永磁同步电机构成的永磁交流伺服系统目前已经向数字化方向发展,进一步适应了高速高精度机械加工的需要。

系统中的电流环、速度环和位置环的反馈控制全部数字化。

因此,如何建立有效的永磁同步电机控制系统的仿真模型成为电机控制算法的设计人员迫切需要解决的问题,它对于建立电机控制系统仿真模型方法的研究具有十分重要的意义。

本文提出了永磁同步电机PMSM 控制系统仿真建模的方法,在Matlab/ Simulink 环境下,通过对PMSM 本体、dq 坐标系向abc坐标系变换及反变换、三相电流源逆变器、ASR和ACR等功能模块的建立与组合,构建了永磁同步电机控制系统的速度和电流双闭环仿真模型。

电机数学模型与仿真分析开卷试题

电机数学模型与仿真分析开卷试题

华中科技大学研究生课程考试答题本考生姓名考生学号系、年级类别考试科目考试日期年月日《电机数学模型与仿真分析》开卷试题试题:一台绕线型感应电动机,定转子均为三相对称绕组,不考虑开槽和谐波磁势的影响,不计磁路饱和,参考正向自行规定。

1.选择适当坐标系,使其各电感系数均为常数,写出相应定转子变换矩阵,并画出相应坐标系下的物理模型,写出在此坐标系下的电压、磁链基本方程式以及变换前后的电感系数表达式。

2.若采用x ad基值系统,利用此标幺值基本方程,画出相应的运算电路,并讨论其在瞬态和稳态分析中的应用。

3.利用适合的坐标系模型方程,求解感应电动机正常稳态运行时的电流、电磁转矩表达式、导出相应的等效电路,并与电机学的结果进行分析对比。

4.假设该电机在理想空载下(定子加额外对称电压、转差率为0、三相电流为0),电机端发生三相对称突然短路,选择适当坐标系下的模型,利用解析法导出并分析定子电流的变化规律(假设在此变化过程中转速不变)。

第一问解答一、在相坐标系统中的方程式 1. 正方向确定和简化假设本题规定线圈轴线的正向即使该磁场轴线的正方向,电流正方向为产生正向磁链的电流方向,回路两端的电压正方向符合电动机惯例。

则有:ψk =L k i k ,u k =p ψk +i k r k为了简化分析,本题做出如下假设:(1)电机铁磁部分的磁路为线性,即不计磁路饱和; (2)不考虑开槽和谐波磁势的影响; (3)定转子均为三相对称绕组。

2. 电压方程式和磁链方程式图1 感应电机设电机的定子三相绕组轴线为A 、B 、C ,则在空间上固定,以A 轴为参考坐标轴:转子绕组轴线a 、b 、c 随转旋转,转子a 轴和定子A 轴间的电角度θ为空间角位移变量。

(1)定子A 、B 、C 三相绕组的电压方程式可表示为:⎪⎩⎪⎨⎧+=+=+=C s C CB s B B A s A A ir p u i r p u i r p u ψψψ 转子a 、b 、c 三相绕组的电压方程式可表示为:⎪⎩⎪⎨⎧+=+=+=c r c cb r b b ar a a ir p u i r p u i r p u ψψψ (2)磁链方程为:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡c b a C B A cc cbcacCcBcAbc bb ba bC bB bA ac ab aa aC aB aA Cc Cb Ca CC CB CA Bc Bb Ba BC BB BA Ac Ab Aa AC AB AAc b a C B A i i i i i i L M M M M M M L M M M M M M L M M M M M M L M M M M M M L M M M M M M L ψψψψψψ二、感应电机的自感系数与互感系数1. 定、转子绕组自感系数首先分析定子A相绕组的自感系数L AA。

风力发电机的建模及动态仿真

风力发电机的建模及动态仿真

Ed′= -
xm x2 + xm
Q
E q′=
xm x2 + xm
D
( 12)
Q= -
x
2
+ xm
x
mE
′ d
D=
x
2
+ xm
x
m
E
′ q
( 13)
p
Q= -
x
2
+ xm
x
mp
E
′ d
p
D=
x
2
+ xm
x mp
E
′ q
( 14)
根据转子电压方程 D 轴
R 2iD + x 2 + x mp E ′ q - ( xm
x= x1+ xm 3. 3 电磁暂态过程方程式 从( 5) 式 D 轴转子磁链方程得
iD =
x2
x +
m
x
m
id
+
1 x2 + xm
D
( 6)
把( 6) 式代入 d 轴定磁链方程得
d=-
x ′id +
E
′ q
( 7)
式中 x ′——暂态电抗
x ′=
x1 +
xm -
x2
x
2 m
+ xm
=
x1 +
x2 x2 +
叙词 风力发电机 建模 动态仿真
Building Model and Dynamic Simulation on Windmill Generator
X in Jiang Institute of T echnolo gy Hou Shuhong, Lin Hong, Chao Qin, Zu Lati

永磁同步电动机矢量控制模型的设计与仿真

永磁同步电动机矢量控制模型的设计与仿真

永磁同步电动机矢量控制模型的设计与仿真交流调速理论包括矢量控制和直接转矩控制。

1971年,由F.Blaschke 提出的矢量控制理论第一次使交流电机控制理论获得了质的飞跃。

矢量控制采用了矢量变换的方法,通过把交流电机的磁通与转矩的控制解耦使交流电机的控制类似于直流电动机。

矢量控制方法在实现过程中需要复杂的坐标变换,而且对电机的参数依赖性较大。

直接转矩控制是1985年Depenbrock教授在研究异步电机控制方法时提出的。

该方法是在定子坐标系下分析交流电机的数学模型,强调对电机的转矩进行直接控制,对转矩进行砰一砰控制,无需解耦,省掉了矢量旋转变换计算。

控制定子磁链而不是转子磁链,不受转子参数变化的影响,但不可避免地产生转矩脉动,低速性能较差,调速范围受到限制。

而且由于它对实时性要求高、计算量大,对控制系统微处理器的性能要求也较高。

矢量控制的基本思想是在普通的三相交流电动机上设法模拟直流电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分解成为产生磁通的励磁电流分量和产生转矩的转矩电流分量,并使得两个分量互相垂直,彼此独立,然后分别进行调节。

这样交流电动机的转矩控制,从原理和特性上就和直流电动机相似了。

控制策略的选择上是PID控制,传统的数字PID控制是一种技术成熟、应用最为广泛的控制算法,其结构简单,调节方便。

1 永磁同步电机的数学模型1.1 永磁同步电机系统的结构永磁同步电机的基本组成:定子绕组、转子、机体。

定子绕组通过三相交流电,产生与电源频率同步的旋转磁场。

转子是用永磁材料做成的永磁体,它在定子绕组产生的旋转磁场的作用下,开始旋转。

1.2 坐标变换坐标变换,从数学角度看,就是将方程中原来的一组变量,用一组新的变量来代替。

线性变换是指这种新旧变量之间存在线性关系。

电动机中用到的坐标变换都是线性变换。

在永磁同步电机中存在两种坐标系,一种是固定在定子上的它相对我们是静止的,即:α,β 坐标系,它的方向和定子三相绕组的位置相对固定,它的方向定位于定子绕组 A 相的产生磁势的方向,另一种是固定在转子上的旋转坐标系,我们通常称之为 d,q 坐标,其中 d 轴跟单磁极的 N 极方向相同,即和磁力线的方向相同,q 轴超前 d 轴 90 度下图所示。

三相异步电机的建模与仿真设计

三相异步电机的建模与仿真设计

电气与电子信息工程学院《计算机仿真及应用B》题目:学号:姓名:班级:任课老师:三相异步电动机的建模与仿真一.实验题目三相异步电动机的建模与仿真二.实验原理三相异步电动机也被称作感应电机,当其定子侧通入电流后,部分磁通将穿过短路环,并在短路环产生感应电流。

短路环的电流阻碍磁通的变化,致使有短路环部分和没有短路环部分产生的磁通有相位差,从而形成旋转磁场。

转子绕组因与磁场间存在着相对运动而产生感应电动势和感应电流,即旋转磁场与转子存在相对转速,并与磁场相互作用产生电磁转矩,使转子转起来,从而实现能量转换。

三相异步电动机具有结构简单,成本较低,制造,使用和维护方便,运行可靠以及质量较小等优点,从而被广泛应用于家用电器,电动缝纫机,食品加工机以及各种电动工具,小型电机设备中,因此,研究三相异步电动机的建模与仿真。

三.实验步骤1.选择模块首先建立一个新的simulink模型窗口,然后根据系统的描述选择合适的模块添加至模型窗口中。

建立模型所需模块如下:1)选择simPowerSystems模块库的Machines子模块库下的Asynchronous Machine SI Units模块作为交流异步电机。

2)选择simPowerSystems模块库的Electrical Sources子模块库下的Three-Phase Programmable Voltage Source模块作为三相交流电源。

3)选择simPowerSystems模块库的Three-Phase Library子模块库下的Three-Phase Series RLC Load模块作为串联RLC负载。

4)选择simPowerSystems模块库的Elements子模块库下的Three-Phase Breaker模块作为三相断路器,Ground模块作为接地。

5)选择SimPowerSystems模块库的Measurements子模块库下的Voltage Measurement 模块作为电压测量。

电励磁双凸极电机的建模与仿真方法研究毕业论文 精品

电励磁双凸极电机的建模与仿真方法研究毕业论文 精品

电励磁双凸极电机的建模与仿真方法研究目录摘要 (3)Abstract (4)第一章绪论 (5)1.1电励磁双凸极电机的发展 (5)1.2飞机发电系统的发展 (6)1.3课题研究的目的和内容 (6)第二章电励磁双凸极电机 (7)2.1 电励磁双凸极电机的结构 (7)2.2 电励磁双凸极发电机的数学模型 (7)2.3 发电运行工作原理 (8)第三章电磁场有限元分析简介 (11)3.1 电磁场基本理论 (11)3.1.1 麦克斯韦方程 (11)3.1.2 一般形式的电磁场微分方程 (12)3.1.3 电磁场中常见的边界条件 (13)3.2 电磁场求解的有限元法 (14)3.2.1 一维有限元法 (14)3.2.2 电磁场解后处理 (16)第四章电励磁双凸极电机模型的建立 (17)4.1 建模工具的探讨 (17)4.2 电机模型的建立 (17)4.2.1 定转子模型 (17)4.2.2 绕组模型 (18)4.2.3 电机材料的分配 (19)4.2.4 励磁电流方向和大小的判定 (19)4.2.5 相绕组电流方向和大小的判定 (20)4.2.6 给定边界条件 (21)4.2.7 其它条件的设定 (22)第五章电励磁双凸极电机的静态特性 (23)5.1 双凸极电机的空载磁链与电势 (24)5.2 空载特性 (25)5.3 负载特性 (27)第六章总结与展望 (28)致谢 (29)参考文献 (30)附录 (31)电励磁双凸极电机的建模与仿真方法研究摘要电励磁双凸极电机是一种较为新型的电机,本文研究的是12/8极电励磁双凸极电机,首先简要介绍了电机的基本结构、工作原理和数学模型,并给出了电磁场有限元分析的理论依据,在此基础上建立了Ansoft模型,利用二维电磁场有限元的方法分析了其静态特性,得出了其空载和负载特性。

本文在研究电机性能的同时,对Ansoft仿真软件也进行了比较详细的探讨,在没有具体资料的情况下,对该软件有了初步的认识。

基于SIMULINK的异步电机的建模与仿真

基于SIMULINK的异步电机的建模与仿真

基于SIMULINK的异步电机的建模与仿真摘要利用MATLAB软件中的动态仿真工具SIMULINK,构建了异步电机的仿真模型,并通过实验验证了所建电机模型的可行性、与实用性。

关键词异步电机建模仿真MATLAB/SIMULINK1 引言随着电力电子技术的飞速进步和交流电机调速理论的不断深入。

异步电机的应用日益广泛。

然而异步电机是一个高阶、非线性、强耦合的多变量系统。

通过坐标变换,可以消除瞬变过程中的周期性时变系统和降低方程的阶数,从而简化数学模型,基于这种观念,利用计算机仿真技术去建模既省时又直观。

本文采用异步电机基于两相静止坐标系下的数学模型,结合坐标变换,利用MATLAB软件中的动态仿真SIMULINK,建立异步电机的仿真模型。

并通过实例进行实时仿真。

2 基于静止坐标系下异步电机数学模型异步电机的数学建模方法是将三相电机转换成两相电机,按两相电机建模。

2.1电压矩阵方程异步电机在两相静止坐标系中的电压矩阵方程为式中,uα1,uβ1分别是异步电机在α、β轴上定子电压分量;uα2,uβ2分别是异步电机在α、β轴上转子电压分量;iα1,iβ1分别是异步电机在α、β轴上定子电流分量;iα2,iβ2分别是异步电机在α、β轴上转子电流分量;R1、R2分别为定、转子电阻;L1、L2分别为定、转子电感;L m为互感;s为微分算子;ω为转子角速度特别地,对于笼型电机转子侧电压为零。

2.2三相-二相变换三相对称静止绕组,通以三相平衡的正弦电流,产生合成磁动势,以同步转速旋转,则此三相称为三相静止坐标系。

两相静止绕组,它们在空间互差90度电角度,且通入时间上互差90度的两相电流,也产生与上相同的磁动势,则把此两相称为两相静止坐标系。

若它们的磁动势空间位置一致、幅值和转速相等,故可认为这两种坐标系等效。

三相-两相的转换矩阵如下:2.3转矩和运动方程转矩方程式为:式中p n为电机的极对数;J为电机的转动惯量;T l为负载转矩。

maxwell电机仿真实例

maxwell电机仿真实例

maxwell电机仿真实例Maxwell电机仿真是一种用于模拟电机工作原理和性能的工程技术。

通过仿真,可以分析电机的电磁场分布、热特性、结构强度和振动噪声等关键特性。

在设计阶段和优化阶段,仿真可以帮助工程师快速评估各种设计方案,节省时间和成本。

本文将介绍Maxwell电机仿真的基本原理、建模方法和实例分析。

一、Maxwell电机仿真的基本原理Maxwell电机仿真的基本原理是通过有限元分析(FEA)方法来求解电机的电磁场分布和电磁力,以及通过热分析来评估电机的温升和散热性能。

在仿真过程中,需要建立电机的三维结构模型,并定义电机的电磁特性和材料性质,然后对电机在不同工况下进行分析。

1.电机的三维结构建模在进行Maxwell电机仿真之前,首先需要建立电机的三维结构模型。

电机的结构模型可以通过CAD软件进行建模,然后导入到Maxwell 仿真软件中进行后续分析。

在建立结构模型时,需要考虑电机的整体结构、定子和转子的结构细节,以及绕组、铁芯和气隙等部件的几何形状和材料性质。

2.定义电机的电磁特性和材料性质在建立电机的结构模型之后,需要定义电机的电磁特性和材料性质。

电机的电磁特性包括磁场分布、电磁力和电感等参数,而材料性质包括铁芯的磁导率、绕组的电阻和绝缘层的介电常数等。

这些参数对于电机的工作性能和效率具有重要影响,需要在仿真中进行准确的定义和分析。

3.进行电磁场分析在完成结构建模和定义电磁特性之后,可以对电机进行电磁场分析。

通过有限元分析方法,可以求解电机的磁场分布、磁场密度、磁力线和磁场能量等参数,从而评估电机的电磁性能和效率。

4.进行热分析除了电磁场分析外,还需要对电机的热特性进行仿真分析。

通过热传导和热对流分析,可以评估电机在不同工况下的温升和散热性能,从而确保电机在长时间运行时不会因为过热而损坏。

5.综合分析和后处理最后,需要对电机的电磁场分析和热分析结果进行综合分析和后处理。

通过对电机的各项性能指标进行评估和比较,可以找出电机的优化方案,并对电机的结构和材料进行改进,从而提高电机的性能和效率。

永磁同步电机仿真模型

永磁同步电机仿真模型

永磁同步电机的仿真模型1、永磁同步电机介绍永磁同步电动机(permanentMagnets synchronousMotor, PMSM>,转子采用永磁材料,定子为短距分布式绕组,采用三相正弦波交流电驱动,且定子感应电动势波形呈正弦波"定子绕组通过控制功率管(如IGBT>的不同开关组合,产生旋转磁场跟踪永磁转子的位置,自动地维持与转子的磁场有900的空间夹角,以产生最大的电机转矩"旋转磁场的转速则严格地由永磁转子的转速所决定,PMSM具有直流电动机的特性,有稳定的起动转矩,可以自行起动,并可类似直流电动机对电机进行闭环控制,多用于伺服系统和高性能的调速系统。

永磁同步电动机按转子形状可以分为两类:凸极式永磁同步电机和隐极式永磁同步电机。

它们的区别在于转子磁极所在的位置,凸极式永磁同步电机转子磁极是突起在轴上的,其直轴和交轴电感参数不相等"而隐极式永磁同步电机的转子磁极是内置在轴内的,直轴和交轴电感参数相等"凸极式转子具有明显的磁极,定子和转子之间的气隙是不均匀的,因此其磁路与转子的位置有关。

2、永磁同步电机的控制方法目前对永磁同步电机的控制技术主要有磁场定向矢量控制技术< field orientation control,FOC)与直接转矩控制技术<direct torque control,DTC)。

在这里我们使用磁场定向矢量控制技术来建立永磁同步电机的仿真模型。

磁场定向矢量控制技术的核心是在转子旋转坐标系中针对激磁电流id和转矩电流iq分别进行控制,并且采用的是经典的PI线性调节器,系统呈现出良好的线性特性,可以按照经典的线性控制理论进行控制系统的设计,逆变器控制采用了较成熟的SPWM、SVPWM等技术。

磁场定向矢量控制技术较成熟,动态、稳态性能较佳,所以得到了广泛的实际应用。

该方法摒弃了矢量控制中转子磁场定向的思想,采用定子磁场定向,分别对定子磁链和转矩直接进行控制。

基于matlab永磁同步电机控制系统建模仿真方法

基于matlab永磁同步电机控制系统建模仿真方法

基于matlab永磁同步电机控制系统建模仿真方法1. 建立永磁同步电机模型
我们可以通过matlab中的Simulink工具箱建立永磁同步电机的模型,模型中包括电机本身和电机驱动系统。

该模型可以包括各种控制系统,比如位置控制、速度控制、电流控制等。

2. 设计控制系统
根据永磁同步电机的特性和实际控制需求,选定相应的控制策略。

常见的控制策略有FOC(磁场定向控制)、DTC(直接扭矩控制)等。

设计控制系统包括建立系统数学模型、设计控制算法、仿真验证等步骤。

3. 仿真实现
在matlab中进行仿真实现,根据设计的控制系统和模型参数,运行仿真程序,验证设计的控制系统的性能和功能是否符合实际控制要求,以此优化和完善控制系统。

4. 实验验证
在实验室或者实际应用场景中,进行实验验证,对控制系统进行调试和优化。


验验证可以通过实际硬件搭建或者仿真器件模拟等方式实现。

根据验证结果,并结合实际应用需求,对控制系统进行进一步优化和改进。

异步电动机动态数学模型的建模与仿真 αβ讲解

异步电动机动态数学模型的建模与仿真 αβ讲解

《电力拖动与控制系统》课程设计说明书目录1异步电动机动态数学模型的性质 (1)2异步电动机的三相数学模型 (2)2.1假设条件与模型 (2)2.2异步电动机三相动态模型的数学表达式 (2)3 坐标变换 ..................................................................53.1坐标变换的基本思路 (5)3.2 三相-两相变换(3/2变换) (5)?i?为状态变量的状态方程 ............................... -7 4 αβ坐标系上以 -s s5模块实现 ..................................................................85.1 3/2 transform 模块 (8)5.2 2/3 transform 模块 (8)5.4整体模块 (10)5.5 仿真参数设置 (11)6 仿真结果 (12)总结 .................................................................. .. (14)参考文献 ...................................................................15《电力拖动与控制系统》课程设计说明书摘要异步电动机又称感应电动机,是由气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩,从而实现机电能量转换为机械能量的一种交流电机。

异步电动机按照转子结构分为两种形式:有鼠笼式、绕线式异步电动机。

它具有非线性、强耦合、多变量的性质,要获得高动态调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电动机的调速方案。

本课程设计是基于Matlab的按定子磁链定向的异步电动机控制仿真,通过模型的搭建,使得异步电动机能够以图形数据的方式进行仿真模拟将要实施的定子磁链设计,查看仿真后的各种波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散化
非线性代数方程组
线性的特点
3、仿真工具:
主要有三种:一种是从通用的仿真软件发展而来, pspice,saber等,一种是从专用软件中发展而来, 如matlab,emtp;另一种是电力电子的专门软件: 如simplis,MATLAB, Psim, Pspice,Saber, EMTP,SIMPLIS,SCAT,Simplorer。
5、 Saber2004仿真软件的主要特点
Saber 软件简介 Saber 软件主要用于外围电路的仿真模拟,包括 SaberSketch 和SaberDesigner 两部分。SaberSketch用于绘制电路图,而SaberDesigner用于对电路仿真模拟, 模拟结果可在 SaberScope和DesignProbe 中查看。Saber 的特点归纳有以下几 条: 1. 集成度高:从调用画图程序到仿真模拟,可以在一个环境中完成,不用 四处切换工作环境。 2 . 完整的图形查看功能: Saber 提供了 SaberScope 和DesignProbe 来查看仿 真结果,而SaberScope功能更加强大。 3. 各种完整的高级仿真:可进行偏置点分析、DC分析、AC分析、瞬态分 析、温度分析、参数分析、傅立叶分析、蒙特卡诺分析、噪声分析、应力 分析、失真分析等。 4.模块化和层次化:可将一部分电路块创建成一个符号表示,用于层次设 计,并可对子电路和整体电路仿真模拟。 5. 模拟行为模型:对电路在实际应用中的可能遇到的情况,如温度变化及 各部件参数漂移等,进行仿真模拟。
1.2 Psim6.0仿真软件的使用
1) Psim是一家加拿大的公司编写的专门适合于电力电子
的仿真软件。采用特殊的算法保证实际系统的收敛性,
现在我们看到的版本是Psim6.0。这个版本可以在XP 下运行的。以前的版本不能在XP下运行的。而且这个 软件是一个绿色软件。里面有很多的帮助。 2) psim的特点:软件小,算法单一,非线性问题有专门 算法,属于电气工程的专门软件。 3)通过一个简单的例子进行讲解。
4、 PSPICE语言的主要特点
用于模拟电路仿真的SPICE(Simulation Program with Integrated Circuit Emphasis)软件于1972年由美国加州大学伯克 利分校的计算机辅助设计小组利用FORTRAN语言开发而成, 主要用于大规模集成电路的计算机辅助设计。SPICE的正式实 用版SPICE 2G在1975年正式推出,但是该程序的运行环境至少 为小型机。1985年,加州大学伯克利分校用C语言对SPICE软件 进行了改写,1988年SPICE被定为美国国家工业标准。与此同 时,各种以SPICE为核心的商用模拟电路仿真软件,在 SPICE的基础上做了大量实用化工作,从而使SPICE成为最为 流行的电子电路仿真软件。 ORCAD PSPICE Release 9.0共有六大功能模块,其中核心 模块是PSPICE A/D,其余功能模块分别是:Capture(电路原理 图设计模块)、Stimulus Editor(激励信号编辑模块)、Model Editor(模型参数提取模块)、PSPICE/Probe(模拟显示和分析 模块)和Optimizer(优化模块)。
1.3 MATLAB软件的使用
1) Matlab语言是由美国的Clever Moler博士于1980年
开发的设计者的初衷是为解决“线性代数”课程的
矩阵运算问题取名MATLAB即Matrix Laboratory 矩阵实验室的意思。 2)它将一个优秀软件的易用性与可靠性、通用性与专业 性 、一般目的的应用与高深的科学技术应用有机的 相结合。 3) MATLAB是一种直译式的高级语言,比其它程序设
1.1 电气工程仿真的特点
1、仿真的作用:模拟实际系统,进行最优设计, 用来学习知识等。
2、仿真的过程:建模和实验,两种方法包括模拟 仿真和数字仿真。
时域分析的一般顺序和方法
电路图绘制
图形数据化
电连接网表
数学建模
系统状态方程
拓扑方程 拓扑法 改进节点法 数值积分法: 欧拉法 龙格库塔法 吉尔-2法 牛顿-拉夫逊法
电机的数学模型与 仿真分析
报告提纲
1. 电气工程的仿真技术
2. 直流电机的数学模型与仿真分析 3. 电磁耦合系统
4. 异步电机的数学模型与仿真分析
5. 电机中常用的坐标系统
6. 同步电机的数学模型与仿真分析
1、电气工程的仿真技术
1.1 电气工程仿真的特点 1.2 Psim6.0仿真软件的使用 1.3 MATLAB软件的使用 1.4 电机及控制技术的最新发展
PSPICE则是由美国Microsim公司在SPICE 2G版本的基础上升级并用于PC 机上的SPICE版本,其中采用自由格式语言的5.0版本自80年代以来在我国得 到广泛应用,并且从6.0版本开始引入图形界面。1998年著名的EDA商业软件 开发商ORCAD公司与Microsim公司正式合并,自此Microsim公司的PSPICE产 品正式并入ORCAD公司的商业EDA系统中。目前,ORCAD公司已正式推出 了ORCAD PSPICE Release 9.0,与传统的SPICE软件相比,PSPICE 9.0在三大 方面实现了重大变革:首先,在对模拟电路进行直流、交流和瞬态等基本电 路特性分析的基础上,实现了蒙特卡罗分析、最坏情况分析以及优化设计等 较为复杂的电路特性分析;第二,不但能够对模拟电路进行,而且能够对数 字电路、数/模混合电路进行仿真;第三,集成度大大提高,电路图绘制完成 后可直接进行电路仿真,并且可以随时分析观察仿真结果。 虽然PSPICE应用越来越广泛,但是也存在着明显的缺点。由于SPICE软 件原先主要是针对信息电子电路设计而开发的,因此器件的模型都是针对小 功率电子器件的,对于电力电子电路中所用的大功率器件存在的高电压、大 注入现象不尽适用,有时甚至可能导致错误的结果。PSPICE采用变步长算法, 对于以周期性的开关状态变化的电力电子电路而言,将造成大量的时间耗费 在寻求合适的步长上面,从而导致计算时间的延长,有时甚至不收敛。另外, 在磁性元件的模型方面PSPICE也有待加强。
相关文档
最新文档