反馈极性的判断方法瞬时极性法
模电第五章答案解析
【例5-1】电路如图 (a)、(b)所示。
(1)判断图示电路的反馈极性及类型;(2)求出反馈电路的反馈系数。
图(a) 图(b)【相关知识】负反馈及负反馈放大电路。
【解题思路】(1)根据瞬时极性法判断电路的反馈极性及类型。
(2)根据反馈网络求电路的反馈系数。
【解题过程】(1)判断电路反馈极性及类型。
在图(a)中,电阻网络构成反馈网络,电阻两端的电压是反馈电压,输入电压与串联叠加后作用到放大电路的输入端(管的);当令=0时,=0,即正比与;当输入信号对地极性为♁时,从输出端反馈回来的信号对地极性也为♁,故本电路是电压串联负反馈电路。
在图(b)电路中,反馈网络的结构与图(a)相同,反馈信号与输入信号也时串联叠加,但反馈网络的输入量不是电路的输出电压而是电路输出电流(集电极电流),反馈极性与图(a)相同,故本电路是电流串联负反馈电路。
(2)为了分析问题方便,画出图(a) 、(b)的反馈网络分别如图(c)、(d)所示。
图(c) 图(d)由于图(a)电路是电压负反馈,能稳定输出电压,即输出电压信号近似恒压源,内阻很小,计算反馈系数时,不起作用。
由图(c)可知,反馈电压等于输出电压在电阻上的分压。
即故图(a)电路的反馈系数由图(d)可知反馈电压等于输出电流的分流在电阻上的压降。
故图(b)电路的反馈系数【例5-2】在括号内填入“√”或“×”,表明下列说法是否正确。
(1)若从放大电路的输出回路有通路引回其输入回路,则说明电路引入了反馈。
(2)若放大电路的放大倍数为“+”,则引入的反馈一定是正反馈,若放大电路的放大倍数为“−”,则引入的反馈一定是负反馈。
(3)直接耦合放大电路引入的反馈为直流反馈,阻容耦合放大电路引入的反馈为交流反馈。
(4)既然电压负反馈可以稳定输出电压,即负载上的电压,那么它也就稳定了负载电流。
(5)放大电路的净输入电压等于输入电压与反馈电压之差,说明电路引入了串联负反馈;净输入电流等于输入电流与反馈电流之差,说明电路引入了并联负反馈。
正负反馈判断方法与实例
反馈 网络
所谓反馈,就是将放大电路输出回路信号的一部分或全部通过反馈网络回送到输入回 路,从而影响(增强或削弱)净输入信号的过程。
净输入量: ������������������ = ������������ − ������������
负反馈:输入量不变,引入反馈后,净输入量变小; 正反馈:输入量不变,引入反馈后,净输入量变大。
判断方法:瞬时极性法,即在电路中,从输入端开始,沿着信号流向,标出某一时刻 有关节点电压变化的斜率(斜率用“+”、“-”表示),即用“+”、“-”标注节点 的极性,然后根据净输入端口的极性判断净输入量的变化,以此判断正/负反馈。
(-)
(+)
(+)
(-)
净输入 变大
������������������ = ������+ − ������−
判断如下左右两图的反馈类型,电压/电流,串联/并联, 正/负反馈。
(-) (-)
(+)
(+)
正反馈
(+) (+)
负反馈
本讲内容包括:复习了反馈的含义,正/负反馈的含义和 电子元器件净输入端口。重点学习了电路正/负反馈的判 断方法。
重点:如何使用瞬时极性法判断电路的正/负反馈。
难点:瞬时极性法。
净输入 变小
反馈 网络
(+) (+)
负反馈
共发射极放大电路
������������������ = ������������ − ������������
净输入 变小
反馈 网络
(+) (+)
负反馈
差动放大电路
反馈极性的判断方法
反馈极性的判断方法——瞬时极性法反馈在电技术中就用十分广泛。
反馈有正,负之分。
负反馈主要用于模拟放电路中,负反馈既能稳定静态工作点,又能改善放大电路的各种性能。
放大电路很少用正反馈。
在一定条件下放在电路中的负反馈可转化为正馈,形成自激振荡,使放大器不能正常工作,这是要避免的一面。
正反馈还有有利的面,就是在波形产生的电路中,人为地把电路接成反馈形式,产生所需的波形。
在电子技术实践中,要正确组成反馈放大电路和振荡电路。
必须清晰准确地判别正负反馈。
如何有效判别正负反馈本文介绍瞬时(变化)极性法。
学习反馈电路,掌握反馈的基本概念和判别方法,必须解决以下问题:(1)什么是反馈反馈就是将放大电路的输出信号的一部分,通过一定电路形式送回到输入回路称为反馈。
(2)反馈元件如何判别既与输出回路相连,又与输入回路相连的器件都是反馈元件;虽仅在输出回路或输入回路,但与反馈支路相连,并对反馈信号大小产生影响的元件也是反馈元件。
(3)如何构成反馈放大器引入反馈的放大电路称为反馈放大电路,即反馈放大器。
(见图1)图中A是基本放大电路,F是反馈网络,两部分构成一个闭环。
X’i和x’f分别是输入信号和反馈信号,x’cl是净输入信号,三者汇交的节点称为混合环节。
X’I、x’f、xd’可以是电压信号,也可以是电流信号,x’I与x’f在节点处可以相加也可以相减。
如果是串联反馈x’I和x’f都用电压表示,两个电压在此串联相减。
如果是图1并联反馈,x’I和x’f都用电流表示,两个电流在此并联相减。
(4)什么是正反馈,负反馈如果反馈信号x’f与原来外加的输入信号x’I相位相同,使放大器净输入信号增强为正反馈,反之就称为负反馈。
那么,在具体电路中如何正确判断是正反馈还是负反馈呢一般是利用电路中各点对“地”的交流电位的瞬时极性来判别。
假设放大电路中的输入电压处于某一瞬时极性(正半周为正,用“十”表示,负半周为负,用“一”表示),沿放大电路通过反馈网络再回到输入回路。
模拟电子技术基础第七章
第七章 信号的运算和处理
7.2.1 比例运算电路
一、反相 比例运算电路 1. 电路 组成 电路核心器件为集成运放;
电路的输入信号从反相输入端输入;
同相输入端经电阻接地; 电路引入了负反馈,其组态 为电压并联负反馈。 说明:由于集成运放输入极对称, 为保证外接电路不影响其对称性, 通常在运算电路中我们希望RP= RN 。
uo3
f
R3
uI 3
第七章 信号的运算和处理
2. 同相求和运算电路
iN 0
uo (1
Rf R
?
)u N u N u P
iP 0 i1 i 2 i 3 i 4 uI 1 uP uI 2 uP uI 3 uP uP R1 R2 R3 R4 1 1 1 1 uI 1 uI 2 uI 3 ( )uP R1 R 2 R 3 R 4 R1 R 2 R 3 uI 1 uI 2 uI 3 uP RP ( ) 式中RP R1 // R2 // R3 // R4 R1 R 2 R 3
即:uP>uN,uo =+ UOM ;
+UOM
uP<uN ,uo =- UOM 。
(2)仍具有“虚断”的特点。
即: iP=iN =0。
-UOM
对于工作在非线性区的应用电路,上述两个特点是分析其 输入信号和输出信号关系的基本出发点。
第七章 信号的运算和处理
7.2 基本运算电路
第七章 信号的运算和处理
第七章 信号的运算和处理
求解深度负反馈放大电路放大 倍数的一般步骤:
(1)正确判断反馈组态;
【 】
内容 回顾
(2)求解反馈系数;
(3)利用 F 求解
瞬时极性法
运用同点连接判别法
图3用瞬间极性法判断反馈极性可运用同点连接判别法。所谓同点连接,是指反馈支路的输出端与放大电路信 号的输入端同点相连,如图3所示。若反馈支路的输出端没有返回到放大电路输入端,而是返回到公共端,则称为非 同点连接,如图4所示。
在同点连接下,若反馈前后的瞬时极性变化相同,则反馈信号起到增强输入信号的作用该反馈为正反馈,如图3 所示,反之为负反馈。
图2由三极管电流分配关系 ie = ib + ic可知,在任一瞬时,图1(a)所示的共射极电路,输出电压与输入电 压相位相反,集电极电位的极性与基极相反、与发射极亦相反。当有发射极电阻并且没有旁路电容时,基极电位和 发射极电位的瞬时极性相同(图2)。
同样,在任一瞬间,图1(b)所示的共基极电路,输出电压与输入电压相位相同,集电极电位的极性与发射极相 同、与基极电位的极性相反。当有基极电阻无旁路电容时,发射极电位与基极电位的瞬时极性相反 ;图1(c)所示 的共集电极电路,输出电压与输入电压相位相同,发射极电位与基极电位的极性相同、与集电极电位的瞬时极性相 反。当有集电极电阻无旁路电容时,基极电位与集电极电位的瞬时极性相反。
运用瞬时极性法判定电路各点电位极性时,一定要非常熟练掌握三极管三种基本联接方式(组态)的判定及 相应组态输出信号电压的相位关系。
用瞬间极性法判断反馈极性要注意运用同点连接判别法。同点连接法,若反馈支路的输出端与放大电路信号 的输入端同点相连,且瞬时变化极性相同,则该反馈为正反馈,反之为负反馈。
从我国发展形势来看,对电子电路中判断晶体管电路中极性的反馈方法为“瞬时极性法”。在使用电子的过 程中,要对电路中的每一个关键的元器件和有效器件有所了解,在设定好的电路时,电路中的有关信号就会流通, 要想计算这样的信号就要利用瞬时极性的方法对电路中所存在的电子元器件进行计算,这一项过程是复杂的更是 繁琐的,对每一个电子元器件都要进行极性的判断,从而了解整个电路的震荡过程,最后才能得出真实有效的结 论。这样的方法是一项最为复杂的以“瞬时极性的方法”为基础,运用电路中两个或多个具有特殊意义的关键点 进行测量,从测量的几个关键点中进行判断电路的震荡作用,利用这样的方法可以使得对电路震荡的判断更加简 便。
瞬时极性法
R 2
级间负反馈
级间反馈通 路
交、直流反馈判断举例
交、直流负反 馈
(+)
-
C1
vI (+)
(+)
+
(+)
vO
R1 (+)
C2
R2
交流正反馈
四、输入、输出端的反馈形式的判断
负反馈对放大器性能的影响同反馈的类型有关,当考虑到信号源和 负载时,负反馈放大器包含四个部分:
信号源 Ug
基本放大器 A
反馈网络 F
1、正反馈: x i x ix f
负反馈: x i x ix f
X i + X i'
A
X o
–
X f
F
2、闭环增益的一般表达式
A F
X o X i
X o X i X f
X o/A X oX oK f 1A A K f 1 A T
即
AF 1AAkf
其中 A k f 称为环路增益
F 1A K f 1T 为增加反馈后,放大器的增益 下降的倍数,叫做反馈深度.
信号的正向 传输
信号在基本放 大电路中的反
向传输
X s 变 换 网 络Xi + K –
X i’ 基 本 放 大 X o 电 路 A
Xf
反馈网络 F
信号在反馈网 络中的正向传
输
信号的反向 传输
一、反馈的表示方法
(一)方框图
信号的正向传 输
X s
单向化
变 换 网 络Xi + K –
Xf
X i’ 基 本 放 大 X o 电 路 A
为串联反馈,则 形式出现
x i、xi、x f以电压的
反馈的极性判断
反馈的极性判断
瞬时极性法:
假设某一瞬间,放大电路输入端信号的极性为正(+),根据放大电路的结构,得到输出信号的极性(为正或为负)。
若反馈电路引回输入回路的反馈信号与原输入信号极性相同,使净输入增加,为正反馈;若反馈电路引回输入回路的反馈信号与原输入信号极性相反,使净输入减小,为负反馈。
例:试用瞬时极性法判断电路的反馈极性
1. 设某一瞬时 ui 为正,则此时 uo 为负,同时反馈电压 uf 也为负。
反馈信号与原输入信号极性相反,
减小
2. 设某一瞬时 ui 为正,则此时 uo 为正,同时反馈电压 uf 也为正。
反馈信号与原输入信号极性相同,
净输入信号
增大
所以为正反馈。
直流负反馈
如果在电路中引入直流负反馈,可以稳定放大电路的静态工作点。
负反馈放大电路的四种组态
负反馈放大电路的四种组态根据不同的输入连接方式和输出取样方式相组合,可以得到负反馈放大电路的四种基本组态,分别是:电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈。
1、电压串联负反馈电路如下列图所示。
〔1〕用瞬时极性法判断正负反馈。
根据瞬时极性法,可知和同极性,因此,该电路是负反馈。
〔2〕由输出端判断电压或电流反馈。
当时,反馈信号,为电压反馈。
〔3〕由输入端判断串联或并联反馈。
反馈信号与输入信号接在运放的不同端,为串联反馈。
综上所述,该放大电路的反馈类型为:电压串联负反馈。
2.电压并联负反馈电路如下列图所示。
〔1〕用瞬时极性法判断正负反馈。
根据瞬时极性法,可判断在输入端加入正信号,电流的实际流向和图中标注的相同,因此,该电路是负反馈。
〔2〕由输出端判断电压或电流反馈。
当时,反馈信号,为电压反馈〔3〕由输入端判断串联或并联反馈。
反馈信号与输入信号接在运放的同一端,故为并联反馈。
综上所述,该放大电路的反馈类型为:电压并联负反馈。
3、电流串联负反馈电路如下列图所示。
〔1〕用瞬时极性法判断正负反馈:负反馈〔2〕由输出端判断电压电流反馈:电流反馈〔3〕由输入端判断串、并联反馈:串联反馈综上所述,该放大电路的反馈类型为:电流串联负反馈。
4、电流并联负反馈电路如下列图所示。
〔1〕用瞬时极性法判断正负反馈:负反馈〔2〕由输出端判断电压电流反馈:电流反馈〔3〕由输入端判断串、并联反馈:并联反馈综上所述,该放大电路的反馈类型为:电流并联负反馈。
如何判断正负反馈
如何判断正负反馈如何判断正负反馈?【相关知识】:瞬时极性法的含义;各种组态放大电路中输入量与输出量之间的相位关系等。
【解题方法】:用瞬时极性法判断,如引入反馈后使净输入量减小,则为负反馈;反之,若引入反馈后使净输入量增大,则为正反馈。
【解答过程】:正负反馈的判断一般采用瞬时极性法。
瞬时极性法的基本思路是先假设输入信号在某一时刻对地的瞬时极性,然后根据各级放大电路的组态逐级推出电路中各点电位的瞬时极性和各相关支路电流的瞬时流向,直至推出反馈信号的瞬时极性或方向,选取包含输入信号、反馈信号、净输入信号这三个量的回路或节点进行比较综合,最后看引入反馈后对净输入量的影响。
与未引入反馈时(未引入反馈时,基本放大器的输入就是外加的输入信号)相比,若引入反馈后使净输入量减小,则为负反馈;反之若引入反馈后使净输入量增大,则为正反馈。
为了迅速准确地判断反馈极性,应该注意以下几点:(1)正确理解电路中各点瞬时极性的含义。
所谓正极性,在输入正弦波时,可以指正弦波的正半周;在输入非正弦波时,表示该点的电位增大或该支路的瞬时电流增大。
反之,所谓负极性指交流信号的负半周或瞬时量减少。
(2)熟悉常用放大电路输入输出之间的相位关系。
在共射组态中,信号由基极输入,集电极输出,输入与输出之间相位相反。
在共基组态中,信号由发射极输入,集电极输出,输入与输出之间相位相同。
在共集组态中,信号由基极输入,发射极输出,输入与输出之间相位相同。
同理也不难确定差分放大电路和集成运算放大电路中的相位关系。
(3)理解放大器件中输入输出间的控制原理,以确定净输入量。
如对于运算放大器,不难看出运放两个输入端之间的差模输入电压或输入电流可以控制运放的输出电压或电流;对于三极管组成的放大电路来说,三极管的基极输入电流或发射结电压的大小控制输出电压或电流;对于差分放大电路来说,差模输入电压或基极输入电流控制输出电压或电流。
因此,根据输入回路中输入信号与反馈信号的接法,可以判断净输入信号是增加还是减小,从而确定电路中的反馈极性是正反馈还是负反馈。
反馈极性的判断方法瞬时极性法
反馈极性的判断方法瞬时极性法Company number:【0089WT-8898YT-W8CCB-BUUT-202108】反馈极性的判断方法——瞬时极性法反馈在电技术中应用十分广泛。
反馈有正,负之分。
负反馈主要用于模拟放大电路中,负反馈既能稳定静态工作点,又能改善放大电路的各种性能。
放大电路很少用正反馈。
在一定条件下放在电路中的负反馈可转化为正反馈,形成自激振荡,使放大器不能正常工作,这是要避免的一面。
正反馈还有有利的一面,就是在波形产生的电路中,人为地把电路接成反馈形式,产生所需的波形。
在电子技术实践中,要正确组成反馈放大电路和振荡电路。
必须清晰准确地判别正负反馈。
如何有效判别正负反馈本文介绍瞬时(变化)极性法。
学习反馈电路,掌握反馈的基本概念和判别方法,必须解决以下问题:(1)什么是反馈反馈就是将放大电路的输出信号的一部分,通过一定电路形式送回到输入回路称为反馈。
(2)反馈元件如何判别既与输出回路相连,又与输入回路相连的器件都是反馈元件;虽仅在输出回路或输入回路,但与反馈支路相连,并对反馈信号大小产生影响的元件也是反馈元件。
(3)如何构成反馈放大器引入反馈的放大电路称为反馈放大电路,即反馈放大器。
(见图1)图1图中A是基本放大电路,F是反馈网络,两部分构成一个闭环。
X’i和x’f分别是输入信号和反馈信号,x’d是净输入信号,三者汇交的节点称为混合环节。
X’i、x’f、x’d可以是电压信号,也可以是电流信号,x’i与x’f在节点处可以相加也可以相减。
如果是串联反馈x’i和x’f都用电压表示,两个电压在此串联相减。
如果是并联反馈,x’i和x’f都用电流表示,两个电流在此并联相减。
(4)什么是正反馈,负反馈如果反馈信号x’f与原来外加的输入信号x’i相位相同,使放大器净输入信号增强为正反馈,反之就称为负反馈。
那么,在具体电路中如何正确判断是正反馈还是负反馈呢一般是利用电路中各点对“地”的交流电位的瞬时极性来判别。
5.1.2 反馈极性及其判断
解:对于图(a): 引入的是负反馈,因为
运放同相输入端 运放输出端
对于图(b): 引入的是负反馈,因为
运放反相输入端 运放输出端
2020/6/2
,
,
5
反馈极性及其判断
例5.1.2 试判断如图所示多级放大电路的本级和级 间各引入了什么反馈。
(1)本级反馈:R2引入第1级交、直流负反馈;R4、
C2引入第2级直流负反馈;R7引入第3级交、直流负反馈;
有交流分量称为交流反馈,既包含直流分量又包含交流 分量称为直流、交流反馈
2020/6/2
3
反馈极性及其判断
(2)判断信号的瞬时极性和大小 信号的瞬时极
性为正用表示, 信号的瞬时极性为 负用 表示,信号 的大小用 或 的 个数表示。
(3)确定净输 入量的大小
2020/6/2
4
反馈极性及其判断 例5.1.1 判断如图所示集成运放的反馈极性。
时,
,放大倍数→∞。
放大器处于 “ 自激振荡”状态。
2020/6/2
2
反馈极性及其判断
2.反馈极性的判断 (1)寻找反馈网络
① 反馈范围——本级和级间反馈 把每一级中存在的反馈称为本级或局部反馈,把级
与级之间存在的反馈称为级间或整体反馈。 重点讨论级间反馈
② 反馈性质——直流和交流反馈 如果反馈信号中只包含直流分量称为直流反馈,只
R8引入第4级交、直流负反馈,R9、C4引入第4级直流负
2020/反6/2馈。
6
反馈极性及其判断 (2)级间反馈:
R2、R3、C3、R7引入了1-3级间的交流负反馈, R10、
R9、C4引入了1-4级间的直流负反馈。
2020/6/2
正反馈与负反馈的判别方法
正反馈与负反馈的判别方法
1、正反馈与负反馈
以反馈对输出幅度的影响,分正反馈和负反馈。
加入反馈后,反馈信号与输入信号比较,若使电路或系统的净输入信号减小,导致输出信号也减小,这样的反馈称为负反馈。
加入反馈后,反馈信号与输入信号比较,若使电路或系统的净输入信号增大,导致输出信号也增大,这样的反馈称为正反馈。
电路或系统引入负反馈,能够稳定电路或系统的工作状态;引入正反馈,可导致电路或系统的振荡,作为信号发生器。
图1 电子电路方框图
2、正反馈与负反馈的判别方法
正反馈与负反馈的基本判别方法是瞬时极性法:
(1)设接地参考点的电位为零,电路中某点的电位高
于零电位,则该点的瞬时电位记为“Å”(或“↑”),否则记为“-” (或“↓”);
(2)逐点确定的瞬时极性;
(3)较后观察回到输入端的反馈信号的瞬时极性,若使净输入信号增强,即为正反馈,否则为负反馈。
3、以反馈信号的成分,分直流反馈、交流反馈和交直流反馈。
若反馈信号中只包含直流分量,称为直流反馈。
直流负反馈可稳定电路或系统的静态工作点;
若反馈信号中只包含交流分量,称为交流反馈。
交流负反馈的作用将在下节讨论;
在电路系统中,直流反馈和交流反馈往往同时存在。
反馈类型及其判定
反馈类型及其判定1. 按反馈极性分:正反馈和负反馈。
正反馈——反馈信号X ˙ f 对输入信号X ˙ i 起助长作用( X ′ ˙ i = X ˙ i + X ˙ f ),使净输入量X ˙ i 增大.负反馈——反馈信号X ˙ f 对输入信号X ˙ i 起减弱作用( X ′ ˙ i = X ˙ i -X ˙ f ),使净输入量X ˙ i 减小。
负反馈多用于改善放大器的性能;正反馈多用于振荡电路。
推断方法——瞬时极性法。
其步骤如下:首先,在基本放大器输入端设定输入信号瞬时增加, 标注为“⊕”;然后逐级推演出反馈信号的变化极性;最终判定反馈信号对输入端的影响。
若使输入增加,则为正反馈;若使输入减弱,则为负反馈。
2. 按对输出电量的取样分:电压反馈和电流反馈电压反馈——反馈信号X ˙ f 正比于被采样的输出信号为X ˙ o 。
X ˙ f ⊕ X ˙ o 反馈系数F ˙ = X ˙ f U ˙ o电流反馈——反馈信号X ˙ f 正比于被采样的输出信号为I ˙ o 。
X ˙ f ⊕ I ˙ o 反馈系数F ˙ = X ˙ f I ˙ o电压反馈和电流反馈的判定方法:方法一——输出短路法。
将反馈放大器的输出端对地沟通短路,若其反馈信号随之消逝, 则为电压反馈;否则为电流反馈。
方法二——按电路结构判定。
在沟通通路中,若放大器的输出端和反馈网络的取样端处在同一个放大器件的同一个电极上(输出端取样端同点),则为电压反馈;否则是电流反馈。
举例:推断反馈。
图6 .4中(a)是电压反馈,(b)是电流反馈。
3. 按输入信号与反馈信号的比较形式分:串联反馈和并联反馈串联反馈——反馈信号X ˙ f 与输入信号X ˙ i 在输入回路以电压形式比较(串联)。
U ˙ ′ i = U ˙ i -U ˙ f并联反馈——反馈信号I ˙ f 与输入信号I ˙ i 在输入回路以电流形式比较(并联)。
I i ' = I i I f串联反馈和并联反馈的判定方法:对于交变重量而言,若信号源的输入端和反馈网络的反馈端接于放大器件的同一个电极上(输入端与反馈端同点),则为并联反馈;否则,为串联反馈。
负反馈的判断方法
负反馈放大器可组合成四种类型,即:电流串联、电流并联、电压串联、电压并联四种负反馈类型。
正负反馈的判断
正负反馈的判断使用瞬时极性法。
瞬时极性是一种假设的状态,它假设在放大电路的输入端引入一瞬时增加的信号。
这个信号通过放大电路和反馈回路回到输入端。
反馈回来的信号如果使引入的信号增加则为正反馈,否则为负反馈。
(运算放大器的输出端和同相输入端的瞬时极性相同,和反相输入端的瞬时极性相反。
三极管基极和射级级性相同,基极和集电极极性相反)
正反馈:输入极性和反馈极性相同
负反馈:输入极性和反馈极性相反
串联并联的判断
反馈的串并联类型是指反馈信号影响输入信号的方式即在输入端的连接方式。
串联反馈是指净输入电压和反馈电压在输入回路中的连接形式为串联,即以电压串联的形式迭加(输入信号与反馈信号不在同一电极),而并联反馈是指的净输入电流和反馈电流在输入回路中并联,即以电压串联的形式迭加(输入信号与反馈信号在同一电极).
串联: 输入信号与反馈信号不在同一电极
并联:输入信号与反馈信号在同一电极
电压电流的判断
电压电流反馈是指反馈信号取自输出信号(电压或电流)的形式。
通常,采用将负载电阻短路的方法来判别电压反馈和电流反馈。
具体方法是:若将负载电阻RL短路,如果反馈作用消失,则为电压反馈;如果反馈作用存在,则为电流反馈。
反馈组态判断
瞬 时 极 性 法
在放大电路的输入端,假设一个输入信号对地的极性, 用“+”、“-”表示。按信号传输方向依次判断相关点的瞬
时极性,直至判断出反馈信号的瞬时极性。如果反馈信号 的瞬时极性使净输入减小,则为负反馈;反之为正反馈。
反馈信号和输入信号加于输入回路一点时,瞬时极性 相同的为正反馈,瞬时极性相反的是负反馈。 反馈信号和输入信号加于输入回路两点时,瞬时极 性相同的为负反馈,瞬时极性相反的是正反馈。 对三极管来说这两点是基极和发射极,对运算放大器 来说是同相输入端和反相 输入端。
交直流串联电压负反馈
电压并联负反馈
Ig
. . If ○ R I A .
i
Ii
IiI ' Iid⊕
f
A
○
Io
g
F
输出端的取样是电压
F
vo
.
RL
Vo
电压负反馈 并联负反馈
输入端Ii和If以并联的方式进行比较
电流并联负反馈
输入端Ii和If 以并联的方 Ig 式进行比较
. . R I .
g
Ii
Iiii'
电流串联负反馈
例6:试判断电路的反馈组态。
解: 根据瞬时极性法
经电阻R1加在基极B1上的 是直流电流并联负反馈。
经Rf 加在E1上是交流负反馈。反馈信号和输 入信号加在T1两个输入电极,故为串联反馈。 交流电压串联负反馈。
例7:判断Rf是否负反馈,若是,判断反馈的组态。
+EC RB1 C1 RC1 uc1 T1 RB21 ub2 RC2 C3 uc2 T2 RB22 RE2
Vo
v 反馈网络 f F
反馈极性的判断方法--瞬时极性法
反馈极性的判断方法--瞬时极性法
沈舷;陈跃安
【期刊名称】《机械制造与自动化》
【年(卷),期】2004(033)002
【摘要】反馈技术广泛应用于各工程技术领域,尤其是电子技术领域.在放大电路中采用负反馈,而在波形产生和波形变换的电路中则需要采用正反馈.现介绍运用瞬时极性来准确判断电路反馈极性的方法.
【总页数】3页(P62-64)
【作者】沈舷;陈跃安
【作者单位】常州纺织服装职业技术学院,江苏,常州,213004;常州纺织服装职业技术学院,江苏,常州,213004
【正文语种】中文
【中图分类】TN721.2
【相关文献】
1.功用“瞬时极性法”判断反馈极性 [J], 马并生
2.瞬时极性法判断电路振荡的可能性 [J], 秦莉艳
3.瞬时极性法判断电路振荡的可能性探讨 [J], 罗天涯
4.反馈放大电路反馈极性和类型的实用判断法 [J], 白泽生
5.一种判断反馈极性和反馈组态的直观方法 [J], 李继凯;赵金周
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反馈极性的判断方法——瞬时极性法
反馈在电技术中应用十分广泛。
反馈有正,负之分。
负反馈主要用于模拟放大电路中,负反馈既能稳定静态工作点,又能改善放大电路的各种性能。
放大电路很少用正反馈。
在一定条件下放在电路中的负反馈可转化为正反馈,形成自激振荡,使放大器不能正常工作,这是要避免的一面。
正反馈还有有利的一面,就是在波形产生的电路中,人为地把电路接成反馈形式,产生所需的波形。
在电子技术实践中,要正确组成反馈放大电路和振荡电路。
必须清晰准确地判别正负反馈。
如何有效判别正负反馈?本文介绍瞬时(变化)极性法。
学习反馈电路,掌握反馈的基本概念和判别方法,必须解决以下问题:
(1)什么是反馈?反馈就是将放大电路的输出信号的一部分,通过一定电路形式送回到输入回路称为反馈。
(2)反馈元件如何判别?既与输出回路相连,又与输入回路相连的器件都是反馈元件;虽仅在输出回路或输入回路,但与反馈支路相连,并对反馈信号大小产生影响的元件也是反馈元件。
(3)如何构成反馈放大器?引入反馈的放大电路称为反馈放大电路,即反馈放大器。
(见图1)
图1
图中A是基本放大电路,F是反馈网络,两部分构成一个闭环。
X’i和x’f分别是输入信号和反馈信号,x’d是净输入信号,三者汇交的节点称为混合环节。
X’i、x’f、x’d可以是电压信号,也可以是电流信号,x’i与x’f在节点处可以相加也可以相减。
如果是串联反馈x’i和x’f都用电压表示,两个电压在此串联相减。
如果是并联反馈,x’i和x’f都用电流表示,两个电流在此并联相减。
(4)什么是正反馈,负反馈?如果反馈信号x’f与原来外加的输入信号x’i相位相同,使放大器净输入信号增强为正反馈,反之就称为负反馈。
那么,在具体电路中如何正确判断是正反馈还是负反馈呢?一般是利用电路中各点对“地”的交流电位的瞬时极性来判别。
假设放大电路中的输入电压处于某一瞬时极性(正半周为正,用“十”表示,负半周为负,用“一”表示),沿放大电路通过反馈网络再回到输入回路。
依次定出电路中各点电位的瞬时极性。
如果反馈信号与原假定的输入信号瞬时(变化)极性相同,则表明为正反馈,否则为负反馈。
这就是瞬时(变化)
极性法简称瞬时极性法。
严格地说,反馈极性(正反馈还是负反馈)与信号的频率有关,我们通常所说的反馈极性是指中频而言。
在此频率下,通常把射极旁路电容,隔直电容看作短路,把管子的极间电容看作开路,并且不产生相移。
运用瞬时极性法判定电路各点电位极性时,一定要非常熟练掌握三极管三种基本联接方式(组态)的判定及相应组态输出信号电压的相位关系。
双极性型或单极型的晶体三极管有三种基本联接方式(组态),其中双极型是共射极,共集电极和共基极。
见下图:
共射极放大电路(图2)共基极放大电路(图3)共集电极放大电路(图4)
在共射极电路中,基极电位和集电极电位的瞬时极性相反,当有射极电阻并且没有旁路电容时,基极电位和发射极电位间瞬时极性相同。
在共基极电路中,输出电压与输入电压相位相同。
则有发射极电阻的射极电位的瞬时极性与集电极相同,当有基极电阻无旁路电容时,射极电位与基极相反。
(见图3)同理在共集电极电路中,因为输出电压与输入电压同相,基极电位与射极电位相同,与集电极电位相反(见图4)。
共射极电路(图5)共射极电路(图6)
用瞬间极性法判断反馈极性要注意运用同点连接判别法。
同点连接法,若反馈支路的输出端与放大电路信号的输入端同点相连,且瞬时变化极性相同,则该反馈为正反馈,反之为负反馈。
(见图7)
图7 正反馈(A-同点)
若反馈之路的输出端没有返回到放大电路输入端,而是返回到共同极端,且两者(x’f和x’i)相位相同,反馈信号起到削弱输入信号的作用,相当于向放大电路输入端(同点)反馈“一”极性反馈信号,是负反馈。
(见图8)
图8 负反馈(B⊕相当于A)
瞬时极性法判断反馈极性时,为了迅速而正确判断反馈极性应该熟悉每一个放大器输入量与输出量的相位关系。
以下举二例说明。
例1.指出下图的反馈元件,并说明其反馈极性
答:图中v1.v2均为共射极组态,Rf,cf是反馈元件。
根据瞬极性法B1(+)-B2(-)-Rf(f).vf与vi同极性,但是不是同点连接,VB2=vi-vf。
净输入信号减小,所以该反馈为负反馈。
Re1,Re2也是反馈元件,用瞬间极性判断,Re1为负反馈,Re2为直流负反馈。
例2.判断图示Rf的反馈极性
答:图10中由Cf , Rf支路引反馈极性。
先假设vi的瞬时极性为上正下负,然后根据各极组态或输入输出的位置可以判断输出量的瞬时极性。
图示中可以看出,第一级是共集极组态,信号由基极入射极出两者同相;第二级是射极组态(有Re2),信号由射极入。
集电极出,两者反相;第三级也是共射极组态(有Re3)输入输出信号又一次反相。
所以总的来说,输出量与输入量同相,输出电压的瞬时极性也是上正下负。
但是,反馈支路的输端不是同点连接而是返回到共同极点vi与vf串联相减,所以反馈极性为负。
反之,如果放大电路各级组态和级数原来就使输出量和输入量的瞬时极性相反,则这样串联相减的结果使反馈极性为正。
总之,反馈极性归根到底取决于反馈量与输入量的相位关系以及两者在输入端的接法。
这是因为:放大电路的输入电压和输出电压都有一端为地,所以为引入电压负反馈,如果是串联反馈(反馈支路的输出关没有返回到信号输入端的同点)放大电路的输出量与输入量必须同相,即反相级数必须为偶数;如果是并联反馈(反馈支路的输出端与输入信号的输出端同点连接),放大电路的输出量与输入量必须反相,即反相级数必须为奇数。
综上所述:反馈有正负之分,在正反馈中,反馈量增强原输入量,使相应的增益上升,但都有可能使放大电路工作稳定(产生自激),在负反馈中,反馈量削弱原输入量,使相应的增益下降,但却能稳定与反馈量成正比的输出量。
判断反馈极性的方法:用瞬间极性法的前提是按中频段考虑的。
具体步骤是:(1)先假定输入量的瞬时极性。
(2)根据放大电路各级的组态决定输出量与反馈量的瞬时极性。
(3)根据输入量与反馈量在输入端的接法及瞬时极性关系判断反馈极性。