放缩法证明数列不等式
用放缩法证明数列中的不等式
2n 2 n 1 2 n 1 奇偶型: ; 2n 2n 1 2n 1
2n 1 2n 1
奇偶型放缩为可求积
指数型可放缩 为等比模型
一. 放缩目标模型——可求和
(一)形如 a k (k为常数)
i i 1 n
1 1 1 1 例1 求证: 2 3 L n 1 (n N ) 2 2 2 2
* 2 2 2
证明
1 1 1 1 1 1 2 ( ) (n 2) Q 2 (2n 1) 4n 4n 4n(n 1) 4 n 1 n
1 1 1 1 1 1 ) 左边 1 (1 ) ( ) L ( 4 2 2 3 n 1 n 1 1 1 (1 ) 1 1 5 n 2 4 n 4 4
n
接求和,就先求和再放缩;若不能直接求和的,一般要 先将通项 an 放缩后再求和.
问题是将通项 an 放缩为可以求和且“不大不小”的 什么样的 bn 才行呢?其实,能求和的常见数列模型并不 多,主要有等差模型、等比模型、错位相减模型、裂项 相消模型等. 实际问题中, bn 大多是等比模型或裂项相 消模型.
评注
放缩法的证明过程就像“秋风扫落叶”一样干脆利落!
1 5 7 对 2 放缩方法不同,得到的结果也不同. 显然 2 , 3 4 n
故后一个结论比前一个结论更强,也就是说如果证明了变式 3,
1 那么变式 1 和变式 2 就显然成立. 对 2 的 3 种放缩方法体现了 n n 5 1 三种不同“境界” ,得到 2 的三个“上界” ,其中 最接近 3 k 1 k
用放缩法证明 数列中的不等式
张家界市第一中学 高三数学组
放缩法灵活多变,技巧性要求较高,所谓“放大一点 点就太大,缩小一点点又太小”,这就让同学们找不到头 绪,摸不着规律,总觉得高不可攀!
放缩法证明不等式
高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n knk (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn n n 21121)12(21--=- (6) n n n -+<+221 (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+ (15))2(1)1(1≥--<+n n n n n说明:1、用放缩法证明不等式,放缩要适应,否则会走入困境.例如证明4712111222<+++n .由k k k11112--<,如果从第3项开始放缩,正好可证明;如果从第2项放缩,可得小于2.当放缩方式不同,结果也在变化.2、放缩法一般包括:用缩小分母,扩大分子,分式值增大;缩小分子,扩大分母,分式值缩小;全量不少于部分;每一次缩小其和变小,但需大于所求,第一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩后便于求和.例18 求证2131211222<++++n . 分析:此题的难度在于,所求证不等式的左端有多项和且难以合并,右边只有一项.注意到这是一个严格不等式,为了左边的合并需要考查左边的式子是否有规律,这只需从21n 下手考查即可. 证明:∵)2(111)1(11112≥--=-<⋅=n nn n n n n n , ∴ +⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+<++++312121111131211222n 212111<-=⎪⎭⎫ ⎝⎛--+n n n201417. (12分)已知数列{}n a 满足111,31n n a a a +==+.(I)证明{12}n a +是等比数列,并求{}n a 的通项公式;(II)证明2111132n a a a +++<.【答案解析】解析:(I)∵131n n a a +=+11331111)223(22n n n n a a a a ++∴⇒+=+++=+ 1112132a a =+⇒= ∴{12}n a +是首项为32,公比为3的等比数列∴1*131333,2222n n n n n a a n N --⋅+==∈=⇒ (II)由(I)知,*13,2n n a n N -=∈,故 121213*********(13)n n a a a +++=++-+-- 12110331112()3333n n --+-≤+-+12111()11131331(1()).133323213nn n --=++++==⋅-<- 例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先n n n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<1211212144411222n n n n n ,所以 35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n。
放缩法证明数列不等式
放缩法证明数列不等式数列不等式是指对于数列${a_n}$,能够证明其满足其中一种特定的不等关系。
放缩法是一种常用的证明数列不等式的方法,其核心思想是通过数学推导和合适的放缩操作,将需要证明的不等式转化为已知的不等式或者已有的数学结论。
下面我将详细阐述放缩法的步骤,并通过一个具体的例子来演示放缩法如何证明数列不等式。
步骤一:首先,我们要明确需要证明的不等式形式。
通常,数列不等式可以分为两种情况:单调性不等式和两边夹逼不等式。
单调性不等式需要证明数列${a_n}$的单调性(如$a_{n+1}>a_n$),而两边夹逼不等式需要证明数列${a_n}$的极限(如$\lim_{n\to\infty}a_n=a$)。
在这里,我们以两边夹逼不等式为例来进行讲解。
步骤二:建立需要用到的不等式。
通常,需要利用已知的数学不等式或结论来辅助证明原不等式。
常见的不等式包括柯西-施瓦茨不等式、均值不等式、柯西反证法等。
在这里,我们以柯西-施瓦茨不等式为例进行讲解。
步骤三:利用放缩操作将原不等式转化为已知的不等式或数学结论。
放缩操作的核心是通过合适的代换或变形,对不等式进行放大或缩小,使得我们能够应用已知的不等式或数学结论。
在这里,我们以一个具体的例子来演示放缩操作的过程。
假设我们要证明数列${a_n}$满足以下不等式:$\frac{a_{n+1}}{a_n}<2$。
我们可以采用放缩法来证明这个不等式。
首先,我们知道对于任意的实数$x$,都有$x^2\geq 0$。
这是由平方数的非负性质可得,也可以通过推导得出。
根据柯西-施瓦茨不等式,我们有$(a_n\cdot 1-a_{n+1}\cdot 1)^2\geq 0$,即$a_n^2+a_{n+1}^2-2a_n\cdot a_{n+1}\geq 0$。
然后,利用放缩操作,我们可以将上述不等式改写为$a_n^2+a_{n+1}^2\geq 2a_n\cdot a_{n+1}$。
放缩法证明数列不等式的策略探究
2021年第2期(上)中学数学研究41放缩法证明数列不等式的策略探究甘肃省兰州市第六中学(730060)焦永垚数列不等式的证明是高中数学中的重点和难点,是历年 高中各类考试中的热门考点,这类问题通常难度较大,具有很高的综合性与灵活性.本文以2019年全国高中数学联赛 贵州省预赛试题(B)卷第16题为例,从不同角度探寻放缩法 证明数列不等式的策略与方法,重点阐述如何选择合理地放缩思路,如何准确把握放缩的“尺度”,以期能帮助同学们从根本上认识放缩法的规律,从而优化解题方法,提升解题能 力,提高解题效率.一、试题分析题目 设数列{a ”}的前n 项和S ”满足:S ” = k • q ”-k , 其中k, q 为非零常数,且a i = 3, a 4 = 81.(1)求数列{a ”}的通项公式;1 1 1 9b i 十瓦十•••十瓦 < 歪.⑵设b ” = a ” ——,证明: a ”分析 第(1)问考查数列的基础知识,易求得a ” = 3”.第(2)问是数列不等式的证明,数学归纳法是解决这类问题的优选方案.1 3 9当n = 1时,—=- < —,不等式成立.b 1 8 16假设当n = k (k e N *)时结论成立,即士 + 士 +b 1 b 219• • • +匸< 16,那么当n = k 十1时,因为b ” — 3b ”-1 =81莎 > 0,所以 b ” > 3b ”-i ,即—<1 1 1 1 1 1 ( 1 亠 | b i 十b 2十 十b k 十b k+i b i 十3 I b i 十b 2十 十b k 丿3 1 9 93 + 1 x 爲=爲,即当n = k + 1时不等式也成立.8 3 16 161 1 1 9综上,对于一切正整数n ,不等式十+十十…+厂< 土b 1 b 2 b ” 16都成立.莎・(n 2 2),则3b ”-i1; b 2 b k 可以看到,上述方法中我们需要克服以下三个难点:(1) 如何利用归纳假设?要证明当n = k + 1时结论也成立,如何利用归纳假设, 是解决问题的的关键,为了利用假设,我们需要找岀1与b ”1 1 1亠(n 2 2)的关系,要找岀二与亠的等量关系难度 b ”-1 b ” b ”-1太大,所以考虑它们的不等关系,也就是放缩.(2) 怎样放缩?因为b ” =3” -补,容易发现{b ”}为递增数列,3”所以1 < 占(n 2 2),因此我们会首先做这样的尝b ” b ”-1试:当n = k 十1时,岂+岂+ • ••十!1 + <b i b 2 b k b k+i1 1 1 1 3 9 15 9b i +(b 十厉十.…十瓦)< l + 注,但歪> 16,放缩过度了.(3) 如何调整放缩度?因为PA 2PE PF , 所 以 PE = 1, AE =VPA 2 - PE 2 = 73.故 AC = 2AE = 273.在 Rt AABCAB中,选取ZBAC 为自变量,记ZBAC = 0,则cos 0 = -&,所以 AB = 273 cos 0,又 sin 0 = B D , cos 0 = AD ,故AB ABBD = ^/3 sin 0 cos 0, AD = ^/3 cos 0 cos 0,所以S a abd = 2 AD • BD = 6 sin 0 cos 3 0.令sin 2 0 = x(0 < x < 1),则三棱锥P - ABD 的体积 为 V = 1 • S a abd • PE = 2 Jx(1 — x)3(0 < x < 1),令 f (x) = x(1 - x)3(0 < x < 1),通过求导可解得 V max =算1,8即三棱锥P - ABD 的体积的最大值为呼.8究竟怎样选取自变量角解题?通过以上几例的解答,我们可以发现,要先找岀题设中的变量,然后确定变量中的角 为自变量,再从多个变量角中选取一个变量角为自变量,结合正弦定理、余弦定理、三角公式、三角形的面积公式、三角函数等相关知识点,建立所求取值范围(最值)的变量与所选取自变量角的关系式,由此把问题转化为求所选取自变量角 的三角函数的值域(最值)问题,同时要注意所选取自变量角的取值范围.参考文献[1] 武增明•一道2015年高考题的评析与推广[J].数理化学习:高中版,2016(10) : 25-26.[2] 钱鹏•你若探究 花自盛开——一道河南模考解析几何题的探究[J].中学数学教学,2019(3) : 53-54.[3] 赵建勋.设角为自变量求图形的最值[J].中学生数学:高中版,2012(6) : 15-16.42中学数学研究2021年第2期(上)经历(2)的尝试,发现放缩过度了,需要调整放缩的度: 如果忽略b ” 一 3” - 3”中的1,则有b ” — 3b ”—i (n 2 2),于是我们猜想b ” > 3b ”—i ,是否成立呢?因为b ” - 3b ” —i — 3” > 0,所以 b ” > 3b ”_i ,可得右 < (n 2 2),再进行计算发现刚刚好. ""1从以上过程可以看到,放缩法是证明数列不等式的重点 和难点,因此我们有必要进一步探究放缩法证明数列不等式的思路与策略.二、思路探究1 1 1 9综上,对于一切n e N *,都有 + +…+ < —.b i b 2 b ” 16点评此证法中如果只保留第一项,从第二项开始放大, 则寺+占+ ••• +丄< 1 +1 — 5 > 9,放缩过度了;b i b 2 b ” 8 4 8 16如果保留前两项,从第三项放大,则+寺+…+岂<b i b 2 b ”3 9 1 137 98 + 80 + 12 = 240 > 16,依然太大了,只有保留前三项, 从第四项开始放大,才能得到符合的结果.因此,当岀现放缩 过度的情况时,就要适时进行“局部调整”,保持前若干项不 变,从后面的项开始放缩,反复尝试,直至成功.数列.思路1放缩成一个等比数列为了便于求和,我们尝试将数列{右}放缩成一个等比策略1利用不等式一a ” -b ”中a > b > 0.因为3” -丄3”3”—iI 3”_____1_____放缩苴a”- (a - b)放缩,苴 (3 - 3 • 32”—r) 21 3 1匸工4 8 •尹,3n393 < ,不等式成立;当n 2 2时,8 16思路2向裂项相消放缩除了将数列{右}放缩为一个等比数列,我们还 可以尝试将其放缩"为可以“裂项相消”的形式,结合1 3”-=(3”一 1)(3” + 1)的结构,有以下两种策略.3”—i-i ,所以b ”于是,当n =1时,b i1亠 亠 亠” 1 3/1 1b i + - + ••• + 瓦 4b i + 8(3 + 羽 + •••+3 3 9< —+ ———8 16 ,11b i b 2 (3 3 1 (—+ — • — ( 18 8 2 \b ”1 1 1 9综上,对于一切n e N *,都有r +厂+…+厂 < 毎.b i b 2 b ” 16点评 在证明数列不等式的问题中,对于形 如 一「(a>b> 0)的数列,通常可以利用不等式a ” -b ”4 —二_応将其放缩为一个等比数列.a ” -b ” a ”—i (a - b)策略2利用不等式3” 2 2 • 3”-】+ 1放缩.因为3” - 2 • 3"—i — 3"—i 2 1,所以,对任意 e N *,都有3” 2 2 • 3"—i + 1 成立.所以,1 —b ”4 13” - 1、2 • 3"—i '3 < 2;当n — 2时,丄+丄8 16' n bl b 2鶴;当n =3时,b i ++右 4095 9< 7280 =花;当 n 2 4 时,1 1 1b i + 瓦 + •••+ -<丄+丄+丄+1 <b i + — — 2n 3”3”(3” - 1) • 3”1忘=4580 =3819------<--------7280 7280(3” 一 1) (3” + 1) <于是,当n — 1时,3 9 39—+ ——— <8 80 803 9 27—+ — +-----—8 80 7283 9 27 18 + 80 + 728 + 233 + 34 + •••+ 善「-黠3)3 9 27 1< I + I0 + 7lI + 361 - 1336191 36855 9 --------< ---------—65520 65520 16’策略1放缩成入(3”, 一丄-莎一万)的形式,入为 常数.当n 2 2时,1---—-----------------------< -----------------b ” (3- - 1) (3- + 1) (3- - 3) (3- - 1)—________里二_______ — 1(_________」)(3”—】-1)(3” - 1) 2 ,3”—】-1 3” - 1)1 3 9 1 1所以,当n — 1时,b- — 8 < —;当n — 2时,汗+ —b i 8 16 b i b 23 9 39 45 9 业、° 冶8 80 80 80 16, " '1 1 1-+ 厉 + •••+ -111/1 1 1 b i b 2 2 \32 - 1 33 - 1 33 - 1+_________)3”—i - 1 3” - 1_3 9 1 (1 1 )=8 + 80 + 2(8 - 3”—!丿3 9 1 44 45< —+ -- + -- -- < --8 80 16 80 803”3”1----------------34 — 1 +916综上,对于一切正整数n ,都有寺+寺+ •b i b 21策略2放缩成入(莎—亍一莎百3”119••+ - < 16.的形式,入为常数.因为右—(3”一 1)(3” + 1),为了便于用裂项相消法求和,所以我们联想能否把{右}中的全部或者部分的形式.我们先逆向进行探3” + 11 2 3”—i 1项放大成3-^1 -1索,因为L!- 要使 b ” < 3”-1 + 1 - 莎+!2• 3”—】 口需^ <(3"—i + 1)(3” + 1)'只需 3” - 1 < 3 < 2 • 3” - 2,即 3” > 5,显然当 n n 2 2 时,有 1 < 1 1b ”3” + 1 _ (3”-+ 1)(3” + 1),所以1 □需_______二________ <,只需(3” - 1)(3” + 1)2 口需 3” +3”—i + 1,只需3十2 2时成立,所以,当, 于是当 n — 1 时,3”—】+ 1 一 3” + 13”2021年第2期(上)中学数学研究433 9 1一 < —;当 n = 2 时,----+8 16’ b i 9 1 116 ;当 n = 3 时,^- + 厂 +16 b 1 b 24095 9< 7280 =歪;当 n 24 时,13 9 39—+ —=— <8 80 803 9 27—+ — +-----=8 80 728b 211+ 1b 21b =4580 —3819 < 7280-----72801 1 1b 十厉十•••十瓦1 1 1 1bib 2b 3 33 + 1 34 + 1 丁 34 + 111十...---------------------------3”-1 + 1 3” + 11 1 1 1 1 =-------------------------------------------------------------b i b2 b3 33 十1 3n + 13 9 27 1 4079 4095 9< —+ — +----+ — ------- < ------ —8 80 728 28 7280 7280 16综上,对于一切正整数n ,都有当+当+…十右 b 1 b 2 b ”思路3利用“糖水不等式”放缩135 + 119< 16b ”3”33”我们都熟悉这一不等式模型:设n > m > 0, c > 0, 则m < m+^jjj .由于它体现了 “糖水加糖变甜了”n n+c的生活实际,因此通常将其称为“糖水不等式”.因为””瓦=莎二r ,且0 <莎二r < 1,所以由“糖水不等” 1 3” 3” + 1 1 1式”可得b ” = E <掳厂=3”十9”,所以,当139n = 1时,—=- < —,不等式成立;当n 2 2时,b 1 8 161 1 1 b 十厉十•••十石<b i 十(32十33十…•十=3 + 1 (1-丄)+ 丄(1-丄)8 6 I 3”-i 丿十 72 I 9”-i 丿3 1 1 5 9< —+ — + —=— < —8 6 72 9 161+------------+-------十93十 十9”91”〕综上,对于一切正整数n ,都有1十1十…十右思路4利用分项比较法放缩9< 16需证b i 十十…十策略1执果索因,逆推探源.不等式的左边是数列 的前n 项和,右边为一个常数,结合1 = -3— b ” b ” 32” - 19的结构,我们联想,把右边常数-9缩小成某个等比数列16{c ”}的前n 项和,然后只需证明1 < c k 就可以了,其 中k = 1,2,...n .那么{c ”}究竟等于什么呢?我们可1 1 1 9以逆推回去:要证右+右+…+右 < 爲成立,只 b 1 b2 ( b ” ) 16/ <16(1-3”)成立,设数列=箱(1-3”),则当n 2 2时,3—,当n = 1时,c i = T i =—,符合上 8・3”‘ '丄 i 8’9 1 3k 9式,故=厂莎.于是,由b 一c k =站二! 一 E ={c ”}的前n 项和几9T n - T ”—i9=Ti 3k 9 32k 18.3k (32k - 1) < 0 可得瓦 < %,其中 k =】,2,_n ,所以右十右十…十右< T ” = 1H 1-3”)< 16,即1 1 1 9.b i 十厉十•••十石 < 歪.9策略2逆用累加法.同思路4,先把常数為缩小为161H 1-3”),即要证右十右十…十b ” < 16,只需证b 十瓦十•• •十瓦 < 花(1-莎丿,而三、小结反思数学归纳法和放缩法都是证明数列不等式的常用方法,而放缩法通常学生感觉无从下手,不知所措,主要表现在以 下几个方面:(1)用什么方法放缩?首先要搞清楚到底是放大还是缩小,再考虑采用哪种放缩方法.常见的方法有利用均值不等式、“糖水”不等式、放大(或缩小)分子(或分母)、一些常用的不等式等等.(2) 向什么方向放缩?对于像母题中与数列前n 项和有关的不等式,放缩的原则是经过放缩后能够求和,比如放缩成一个等比数列、向裂项相消放缩等等.(3) 如何把握放缩的度?我们经常会遇到放得“太大”或“太小”的问题,这就要求调整放缩的尺度,例如在本文中,当我们发现放缩得“太大”时,就要采取补救措施,即保留前若干项不变,对后面的项进行放缩,逐一尝试,直至成功.另外,本文中的这道竞赛题是一道典型而设置巧妙的考 题,它之所以能引起我们强烈的共鸣与反响,不仅仅是因为其独特的解题思路与技巧,更是因为问题中所蕴含的丰富的 数学知识思维和思想方法.这样的题目有利于学生模式化解题的总结,不仅仅教会了学生怎样解题,而且还有效地培养 了学生思维的广阔性和灵活性,提高了解题效率.参考文献[1]曹莹,李鸿昌.利用糖水不等式证明一类数列不等式[J].数学通讯(上半月),2019(11):2-3.。
放缩法证明不等式
放缩法证明不等式所谓放缩法,就是针对不等式的结构特征,运用不等式及有关的性质,对所证明的不等式的一边进行放大或缩小或两边放大缩小同时兼而进行,以达到证明结果的方法。
但无论是放大还是缩小都要遵循不等式传递性法则,保证放大还是缩小的连续性,不能牵强附会,须做到步步有据。
比如:证a <b ,可先证a <h 1,成立,而h 1<b 又是可证的,故命题得证。
数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。
“放缩法”可以和很多知识内容结合,对应变能力有较高的要求。
因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。
利用放缩法证明不等式,既要掌握放缩法的基本方法和技巧,又须熟练不等式的性质和其他证法。
做到放大或缩小恰到好处,才有利于问题的解决。
一、用放缩法证明不等式的基本策略1、运用放大、缩小分母或分子的办法来达到放缩的目的分式的放缩对于分子分母均取正值的分式,如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可.还可利用真分数的分子和分母加上同一个正数,则分数值变大;假分数的分子和分母加上同一个正数,则分数值变小来进行放缩. 例1、若a ,b ,c ,d 是正数.求证:12a b c d a b ca b db c da c d<+++<++++++++证明:a b c d a b c a b db c d a c d+++++++++++1abc da b c d a b c d a b c d a b c d>+++=++++++++++++又2a b c d a b c da b c a b d b c d a c d a b a b c d c d+++<+++=++++++++++++ 或a b c d a b ca b d b c da c d +++++++++++2a bb ca cb d a bcd a b c da b c da b c d++++<+++=++++++++++++(利用(0)a a mm b b m+<>+) ∴12a bcda b ca b d b c d a c d <+++<++++++++例2、求证:213121112222<++++n证明:∵nn n n n111)1(112--=-<∴2222111111*********232231nn nn++++<+-+-++-=-<-【变式】2222111171234n++++<∵nn n n n111)1(112--=-<∴2222211111111151171()()1232231424nn nn++++<++-++-=+-<-本题说明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即放不能太宽、缩不能太窄,真正做到恰到好处。
浅析用放缩法证明数列不等式的策略
列。求证:对于所有正整数 n
,都有
1 a1
1 a2
1 an
3 2
.
证明:根据已知条件很容易得到 an 3n 2n .
由于 an 3n 2n 3n1 3n2 2 3n3 22 2n1 3n1
所以 1 an
1 3n1
.所以
1 a1
1 a2
1 an
1
1 3
1 32
1 3n1
1
(1 1
23
n(n 1) .证明:
证明:设数列通项是 ak k(k 1) , k 1,2,, n .
因为 k
k(k
1)
k
k 2
1
k
1 2
,
所以
n k 1
k
Sn
n k 1
(k
1 2
ห้องสมุดไป่ตู้
)
,即
n(n 1) 2
Sn
n(n 1) 2
n 2
(n
1) 2 2
.
评析:借助放缩法对不等式加以证明,需要对放缩的度加以把
证明:从左边看,可以将其看作是数列an的前 n 项和,其中
an
1 n
。从右边来看,可以将其看成是数列 bn 的前
n
项和
Sn
ln
en n!
。
当 n 2 之时,
bn
Sn
S n 1
ln
en n!
ln
en1 (n 1)!
ln
e n
1
ln
n
;
当 n 1 之时, b1 S1 1 ,适合上式,所以 bn 1 ln n
(x)
f
(1)
0
专题36 到底你要放缩到什么程度:放缩法证明数列不等式-高考数学80个热点难点吃透大全
36 到底你要放缩到什么程度:放缩法证明数列不等式考纲要求:1、掌握放缩法证明数列不等式的理论依据——不等式的性质:2、掌握放缩的技巧与方法.基础知识回顾:放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:12nn a a S n +=⋅,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=≠-,n n a k q =⋅(关于n 的指数类函数)③ 错位相减:通项公式为“等差⨯等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手 ② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。
从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。
(3)放缩构造裂项相消数列与等比数列的技巧:① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)② 等比数列:所面对的问题通常为“n S <常数”的形式,所构造的等比数列的公比也要满足()0,1q ∈ ,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,,常数可视为11a q-的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。
放缩法证明数列不等式的常见模型及调整策略
+…+
( ) n
1 -
1
-
1 n
=2 -
1 n
<2
( 四) 二项式模型
( ) 例题 4: 已知 n∈N* ,k > 1,求证:
k k -1
n
≥1
+
k
n -
1
( ) 解析: 由
k k -1
n
幂的形式,联想到二项展开式。
( ) ( ) 证明:
k k -1
n
=
1
+
k
1 -
1
n
( ) ( ) ( ) = C0n + C1n
<
1 n2
<1 n2 -
1
=2
1 2n -
1
-
1 2n +
1
,则需
4
要保留前七项。
调整放缩度:
( ) 1
n3
< 2
1
n2 -
1 4
=
1 2n -
1
-
1 2n +
1,(
n≥2 )
解答: 当 n = 1 时,113
=1 <
4 3
( ) 当 n≥2 时,n13
< 2
1
n2
-
1 4
=
1 2n -
1
-
1 2n +
的放缩模型及调整策略,让学生学会一些思考方向。
关键词: 放缩法; 数列; 不等式; 模型
中图分类号: G633
文献标识码: A
文章编号: 1005 - 6351( 2013) - 01 - 0043 - 02
一、放缩模型
( 一) 等差数列模型
高中数学讲义:放缩法证明数列不等式
放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。
本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
放缩法引领下数列不等式的证明
3 一 2 3 ‘ + 3 × 2 +… +3 x 2 . - %2  ̄ -
≤ 3 +_ j ×2 5×3 。
!
: 一( n ≥ 2 )
.
战性 .下面针 对2 0 1 2 年广 东高考 ( 理) 1 9 题 的分 析 , 介 绍 几种 常见 的数列 不等式的证 明方法.
能力 的培养.
参考文献 :
多种 不 同形 式 的不等 式 . 另外 , 增加 原不 等 式左 侧 式子
个数 , 在 结构 形式上 等 多方 面还 可 以推广 , 留给读 者 去
探究.
对该不等式 的深入探究 ,不仅 给问题赋予 了新 的活 力 和生机 , 让 问题 变得更加 充实 、 丰满 , 而且 极大地 开 阔
2 0 1 3 引领 下数 列不等式 的证 明
⑧ 湖 南 师 范 大 学 附属 中学 陈 淼 君
数 列不等式 的证 明集 知识 、 方法 、 能力于 一体 , 能综
合反 映学 生分析问题和解决 问题 的能力 ,能全 面考查学
生 的数学 意识 , 因而是高考 的一个重要考点 , 也 是一大难
式的证 明等价于
≤
的证 明
1 ≤—— 一 + —— 一 ≤三
、 / 干
歹 出.
,
限于 篇幅 , 不一 一
探究 问题 的能力.
、 /
4
数学探究是高 中数学新课程 的重要 内容之一 ,它包
含 了新课程所倡导 的先进 的教育 、 教学理念 , 在建立 和发 展数学认知结构 , 形成和增进数学思维能力 , 培养和造就 创造性精 神等方面起着重要 的作用 . 数学探究 活动 的展 开, 能激发教师 的教育智慧 , 解放思想 、 更新观念 、 提 高思 维 品质. 教师在 日常的教学 中应注意挖掘 身边的素材 , 积
例谈证明不等式的四种常用措施
=
cos2 a, a
∈
(0,
π 2
)
,
æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2
,
( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β
≤
π 2
,
由α, β
∈
(0,π2 )可得0
<
α
≤
π 2
-
β
≤
π 2
,
则
cos
α
≥
cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+
放缩法证明数列型不等式的注意问题以及解题策略
放缩法证明数列型不等式的注意问题以及解题策略纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。
处理数列型不等式最重要要的方法为放缩法。
放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。
对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的娃带来一盏明灯。
1、明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。
2、放缩的项数:有时从第一项开始,有时从第三项,有时第三项,等等,即不一定是对全部项进行放缩。
3、放缩法的常见技巧及常见的放缩式:(1)根式的放缩:<<(2)在分式中放大或缩小分子或分母:2111(2)(1)(1)k k k k k k <<≥+-;真分数分子分母同时减一个正数,则变大;,11n n n n -<+; 假分数分子分母同时减一个正数,则变小,如212221n nn n +>-; (3)应用基本不等式放缩:222n n n n ++>+; (4)二项式定理放缩:如2121(3)nn n -≥+≥;(5)舍掉(或加进)一些项,如:121321||||||||(2)n n n a a a a a a a a n --≤-+-++-≥。
4、把握放缩的尺度:如何确定放缩的尺度,不能过当,是应用放缩法证明中最关键、最难把握的问题。
这需要勤于观察和思考,抓住欲证命题的特点,只有这样,才能使问题迎刃而解。
一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。
谈谈证明数列不等式的三种方法
解题宝典数列不等式证明具有较强的综合性,且难度较大.此类问题往往综合考查了等差、等比数列的通项公式、前n 项和公式、性质、不等式的可加性、可乘性、传递性等,对同学们的逻辑推理和分析能力有较高的要求.本文主要介绍三种证明数列不等式的方法.一、裂项放缩法若数列的通项公式为分式,且可裂为或通过放缩后化为两项之差的形式,则可采用裂项放缩法求解.首先将数列的各项拆分,在求和时绝对值相等、符号相反的项便会相互抵消,再将所得的结果进行适当的放缩,便可证明数列不等式.例1.若数列{}a n ,{}b n 的通项公式分别为a n =n (n +1),b n =()n +12,试证明1a 1+b 1+1a 2+b 2+⋯+1a n +b n<512.证明:当n =1时,1a 1+b 1=16<512,当n ≥2时,a n +b n =()n +1()2n +1>2()n +1n ,1a n +b n =1()n +1()2n +1<12n ()n +1=12æèöø1n -1n +1,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n ùûú<16+12éëêæèöø12-13+⋯+æèöø1n -1n +1,∵12éëêùûúæèöø12-13+⋯+æèöø1n -1n +1=12æèöø12-1n +1<14,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <16+14=512∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <512成立.{}1a n +b n的通项公式为分式,且可通过放缩、裂项将其转化为两项之差:12æèöø1n -1n +1,于是采用裂项放缩法求证.运用裂项放缩法证明不等式时,需根据数列通项公式的特点或和的特点进行适当的放缩,同时要把握放缩的“度”,不可“放”得过大,也不可“缩”得过小.二、构造函数法数列是一种特殊的函数.在解答数列不等式证明题时,可根据目标不等式的特点构造出函数模型,此时需将n ∈N *看作函数的自变量,将目标式看作关于n 的函数式,利用函数的单调性、有界性来求得函数式的最值,从而证明不等式成立.例2.已知数列{}a n 的通项公式为a n =3n -1,且该数列的每一项均大于零.若数列{}b n 的前n 项和为T n ,且a n ()2b n-1=1,证明:3T n -1>log 2()a n +3.证明:∵a n()2b n-1=1,a n=3n -1,∴b n =log 2æèçöø÷1+1a n =log 23n 3n -1,∴T n =b 1+b 2+⋯+b n =log 2æèöø32∙65∙⋯∙3n 3n -1,∴3T n -1-log 2()a n +3=log 2æèöø32⋅65⋅⋯⋅3n 3n -13∙23n +2,设f ()n =æèöø32∙65∙⋯∙3n 3n -13∙23n +2,∴f ()n +1f ()n =3n +23n +5∙æèöø3n +33n +23=()3n +32()3n +5()3n +22,∵()3n +33-()3n +5()3n +22=9n +7>0,∴f ()n +1>f ()n ,∴f ()n 单调递增,∴f ()n ≥f ()1=2720>1,∴3T n -1-log 2()a n +3=log 2f ()n >0,∴3T n -1>log 2()a n +3成立.解答本题,需先求得b n 、T n ,并将目标式化简,然后根据目标不等式的特点构造函数f ()n ,通过比较f ()n +1、f ()n 的大小,判断出函数的单调性,进而根据函数的单调性证明不等式成立.一般地,在判断数列或函数的单调性时,可采用作差或作商法来比较数列的前后两项a n +1、a n 的大小,若a n +1>a n ,则函数或数列单调递增;若a n +1<a n ,则函数或数列单调递减.三、数学归纳法数学归纳法主要用于证明与自然数N 有关的命题.运用数学归纳法证明数列不等式,需先根据题意证明当n =1时不等式成立;然后假设当n =k 时不等式成立,再根据题意,通过运算、推理证明当n =k +1时不等式也成立,这样便可证明对任意n ∈N *不等式恒成立.42下下下下下下下下下下下下下下下下下方法集锦例3.已知数列{a n }的通项公式为a n =2éëêùûú()2-1n+1,若数列{b n }中b 1=2,b n +1=3b n +42b n +3,试证明:2<b n ≤a 4n -3.证明:当n =1时,2<2,b 1=a 1=2,∴2<b 1≤a 1,不等式成立,假设当n =k 时,不等式成立,∴2<b k ≤a 4k -3,即0<b k -2≤a 4k -3-2,当n =k +1时,b k +1-2=3b k +42b k +3-2=()3-22b k+()4-322b k +3=()3-22()b k -22b k +3>0,∵2<b k ,∴12b k +3<2+33-22,b k +1-2=()3-22()b k-22b k +3<()3-222()b k-2≤()2-14()a 4k -3-2=a 4k +1-2.∴当n =k +1时,不等式成立,即2<b n ≤a 4n -3成立.解答本题主要采用了数学归纳法,分两步完成,首先证明当n =1时不等式成立,然后假设当n =k 时不等式成立,并将其作为已知条件,证明2<b k ,进而证明当n =k +1时,不等式也成立.相比较而言,构造函数法的适用范围较广,裂项放缩法和数学归纳法的适用范围较窄,且裂项放缩法较为灵活,运用数学归纳法证明不等式过程中的运算量较大.因此在证明数列不等式时,可首先采用构造函数法,然后再根据不等式的特点和解题需求运用裂项放缩法或数学归纳法求证.(作者单位:湖北省恩施土家族苗族自治州高级中学)圆锥曲线的离心率是反映圆锥曲线几何特征的一个基本量.圆锥曲线的离心率主要是指椭圆与双曲线的离心率,可用e =ca来表示.求圆锥曲线的离心率问题是一类常考的题目.下面谈一谈求圆锥曲线离心率的三种途径.一、根据圆锥曲线的定义圆锥曲线的定义是解答圆锥曲线问题的重要依据.我们知道,椭圆的焦半径长为c 、长半轴长为a ;双曲线的焦半径长为c 、实半轴长为a ,而圆锥曲线的离心率为e =ca.因此,只要根据圆锥曲线的定义确定a 、c的值,即可求得圆锥曲线的离心率.例1.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,如果双曲线上存在点P ,使∠F 1PF 2=90°,并且||PF 1=3||PF 2,求双曲线的离心率.解:因为||PF 1=3||PF 2,①由双曲线的定义得||PF 1-||PF 2=2a ,②由①②得||PF 1=3a ,||PF 2=a .且||F 1F 2=2c ,∠F1PF 2=90°,则|F 1F 2||2=PF 1||2+PF 2|2,即(2c )2a )2+a 2,解得5a =2c ,所以e =ca .题目中指出了两个焦半径||PF 1、||PF 2之间的关系,可将其与双曲线的定义:平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹关联起来,根据双曲线的定义建立关于两个焦半径的方程,通过解方程求得双曲线的离心率.二、利用几何图形的性质圆锥曲线的几何性质较多,如双曲线、椭圆的对称轴为坐标轴,对称中心为原点,双曲线的范围为x ≥a或x ≤-a .在求圆锥曲线的离心率时,要仔细研究几何图形,明确焦半径、实半轴长、虚半轴长与几何图形的位置关系,据此建立关于a 、b 、c 关系式,再通过解方43。
放缩法在数列不等式证明中的应用
分母变小,则分式变大.与狀12 有关的放缩关系主要有 如下几种:
1 ① 狀2
<
1 狀2 -1
=
1 (狀-1)(狀+1) =
1 2
·
( ) 1
1
狀-1-狀+1
;
1 ②狀2
1 =狀·狀
1
1
<狀(狀-1)=狀-1-
1 狀
;
1 ③狀2
1 =狀·狀
1
1
>狀(狀+1)=狀
-狀1+1;
( ) 1 4
4
1
1
④狀2 =4狀2 <4狀2 -1=22狀-1-2狀+1 .
1 2
1 +22
+
…
1 +2狀-1
1-2狀 =狀+ 1
1- 2
1 =狀+2-2狀-1 <狀+2.
说明:本题利用了无穷递减等比数列的放缩公式
进行放缩,即当公比0<狇
<1时,犛狀
犪1(1-狇狀 = 1-狇
) =
1犪-1狇-1犪-1狇狇狀 <1犪-1狇.注意,若从第一项就开始放 缩,则 会 出 现 过 度 放 大 的 问 题,而 从 }满足犪2 =9,犪狀+1 =8犪狀 -7,狀 ∈
犖 .
(1)求{犪狀}通项公式;
(2)设犮狀
3
=槡犪狀+1
-1,将犮狀
的底数与指数互
换得
{ } 到犱狀,设数列
1 犱狀
的前项和为犜狀,求证:犜狀 <3 23 0.
解析:(1)犪狀 =8狀-1 +1.
(2)由(1)可得犪狀
1- 2
2狀1-1,狀 ∈ 犖 . 当狀 ≥2时,2狀 -1-2狀-1 =2狀-1 -1>0,即2狀 -
1>2狀-1
>0,2狀1-1
放缩法证明数列不等式经典例题
放缩法证明数列不等式经典例题放缩法证明数列不等式放缩法是一种证明数学不等式的方法,它利用一些基本的放缩技巧来推导出更复杂的不等式。
下面介绍几种常用的放缩技巧:1.$\frac{1}{n(n+1)}<\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)$证明:将右边的式子化简得到$\frac{1}{n(n+1)}<\frac{1}{2n}-\frac{1}{2(n+1)}$,再将右边的两项合并得到$\frac{1}{n(n+1)}<\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)$。
2.$\frac{n}{n+1}<\sqrt{\frac{n}{n+1}}<\frac{n+1}{n}$证明:将右边的式子平方得到$\frac{n}{n+1}<\frac{n}{n+1}<\frac{(n+1)^2}{n(n+1)}$,再将中间的式子平方根得到$\frac{n}{n+1}<\sqrt{\frac{n}{n+1}}<\frac{n+1}{n}$。
3.$\frac{1}{n^2}<\frac{1}{n(n-1)}-\frac{1}{(n+1)n}$证明:将右边的式子通分得到$\frac{1}{n(n-1)}-\frac{1}{(n+1)n}=\frac{1}{n(n+1)}-\frac{1}{n(n-1)}$,再将右边的两项合并得到$\frac{1}{n^2}<\frac{1}{n(n-1)}-\frac{1}{(n+1)n}$。
4.$\frac{2}{n(n-1)}<\frac{1}{n-1}-\frac{1}{n+1}$证明:将右边的式子通分得到$\frac{1}{n-1}-\frac{1}{n+1}=\frac{2}{n(n+1)}$,再将右边的式子倒数得到$\frac{2}{n(n-1)}<\frac{1}{n-1}-\frac{1}{n+1}$。
高考数学放缩法证明数列不等式之常数型与函数型(解析版)
放缩法证明数列不等式之常数型与函数型◆题型一:放缩法证明数列不等式之常数型方法解密:放缩法证明数列不等式属于数列大题中较有难度的一种题型.大部分是以证明某个数列和大于或小于一个常数类型,小部分是证明某个数列前n项和或者积大于或小于一个函数(下一专题详解).本专题我们来介绍最常见的常数类型.放缩的目的有两个:一是通过放缩使数列的和变换成比如裂项相消等可以简单求和的形式,这样可以方便比较大小.二是两者之间无法直接比较大小,这样我们需要通过寻找一个媒介,来间接比较大小.放缩的原则:放缩必然会导致数变大或者变小的情况,我们的原则是越精确越好.在证明过程中,为了使放缩更精确,往往会第一项不变,从第二项或者第三项开始放缩(例题会有讲解).放缩的方法:(1)当我们要证明多项式M<A时,我们无法直接证明两者的大小,这时我们可以将多项式M放大为N1,当我们能够证明N1<A,也间接证明了M<A.切不可将M缩小为N2,即使能够证明N2<A,M与A的关系无法得证.(2)当我们要证明多项式M>A时,这时我们可以将多项式M缩小为N1,当我们能够证明N1>A,也间接证明了M>A.需要放缩的多项式多以分式形式出现,要使得分式的值变大,就是将分母变小,常见是将分母减去一个正数,比如1.常见的放缩形式:(1)1n2<1n-1n=1n-1-1n n≥2;(2)1n2>1n n+1=1n-1n+1;(3)1n2=44n2<44n2-1=212n-1-12n+1;(5)1n =2n+n<2n-1+n=2-n-1+nn≥2;(6)1n =2n+n>2n+n+1=2-n+n+1;(7)1n =2n+n<2n-12+n+12=222n-1+2n+1=2-2n-1+2n+1;(8)2n2n-12=2n2n-12n-1<2n2n-12n-2=2n-12n-12n-1-1=12n-1-1-12n-1n≥2;(12)12n-1<2n-12n-1-12n-1=12n-1-1-12n-1n≥2.类型一:裂项放缩【经典例题1】求证112+122+132+.....+1n2<2【解析】因为1n2<1n2-n=1n n-1=1n-1-1n n≥2,所以112+122+132+.....+1n2<112+1 22-2+132-3+.....+1n2-n=1+1-12+12-13+.....+1n-1-1n=2-1n<2,所以原式得证.为什么第一项没有经过放缩,因为分母不能为0,所以只能从第二项进行放缩.总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n ,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式1】求证112+122+132+.....+1n 2<74【解析】因为1n 2<1n 2-1=1n +1 n -1=121n -1-1n +1 n ≥2,所以112+122+132+....+1n 2<112+122-1+132-1+....+1n 2-1=1+121-13+12-14+13-15....+1n -1-1n =1+121+12-1n -1n +1 <74,所以原式得证. 总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n ,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式2】求证112+122+132+.....+1n 2<53【解析】因为1n 2<1n 2-1=1n +1 n -1=121n -1-1n +1 n ≥2 ,所以112+122+132+....+1n 2<112+122+132-1+....+1n 2-1=1+122+1212-14+13-15+14-16+....+1n -1-1n =1+14+1212+13-1n -1n +1 =53-121n +1n +1 <53,注意这是保留前两项,从第三项开始放缩.总结:通过例1和变式题我们发现,我们对分式的进行放大,分母我们依次减去的数是n ,1.不难发现,这些数递减,所得的结果也是递减的.说明减去的数越小,所得的结果越精确.同时通过两道变试题我们也发现,保留前几项不动,这样放缩的精度也会高一些.有些模拟题中,经常出现保留前2项到3项不动的情况.那么作为学生如何判断从第几项开始放缩呢?这需要学生去尝试和试错,如果第一项不行,那就尝试第二项,第三项.【经典例题2】已知a n =n 2,b n =n 2,设c n =1a n +b n,求证:c 1+c 2+⋯+c n <43. 【解析】已知a n =n2,b n=n 2,因为c n =22n 2+n=2n (2n +1)=42n (2n +1)<4(2n -1)(2n +1)=212n -1-12n +1 所以c 1+c 2+⋯+c n <23+213-15+15-17+⋯+12n -1-12n +1 =23+23-22n +1<43,故不等式得证.【经典例题3】已知数列a n 满足a 1=1,a n -1=n -1na n (n ≥2,n ∈N *),(1)求a n ;(2)若数列b n 满足b 1=13,b n +1=b n +1a 2n(n ∈N *),求证:b n <2512.【答案】(1)a n =n ;(2)证明见解析.【详解】(1)由题意a n a n -1=nn -1(n ≥2),∴a n =a 1×a 2a 1×a 3a 2×⋯×a n a n -1=1×21×32×⋯×n n -1=n ,a 1=1也适合.所以a n =n (n ∈N *);(2)由已知b 1=13<2512,b 2=b 1+1=43<2512,b 3=b 2+122=43+14=1912<2512,当n ≥3时,b n +1-b n =1n2<1n (n -1)=1n -1-1n ,因此b n +1=b 3+(b 4-b 3)+(b 5-b 4)+⋯+(b n +1-b n )<1912+12-13 +13-14 +⋯+1n -1-1n=2512-1n <2512,则b n =b n +1-1n2<2512综上,b n <2512.类型二:等比放缩所谓等比放缩就是数列本身并非为标准的等比数列,我们将数列的通项经过一定的放缩使之成为一个等比数列,然后再求和,我们通过例题进行观察了解.【经典例题4】证明:121-1+122-1+123-1+...+12n -1<53【解析】令a n =12n -1,则a n +1a n =2n -12n +1-1<2n -12n +1-2=12⇒a n +1<12a n又因为a 1=1,a 2=13,由于不等式右边分母为3,因此从第三项开始放缩,得a 1+a 2+⋯+a n <a 1+a 2+12a 2+⋯+12 n -2a 2=1+131-12n -1 1-12<53故不等式得证.【经典例题5】已知数列a n 满足:a 1=2,a n +1=2a n +2n +1,n ∈N *.(1)求证a n2n 是等差数列并求a n ;(2)求数列a n 的前n 项和S n ;(3)求证:1a 2-a 1+1a 3-a 2+1a 4-a 3+⋅⋅⋅+1a n +1-a n <12.【答案】(1)证明见解析,a n =n ⋅2n ;(2)S n =(n -1)2n +1+2;(3)证明见解析.【详解】(1)证明:a n +12n +1-a n 2n =2a n +2n +12n +1-a n 2n =2a n 2n +1+1-a n2n=1,∴a n 2n 是首项为a 121=1,公差为1的等差数列,∴a n 2n =1+(n -1)1=n ,∴a n =n ⋅2n .(2)∵S n =1×21+2×22+3×23+⋅⋅⋅⋅⋅⋅n ⋅2n ,∴2S n =1×22+2×23+3×24+⋅⋅⋅⋅⋅⋅n ⋅2n +1,两式相减得:-S n =21+22+23+⋅⋅⋅⋅⋅⋅2n -n ⋅2n +1,-S n =21-2n1-2-n ⋅2n +1,∴S n =(n -1)2n +1+2.(3)证明:∵a n =n ⋅2n ,∴a n +1=(n +1)⋅2n +1,∴a n +1-a n =(n +2)⋅2n ,当n ∈N *时,n +2>2,∴(n +2)⋅2n >2n +1,∴1(n +2)⋅2n <12n +1,∴1a 2-a 1+1a 3-a 2+1a 4-a 3+⋅⋅⋅⋅⋅⋅1a n +1-a n <122+123+124+⋅⋅⋅⋅⋅⋅12n +1=141-12 n 1-12=121-12 n <12.【练习1】已知数列{a n }中,a 1=1,其前n 项的和为S n ,且当n ≥2时,满足a n =S 2nS n -1.(1)求证:数列1S n 是等差数列;(2)证明:S 21+S 22+⋯+S 2n <74.【答案】(1)证明见解析;(2)证明见解析【解析】(1)当n ≥2时,S n -S n -1=S 2nS n -1,S n -1-S n =S n S n -1,即1S n -1S n -1=1从而1S n 构成以1为首项,1为公差的等差数列.(2)由(1)可知,1S n =1S 1+n -1 ×1=n ,∴S n =1n .则当n ≥2时S 2n =1n 2<1n 2-1=121n -1-1n +1 .故当n ≥2时S 21+S 22+⋯+S 2n <1+121-13 +1212-14 +⋯+121n -1-1n +1=1+121+12-1n -1n +1 <1+12⋅32=74又当n =1时,S 21=1<74满足题意,故S 21+S 22+⋯+S 2n <74.法二:则当n ≥2时S 2n =1n 2<1n 2-n=1n -1-1n ,那么S 21+S 22+⋯+S 2n <1+14+12-13 +13-14 +⋯1n -1-1n =74-1n <74又当n =1时,S 21=1<74,当时,S 21=1<74满足题意.【练习2】已知数列a n 的前n 项和为S n ,且S n =12na n+a n -1.(1)求数列a n 的通项公式;(2)若数列2a 2n的前n 项和为T n ,证明:T n <32.【答案】(1)a n =n +1n ∈N * .(2)见解析【解析】(1)当n =1时,S 1=12a 1+a 1-1,即a 1=2,当n ≥2时,S n =12na n +a n -1①,S n -1=12n -1 a n -1+a n -1-1②,①-②,得:2a n =na n -n -1 a n -1+2a n -2a n -1,即na n =n +1 a n -1,∴a n n +1=a n -1n ,且a 12=1,∴数列a n n +1 是以每一项均为1的常数列,则a nn +1=1,即a n =n +1n ∈N * ;(2)由(1)得a n =n +1,∴2a 2n =2n +12<2n n +2 =1n -1n +2,∴T n <1-13+12-14+13-15+⋯+1n -1n +2=1+12-1n +1-1n +2<32.【练习3】已知函数f (x )=x 3-2x ,数列a n 中,若a n +1=f (a n ),且a 1=14.(1)求证:数列1a n-1是等比数列;(2)设数列a n 的前n 项和为S n ,求证:S n <12.【答案】(1)见解析;(2)见解析【解析】(1)由函数f (x )=x3-2x ,在数列a n 中,若a n +1=f (a n ),得:a n +1=a n 3-2a n,上式两边都倒过来,可得:1a n +1=3-2a n a n =3a n-2,∴1a n +1-1=3a n -2-1=3a n -3=31a n -1 .∵1a 1-1=3.∴数列1a n -1 是以3为首项,3为公比的等比数列.(2)由(1),可知:1a n -1=3n ,∴a n =13n +1,n ∈N *.∵当n ∈N *时,不等式13n +1<13n 成立.∴S n =a 1+a 2+⋯+a n =131+1+132+1+...+13n +1<131+132+...+13n =13⋅1-13n 1-13=12-12•13n <12.∴S n <12.【练习4】已知函数f (x )=x 2-2x ,数列a n 的前n 项和为S n ,点P n n ,S n 均在函数y =f x 的图象上.若b n=12a n +3 (1)当n ≥2时,试比较b n +1与2b n的大小;(2)记c n =1b n n ∈N *试证c 1+c 2+⋯+c 400<39.【答案】(1)b n +1<2bn ;(2)证明见解析.【详解】(1)∴f (x )=x 2-2x ,故S n =n 2-2n ,当n ≥2时,a n =S n -S n -1=2n -3,当n =1时,a 1=S 1=-1适合上式,因此a n =2n -3n ∈N * .从而b n =n ,b n +1=n +1,2b n=2n ,当n ≥2时,2n =1+1 n =C n 0+C n 1+⋯>n +1故b n +1<2b n=2n(2)c n =1b n =1n,c 1=1,1n =2n +n <2n +n -1=2(n -n -1)n ∈N *,n ≥2 c 1+c 2+...+c 400<1+22-1 +23-2 +...+2400-399 =2400-1=39.◆题型二:放缩法证明数列不等式之函数型方法解密:数列放缩较难的的两类便是形如数列的前n 项和与函数f (n )的不等关系,即a 1+a 2+⋯+a n <f (n )或者数列前n 项积与函数f (n )的不等关系,即a 1⋅a 2⋅⋯⋅a n <f (n )的问题,其中,这里的前n 项和与前n 项积难求或者是根本无法求.面对这类题时,首先,我们可以将f (n )看成某个数列的和或者积,然后通过比较通项的大小来解决;其次,我们也可以对a n 进行变形,使之能求和或者求积.往往第二种方法难以把握,对学生综合素质要求较高.而第一种方法相对简单易行,所以本专题以“拆项”为主线详细讲解.【经典例题1】已知数列a 1=32,a n +1=3a n -1,n ∈N *(1)若数列b n 满足b n =a n -12,求证:数列b n 是等比数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列微专题——放缩法证明数列不等式一、常见的放缩变形: (1)()()211111n n n n n <<+-, ()()22111111111211n n n n n n ⎛⎫<==- ⎪--+-+⎝⎭,()()22211411111412121221214n n n n n n n ⎛⎫<==- ⎪--+-+⎝⎭- (2=,从而有:22-=<<<(3)分子分母同加常数:()()0,0,0,0b b m b b m b a m a b m a a m a a m++>>>>>>>>++ (4)()()()()()()()121222221212122212121nn n n n n n n n n n--=<=------- ()1112,2121n nn n N *-=-≥∈-- 可推广为:()()()()()()()121111111nn n n n n n n n n n k k k k k k k k k k k k --=<=------- ()1112,2,,11n nn k k n N k k *-=-≥≥∈-- 二、典型例题:例1:已知数列{}n a 的前n 项和为n S ,若()14211n n S n a +=-+,且11a = (1)求证:数列{}n a 是等差数列,并求出{}n a 的通项公式 (2)设n b =,数列{}n b 的前n 项和为n T ,求证:32n T <例2:设数列{}n a 满足:111,3,n n a a a n N *+==∈,设n S 为数列{}n b 的前n 项和,已知10b ≠,112,n n b b S S n N *-=⋅∈(1)求数列{}{},n n a b 的通项公式 (2)求证:对任意的n N *∈且2n ≥,有223311132n n a b a b a b +++<---例3:已知正项数列{}n a 的前n 项和为n S ,且12,n n na S n N a *+=∈ (1)求证:数列{}2n S 是等差数列(2)记数列3121112,n n n n bS T b b b ==+++,证明:312n T <≤-例4:已知数列{}n a 满足21112,21,n n a a a n N n ++⎛⎫==+∈ ⎪⎝⎭(1)求证:数列2n a n ⎧⎫⎨⎬⎩⎭是等比数列,并求出数列{}n a 的通项公式 (2)设n nnc a =,求证:121724n c c c +++<例5:已知数列{}n a 满足()()1111,2,412n n n n a a a n n N a --==≥∈-- (1)试判断数列()11n n a ⎧⎫+-⎨⎬⎩⎭是否为等比数列,并说明理由 (2)设()21sin 2n n n b a π-=,数列{}n b 的前n 项和为n T ,求证:对任意的4,7n n N T *∈<放缩法证明数列不等式教师版一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。
本节通过一些例子来介绍利用放缩法证明不等式的技巧 1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 ) (2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和: 若()()()121,2,,n a f a f a f n >>>,则:()()()1212n a a a f f f n +++>+++(3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同 2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:12nn a a S n +=⋅,n a kn m =+(关于n 的一次函数或常值函数) ② 等比数列求和公式:()()1111n n a q S q q -=≠-,n n a k q =⋅(关于n 的指数类函数)③ 错位相减:通项公式为“等差⨯等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。
从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。
(3)放缩构造裂项相消数列与等比数列的技巧:① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)② 等比数列:所面对的问题通常为“n S <常数”的形式,所构造的等比数列的公比也要满足()0,1q ∈ ,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,,常数可视为11a q-的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。
例如常数122=1314-,即可猜想该等比数列的首项为12,公比为14,即通项公式为124n⎛⎫⋅ ⎪⎝⎭。
注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响(4)与数列中的项相关的不等式问题:① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即()1n n a a f n +-<或()1n na f n a +<(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为n a ,另一侧为求和的结果,进而完成证明 3、常见的放缩变形: (1)()()211111n n n n n <<+-,其中2,n n N ≥∈:可称21n为“进可攻,退可守”,可依照所证不等式不等号的方向进行选择。
注:对于21n ,可联想到平方差公式,从而在分母添加一个常数,即可放缩为符合裂项相消特征的数列,例如:()()22111111111211n n n n n n ⎛⎫<==- ⎪--+-+⎝⎭,这种放缩的尺度要小于(1)中的式子。
此外还可以构造放缩程度更小的,如:()()22211411111412121221214n n n n n n n ⎛⎫<==- ⎪--+-+⎝⎭-(2=,从而有:22-=<<<2,n n N *<-≥∈ (3)分子分母同加常数:()()0,0,0,0b b m b b m b a m a b m a a m a a m++>>>>>>>>++ 此结论容易记混,通常在解题时,这种方法作为一种思考的方向,到了具体问题时不妨先构造出形式再验证不等关系。
(4)()()()()()()()121222221212122212121nn n n n n n n n n n --=<=------- ()1112,2121n nn n N *-=-≥∈-- 可推广为:()()()()()()()121111111nn n n n n n n n n nk k k k k k k k k k k k--=<=------- ()1112,2,,11n nn k k n N k k *-=-≥≥∈-- 二、典型例题:例1:已知数列{}n a 的前n 项和为n S ,若()14211n n S n a +=-+,且11a = (1)求证:数列{}n a 是等差数列,并求出{}n a 的通项公式 (2)设n b =,数列{}n b 的前n 项和为n T ,求证:32n T <解:(1)()14211n n S n a +=-+ ()()142312n n S n a n -∴=-+≥()()142123n n n a n a n a +∴=--- ()2n ≥即()()1121212121n n n n a n n a n a a n ++++=-⇒=- 1312221235,,,23253n n n n a n a n a a n a n a -----∴===-- 131222123523253n n n n a a a n n a a a n n -----∴⋅⋅⋅=⋅⋅⋅--即()22123n a n n a -=≥ 2213n n a a -∴=,由()14211n n S n a +=-+令1n =可得:122413S a a =+⇒=()212n a n n ∴=-≥ ,验证11a =符合上式21n a n ∴=- 2n S n =(2) 由(1)得:()121n b n n ==- 11b =可知当2n ≥时,()()()11111121222121n b n n n n n n n n ⎛⎫=<==- ⎪----⎝⎭121111111122231n n T b b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫∴=+++<+-+-++- ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎣⎦1131122n ⎛⎫=+-< ⎪⎝⎭ 不等式得证例2:设数列{}n a 满足:111,3,n n a a a n N *+==∈,设n S 为数列{}n b 的前n 项和,已知10b ≠,112,n n b b S S n N *-=⋅∈(1)求数列{}{},n n a b 的通项公式 (2)求证:对任意的n N *∈且2n ≥,有223311132n n a b a b a b +++<---解:(1)13n n a a += {}n a ∴为公比是3的等比数列11133n n n a a --∴=⋅=在{}n b 中,令1n =,1111121b b S S b -=⋅⇒=21n n b S ∴-=1121n n b S ---= ()112222n n n n n b b b n b b --∴-=≥⇒={}n b ∴是公比为2的等比数列11122n n n b b --∴=⋅=(2)证明:112111323n n n n n a b ---=<--2233111n na b a b a b +++---1121113113131113323213n n n ---⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦<+++==-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- 例3:已知正项数列{}n a 的前n 项和为nS ,且12,nn na S n N a *+=∈ (1)求证:数列{}2n S 是等差数列(2)记数列3121112,n n n n b S T b b b ==+++,证明:312n T -<≤解:(1)()1111222n n n n n n n n a S S S S n aS S --+=⇒-+=≥-111n n n n S S S S --∴=+- 2211n n S S -∴-={}2n S ∴为等差数列(2)思路:先利用(1)可求出n S 的公式进而求出2n b =1n b =合不等号的方向向裂项相消的形式进行放缩。