平行四边形单元测试提优卷试卷

合集下载

人教版平行四边形单元达标测试提优卷试卷

人教版平行四边形单元达标测试提优卷试卷

人教版平行四边形单元达标测试提优卷试卷一、选择题1.如图,正方形ABCD的对角线相交于O点,BE平分∠ABO交AO于E点,CF⊥BE于F点,交BO于G点,连接EG、OF,下列四个结论:①CE=CB;②AE=2OE;③OF=12 CG,其中正确的结论只有()A.①②③B.②③C.①③D.①②2.在正方形ABCD 中,P 为AB 的中点,BE PD⊥的延长线于点E ,连接AE 、BE ,FA AE⊥交DP 于点F ,连接BF 、FC ,下列结论:①ABE ADF≅;②FB =AB ;③CF PD⊥;④FC =EF . 其中正确的是()A.①②④B.①③④C.①②③D.①②③④3.如图,在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A 出发,以每秒3cm的速度沿折线A-B-C-D方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动、已知动点P,Q同时出发,当点Q运动到点C时,点P,Q停止运动,设运动时间为t秒,在这个运动过程中,若△BPQ的面积为20cm2,则满足条件的t的值有()A.1个B.2个C.3个D.4个4.如图,正方形ABCD内有两条相交线段MN,EF,M,N,E,F分别在边AB,CD,AD,BC上.小明认为:若MN=EF,则MN⊥EF;小亮认为:若MN⊥EF,则MN=EF,你认为()A .仅小明对B .仅小亮对C .两人都对D .两人都不对5.如图,在▭ABCD 中,AB =4,BC =6,∠ABC =60°,点P 为▭ABCD 内一点,点Q 在BC 边上,则PA +PD +PQ 的最小值为( )A .3719++B .6+23C .53D .106.如图,在菱形ABCD 中,2AB =,,E F 分别是AB ,BC 的中点,将CDF 沿着DF 折叠得到DFC '△,若C '恰好落在EF 上,则菱形ABCD 的面积为( )A .3B .372C .362D .227.如图,正方形纸片ABCD ,P 为正方形AD 边上的一点(不与点A ,点D 重合).将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于点H ,折痕为EF ,连接,,BP BH BH 交EF 于点M ,连接PM .下列结论:①BE PE =;②BP EF =;③PB 平分APG ∠;④PH AP HC =+;⑤MH MF =,其中正确结论的个数是( )A .5B .4C .3D .28.如图,四边形ABCD 中,AD ∥BC ,∠ABC+∠DCB=90°,且BC=2AD ,以AB 、BC 、DC 为边向外作正方形,其面积分别为1S 、2S 、3S ,若1S =3,3S =8,则2S 的值为( )A .22B .24C .44D .489.如图,已知一个矩形纸片OACB ,将该纸片放置在平面直角坐标系中,点A (10,0),点B (0,6),点P 为BC 边上的动点,将△OBP 沿OP 折叠得到△OPD ,连接CD 、AD .则下列结论中:①当∠BOP =45°时,四边形OBPD 为正方形;②当∠BOP =30°时,△OAD 的面积为15;③当P 在运动过程中,CD 的最小值为234﹣6;④当OD ⊥AD 时,BP =2.其中结论正确的有( )A .1个B .2个C .3个D .4个10.如图,BD 为平行四边形ABCD 的对角线,45DBC ∠=︒,DE BC ⊥于E ,BF CD ⊥于F ,DE 、BF 相交于H ,直线BF 交线段AD 的延长线于G ,下面结论:①2BD BE =;②A BHE =∠∠;③AB BH =;④BHD BDG ∠=∠其中正确的个数是( )A .1B .2C .3D .4二、填空题11.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.12.如图,在正方形ABCD 中,点,E F 将对角线AC 三等分,且6AC =.点P 在正方形的边上,则满足5PE PF +=的点P 的个数是________个.13.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .14.如图,在正方形ABCD 中,2,点E 在AC 上,以AD 为对角线的所有平行四边形AEDF 中,EF 最小的值是_________.15.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,则∠AED等于__度.16.在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=10.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.17.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt△ABC中,∠ACB=90°,若点D是斜边AB的中点,则CD=12AB,运用:如图2,△ABC中,∠BAC=90°,AB=2,AC=3,点D是BC的中点,将△ABD沿AD翻折得到△AED连接BE,CE,DE,则CE的长为_____.18.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠BAC=45°,则下列结论:①CD∥EF;②EF=DF;③DE平分∠CDF;④∠DEC=30°;⑤AB =2CD ;其中正确的是_____(填序号)19.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.20.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.三、解答题21.如图,平行四边形ABCD 的对角线AC BD 、交于点O ,分别过点C D 、作//,//CF BD DF AC ,连接BF 交AC 于点E .(1)求证: FCE BOE ≌;(2)当ADC ∠等于多少度时,四边形OCFD 为菱形?请说明理由.22.如图,点E 为▱ABCD 的边AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG .H 为FG 的中点,连接DH ,AF .(1)若∠BAE =70°,∠DCE =20°,求∠DEC 的度数;(2)求证:四边形AFHD 为平行四边形;(3)连接EH ,交BC 于点O ,若OC =OH ,求证:EF ⊥EG .23.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC .(1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+24.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系.②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.25.如图①,已知正方形ABCD 中,E ,F 分别是边AD ,CD 上的点(点E ,F 不与端点重合),且AE=DF ,BE ,AF 交于点P ,过点C 作CH ⊥BE 交BE 于点H .(1)求证:AF ∥CH ;(2)若AB=23 ,AE=2,试求线段PH 的长;(3)如图②,连结CP 并延长交AD 于点Q ,若点H 是BP 的中点,试求 CP PQ的值. 26.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(090α︒<<︒),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,BEF ∠的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出BEF ∠的度数;(3)联结AF ,求证:2DE AF =.27.如图,在正方形ABCD 中,点E 是BC 边所在直线上一动点(不与点B 、C 重合),过点B 作BF ⊥DE ,交射线DE 于点F ,连接CF .(1)如图,当点E 在线段BC 上时,∠BDF=α.①按要求补全图形;②∠EBF =______________(用含α的式子表示);③判断线段 BF ,CF ,DF 之间的数量关系,并证明.(2)当点E 在直线BC 上时,直接写出线段BF ,CF ,DF 之间的数量关系,不需证明.28.如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使60AEB ∠=︒.(1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则60AEB ∠=︒;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q . ①当PQ BE ⊥时,求证:2BP AP =;②当PQ BE =时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由.29.如图,ABC ∆是边长为3的等边三角形,点D 是射线BC 上的一个动点(点D 不与点B 、C 重合),ADE ∆是以AD 为边的等边三角形,过点E 作BC 的平行线,交直线AC 于点F ,连接BE .(1)判断四边形BCFE 的形状,并说明理由;(2)当DE AB ⊥时,求四边形BCFE 的周长;(3)四边形BCFE 能否是菱形?若可为菱形,请求出BD 的长,若不可能为菱形,请说明理由.30.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据正方形对角性质可得∠CEB=∠CBE,CE=CB;根据等腰直角三角形性质,证△ECG≌△BCG,可得2OE;根据直角三角形性质得OF=12BE=12CG.【详解】∵四边形ABCD是正方形,∴∠ABO=∠ACO=∠CBO=45°,AB=BC,OA=OB=OC,BD⊥AC,∵BE平分∠ABO,∴∠OBE=12∠ABO=22.5°,∴∠CBE=∠CBO+∠EBO=67.5°,在△BCE中,∠CEB=180°-∠BCO-∠CBE=180°-45°-67.5°=67.5°,∴∠CEB=∠CBE,∴CE=CB;故①正确;∵OA=OB,AE=BG,∴OE=OG,∵∠AOB=90°,∴△OEG是等腰直角三角形,∴2OE,∵∠ECG=∠BCG,EC=BC,CG=CG,∴△ECG≌△BCG,∴BG=EG,∴OE;故②正确;∵∠AOB=90°,EF=BF,∵BE=CG,∴OF=12BE=12CG.故③正确.故正确的结论有①②③.故选A.【点睛】运用了正方形的性质、等腰三角形的性质、等腰梯形的判定、全等三角形的判定与性质以及等腰直角三角形的性质.此题难度较大,解题的关键是注意数形结合思想的应用.2.D解析:D【解析】【分析】根据已知和正方形的性质推出∠EAB=∠DAF,∠EBA=∠ADP,AB=AD,证△ABE≌△ADF即可;取EF的中点M,连接AM,推出AM=MF=EM=DF,证∠AMB=∠FMB,BM=BM,AM=MF,推出△ABM≌△FBM即可;求出∠FDC=∠EBF,推出△BEF≌△DFC即可.【详解】解:∵正方形ABCD,BE⊥ED,EA⊥FA,∴AB=AD=CD=BC,∠BAD=∠EAF=90°=∠BEF,∵∠APD=∠EPB,∴∠EAB=∠DAF,∠EBA=∠ADP,∵AB=AD,∴△ABE≌△ADF,∴①正确;∴AE=AF,BE=DF,∴∠AEF=∠AFE=45°,取EF的中点M,连接AM,∴AM⊥EF,AM=EM=FM,∴BE∥AM,∵AP=BP,∴AM=BE=DF,∴∠EMB=∠EBM=45°,∴∠AMB=90°+45°=135°=∠FMB,∵BM=BM,AM=MF,∴△ABM≌△FBM,∴AB=BF,∴②正确;∴∠BAM=∠BFM,∵∠BEF=90°,AM⊥EF,∴∠BAM+∠APM=90°,∠EBF+∠EFB=90°,∴∠APF=∠EBF,∵AB∥CD,∴∠APD=∠FDC,∴∠EBF=∠FDC,∵BE=DF,BF=CD,∴△BEF≌△DFC,∴CF=EF,∠DFC=∠FEB=90°,∴③正确;④正确;故选D.【点睛】本题主要考查对正方形的性质,等腰直角三角形,直角三角形斜边上的中线性质,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.3.B解析:B【解析】【分析】过A作AH⊥DC,由勾股定理求出DH的长.然后分三种情况进行讨论:即①当点P在线段AB上,②当点P在线段BC上,③当点P在线段CD上,根据三种情况点的位置,可以确定t的值.【详解】解:过A作AH⊥DC,∴AH=BC=8cm,DH=22AD AH- =10064-=6.i)当P在AB上时,即103t≤≤时,如图,1110382022BPQS BP BC t=⋅=-⨯=(),解得:53t=;ii )当P 在BC 上时,即103<t ≤6时,BP =3t -10,CQ =16-2t ,113101622022BPQ S BP CQ t t =⋅=-⨯-=()(),化简得:3t 2-34t +100=0,△=-44<0,∴方程无实数解.iii )当P 在线段CD 上时,若点P 在线段CD 上,若点P 在Q 的右侧,即6≤t ≤345,则有PQ =34-5t ,13458202BPQ S t =-⨯=(),295t =<6(舍去); 若点P 在Q 的左侧时,即3485t ≤<,则有PQ =5t -34,15348202BPQ S t =-⨯=(); t =7.8. 综上所述:满足条件的t 存在,其值分别为153t =,t 2=7.8.故选B .【点睛】本题是平行四边形中的动点问题,解决问题时,一定要变动为静,将其转化为常见的几何问题,再进行解答.4.C解析:C【分析】分别过点E 作EG ⊥BC 于点G ,过点M 作MP ⊥CD 于点P ,设EF 与MN 相交于点O ,MP 与EF 相交于点Q ,根据正方形的性质可得EG=MP ;对于小明的说法,先利用“HL ”证明Rt △EFG ≌Rt △MNP ,根据全等三角形对应角相等可得∠MNP=∠EFG ,再根据角的关系推出∠EQM=∠MNP ,然后根据∠MNP+∠NMP=90°得到∠NMP+∠EQM=90°,从而得到∠MOQ=90°,根据垂直的定义即可证得MN ⊥EF ;对于小亮的说法,先推出∠EQM=∠EFG ,∠EQM=∠MNP ,然后得到∠EFG=∠MNP ,然后利用“角角边”证明△EFG ≌△MNP ,根据全等三角形对应边相等可得EF=MN .【详解】如图,过点E 作EG ⊥BC 于点G ,过点M 作MP ⊥CD 于点P ,设EF 与MN 相交于点O ,MP 与EF 相交于点Q ,∵四边形ABCD 是正方形,∴EG=MP ,对于小明的说法:在Rt △EFG 和Rt △MNP 中,MN EF EG MP ⎧⎨⎩==, ∴Rt △EFG ≌Rt △MNP (HL ),∴∠MNP=∠EFG ,∵MP ⊥CD ,∠C=90°,∴MP ∥BC ,∴∠EQM=∠EFG=∠MNP ,又∵∠MNP+∠NMP=90°,∴∠EQM+∠NMP=90°,在△MOQ 中,∠MOQ=180°-(∠EQM+∠NMP )=180°-90°=90°,∴MN ⊥EF ,故甲正确.对小亮的说法:∵MP ⊥CD ,∠C=90°,∴MP ∥BC ,∴∠EQM=∠EFG ,∵MN ⊥EF ,∴∠NMP+∠EQM=90°,又∵MP ⊥CD ,∴∠NMP+∠MNP=90°,∴∠EQM=∠MNP ,∴∠EFG=∠MNP ,在△EFG 和△MNP 中,90EFG MNP EGF MPN EG MP ∠∠⎧⎪∠∠︒⎨⎪⎩==== , ∴△EFG ≌△MNP (AAS ),∴MN=EF ,故小亮的说法正确,综上所述,两个人的说法都正确.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、同角的余角相等的性质,作出辅助线,构造出全等三角形是解题的关键,通常情况下,求两边相等,或已知两边相等,都是想法把这两条线段转化为全等三角形的对应边进行求解.5.C解析:C【分析】如下图,将△APD绕点A逆时针旋转60°至△AFE处,通过边长转换,可将PA+PD+PQ转化为PF+EF+PQ的形式,再利根据两点之间线段最短,得出最小值.【详解】如下图,将△APD绕点A逆时针旋转60°至△AFE处,连接FP,过点E作BC的垂线,交BC于点G,AD于点H,过点A作BC的垂线,交BC于点K∵△AFE是△APD绕点A逆时针旋转60°得到∴∠FAP=60°,∠EAD=60°,AF=AP,EF=PD∴△APF是等边三角形,∴AP=PF∴PA+PD+PQ=PF+FE+PQ≥EG∵四边形ABCD是平行四边形,BC=6∴AE=AD=BC=6,AD∥BC∴在Rt△AHE中,AH=3,3∵HG⊥BC,AK⊥BC,AD∥BC∴AK⊥AD,GH⊥AD,∴AK=HG∵∠ABC=60°,AB=4∴在Rt△ABK中,BK=2,3∴3=∴32353【点睛】本题考查最值问题,解题关键是旋转△APD ,将PA +PD +PQ 转化为PF+EF+PQ 的形式.6.B解析:B【分析】连接AC 、BD ,设交于点O ,延长DA 、FE ,设交于点G ,如图所示,先根据菱形的性质和平行线的性质得出∠G =∠BFE ,∠GAB =∠ABF ,进而可根据AAS 证明△AEG ≌△BEF ,可得GE=EF ,AG=BF ,由此可求出DG 的长,然后根据折叠的性质和平行线的性质可得∠ADF =∠DFE ,于是可得GF=GD ,则GF 可得,再根据三角形的中位线定理和等量代换可得AC 的长,进而可得AO 的长,然后根据勾股定理可求出DO 的长,即得BD 的长,再根据菱形的面积求解即可.【详解】解:连接AC 、BD ,设交于点O ,延长DA 、FE ,设交于点G ,如图所示,∵四边形ABCD 是菱形,∴AD ∥BC ,AC ⊥BD ,BO=DO ,AO=CO ,∴∠G =∠BFE ,∠GAB =∠ABF ,∵,E F 分别是AB ,BC 的中点,菱形的边长为2,∴AE=BE ,BF=CF =1,12EF AC =, ∴△AEG ≌△BEF (AAS ),∴GE=EF ,AG=BF =1,∵AD =2,∴DG =3, ∵将CDF 沿着DF 折叠得到DFC '△,若C '恰好落在EF 上,∴∠CFD =∠DFE ,∵AD ∥BC ,∴∠ADF =∠DFC ,∴∠ADF =∠DFE ,∴GF=GD =3, ∵12EF AC =,12EF GF =, ∴AC=FG =3,∴AO =1322AC =,在Rt △AOD 中,由勾股定理得:2DO ===,∴BD ,∴菱形ABCD 的面积=11322AC BD ⋅=⨯=【点睛】本题考查了菱形的性质、折叠的性质、全等三角形的判定和性质、菱形的面积、三角形的中位线定理以及勾股定理等知识,属于常考题型,具有一定的难度,正确作出辅助线、熟练掌握上述知识是解题的关键.7.B解析:B【分析】①③利用正方形的性质、翻折不变性即可解决问题;②构造全等三角形即可解决问题;④如图2,过B作BQ⊥PH,垂足为Q.证明△ABP≌△QBP(AAS),以及△BCH≌△BQH 即可判断;⑤利用特殊位置,判定结论即可;【详解】解:根据翻折不变性可知:PE=BE,故①正确;∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH−∠EPB=∠EBC−∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.,故③正确;∴∠APB=∠BPH,即PB平分APG如图1中,作FK⊥AB于K.设EF交BP于O.∵∠FKB=∠KBC=∠C=90°,∴四边形BCFK是矩形,∴KF=BC=AB,∵EF⊥PB,∴∠BOE=90°,∵∠ABP+∠BEO=90°,∠BEO+∠EFK=90°,∴∠ABP=∠EFK,∵∠A=∠EKF=90°,∴△ABP≌△KFE(ASA),∴EF=BP,故②正确,如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,在△ABP和△QBP中,∠APB=∠BPH,∠A=∠BQP,BP=BP,∴△ABP≌△QBP(AAS).∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH(HL)∴QH=HC,∴PH=PQ+QH=AP+HC,故④正确;当点P与A重合时,显然MH>MF,故⑤错误,故选:B.【点睛】本题考查正方形的性质、翻折变换、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题属于中考选择题中的压轴题.8.C解析:C【分析】根据已知条件得到AB3CD=2,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=2BAE=90°,根据勾股定理得到BE =22AB AE +,于是得到结论.【详解】∵S 1=3,S 3=8∴AB =3,CD =22过A 作AE ∥CD 交BC 于E则∠AEB =∠DCB∵AD ∥BC∴四边形AECD 是平行四边形∴CE =AD ,AE =CD =22∵∠ABC +∠DCB =90°∴∠AEB +∠ABC =90°∴∠BAE =90°∴BE 3811+=∵BC =2AD∴BC =2BE =211∴S 2=(21144=故选:C .【点睛】本题考查平行四边形的判定和性质,勾股定理,能正确作辅助线构造直角三角形是解决此题的关键. 9.D解析:D【分析】①由矩形的性质得到90OBC ∠=︒,根据折叠的性质得到OB OD =,90PDO OBP ,BOP DOP ∠=∠,推出四边形OBPD 是矩形,根据正方形的判定定理即可得到四边形OBPD 为正方形;故①正确;②过D 作DH OA ⊥于H ,得到10OA =,6OB =,根据直角三角形的性质得到132DH OD ,根据三角形的面积公式得到OAD ∆的面积为113101522OA DH ,故②正确; ③连接OC ,于是得到OD CD OC ,即当OD CD OC +=时,CD 取最小值,根据勾股定理得到CD 的最小值为6;故③正确;④根据已知条件推出P ,D ,A 三点共线,根据平行线的性质得到OPBPOA ,等量代换得到OPAPOA ,求得10AP OA ,根据勾股定理得到1082BP BC CP ,故④正确.【详解】解:①四边形OACB 是矩形,90OBC ∴∠=︒,将OBP ∆沿OP 折叠得到OPD ∆, OB OD ∴=,90PDO OBP ,BOP DOP ∠=∠,45BOP ,45DOP BOP ,90BOD =∴∠︒,90BOD OBP ODP , ∴四边形OBPD 是矩形,OB OD =,∴四边形OBPD 为正方形;故①正确;②过D 作DH OA ⊥于H ,点(10,0)A ,点(0,6)B ,10OA ∴=,6OB =, 6OD OB,30BOP DOP , 30DOA , 132DH OD ,OAD ∴∆的面积为113101522OA DH ,故②正确; ③连接OC ,则OD CD OC ,即当OD CD OC +=时,CD 取最小值,6ACOB ,10OA =, 2222106234OC OA AC ,2346CD OC OD ,即CD 的最小值为6;故③正确;④⊥OD AD , 90ADO ∴∠=︒, 90ODP OBP ,180ADP,∴,D,A三点共线,POA CB,//OPB POA,OPB OPD,OPA POA,AP OA,10AC=,622CP,1068BP BC CP,故④正确;1082故选:D.【点睛】本题考查了正方形的判定和性质,矩形的判定和性质,折叠的性质,勾股定理,三角形的面积的计算,正确的识别图形是解题的关键.10.B解析:B【分析】通过判断△BDE为等腰直角三角形,根据等腰直角三角形的性质和勾股定理可对①进行判断;根据等角的余角相等得到∠BHE=∠C,再根据平行四边形的性质得到∠A=∠C,则∠A=∠BHE,于是可对②进行判断;证明△BEH≌△DEC,得到BH=CD,接着由平行四边形的性质得AB=CD,则AB=BH,可对③进行判断;因为∠BHD=90°+∠EBH,∠BDG=90°+∠BDE,由∠BDE>∠EBH,推出∠BDG>∠BHD,可判断④.【详解】解:∵∠DBC=45°,DE⊥BC,∴△BDE为等腰直角三角形,222∴==+==,所以①错误;BE DE BD BE DE BE BE,22∵BF⊥CD,∴∠C+∠CBF=90°,而∠BHE+∠CBF=90°,∴∠BHE=∠C,∵四边形ABCD为平行四边形,∴∠A=∠C,∴∠A=∠BHE,所以②正确;在△BEH 和△DEC 中BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEH ≌△DEC ,∴BH=CD ,∵四边形ABCD 为平行四边形,∴AB=CD ,∴AB=BH ,所以③正确;∵∠BHD=90°+∠EBH ,∠BDG=90°+∠BDE ,∵∠BDE=∠DBE >∠EBH ,∴∠BDG >∠BHD ,所以④错误;故选:B .【点睛】本题考查平行四边形的性质,全等三角形的性质和判定,等腰直角三角形的判定和性质,三角形外角的性质.熟练掌握平行四边形的性质并能灵活运用是解题关键,本题中主要用到平行四边形对边相等,对角相等.二、填空题11.4:9【分析】设DP =DN =m ,则PNm ,PC =2m ,AD =CD =3m ,再求出FG=CF=12BC=32m ,分别求出两个阴影部分的面积即可解决问题.【详解】根据图形的特点设DP =DN =m ,则PNm ,∴m=MC ,,∴BC =CD =PC+DP=3m ,∵四边形HMPN 是正方形,∴GF ⊥BC∵∠ACB =45︒,∴△FGC 是等腰直角三角形,∴FG=CF=12BC=32m , ∴S 1=12DN×DP=12m 2,S 2=12FG×CF=98m 2,∴12:S S =12m 2: 98m 2=4:9, 故答案为4:9.【点睛】本题考查正方形的性质,勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.12.8个【分析】作点F 关于BC 的对称点M ,连接FM 交BC 于点N ,连接EM ,交BC 于点H ,可得点H 到点E 和点F 的距离之和最小,可求最小值,即可求解.【详解】如图,作点F 关于BC 的对称点M ,连接FM 交BC 于点N ,连接EM ,交BC 于点H , ∵点E ,F 将对角线AC 三等分,且AC =6,∴EC =4,FC =2=AE ,∵点M 与点F 关于BC 对称,∴CF =CM =2,∠ACB =∠BCM =45°,∴∠ACM =90°,∴EM则在线段BC 存在点H 到点E 和点F 的距离之和最小为5,在点H 右侧,当点P 与点C 重合时,则PE +PF =4+2=6,∴点P 在CH 上时,PE +PF ≤6,在点H 左侧,当点P 与点B 重合时,∵FN ⊥BC ,∠ABC =90°,∴FN ∥AB ,∴△CFN ∽△CAB , ∴FN CN CF 1===AB CB CA 3,∵AB =BC =2AC =∴FN =13AB ,CN =13BC∴BN =BC -CN =,BF =,∵AB =BC ,CF =AE ,∠BAE =∠BCF ,∴△ABE ≌△CBF (SAS ),∴BE=BF=10,∴PE+PF=210,∴点P在BH上时,25<PE+PF<210,∴在线段BC上点H的左右两边各有一个点P使PE+PF=5,同理在线段AB,AD,CD上都存在两个点使PE+PF=5.即共有8个点P满足PE+PF=5,故答案为8.【点睛】本题考查了正方形的性质,最短路径问题,在BC上找到点H,使点H到点E和点F的距离之和最小是本题的关键.13.25【分析】作BE⊥AD于E,BF⊥CD于F,则四边形BEDF是矩形,证明△ABE≌△CBF(AAS),得出BE=BF,△ABE的面积=△CBF的面积,则四边形BEDF是正方形,四边形ABCD的面积=正方形BEDF的面积,求出BE=10,即可求得BD的长.【详解】解:作BE⊥AD交DA延长线于E,BF⊥CD于F,如图所示:则∠BEA=∠BFC=90°,∵∠ADC=90°,∴四边形BEDF是矩形,∴∠EBF=90°,∵∠ABC=90°,∴∠EBF=∠ABC=90°,∴∠ABE=∠CBF,在△ABE 和△CBF 中,BEA BFC ABE CBF AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (AAS ),∴BE=BF ,△ABE 的面积=△CBF 的面积,∴四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,∴BE=DE ,BE 2=10 cm 2,∴(cm),∴.故答案为:【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、矩形的判定与性质等知识;熟练掌握正方形的判定与性质,证明三角形全等是解题的关键.14.【详解】解析:∵在正方形ABCD 中,AC=∴AB=AD=BC=DC=6,∠EAD=45°设EF 与AD 交点为O ,O 是AD 的中点,∴AO=3以AD 为对角线的所有▱AEDF 中,当EF ⊥AC 时,EF 最小,即△AOE 是直角三角形,∵∠AEO=90°,∠EAD=45°,2, ∴EF=2OE=15.65【分析】先由正方形的性质得到∠ABF 的角度,从而得到∠AEB 的大小,再证△AEB ≌△AED ,得到∠AED 的大小【详解】∵四边形ABCD 是正方形∴∠ACB=∠ACD=∠BAC=∠CAD=45°,∠ABC=90°,AB=AD∵∠FBC=20°,∴ABF=70°∴在△ABE 中,∠AEB=65°在△ABE 与△ADE 中45AB AD BAE EAD AE AE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△ADE∴∠AED=∠AEB=65°故答案为:65°【点睛】本题考查正方形的性质和三角形全等的证明,解题关键是利用正方形的性质,推导出∠AEB 的大小.16.10+55【分析】取DE 的中点N ,连结ON 、NG 、OM .根据勾股定理可得55NG =.在点M 与G 之间总有MG ≤MO+ON+NG (如图1),M 、O 、N 、G 四点共线,此时等号成立(如图2).可得线段MG 的最大值.【详解】如图1,取DE 的中点N ,连结ON 、NG 、OM .∵∠AOB=90°,∴OM=12AB =5. 同理ON =5. ∵正方形DGFE ,N 为DE 中点,DE =10,∴222210555NG DN DG ++===.在点M 与G 之间总有MG≤MO+ON+NG(如图1),如图2,由于∠DNG 的大小为定值,只要∠DON=12∠DNG,且M 、N 关于点O 中心对称时,M 、O 、N 、G 四点共线,此时等号成立,∴线段MG取最大值5故答案为:5【点睛】此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.17.51313【分析】根据12•BC•AH=12•AB•AC,可得AH=1313,根据12AD•BO=12BD•AH,得OB=613,再根据BE=2OB 1213EC.【详解】设BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∠BAC=90°,AB=2,AC=3,由勾股定理得:BC13∵点D是BC的中点,∴AD=DC=DB 13,∵12•BC•AH=12•AB•AC,∴AH=13 13,∵AE=AB,DE=DB,∴点A在BE的垂直平分线上,点D在BE的垂直平分线上,∴AD垂直平分线段BE,∵12AD•BO=12BD•AH,∴OB613∴BE =2OB =1213, ∵DE =DB=CD , ∴∠DBE=∠DEB ,∠DEC=∠DCE ,∴∠DEB+∠DEC=12×180°=90°,即:∠BEC=90°, ∴在Rt △BCE 中,EC =22BC BE - =221213(13)()13-=513. 故答案为:513. 【点睛】本题主要考查直角三角形的性质,勾股定理以及翻折的性质,掌握“直角三角形斜边长的中线等于斜边的一半”以及面积法求三角形的高,是解题的关键.18.①②③⑤【分析】根据三角形中位线定理得到EF =12AB ,EF ∥AB ,根据直角三角形的性质得到DF =12AC ,根据三角形内角和定理、勾股定理计算即可判断.【详解】 ∵E ,F 分别是BC ,AC 的中点,∴EF =12AB ,EF ∥AB , ∵∠ADC =90°,∠CAD =45°,∴∠ACD =45°,∴∠BAC =∠ACD ,∴AB ∥CD ,∴EF ∥CD ,故①正确;∵∠ADC =90°,F 是AC 的中点,∴DF =CF=12AC , ∵AB=AC ,EF =12AB , ∴EF =DF ,故②正确; ∵∠CAD=∠ACD=45°,点F 是AC 中点,∴△ACD 是等腰直角三角形,DF ⊥AC ,∠FDC=45°,∴∠DFC=90°,∵EF//AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°,∴∠EFD=∠EFC+∠DFC=135°,∴∠FED=∠FDE=22.5°,∵∠FDC=45°,∴∠CDE=∠FDC-∠FDE=22.5°,∴∠FDE=∠CDE,∴DE平分∠FDC,故③正确;∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°,∴∠DEC=∠FEC﹣∠FED=45°,故④错误;∵△ACD是等腰直角三角形,∴AC2=2CD2,∴CD,∵AB=AC,∴AB CD,故⑤正确;故答案为:①②③⑤.【点睛】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.19.【分析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后确定CM的范围.【详解】解:作AB的中点M,连接EM、CM.在Rt△ABC中,AB10,∵M是直角△ABC斜边AB上的中点,∴CM=12AB=5.∵E是BD的中点,M是AB的中点,∴ME=12AD=2.∴5﹣2≤CE≤5+2,即3≤CE≤7.∴最大值为7,故答案为:7.【点睛】本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.202【解析】【分析】根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG 即可.【详解】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=3,EB=AB-AD=1,∵四边形EFCB 为矩形,∴FC=BE=1,∵AB ∥FC ,∴∠GFC=∠DAF=45°,∴GC=FC=1, ∴22112FG GC FC =+=+= 2.【点睛】本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.三、解答题21.(1)见解析;(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形,证明详见解析【分析】(1)证明四边形OCFD 是平行四边形,得出OD=CF ,证出OB=CF ,再证明全等即可(2)证出四边形ABCD 是矩形,由矩形的性质得出OC=OD ,即可得出四边形OCFD 为菱形.【详解】(1)证明:∵//,//CF BD DF AC ,∴四边形OCFD 是平行四边形, OBE CFE ∠=∠,∴OD CF =,∵四边形ABCD 是平行四边形,∴OB OD =,∴OB CF =,在FCE △和BOE △中, OBE CFE BEO FEC OB CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()FCE BOE AAS ≌.(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形.理由如下:∵90ADC ∠=︒,四边形ABCD 是平行四边形,∴四边形ABCD 是矩形∴,,,OA OC OB OD AC BD ===∴OC OD =,∴四边形OCFD 为菱形【点睛】本题考查全等三角形判定与性质,平行四边形和菱形的判定与性质等知识,熟练掌握平行四边形的判定和性质和菱形的判定是解题的关键.22.(1)50°;(2)见解析;(3)见解析【分析】(1)由平行四边形的性质和平行线的判定和性质得出答案即可;(2)由平行四边形的性质得出AD =BC ,AD ∥BC ;证明BC 是△EFG 的中位线,得出BC ∥FG ,BC =12FG ,证出AD ∥FH ,AD ∥FH ,由平行四边形的判定方法即可得出结论; (3)连接EH ,CH ,根据三角形的中位线定理以及平行四边形的判定和性质即可得到结论.【详解】明:(1)∵四边形ABCD 是平行四边形,∴∠BAE =∠BCD =70°,AD ∥BC ,∵∠DCE =20°,∵AB ∥CD ,∴∠CDE =180°﹣∠BAE =110°,∴∠DEC =180°﹣∠DCE ﹣∠CDE =50°;(2)∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∠BAE =∠BCD ,∵BF =BE ,CG =CE ,∴BC 是△EFG 的中位线,∴BC ∥FG ,BC =12FG , ∵H 为FG 的中点,∴FH =12FG , ∴BC ∥FH ,BC =FH ,∴AD ∥FH ,AD ∥FH ,∴四边形AFHD 是平行四边形;(3)连接EH ,CH ,∵CE =CG ,FH =HG ,∴CH =12EF ,CH ∥EF , ∵EB =BF =12EF , ∴BE =CH ,∴四边形EBHC 是平行四边形,∴OB =OC ,OE =OH ,∵OC =OH ,∴OE =OB =OC =12BC , ∴△BCE 是直角三角形,∴∠FEG =90°,∴EF ⊥EG .【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、等腰三角形的性质以及三角形内角和定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.23.(1)证明见解析;(2)62BE =(3)证明见解析.【分析】(1)根据平行四边形的对边平行,结合平行线的性质可证明∠E=∠CGH ,∠H=∠AFE ,再证明四边形ACGE 是平行四边形即可证明AE=CG ,由此可利用“AAS”可证明全等; (2)证明△AEF ≌△DGF (AAS )可得△DGF ≌△CGH ,所以可得12AEDG CG CD ,再结合等腰直角三角形的性质即可求得CD ,由此可得结论;(3)利用等腰直角三角形的性质和平行四边形的性质结合勾股定理分别把22AC BD +和22AB BC +用2CD 表示即可得出结论. 【详解】解:(1)证明:∵四边形ABCD 为平行四边形,∴AB//CD ,AD//BC ,∴∠E=∠EGD ,∠H=∠DFG ,∵∠CGH=∠EGD ,∠DFG=∠AFE ,∴∠E=∠CGH ,∠H=∠AFE ,∵//EH AC ,AB//CD ,∴四边形ACGE 是平行四边形,∴AE=CG ,∴△AEF ≌△CGH (AAS );(2)∵四边形ABCD 为平行四边形,∴AB//CD ,AB=CD ,∴∠E=∠EGD ,∠D=∠EAF ,∵F 是AD 的中点,∴AF=FD ,∴△AEF ≌△DGF (AAS );由(1)得△AEF ≌△CGH (AAS );∴△DGF ≌△CGH, ∴12AE DG CG CD , ∵ACD ∆是等腰直角三角形,90ACD ∠=,8AD =, ∴242AB CD AD ,∴22AE =,∴62BE AB BE =+=;(3)如下图,∵四边形ABCD 为平行四边形,∴CD=AB ,AD=BC ,AC=2OC ,BD=2OD ,∵ACD ∆是等腰直角三角形,90ACD ∠=,AC=CD ,∴222222244()AC BD AC OD AC OC CD ++++==2222222(2)446AC A OC CD AC D C CD C ++=++==,且222222223CD AD CD AC CD C AB BC D =+=+++=,。

人教版八年级初二数学下学期平行四边形单元测试提优卷试题

人教版八年级初二数学下学期平行四边形单元测试提优卷试题

人教版八年级初二数学下学期平行四边形单元测试提优卷试题一、选择题1.如图,矩形ABCD 中,AB=5,AD=4,M 是边CD 上一点,将△ADM 沿直线AM 对折,得△ANM ,连BN ,若DM=1,则△ABN 的面积是( )A .B .C .D .2.如图,在四边形ABCD 中, AD//BC,且AD>BC,BC= 6cm, AD=9cm, P 、Q 分别从A 、C 同时出发,P 以1cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 向B 运动,多少s 时直线将四边形ABCD 截出一个平行四边形( )A .1B .2C .3D .2或33.如图,在菱形ABCD 中,AC 与BD 相交于点O ,AB =4,BD =43,E 为AB 的中点,点P 为线段AC 上的动点,则EP+BP 的最小值为( )A .4B .25C .27D .84.如图,在菱形ABCD 中,两对角线AC 、BD 交于点O ,AC =8,BD =6,当△OPD 是以PD 为底的等腰三角形时,CP 的长为( )A .2B .185C .75D .525.如图,在正方形ABCD 中,点P 是AB 的中点,BE DP ⊥的延长线于点E ,连接AE ,过点A 作FA AE ⊥交DP 于点F ,连接BF 、FC.下列结论中:ABE ①≌ADF ;PF EP EB =+②;BCF ③是等边三角形;ADF DCF ④∠∠=;APF CDF S S .=⑤其中正确的是( )A .①②③B .①②④C .②④⑤D .①③⑤6.如图,在正方形ABCD 中,E ,F 分别为BC ,DC 的中点,P 为对角线AC 上的一个动点,则下列线段的长等于BP EP +最小值的是( )A .AB B .CEC .ACD .AF7.如图,点E 在正方形ABCD 外,连接AE BE DE ,,,过点A 作AE 的垂线交DE 于F ,若210AE AF BF ===,,则下列结论不正确的是( )A .AFD AEB ∆≅∆B .点B 到直线AE 的距离为2C .EB ED ⊥D .16AFD AFB S S ∆∆+=+ 8.如图,E 是边长为2的正方形ABCD 的对角线AC 上一点,且AE AB =,F 为BE 上任意一点,FG AC 于点G ,FH AB ⊥于点H ,则FG FH +的值是( )A .22B 2C .2D .19.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BF =4CF ,四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .3B .4C .6D .810.如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,2BD AD =,点E ,F ,G 分别是OA ,OB ,CD 的中点,EG 交FD 于点H ,下列4个结论中说法正确的有( )①ED CA ⊥;②EF EG =;③12FH FD =;④12EFD ACD S S =△△.A .①②B .①②③C .①③④D .①②③④二、填空题11.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.12.如图,菱形ABCD 的BC 边在x 轴上,顶点C 坐标为(3,0)-,顶点D 坐标为(0,4),点E 在y 轴上,线段//EF x 轴,且点F 坐标为(8,6),若菱形ABCD 沿x 轴左右运动,连接AE 、DF ,则运动过程中,四边形ADFE 周长的最小值是_______.13.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62,那么BC=______.14.如图,在矩形ABCD 中,AD =2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF ,其中正确的有_____.15.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).16.如图,四边形ABCP 是边长为4的正方形,点E 在边CP 上,PE =1;作EF ∥BC ,分别交AC 、AB 于点G 、F ,M 、N 分别是AG 、BE 的中点,则MN 的长是_________.17.如图,菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,若将菱形绕点O 以每秒45︒的速度逆时针旋转,则第2019秒时,菱形两对角线交点D 的坐标为__________.18.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt △ABC 中,∠ACB =90°,若点D 是斜边AB 的中点,则CD =12AB ,运用:如图2,△ABC 中,∠BAC =90°,AB =2,AC =3,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED 连接BE ,CE ,DE ,则CE 的长为_____.19.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.在ABCD 中,以AD 为边在ABCD 内作等边ADE ∆,连接BE .(1)如图1,若点E 在对角线BD 上,过点A 作AH BD ⊥于点H ,且75DAB ∠=︒,AB 6=,求AH 的长度; (2)如图2,若点F 是BE 的中点,且CF BE ⊥,过点E 作MNCF ,分别交AB ,CD 于点,M N ,在DC 上取DG CN =,连接CE ,EG .求证:①CEN DEG ∆∆≌;②ENG ∆是等边三角形.22.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .(1)求证:四边形BCEF 是平行四边形;(2)若∠DEF =90°,DE =8,EF =6,当AF 为 时,四边形BCEF 是菱形.23.在正方形ABCD 中,点E 是CD 边上任意一点,连接,AE 过点B 作BF AE ⊥于F ,交AD 于H .()1如图1,过点D 作DG AE ⊥于G .求证:BF DG FG -=;()2如图2,点E 为CD 的中点,连接DF ,试判断,,DF FH EF 存在什么数量关系并说明理由;()3如图3,1AB =,连接EH ,点Р为EH 的中点,在点E 从点D 运动到点C 的过程中,点Р随之运动,请直接写出点Р运动的路径长.24.共顶点的正方形ABCD 与正方形AEFG 中,AB =13,AE 2.(1)如图1,求证:DG =BE ;(2)如图2,连结BF ,以BF 、BC 为一组邻边作平行四边形BCHF .①连结BH ,BG ,求BH BG的值;②当四边形BCHF 为菱形时,直接写出BH 的长.25.矩形ABCD 中,AB =3,BC =4.点E ,F 在对角线AC 上,点M ,N 分别在边AD ,BC 上.(1)如图1,若AE =CF =1,M ,N 分别是AD ,BC 的中点.求证:四边形EMFN 为矩形. (2)如图2,若AE =CF =0.5,02AM CN x x ==<<(),且四边形EMFN 为矩形,求x 的值.26.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 的面积可能等于53吗?如果能,求此时x 的值;如果不能,请说明理由.27.如图,ABC ∆是边长为3的等边三角形,点D 是射线BC 上的一个动点(点D 不与点B 、C 重合),ADE ∆是以AD 为边的等边三角形,过点E 作BC 的平行线,交直线AC 于点F ,连接BE .(1)判断四边形BCFE 的形状,并说明理由;(2)当DE AB ⊥时,求四边形BCFE 的周长;(3)四边形BCFE 能否是菱形?若可为菱形,请求出BD 的长,若不可能为菱形,请说明理由.28.如图,在平行四边形 ABCD 中,AD=30 ,CD=10,F 是BC 的中点,P 以每秒1 个单位长度的速度从 A 向 D 运动,到D 点后停止运动;Q 沿着A B C D →→→ 路径以每秒3个单位长度的速度运动,到D 点后停止运动.已知动点 P ,Q 同时出发,当其中一点停止后,另一点也停止运动. 设运动时间为 t 秒,问:(1)经过几秒,以 A ,Q ,F ,P 为顶点的四边形是平行四边形(2)经过几秒,以A ,Q ,F , P 为顶点的四边形的面积是平行四边形 ABCD 面积的一半?29.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC 的外部作等腰Rt CED ,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.30.如图,在矩形ABCD 中,AB a ,BC b =,点F 在DC 的延长线上,点E 在AD 上,且有12CBE ABF ∠=∠.(1)如图1,当a b =时,若60CBE ∠=︒,求证:BE BF =;(2)如图2,当32b a =时, ①请直接写出ABE ∠与BFC ∠的数量关系:_________; ②当点E 是AD 中点时,求证:2CF BF a +=;③在②的条件下,请直接写出:BCF ABCD S S ∆矩形的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=4,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=7.5,AQ=8.5,即可求出△ABN的面积.【详解】解:延长MN交AB延长线于点Q,∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=4,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=42+x2,解得:x=7.5,∴NQ=7.5,AQ=8.5,∵AB=5,AQ=8.5,∴S△NAB=S△NAQ=×AN•NQ=××4×7.5=;故选:D.【点睛】本题考查折叠的性质勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质是解题的关键.2.D解析:D【解析】【分析】根据题意设t秒时,直线将四边形ABCD截出一个平行四边形,AP=t,DP=9-t,CQ=2t,BQ=6-2t.要使成平行四边形,则就有AP=BQ或CQ=PD,计算即可求出t值.【详解】根据题意设t 秒时,直线将四边形ABCD 截出一个平行四边形则AP=t,DP=9-t,CQ=2t,BQ=6-2t要使构成平行四边形则:AP=BQ 或CQ=PD进而可得:62t t =- 或29t t =-解得2t = 或3t =故选D.【点睛】本题主要考查四边形中的动点移动问题,关键在于根据平行四边形的性质列出方程求解即可.3.C解析:C【解析】【分析】连结DE 交AC 于点P ,连结BP ,根据菱形的性质推出AO 是BD 的垂直平分线,推出PE+PB=PE+PD=DE 且值最小,根据勾股定理求出DE 的长即可.【详解】如图,设AC ,BD 相交于O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =12AC ,BO =12BD =3 ∵AB =4,∴AO =2,连结DE 交AC 于点P ,连结BP ,作EM ⊥BD 于点M ,∵四边形ABCD 是菱形,∴AC ⊥BD ,且DO =BO ,即AO 是BD 的垂直平分线,∴PD =PB ,∴PE+PB =PE+PD =DE 且值最小,∵E 是AB 的中点,EM ⊥BD , ∴EM =12AO =1,BM =12BO 2, ∴DM =DO+OM =32BO =3,∴DE =2222E DM 1(33)27M +=+=,故选C .【点睛】此题考查了轴对称-最短路线问题,关键是根据菱形的判定和三角函数解答.4.C解析:C【解析】【分析】过O 作OE ⊥CD 于E .根据菱形的对角线互相垂直平分得出OB ,OC 的长,AC ⊥BD ,再利用勾股定理列式求出CD ,然后根据三角形的面积公式求出OE .在Rt △OED 中,利用勾股定理求出ED .根据等腰三角形三线合一的性质得出PE ,利用CP =CD -PD 即可得出结论.【详解】过O 作OE ⊥CD 于E .∵菱形ABCD 的对角线AC 、BD 相交于点O ,∴OB 12=BD 12=⨯6=3,OA =OC 12=AC 12=⨯8=4,AC ⊥BD ,由勾股定理得:CD 2222OD OC 34=+=+=5. ∵12OC ×OD =12CD ×OE ,∴12=5OE ,∴OE =2.4.在Rt △ODE 中,DE =22OD OE -=223 2.4-=1.8.∵OD =OP ,∴PE =ED =1.8,∴CP =CD -PD =5-1.8-1.8=1.4=75.故选C .【点睛】本题考查了菱形的性质,等腰三角形的性质,勾股定理,求出OE 的长是解题的关键.5.B解析:B【解析】【分析】根据正方形的性质可得AB AD =,再根据同角的余角相等求出BAE DAF ∠∠=,再根据等角的余角相等求出ABE ADF ∠∠=,然后利用“角边角”证明ABE ≌ADF ;根据全等三角形对应边相等可得AE AF =,判断出AEF 是等腰直角三角形,过点A 作AM EF ⊥于M ,根据等腰直角三角形点的性质可得AM MF =,再根据点P 是AB 的中点得到AP BP =,然后利用“角角边”证明APM 和BPE 全等,根据全等三角形对应边相等可得BE AM =,EP MP =,然后求出PF EP EB =+;根据全等三角形对应边相等求出DF BE AM ==,再根据同角的余角相等求出DAM CDF ∠∠=,然后利用“边角边”证明ADM 和DCF 全等,根据全等三角形对应角相等可得ADF DCF ∠∠=,CFD DMA 90∠∠==;再求出CD CF ≠,判定BCF 不是等边三角形;求出CF FP >,AM DF =,然后求出APF CDF SS <.【详解】在正方形ABCD 中,AB AD =,DAF BAF 90∠∠+=, FA AE ⊥,BAE BAF 90∠∠∴+=,BAE DAF ∠∠∴=,BE DP ⊥,ABE BPE 90∠∠∴+=,又ADF APD 90∠∠+=,BPE APD(∠∠=对顶角相等),ABE ADF ∠∠∴=,在ABE 和ADF 中, BAE DAF AB ADABE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ABE ∴≌()ADF ASA ,故①正确;AE AF ∴=,BE DF =,AEF ∴是等腰直角三角形,过点A 作AM EF ⊥于M ,则AM MF =,点P 是AB 的中点,AP BP ∴=,在APM 和BPE 中,90BPE APD BEP AMP AP BP ∠=∠⎧⎪∠=∠=⎨⎪=⎩,APM ∴≌()BPE AAS ,BE AM ∴=,EP MP =,PF MF PM BE EP ∴=+=+,故②正确;BE DF =,FM AM BE ==,AM DF ∴=,又ADM DAM 90∠∠+=,ADM CDF 90∠∠+=,DAM CDF ∠∠∴=,在ADM 和DCF , AD DC DAM CDF AM DF =⎧⎪∠=∠⎨⎪=⎩,ADM ∴≌()DCF SAS ,CF DM ∴=,ADF DCF ∠∠=,CFD DMA 90∠∠==,故④正确; 在Rt CDF 中,CD CF >,BC CD =,CF BC ∴≠,BCF ∴不是等边三角形,故③错误;CF DM DF FM EM FM EF FP ==+=+=≠,又AM DF =,APF CDF S S ∴<,故⑤错误;综上所述,正确的有①②④,故选B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,同角或等角度余角相等的性质,三角形的面积,综合性较强,难度较大,熟练掌握正方形的性质是解题的关键,作辅助线利用等腰直角三角形的性质并构造出全等三角形是本题的难点.6.D解析:D【解析】【分析】连接DP ,当点D ,P ,E 在同一直线上时,由△PCF ≌△PCB 可得DP=BP ,BP EP + 的最小值为DE 长,依据△ADF ≌△DCE ,AF=DE,即可得到BP EP +最小值等于线段AF 的长.【详解】解:如图,连接DP ,∵PC=PC, ∠PCD=∠PCB=45°∴△PCF ≌△PCB∴BP=DP∴BP+PE =DP+PE∴当点D ,P ,E 在同一直线上时,BP EP +的最小值为DE 长,又∵AB=CD ,∠ADF=∠ECD ,DF=EC ,∴△ADF ≌△DCE∴AF=DE ,∴BP EP +最小值等于线段AF 的长,故选:D .【点睛】本题考查的是轴对称,最短路线问题,根据题意作出A 关于BD 的对称点C 是解答此题的关键.7.B解析:B【分析】A 、首先利用已知条件根据边角边可以证明△APD ≌△AEB ;B 、利用全等三角形的性质和对顶角相等即可解答;C 、由(1)可得∠BEF =90°,故BE 不垂直于AE 过点B 作BP ⊥AE 延长线于P ,由①得∠AEB =135°所以∠PEB =45°,所以△EPB 是等腰Rt △,于是得到结论;D 、根据勾股定理和三角形的面积公式解答即可.【详解】解:在正方形ABCD 中,AB =AD ,∵AF ⊥AE ,∴∠BAE +∠BAF =90°,又∵∠DAF +∠BAF =∠BAD =90°,∴∠BAE =∠DAF ,在△AFD 和△AEB 中,AE AF BAE DAF AB AD =⎧⎪∠∠⎨⎪=⎩=∴△AFD ≌△AEB (SAS ),故A 正确;∵AE=AF,AF⊥AE,∴△AEF是等腰直角三角形,∴∠AEF=∠AFE=45°,∴∠AEB=∠AFD=180°−45°=135°,∴∠BEF=135°−45°=90°,∴EB⊥ED,故C正确;∵AE=AF2,∴FE2AE=2,在Rt△FBE中,BE221046FB FE-=-=∴S△APD+S△APB=S△APE+S△BPE,=112226 22⨯16=D正确;过点B作BP⊥AE交AE的延长线于P,∵∠BEP=180°−135°=45°,∴△BEP是等腰直角三角形,∴BP=2632=,即点B到直线AE3,故B错误,故选:B.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,综合性较强,难度较大,熟记性质并仔细分析图形,理清图中三角形与角的关系是解题的关键.8.B解析:B【分析】过点E作EM⊥AB,连接AF,先求出EM,由S△ABE=12AB•EM=12AE•GF+12AB•FH,可得FG+FH=EM,则FG+FH的值可求.【详解】解:如图,过点E作EM⊥AB,连接AF,∵四边形ABCD是正方形,∴∠ACB=45°,∴△AEM是等腰直角三角形,∵AB=AE=2,∴222224 AM EM EM AE+===∴EM2,∵S△ABE=S△AEF+S△ABF,∴S△ABE=12AB•EM=12AE•GF+12AB•FH,∴2;故选:B.【点睛】本题考查了正方形的性质,等腰直角三角形的性质,运用面积法得出线段的和差关系是解题的关键.9.D解析:D【分析】连接EC,过A作AM∥BC交FE的延长线于M,求出平行四边形ACFM,根据等底等高的三角形面积相等得出△BDE的面积和△CDE的面积相等,△ADE的面积和△AME的面积相等,推出阴影部分的面积等于平行四边形ACFM的面积的一半,求出CF×h CF的值即可.【详解】连接DE、EC,过A作AM∥BC交FE的延长线于M,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥CD,∴AM∥DE∥CF,AC∥FM,∴四边形ACFM是平行四边形,∵△BDE边DE上的高和△CDE的边DE上的高相同,∴△BDE的面积和△CDE的面积相等,同理△ADE的面积和△AME的面积相等,即阴影部分的面积等于平行四边形ACFM的面积的一半,是12×CF×h CF,∵△ABC的面积是24,BC=3CF∴12BC×h BC=12×3CF×h CF=24,∴CF×h CF=16,∴阴影部分的面积是12×16=8,故选:D.【点睛】此题考查平行四边形的判定及性质,同底等高三角形面积的关系,解题中注意阴影部分面积的求法,根据图形的特点选择正确的求法是解题的关键.10.B解析:B【分析】由等腰三角形“三线合一”得ED⊥CA,根据三角形中位线定理可得EF=12AB;由直角三角形斜边上中线等于斜边一半可得EG=12CD,即可得EF=EG;连接FG,可证四边形DEFG是平行四边形,即可得FH=12FD,由三角形中位线定理可证得S△OEF=14S△AOB,进而可得S△EFD=S△OEF+S△ODE=316S▱ABCD,而S△ACD=12S▱ABCD,推出S△EFD12S△ACD,即可得出结论.【详解】连接FG,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD=BC,AD∥BC,AB=CD,AB∥CD,∵BD=2AD,∴OD=AD,∵点E为OA中点,∴ED⊥CA,故①正确;∵E、F、G分别是OA、OB、CD的中点,∴EF∥AB,EF=12 AB,∵∠CED=90°,G是CD的中点,∴EG=12 CD,∴EF=EG,故②正确;∵EF∥AB,AB∥CD,∴EF∥CD,EF=EG=DG,∴四边形DEFG是平行四边形,∴FH=DH,即FH=12FD,故③正确;∵△OEF∽△OAB,∴S△OEF=14S△AOB,∵S△AOB=S△AOD=14S▱ABCD,S△ACD=12S▱ABCD,∴S△OEF=116S▱ABCD,∵AE=OE,∴S△ODE=12S△AOD=18S▱ABCD,∴S△EFD=S△OEF+S△ODE=116S▱ABCD+18S▱ABCD316=S▱ABCD,∵12S△ACD14=S▱ABCD,∴S△EFD12≠S△ACD,故④错误;综上,①②③正确;故选:B.【点睛】本题考查了平行四边形性质和判定,三角形中位线定理,三角形面积,直角三角形斜边上中线性质,等腰三角形性质等知识;熟练运用三角形中位线定理、等腰三角形的性质是解题关键.二、填空题11.【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P 从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=12(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=12(AC+CP),∴2CE=22(AC+CP),当AC=2,CP=CD=1时,2×(2+1)=322,当AC=2,CP=CB=5时,OC=22×(2+5)=722,∴当P从点D出发运动至点B停止时,点O的运动路径长=22-3222.故答案为2点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.12.18【分析】由题意可知AD 、EF 是定值,要使四边形ADFE 周长的最小,AE +DF 的和应是最小的,运用“将军饮马”模型作点E 关于AD 的对称点E 1,同时作DF ∥AF 1,此时AE +DF 的和即为E 1F 1,再求四边形ADFE 周长的最小值.【详解】在Rt △COD 中,OC =3,OD =4,CD =22OC +OD =5,∵ABCD 是菱形,∴AD =CD =5,∵F 坐标为(8,6),点E 在y 轴上,∴EF =8,作点E 关于AD 的对称点E 1,同时作DF ∥AF 1,则E 1(0,2),F 1(3,6),则E 1F 1即为所求线段和的最小值,在Rt △AE 1F 1中,E 1F 1=22211EE +EF =-+(8-5)=52(62), ∴四边形ADFE 周长的最小值=AD +EF +AE +DF = AD +EF + E 1F 1=5+8+5=18.【点睛】本题考查菱形的性质、“将军饮马”作对称点求线段和的最小值,比较综合,难度较大. 13.8【分析】通过作辅助线使得△CAO ≌△GBO ,证明△COG 为等腰直角三角形,利用勾股定理求出CG 后,即可求出BC 的长.【详解】如图,延长CB 到点G ,使BG=AC .∵根据题意,四边形ABED 为正方形,∴∠4=∠5=45°,∠EBA=90°,∴∠1+∠2=90°又∵三角形BCA 为直角三角形,AB 为斜边,∴∠2+∠3=90°∴∠1=∠3∴∠1+∠5=∠3+∠4,故∠CAO =∠GBO ,在△CAO 和△GBO 中,CA GB CAO GBO AO BO =⎧⎪∠=∠⎨⎪=⎩故△CAO ≌△GBO ,∴CO =GO=627=∠6,∵∠7+∠8=90°,∴∠6+∠8=90°,∴三角形COG 为等腰直角三角形,∴()()2222=6262CO GO ++, ∵CG=CB+BG ,∴CB=CG -BG=12-4=8,故答案为8.【点睛】本题主要考查正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,根据题意建立正确的辅助线以及掌握正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质是解答本题的关键.14.①②③④【分析】①根据角平分线的定义可得∠BAE =∠DAE =45°,可得出△ABE 是等腰直角三角形,根据等腰直角三角形的性质可得AE =,从而得到AE =AD ,然后利用“角角边”证明△ABE 和△AHD 全等,根据全等三角形对应边相等可得BE =DH ,再根据等腰三角形两底角相等求出∠ADE =∠AED =67.5°,根据平角等于180°求出∠CED =67.5°,从而判断出①正确; ②求出∠AHB =67.5°,∠DHO =∠ODH =22.5°,然后根据等角对等边可得OE =OD =OH ,判断出②正确;③求出∠EBH =∠OHD =22.5°,∠AEB =∠HDF =45°,然后利用“角边角”证明△BEH 和△HDF 全等,根据全等三角形对应边相等可得BH =HF ,判断出③正确;④根据全等三角形对应边相等可得DF =HE ,然后根据HE =AE ﹣AH =BC ﹣CD ,BC ﹣CF =BC ﹣(CD ﹣DF )=2HE ,判断出④正确;⑤判断出△ABH 不是等边三角形,从而得到AB ≠BH ,即AB ≠HF ,得到⑤错误.【详解】∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴△ABE 是等腰直角三角形,∴AE =. ∵AD =,∴AE =AD .在△ABE 和△AHD 中,∵90BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED 12=(180°﹣45°)=67.5°,∴∠CED =180°﹣45°﹣67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵∠AHB 12=(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =∠AED ,∴OE =OH .∵∠DOH =90°﹣67.5°=22.5°,∠ODH =67.5°﹣45°=22.5°,∴∠DOH =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故②正确;∵∠EBH =90°﹣67.5°=22.5°,∴∠EBH =∠OHD .在△BEH 和△HDF 中,∵EBH OHD BE DH AEB HDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEH ≌△HDF (ASA ),∴BH =HF ,HE =DF ,故③正确;由上述①、②、③可得CD =BE 、DF =EH =CE ,CF =CD ﹣DF ,∴BC ﹣CF =(CD +HE )﹣(CD ﹣HE )=2HE ,所以④正确;∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故⑤错误;综上所述:结论正确的是①②③④.故答案为①②③④.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.15.②③【分析】根据菱形的性质可知AC⊥BD,所以在Rt△AFP中,AF一定大于AP,从而判断①;设∠BAE=x,然后根据等腰三角形两底角相等表示出∠ABE,再根据菱形的邻角互补求出∠ABE,根据三角形内角和定理列出方程,求出x的值,求出∠BFE和∠BE的度数,从而判断②③.【详解】解:在菱形ABCD中,AC⊥BD,∴在Rt△AFP中,AF一定大于AP,故①错误;∵四边形ABCD是菱形,∴AD∥BC,∴∠ABE+∠BAE+∠EAD=180°,设∠BAE=x°,则∠EAD=2x°,∠ABE=180°-x°-2x°,∵AB=AE,∠BAE=x°,∴∠ABE=∠AEB=180°-x°-2x°,由三角形内角和定理得:x+180-x-2x+180-x-2x=180,解得:x=36,即∠BAE=36°,∠BAE=180°-36°-2×36°=70°,∵四边形ABCD是菱形,∴∠BAD=∠CBD=12∠ABE=36°,∴∠BFE=∠ABD+∠BAE=36°+36°=72°,∴∠BEF=180°-36°-72°=72°,∴BE=BF=AF.故③正确∵∠AFD=∠BFE=72°,∠EAD=2x°=72°∴∠AFD=∠EAD∴AD=FD又∵AD=AB=AE∴AE=FD,故②正确∴正确的有②③故答案为:②③【点睛】本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE 的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.16.5【分析】先判断四边形BCEF 的形状,再连接FM FC 、,利用正方形的性质得出AFG 是等腰直角三角形,再利用直角三角形的性质得出12MN FC =即可. 【详解】∵四边形ABCP 是边长为4的正方形,//EF BC ,∴四边形BCEF 是矩形,∵1PE =,∴3CE =,连接FM FC 、,如图所示:∵四边形ABCP 是正方形,∴=45BAC ∠ ,AFG 是等腰直角三角形,∵M 是AG 的中点,即有AM MG = ,∴FM AG ⊥,FMC 是直角三角形,又∵N 是FC 中点,12MN FC =, ∵225FC BF BC =+=∴ 2.5MN =,故答案为:2.5 .【点睛】本题考查了正方形的性质,矩形的判定,等腰三角形和直角三角形的性质,解题的关键在于合理作出辅助线,通过直角三角形的性质转化求解.17.(-2,0)【分析】先计算得到点D 的坐标,根据旋转的性质依次求出点D 旋转后的点坐标,得到变化的规律即可得到答案.【详解】∵菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,∴对角线的交点D 的坐标是(2,2),∴OD ==将菱形绕点O 以每秒45︒的速度逆时针旋转,旋转1次后坐标是(0,),旋转2次后坐标是(-2,2),旋转3次后坐标是(-,0),旋转4次后坐标是(-2,-2),旋转5次后坐标是(0,-旋转6次后坐标是(2,-2),旋转7次后坐标是(,0),旋转8次后坐标是(2,2)旋转9次后坐标是(0,由此得到点D 旋转后的坐标是8次一个循环,∵201982523÷=,∴第2019秒时,菱形两对角线交点D 的坐标为(-,0)故答案为:(-0).【点睛】此题考查了菱形的性质,旋转的性质,勾股定理,直角坐标系中点坐标的变化规律,根据点D 的坐标依次求出旋转后的坐标得到变化规律是解题的关键.18 【分析】根据12•BC •AH =12•AB •AC ,可得AH ,根据 12AD •BO =12BD •AH ,得OB =,再根据BE =2OB EC . 【详解】设BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∠BAC =90°,AB =2,AC =3,由勾股定理得:BC∵点D 是BC 的中点,∴AD =DC =DB =2, ∵12•BC •AH =12•AB •AC ,∴AH =613, ∵AE =AB ,DE =DB ,∴点A 在BE 的垂直平分线上,点D 在BE 的垂直平分线上,∴AD 垂直平分线段BE ,∵12AD •BO =12BD •AH , ∴OB =613, ∴BE =2OB =121313, ∵DE =DB=CD , ∴∠DBE=∠DEB ,∠DEC=∠DCE , ∴∠DEB+∠DEC=12×180°=90°,即:∠BEC=90°, ∴在Rt △BCE 中,EC =22BC BE - =221213(13)()13-=51313. 故答案为:51313. 【点睛】本题主要考查直角三角形的性质,勾股定理以及翻折的性质,掌握“直角三角形斜边长的中线等于斜边的一半”以及面积法求三角形的高,是解题的关键.19.【分析】作AB 的中点E ,连接EM 、CE ,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE 和EM 的长,然后确定CM 的范围.【详解】解:作AB 的中点M ,连接EM 、CM .在Rt △ABC 中,AB 22AC BC +2286+10,∵M 是直角△ABC 斜边AB 上的中点,∴CM =12AB =5. ∵E 是BD 的中点,M 是AB 的中点, ∴ME =12AD =2.∴5﹣2≤CE ≤5+2,即3≤CE ≤7.∴最大值为7,故答案为:7.【点睛】本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.20.102【分析】根据平行四边形的性质、角平分线的性质证明AD=DE=3,再根据BAD BEC ∠=∠证明BC=BE ,由此根据三角形的三线合一及勾股定理求出BF ,即可求出平行四边形的面积.【详解】过点B 作BF CD ⊥于点F ,如图所示.∵AE 是BAD ∠的平分线,∴DAE BAE ∠=∠.∵四边形ABCD 是平行四边形,∴53CD AB BC AD BAD BCE AB CD ====∠=∠,,,∥, ∴BAE DEA ∠=∠,∴DAE DEA ∠=∠,∴3DE AD ==,∴2CE CD DE =-=.∵BAD BEC ∠=∠,∴BCE BEC ∠=∠,∴BC=BE, ∴112CF EF CE ===, ∴22223122BF BC CF =-=-=∴平行四边形ABCD 的面积为225102BF CD ⋅==.故答案为:【点睛】此题考查平行四边形的性质:对边平行且相等,对角相等,等腰三角形的等角对等边的性质、三线合一的性质,勾股定理.三、解答题21.(1)AH 2)①证明见解析;②证明见解析【分析】(1)根据等边三角形的性质得到∠DAE =60°,根据等腰三角形的性质得到∠DAH =∠EAH ,求出∠HAB =45°,根据等腰直角三角形的性质计算,得到答案;(2)①根据线段垂直平分线的性质得到CB =CE ,根据平行四边形的性质得到AD =BC ,得到DE =CE ,利用SAS 定理证明结论;②根据全等三角形的性质得到EN =EG ,根据等边三角形的判定定理证明即可.【详解】(l )∵ADE ∆是等边三角形,∴60DAE ∠=︒.∵AH BD ⊥,∴1302DAH HAE DAE ︒∠=∠=∠=. ∵75DAB ∠=︒,∴753045BAH BAD DAH ︒︒︒∠=∠-∠=-=.∴AH BH === (2)①∵点F 是BE 的中点,且CF BE ⊥,∴线段CF 是线段BE 的垂直平分线.∴CE CB =,ECF BCF ∠=∠.∵ADE ∆是等边三角形,∴DE AD =.∵四边形ABCD 是平行四边形,∴AD BC =,∴DE CE =.∴EDC ECD ∠=∠.在DEG ∆和CEN ∆中,DG CN GDE NCE DE CE =⎧⎪∠=∠⎨⎪=⎩,∴()CEN DEG SAS ∆∆≌.②由①知:CEN DEG ∆∆≌,∴EN EG =.∵AD BC ∥,∴180ADC BCD ︒∠+∠=.∵60ADE ∠=︒,∴120EDC BCD ︒∠+∠=.∵ECF BCF ∠=∠,EDC ECD ∠=∠,∴60DCF ∠=︒.∵CF MN ,∴60DNE DCF ∠=∠=︒.∴ENG ∆是等边三角形.【点睛】本题考查的是平行四边形的性质、全等三角形的判定和性质、等边三角形的判定和性质,掌握平行四边形的性质定理、全等三角形的判定定理和性质定理是解题的关键.22.(1)详见解析;(2)145. 【分析】(1)由AB =DE ,∠A =∠D ,AF =DC ,易证得△ABC ≌DEF (SAS ),即可得BC =EF ,且BC ∥EF ,即可判定四边形BCEF 是平行四边形;(2)由四边形BCEF 是平行四边形,可得当BE ⊥CF 时,四边形BCEF 是菱形,所以连接BE ,交CF 与点G ,由三角形DEF 的面积求出EG 的长,根据勾股定理求出FG 的长,则可求出答案.【详解】(1)证明:∵AF =DC ,∴AC =DF , 在△ABC 和△DEF 中, AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴BC =EF ,∠ACB =∠DFE ,∴BC ∥EF ,∴四边形BCEF 是平行四边形;(2)如图,连接BE ,交CF 于点G ,∵四边形BCEF 是平行四边形,∴当BE ⊥CF 时,四边形BCEF 是菱形,∵∠DEF =90°,DE =8,EF =6,∴DF 222286DE EF +=+10,∴S △DEF 1122EG DF EF DE =⋅=⋅, ∴EG 6824105⨯==, ∴FG =CG 22222418655EF EG ⎛⎫=-=-= ⎪⎝⎭,∴AF=CD=DF﹣2FG=10﹣365=145.故答案为:145.【点睛】本题考查了全等三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及勾股定理等知识.熟练掌握平行四边形的判定与性质是解题的关键.23.(1)见解析;(2)FH+FE=2DF,理由见解析;(3)2 2【分析】(1)如图1中,证明△AFB≌△DGA(AAS)可得结论.(2)结论:FH+FE=2DF.如图2中,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,证明四边形DKFJ是正方形,可得结论.(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K.设PT=b.证明△KPJ是等腰直角三角形,推出点P在线段JR上运动,求出JR即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵DG⊥AE,AE⊥BH,∴∠AFB=∠DGH=90°,∴∠FAB+∠DAG=90°,∠DAG+∠ADG=90°,∴∠BAF=∠ADG,∴△AFB≌△DGA(AAS),∴AF=DG,BF=AG,∴BF-DG=AG-AF=FG.(2)结论:2DF.理由:如图2中,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,。

八年级初二数学下学期平行四边形单元测试提优卷试题

八年级初二数学下学期平行四边形单元测试提优卷试题

八年级初二数学下学期平行四边形单元测试提优卷试题一、解答题1.如图,在Rt ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动.同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts (0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF .(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,DEF 为直角三角形?请说明理由.2.如图, 平行四边形ABCD 中,3AB cm =,5BC cm =,60B ∠=, G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF . (1) 求证:四边形CEDF 是平行四边形;(2) ①当AE 的长为多少时, 四边形CEDF 是矩形;②当AE = cm 时, 四边形CEDF 是菱形, (直接写出答案, 不需要说明理由).3.如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连结CH 、CG .(1)求证:CG 平分∠DCB ;(2)在正方形ABCO 绕点C 逆时针旋转的过程中,求线段HG 、OH 、BG 之间的数量关系;(3)连结BD 、DA 、AE 、EB ,在旋转的过程中,四边形AEBD 是否能在点G 满足一定的条件下成为矩形?若能,试求出直线DE 的解析式;若不能,请说明理由.4.在矩形ABCD 中,连结AC ,点E 从点B 出发,以每秒1个单位的速度沿着B A →的路径运动,运动时间为t (秒).以BE 为边在矩形ABCD 的内部作正方形BEHG .(1)如图,当ABCD 为正方形且点H 在ABC ∆的内部,连结,AH CH ,求证:AH CH =;(2)经过点E 且把矩形ABCD 面积平分的直线有______条;(3)当9,12AB BC ==时,若直线AH 将矩形ABCD 的面积分成1:3两部分,求t 的值.5.如图,在正方形ABCD 中,点M 是BC 边上任意一点,请你仅用无刻度的直尺,用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在如图(1)的AB 边上求作一点N ,连接CN ,使CN AM =;(2)在如图(2)的AD 边上求作一点Q ,连接CQ ,使CQ AM .6.共顶点的正方形ABCD 与正方形AEFG 中,AB =13,AE 2.(1)如图1,求证:DG =BE ;(2)如图2,连结BF ,以BF 、BC 为一组邻边作平行四边形BCHF .①连结BH ,BG ,求BH BG的值; ②当四边形BCHF 为菱形时,直接写出BH 的长.7.如图,ABC ADC ∆≅∆,90,ABC ADC AB BC ︒∠=∠==,点F 在边AB 上,点E 在边AD 的延长线上,且,DE BF BG CF =⊥,垂足为H ,BH 的延长线交AC 于点G .(1)若10AB =,求四边形AECF 的面积;(2)若CG CB =,求证:2BG FH CE +=.8.如图,等腰直角三角形OAB 的三个定点分别为(0,0)O 、(0,3)A 、(3,0)B -,过A 作y 轴的垂线1l .点C 在x 轴上以每秒3的速度从原点出发向右运动,点D 在1l 上以每秒332+的速度同时从点A 出发向右运动,当四边形ABCD 为平行四边形时C 、D 同时停止运动,设运动时间为t .当C 、D 停止运动时,将△OAB 沿y 轴向右翻折得到△1OAB ,1AB 与CD 相交于点E ,P 为x 轴上另一动点.(1)求直线AB 的解析式,并求出t 的值.(2)当PE+PD 取得最小值时,求222PD PE PD PE ++⋅的值.(3)设P 的运动速度为1,若P 从B 点出发向右运动,运动时间为x ,请用含x 的代数式表示△PAE 的面积.9.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.10.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC 的外部作等腰Rt CED ,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =,2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)证明见解析;(2)能,10;(3)152,理由见解析;【分析】(1)利用题中所给的关系式,列出CD,DF,AE的式子,即可证明.(2)由题意知,四边形AEFD是平行四边形,令AD=DF,求解即可得出t值.(3)由题意可知,当DE∥BC时,△DEF为直角三角形,利用AD+CD=AC的等量关系,代入式子求值即可.【详解】(1)由题意知:三角形CFD是直角三角形∵∠B=90°,∠A=60°∴∠C=30°,CD=2DF,又∵由题意知CD=4t,AE=2t,∴CD=2AE∴AE=DF.(2)能,理由如下;由(1)知AE=DF又∵DF⊥BC,∠B=90°∴AE∥DF∴四边形AEFD是平行四边形.当AD=DF时,平行四边形AEFD是菱形∵AC=60cm,DF=12CD,CD=4t,∴AD=60-4t,DF=2t,∴60-4t=2t∴t=10.(3)当t为152时,△DEF为直角三角形,理由如下;由题意知:四边形AEFD是平行四边形,DF⊥BC,AE∥DF,∴当DE∥BC时,DF⊥DE∴∠FDE=∠DEA=90°在△AED中,∵∠DEA=90°,∠A=60°,AE=2t∴AD=4t,又∵AC=60cm,CD=4t,∴AD+CD=AC,8t=60,∴t=152.即t=152时,∠FDE=∠DEA=90°,△DEF为直角三角形.【点睛】本题主要考查了三角形、平行四边形及菱形的性质,正确掌握三角形、平行四边形及菱形的性质是解题的关键.2.(1)证明见解析;(2)①当AE=3.5时,平行四边形CEDF是矩形;②2【分析】(1)证明△FCG ≌△EDG(ASA),得到FG=EG即可得到结论;(2)①当AE=3.5时,平行四边形CEDF是矩形.过A作AM⊥BC于M,求出BM=1.5,根据平行四边形的性质得到∠CDA=∠B=60°,DC=AB=3,BC=AD=5,求出DE=1.5=BM,证明△MBA≌△EDC(SAS),得到∠CED=∠AMB=90°,推出四边形CEDF是矩形;②根据四边形CEDFCEDF是菱形,得到CD⊥EF,DG=CG=1212CD=1.5,求出∠DEG=30°,得到DE=2DG=3,即可求出AE=AD-DE=5-3=2.【详解】(1)证明:∵四边形ABCD是平行四边形,∴ CF∥ED,∴∠FCG=∠EDG,∵ G是CD的中点,∴ CG=DG,在△FCG和△EDG中,FCG EDG CG DGCGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FCG ≌△EDG(ASA),∴ FG=EG,∵ CG=DG,∴四边形CEDF是平行四边形;(2)解:①当AE=3.5时,平行四边形CEDF是矩形,理由是:过A 作AM ⊥BC 于M ,∵∠B=60°,∴∠BAM=30°,∵AB=3,∴BM=1.5,∵四边形ABCD 是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM ,在△MBA 和△EDC 中,BM DE B CDE AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△MBA ≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF 是平行四边形,∴四边形CEDF 是矩形;②∵四边形CEDFCEDF 是菱形,∴CD ⊥EF ,DG=CG=1212CD=1.5,∵∠CDE=∠B=60∘∠B=60∘,∴∠DEG=30°,∴DE=2DG=3,∴AE=AD-DE=5-3=2,故答案为:2.【点睛】此题考查了平行四边形的性质,矩形的判定定理,菱形的性质定理,直角三角形30度角所对的直角边等于斜边的一半,三角形全等的判定及性质定理,熟练掌握各定理并运用解答问题是解题的关键.3.(1)见解析;(2) HG =OH +BG ;(3)能成矩形,y 3342x =-. 【分析】(1)根据旋转和正方形的性质可得出CD =CB ,∠CDG =∠CBG =90,根据全等直角三角形的判定定理(HL )即可证出Rt △CDG ≌Rt △CBG ,即∠DCG =∠BCG ,由此即可得出CG 平分∠DCB ;(2)由(1)的Rt△CDG≌Rt△CBG可得出BG=DG,根据全等直角三角形的判定定理(HL)即可证出Rt△CHO≌Rt△CHD,即OH=HD,再根据线段间的关系即可得出HG=HD+DG=OH+BG;(3)根据(2)的结论即可找出当G点为AB中点时,四边形AEBD为矩形,再根据正方形的性质以及点B的坐标可得出点G的坐标,设H点的坐标为(x,0),由此可得出HO=x,根据勾股定理即可求出x的值,即可得出点H的坐标,结合点H、G的坐标利用待定系数法即可求出直线DE的解析式.【详解】(1)∵正方形ABCO绕点C旋转得到正方形CDEF,∴CD=CB,∠CDG=∠CBG=90°.在Rt△CDG和Rt△CBG中,∵CG CGCD CB=⎧⎨=⎩,∴Rt△CDG≌Rt△CBG(HL),∴∠DCG=∠BCG,即CG平分∠DCB.(2)由(1)证得:Rt△CDG≌Rt△CBG,∴BG=DG.在Rt△CHO和Rt△CHD中,∵CH CHCO CD=⎧⎨=⎩,∴Rt△CHO≌Rt△CHD(HL),∴OH=HD,∴HG=HD+DG=OH+BG.(3)假设四边形AEBD可为矩形.当G点为AB中点时,四边形AEBD为矩形,如图所示.∵G点为AB中点,∴BG=GA12=AB,由(2)证得:BG=DG,则BG=GA=DG12=AB12=DE=GE,又AB=DE,∴四边形AEBD为矩形,∴AG=EG=BG=DG.∵AG12=AB=3,∴G点的坐标为(6,3).设H点的坐标为(x,0),则HO=x,∴HD=x,DG=3.在Rt△HGA中,HG=x+3,GA=3,HA=6﹣x,由勾股定理得:(x+3)2=32+(6﹣x)2,解得:x=2,∴H点的坐标为(2,0).设直线DE的解析式为:y=kx+b(k≠0),将点H(2,0)、G(6,3)代入y=kx+b中,得:2063k bk b+=⎧⎨+=⎩,解得:3432kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线DE的解析式为:y3342x=-.故四边形AEBD能为矩形,此时直线DE的解析式为:y33 42x=-.【点睛】本题考查了矩形的性质、旋转的性质、全等三角形的判定及性质、待定系数法求函数解析式以及勾股定理.解题的关键是:(1)证出Rt △CDG ≌Rt △CBG ;(2)找出BG =DG 、OH =HD ;(3)求出点H 、G 的坐标.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边和角是关键.4.(1)见解析;(2)1条;(3)7211t =或185t = 【分析】(1)证△AEH ≌△CGH (SAS ),即可得出AH=CH ;(2)连接BD 交AC 于O ,作直线OE 即可;(3)分两种情况:①连接AH 交BC 于M ,证出BM=CM=12BC=6,由题意得BE=BG=EH=GH=t ,则AE=9-t ,GM=6-t ,由三角形面积关系得出方程,解方程即可; ②连接AH 交CD 于M ,交BC 的延长线于K ,证出DM=CM=12CD ,证△KCM ≌△ADM 得CK=DA=12,则BK=BC+CK=24,且BE=BG=EH=GH=t ,则AE=9-t ,GK=24-t ,由三角形面积关系得出方程,解方程即可.【详解】解:(1)四边形BEHG 是正方形, BE BG ∴=,90BEH BGH ∠=∠=︒,90AEH CGH ∠=∠=︒, 又AB BC =,AE CG ∴=,又EH HG =,()AEH CGH SAS ∴∆≅∆,AH CH ∴=.(2)解:连接BD 交AC 于O ,如图1所示:作直线OE,则直线OE矩形ABCD面积平分,即经过点E且把矩形ABCD面积平分的直线有1条,故答案为:1;(3) 解:分两种情况:①如图2所示:连接AH交BC于M,∵四边形ABCD是矩形,∴△ABC的面积=△ADC的面积,∵直线AH将矩形ABCD的面积分成1:3两部分,∴△ABM的面积=△ACM的面积,∴BM=CM=12CD=6,由题意得:BE=BG=EH=GH=t,则AE=9-t,GM=6-t,∵△ABM的面积=△AEH的面积+正方形BEHG的面积+△GHM的面积,∴12×6×9=12t(9-t)+t²+12t(6-t),解得:185t=;②如图3所示:连接AH交CD于M,交BC的延长线于K,∵四边形ABCD是矩形,∴∠MCK=∠B=∠D=∠BCD=90°,AD=BC=12,CD=AB=9,△ABC的面积=△ADC的面积,∵直线AH将矩形ABCD的面积分成1:3两部分,∴△ADM的面积=△ACM的面积,∴DM=CM=12CD=92,在△KCM和△ADM中,∠=∠⎧⎪=⎨⎪∠=∠⎩D MCKDM CMAMD KMC,∴△KCM≌△ADM(ASA),∴CK=DA=12,∴BK=BC+CK=24,由题意得:BE=BG=EH=GH=t,则AE=9-t,GK=24-t,∵△ABK的面积=△AEH的面积+正方形BEHG的面积+△GHK的面积,∴12×24×9=12t(9-t)+t²+12t(24-t),解得:7211t=,综上所述,7211t=或185t=,故答案为:7211t=或185t=.【点睛】本题是四边形综合题目,考查了正方形的性质、矩形的性质、全等三角形的判定与性质、三角形面积以及分类讨论等知识;本题综合性强,熟练掌握正方形的性质和矩形的性质,证明三角形全等是解题的关键.5.(1)见解析;(2)见解析.【分析】(1)连接BD,BD与AM交于点O,连接CO并延长交于AB,则CO与AB的交点为点N.可先证明△AOD≌△COD,再证明△MOB≌NOB,从而可得NB=MB;(2)连接MO并延长与AE交于点Q,连接QC,则CQ∥AM.理由如下:由正方形的性质以及平行线等分线段可证QO=MO,从而可知四边形AQCM为平行四边形,从而可得CQ∥AM.【详解】解:(1)如图(1),连接BD,BD与AM交于点O,连接CO并延长交于AB,则CO与AB的交点为点N,则CN 为所作.理由:在△AOD与△COD中,∵AD CDADO CDOOD OD⎧⎪∠∠⎨⎪⎩===,∴△AOD≌△COD(SAS),∴∠OAD=∠OCD,∴∠BAM =∠BCN .在△ABM 与△CBN 中,∵BAM BCN AB CB ABM CBN ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABM ≌△CBN (ASA ),∴CN =AM .(2)如图2连接AC 、BD 交与O 点,连接MO 并延长与AE 交于点Q ,连接QC ,则CQ 为所求的线段.在正方形ABCD 中,OA =OB =OC =OD ,AD ∥BC ,∴QO =MO∴四边形AQCM 为平行四边形,∴QC ∥AM【点睛】本题考查了作图-基本作图,解决此题的关键是利用正方形的性质求解.6.(1)证明见解析;(2)①2BH BG =②BH 的长为2或2. 【分析】(1)证()DAG BAE SAS △≌△,即可得出结论;(2)①连接GH ,延长HF 交AB 于N ,设AB 与EF 的交点为M ,证()GAB GFH SAS △≌△,得GH GB =,GHF GBA ∠=∠,证GHB ∆为等腰直角三角形,即得结论;②分两种情况,证出点B 、E 、G 在一条直线上,求出210AF EG AE ===,则5OA OG OE ===,由勾股定理求出12OB =,求出BG ,即可得出答案.【详解】(1)∵四边形ABCD 和四边形AEFG 是正方形,∴AD =AB =CB ,AG =AE ,∠DAB =∠GCE =90°,∴∠DAB ﹣∠GAF =∠GCE ﹣∠GAF ,即∠DAG =∠BAE ,在△DAG 和△BAE 中,AD AE DAG BAE AG AE =⎧⎪∠=∠⎨⎪=⎩,∴△DAG ≌△BAE (SAS),∴DG =BE ;(2)①连接GH ,延长HF 交AB 于N ,设AB 与EF 的交点为M ,如图2所示:∵四边形BCHF 是平行四边形,∴HF //BC ,HF =BC =AB .∵BC ⊥AB ,∴HF ⊥AB ,∴∠HFG =∠FMB ,又AG //EF ,∴∠GAB =∠FMB ,∴∠HFG =∠GAB ,在△GAB 和△GFH 中,AG FG GAB HFG AB FH =⎧⎪∠=∠⎨⎪=⎩,∴△GAB ≌△GFH (SAS),∴GH =GB ,∠GHF =∠GBA ,∴∠HGB =∠HNB =90°,∴△GHB 为等腰直角三角形,∴BH 2=, ∴2BH BG= ②分两种情况:a 、如图3所示:连接AF、EG交于点O,连接BE.∵四边形BCHF为菱形,∴CB=FB.∵AB=CB,∴AB=FB=13,∴点B在AF的垂直平分线上.∵四边形AEFG是正方形,∴AF=EG,OA=OF=OG=OE,AF⊥EG,AE=FE=AG=FG,∴点G、点E都在AF的垂直平分线上,∴点B、E、G在一条直线上,∴BG⊥AF.∵AE=52,∴AF=EG2=AE=10,∴OA=OG=OE=5,∴OB2222AB OA=-=-=12,135∴BG=OB+OG=12+5=17,由①得:BH2=BG=172;b、如图4所示:连接AF、EG交于点O,连接BE,同上得:点B 、E 、G 在一条直线上,OB =12,BG =OG +OB ﹣OG =12﹣5=7,由①得:BH =;综上所述:BH 的长为或. 【点睛】本题是四边形综合题目,考查了正方形的性质、菱形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、线段垂直平分线的判定等知识;本题综合性强,熟练掌握正方形的性质和菱形的性质,证明三角形全等是解题的关键.7.(1)100;(2)见解析.【分析】(1)先证明四边形ABCD 是正方形,再根据已知条件证明△BCF ≌△DCE ,即可得到四边形AECF 的面积=正方形ABCD 的面积;(2) 延长BG 交AD 于点M ,作AN ⊥MN ,连接FG ,先证明四边形BCEM 是平行四边形,得到BM=CE ,证明△BCF ≌△GCF ,得到BF=GF ,∠FGC=∠FBC=90︒,由AN ⊥MN ,得GM=2MN ,根据∠BAC=45︒,BC ∥AD 得到AM=BF ,再证△BFH ≌△AMN,得到GM=2FH , 由此得到结论.【详解】(1)∵9,0ABC AB BC ︒∠==,∴△ABC 是等腰直角三角形,∵ABC ADC ∆≅∆,∴AB=AD=BC=DC ,∴四边形ABCD 是菱形,∵90ABC ADC ︒∠=∠=,∴四边形ABCD 是正方形,∴∠BCD=90ABC ADC ︒∠=∠=,∴∠CDE=90ABC ADC ︒∠=∠=,∵BF=DE,BC=DC ,∴△BCF ≌△DCE ,∴四边形AECF 的面积=S 正方形ABCD =AB 2=102=100.(2)延长BG 交AD 于点M ,作AN ⊥MN ,连接FG,∵△BCF ≌△DCE ,∴∠BCF=∠DCE ,∴∠FCE=∠BCD=90︒,∵BG ⊥CF ,∴∠FHM=∠FCE=90︒,∴BM ∥CE,∵BC ∥AD,∴四边形BCEM 是平行四边形,∴BM=CE.∵CG CB =,BG ⊥CF ,∴∠BCH=∠GCH,∠CBM=∠CGB,∴△BCF ≌△GCF,∴BF=GF,∠FGC=∠FBC=90︒,∵∠BAC=45︒,∴∠AFG=∠BAC=45︒,∴FG=AG,∵BC ∥AD,∴∠CBM=∠AMB,∴∠AGM=∠CGB=∠CBM=∠AMB,∴AM=AG,∵AN ⊥MN ,∴GM=2MN,∵∠BAD=∠ANM=90︒,∴∠ABM+∠AMN=∠MAN+∠AMN=90︒,∴∠ABM=∠MAN,∵AM=AG=FG=BF,∠BHF=∠ANM=90︒,∴△BFH ≌△AMN,∴FH=MN,∴GM=2FH,∵BG+GM=CE,∴2BG FH CE +=.【点睛】此题是四边形的综合题,考查正方形的判定及性质,全等三角形的判定及性质,等腰三角形的性质,平行四边形的性质,解题中注意综合思想的方法积累.8.(1)2t =;(2)222=2433PD PE PD PE ++⋅-; (3)①当06x ≤≤时,S △PAE (6)(33)x -+②当6x ≥时, S △PAE (6)(33)x -+ 【解析】【分析】(1)设直线AB 为3y kx =+,把B(-3,0)代入,求得k ,确定解析式;再设设t 秒后构成平行四边形,根据题意列出方程,求出t 即可;(2)过E 作关于x 轴对于点E ',连接EE′交x 轴于点P ,则此时PE+PD 最小.由(1)得到当t=2时,有C (3,0),D(33+,3),再根据AB ∥CD ,求出直线CD 和AB 1的解析式,确定E 的坐标;然后再通过乘法公式和线段运算,即可完成解答.(3)根据(1)可以判断有06x ≤≤和6x ≥两种情况,然后分类讨论即可.【详解】(1)解:设直线AB 为3y kx =+,把B(-3,0)代入得:033k =-+ ∴1k =∴3y x由题意得: 设t 秒后构成平行四边形,则3333222t t ⎛⎫+=+ ⎪ ⎪⎝⎭解之得:2t =,(2)如图:过E 作关于x 轴对于点E ',连接EE′交x 轴于点P ,则此时PE+PD 最小.由(1)t=2得:∴C 30),D(33,3)∵AB ∥CD∴设CD 为1y x b =+把C 30)代入得b 1=3∴CD 为:y x 3=-易得1AB 为:3y x =-+∴33y x y x ⎧=-⎪⎨=-+⎪⎩解之得:E(32+∴2222222()324PD PE PD PE PD PE E D '⎛++⋅=+==++=- ⎝⎭⎝⎭(3)①当06x ≤≤时S △PAE =S △PAB1-S △PEB1=13(6)(3(6)3224x x ⎛⎫---= ⎪ ⎪⎝⎭②当6x ≥时:S △PAE =S △PAB1-S △PEB1=13(6)(3(6)3224x x ⎛⎫---= ⎪ ⎪⎝⎭【点睛】本题是一次函数的综合题型,主要考查了用待定系数求一次函数的关系式,点的坐标的确定,动点问题等知识点.解题的关键是扎实的基本功和面对难题的自信.9.(1)证明见解析;(2)菱形;(3)四边形AEGF 是矩形,理由见解析.【分析】(1)根据平行线的性质得到BDE A ∠=∠,根据题意得到DEFBDE ∠=∠,根据平行线的判定定理得到//AD EF ,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到12DE AC =,得到AD DE =,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE EG ⊥,根据有一个角是直角的平行四边形是矩形证明.【详解】 (1)证明://DE AC ,BDE A ∴∠=∠,DEF A ∠=∠,DEF BDE ∴∠=∠,//AD EF ∴,又//DE AC ,∴四边形ADEF 为平行四边形;(2)解:ADEF 的形状为菱形, 理由如下:点D 为AB 中点, 12AD AB ∴=, //DE AC ,点D 为AB 中点,12DE AC ∴=, AB AC =,AD DE∴=,∴平行四边形ADEF为菱形,故答案为:菱形;(3)四边形AEGF是矩形,理由如下:由(1)得,四边形ADEF为平行四边形,∴,AF DE//AF DE=,EG DE,=,∴,AF GE//AF DE∴四边形AEGF是平行四边形,=,AD AG,EG DE∴⊥,AE EG∴四边形AEGF是矩形.【点睛】本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.10.(1)证明见解析;(2)①AF2AE=②42或22.【分析】()1如图①中,结论:AF2AE=,只要证明AEF是等腰直角三角形即可;()2①如图②中,结论:AF2AE=,连接EF,DF交BC于K,先证明EKF≌EDA再证明AEF是等腰直角三角形即可;=时,四边形ABFD是菱形.b、如图④中当②分两种情形a、如图③中,当AD AC=时,四边形ABFD是菱形.分别求解即可.AD AC【详解】()1如图①中,结论:AF2AE=.理由:四边形ABFD是平行四边形,∴=,AB DF=,AB AC∴=,AC DF=,DE EC∴=,AE EFDEC AEF 90∠∠==,AEF ∴是等腰直角三角形,AF 2AE ∴=.故答案为AF 2AE =.()2①如图②中,结论:AF 2AE =.理由:连接EF ,DF 交BC 于K .四边形ABFD 是平行四边形,AB//DF ∴,DKE ABC 45∠∠∴==,EKF 180DKE 135∠∠∴=-=,EK ED =,ADE 180EDC 18045135∠∠=-=-=,EKF ADE ∠∠∴=, DKC C ∠∠=,DK DC ∴=,DF AB AC ==,KF AD ∴=,在EKF 和EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩, EKF ∴≌EDA ,EF EA ∴=,KEF AED ∠∠=,FEA BED 90∠∠∴==,AEF ∴是等腰直角三角形,AF 2AE ∴=.②如图③中,当AD AC =时,四边形ABFD 是菱形,设AE 交CD 于H ,易知EH DH CH 2===22AH (25)(2)32=-=,AE AH EH 42=+=,=时,四边形ABFD是菱形,易知如图④中当AD AC=-=-=,AE AH EH32222综上所述,满足条件的AE的长为4222【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.。

八年级初二数学下学期平行四边形单元测试提优卷试题

八年级初二数学下学期平行四边形单元测试提优卷试题

八年级初二数学下学期平行四边形单元测试提优卷试题一、解答题1.在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于点F (如图1和图2),然后展开铺平,连接BE ,EF . (1)操作发现:①在矩形ABCD 中,任意折叠所得的△BEF 是一个 三角形; ②当折痕经过点A 时,BE 与AE 的数量关系为 . (2)深入探究:在矩形ABCD 中,AB =3,BC =23. ①当△BEF 是等边三角形时,求出BF 的长;②△BEF 的面积是否存在最大值,若存在,求出此时EF 的长;若不存在,请说明理由.2.已知在ABC 和ADE 中, 180ACB AED ∠+∠=︒,CA CB =,EA ED =,3AB =.(1)如图1,若90ACB ∠=︒,B 、A 、D 三点共线,连接CE : ①若522CE =,求BD 长度; ②如图2,若点F 是BD 中点,连接CF ,EF ,求证:2CE EF =;(2)如图3,若点D 在线段BC 上,且2CAB EAD ∠=∠,试直接写出AED 面积的最小值.3.如图所示,四边形ABCD 是正方形, M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A B 、重合),另一直角边与CBM ∠的平分线BF 相交于点F . (1)求证: ADE FEM ∠=∠;(2)如图(1),当点E 在AB 边的中点位置时,猜想DE 与EF 的数量关系,并证明你的猜想; (3)如图(2),当点E 在AB 边(除两端点)上的任意位置时,猜想此时DE 与EF 有怎样的数量关系,并证明你的猜想.4.矩形ABCD 中,AB =3,BC =4.点E ,F 在对角线AC 上,点M ,N 分别在边AD ,BC 上. (1)如图1,若AE =CF =1,M ,N 分别是AD ,BC 的中点.求证:四边形EMFN 为矩形. (2)如图2,若AE =CF =0.5,02AM CN x x ==<<(),且四边形EMFN 为矩形,求x 的值.5.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN : ①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).6.直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,. ①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.7.如图,点A 的坐标为(6,6)-,AB x ⊥轴,垂足为B ,AC y ⊥轴,垂足为C ,点,D E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,45DAE ︒∠=.(1)如图1,当点D 在线段BO 上时,求DOE ∆的周长;(2)如图2,当点D 在线段BO 的延长线上时,设ADE ∆的面积为1S ,DOE ∆的面积为2S ,请猜想1S 与2S 之间的等量关系,并证明你的猜想.8.在矩形ABCD 中,BE 平分∠ABC 交CD 边于点E .点F 在BC 边上,且FE⊥AE. (1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD 交AD 于点H ,交BE 于点M .NH∥BE,NB∥HE,连接NE .若AB=4,AH=2,求NE 的长.9.如图,ABCD 中,60ABC ∠=︒,连结BD ,E 是BC 边上一点,连结AE 交BD 于点F .(1)如图1,连结AC ,若6AB AE ==,:5:2BC CE =,求ACE △的面积; (2)如图2,延长AE 至点G ,连结AG 、DG ,点H 在BD 上,且BF DH =,AF AH =,过A 作AM DG ⊥于点M .若180ABG ADG ∠+∠=︒,求证:3BG GD +=.10.如图,在矩形ABCD 中,AD =nAB ,E ,F 分别在AB ,BC 上. (1)若n =1,AF ⊥DE . ①如图1,求证:AE =BF ;②如图2,点G 为CB 延长线上一点,DE 的延长线交AG 于H ,若AH =AD ,求证:AE +BG =AG ;(2)如图3,若E 为AB 的中点,∠ADE =∠EDF .则CFBF的值是_____________(结果用含n 的式子表示).【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)①等腰;②2BE ;(2)①2;②存在,351 2【分析】(1)①由折叠的性质得EF=BF,即可得出结论;②当折痕经过点A时,由折叠的性质得AF垂直平分BE,由线段垂直平分线的性质得AE=BE,证出ABE是等腰直角三角形,即可得出BE2AE;(2)①由等边三角形的性质得BF=BE,∠EBF=60°,则∠ABE=30°,由直角三角形的性质得BE=2AE,AB33,则AE=1,BE=2,得BF=2即可;②当点F在边BC上时,得S△BEF≤12S矩形ABCD,即当点F与点C重合时S△BEF最大,由折叠的性质得CE=CB=3EF=3当点F在边CD上时,过点F作FH∥BC交AB于点H,交BE于点K,则S△EKF=1 2KF•AH≤12HF•AH=12S矩形AHFD,S△BKF=12KF•BH≤12HF•BH=12S矩形BCFH,得S△BEF≤12S矩形ABCD =3,即当点F为CD的中点时,BEF的面积最大,此时,DF=12CD=32,点E与点A重合,由勾股定理求出EF即可.【详解】解:(1)①由折叠的性质得:EF=BF,∴BEF是等腰三角形;故答案为:等腰;②当折痕经过点A时,由折叠的性质得:AF垂直平分BE,∴AE=BE,∵四边形ABCD是矩形,∴∠ABC=∠A=90°,∴ABE是等腰直角三角形,∴BE=2AE;故答案为:BE=2AE;(2)①当BEF是等边三角形时,BF=BE,∠EBF=60°,∴∠ABE=90°﹣60°=30°,∵∠A=90°,∴BE=2AE,AB=3AE=3,∴AE=1,BE=2,∴BF=2;②存在,理由如下:∵矩形ABCD中,CD=AB=3,BC=23,∴矩形ABCD的面积=AB×BC=3×23=6,第一种情况:当点F在边BC上时,如图1所示:此时可得:S△BEF≤12S矩形ABCD,即当点F与点C重合时S△BEF最大,此时S△BEF=3,由折叠的性质得:CE=CB=23,即EF=23;第二种情况:当点F在边CD上时,过点F作FH∥BC交AB于点H,交BE于点K,如图2所示:∵S△EKF=12KF•AH≤12HF•AH=12S矩形AHFD,S△BKF=12KF•BH≤12HF•BH=12S矩形BCFH,∴S△BEF=S△EKF+S△BKF≤12S矩形ABCD=3,即当点F为CD的中点时,BEF的面积最大,此时,DF=12CD=32,点E与点A重合,BEF的面积为3,∴EF=22AD DF+=51;综上所述,BEF的面积存在最大值,此时EF的长为23或51.【点睛】此题考查的是矩形与折叠问题,此题难度较大,掌握矩形的性质、折叠的性质、等边三角形的性质和勾股定理是解决此题的关键.2.(1)①7;②证明见解析;(2)93,理由见解析【分析】(1)①如图1中,延长BC交DE的延长线于T,过点T作TH⊥BD于H,设BD=2x.证明△BDT是等腰直角三角形,四边形ACTE是矩形,进而利用勾股定理构建方程求解即可;②如图2中,延长BC交DE的延长线于T,连接TF,进而利用全等三角形的性质证明△CEF是等腰直角三角形即可解决问题;(2)如图3中,根据题意设∠EAD=x,则∠BAC=2x.证明△ABC是等边三角形,再根据垂线段最短即可解决问题.【详解】解:(1)①如图1中,延长BC交DE的延长线于T,过点T作TH⊥BD于H,设BD=2x.∵∠ACB=90°,∠ACB+∠AED=180°,∴∠AED=90°,∵CA=CB,EA=ED,∴∠B=∠D=45°,∴∠BTD=90°,∵∠TCA=∠CTE=∠TEA=90°,∴四边形ACTE是矩形,∴22 EC AT==∵TH⊥BD,∴BH=HD=x,∴TH=HB=HD=x,∵AB=3,∴AH=x-3,在Rt △ATH 中,则有22252(())23x x =-+, 解得:72x =或12-(不符合题意舍弃), ∴BD=2x=7.②证明:如图2中,延长BC 交DE 的延长线于T ,连接TF .∵∠B=∠D=45°, ∴TB=TD ,∵∠BTD=90°,BF=DF , ∴TF ⊥BD ,∠FTE=∠BTF=45°, ∴TF=BF ,∠BFT=90°, ∵四边形ACTE 是矩形, ∴TE=AC , ∴AC=BC , ∴BC=TE , ∵∠B=∠FTE=45°, ∴△FBC ≌△FTE (SAS ), ∴FC=EF ,∠BFC=∠TFE , ∴∠CFE=∠BFT=90°, ∴△CFE 是等腰直角三角形, ∴EC=2EF .(2)如图3中,设∠EAD=x ,则∠BAC=2x .∵EA=ED ,∴∠EAD=∠EDA=x , ∴2x+∠AED=180°, ∵∠ACB+∠AED=180°, ∴∠ACB=2x , ∵CB=CA , ∴∠B=∠CAB=2x , ∴∠C=∠B=∠CAB , ∴△ABC 是等边三角形, ∴∠CAB=60°,∠EAD=30°, 当AD ⊥BC 时,△ADE 的面积最小, ∵AB=BC=AC=3, ∴32AD =, ∴S △ADE 的最小值13239322416=⨯⨯=. 【点睛】本题属于三角形综合题,考查等腰直角三角形的判定和性质,等边三角形的判定和性质,矩形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.3.(1)详见解析;(2)DE EF =,理由详见解析;(3)DE EF =,理由详见解析 【分析】(1)根据90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒,等量代换即可证明;(2)DE=EF ,连接NE ,在DA 边上截取DN=EB ,证出△DNE ≌△EBF 即可得出答案;(3)在DA 边上截取DN EB =,连接NE ,证出()DNE EBF ASA ≌即可得出答案. 【详解】(1)证明:∵90DAB DEF ∠=∠=︒,∴90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒, ∴ADE FEM ∠=∠; (2) ;DE EF =理由如下:如图,取AD 的中点N ,连接NE ,∵四边形ABCD 为正方形, ∴AD AB = ,∵,N E 分别为,AD AB 中点∴11,22AN DN AD AE EB AB ====, ∴,DN BE AN AE ==又∵90A ∠=︒ ∴45ANE ∠=︒∴180135DNE ANE ∠=︒-∠=︒, 又∵90CBM ∠=︒,BF 平分CBM ∠ ∴45,135CBF EBF ∠=︒∠=︒. ∴DNE EBF ∠=∠ 在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩()DNE EBF ASA ≌,∴DE EF = (3) DE EF =.理由如下:如图,在DA 边上截取DN EB =,连接NE ,∵四边形ABCD 是正方形, DN EB =, ∴AN AE =,∴AEN △为等腰直角三角形, ∵45ANE ∠=︒∴18045135DNE ∠=︒-︒=︒, ∵BF 平分CBM ∠, AN AE =, ∴9045135EBF ∠=︒+︒=︒, ∴DNE EBF ∠=∠, 在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DNE EBF ASA ≌,∴DE EF =.【点睛】此题主要考查了正方形的性质以及全等三角形的判定与性质等知识,解决本题的关键就是求证△DNE ≌△EBF .4.(1)见详解;(2)722x =-【分析】(1)连接MN ,由勾股定理求出AC=5,证出四边形ABNM 是矩形,得MN=AB=3,证△AME ≌△CNF (SAS ),得出EM=FN ,∠AEM=∠CFN ,证EM ∥FN ,得四边形EMFN 是平行四边形,求出MN=EF ,即可得出结论;(2)连接MN ,作MH ⊥BC 于H ,则MH=AB=3,BH=AM=x ,得HN=BC-BH-CN=4-2x ,由矩形的性质得出MN=EF=AC-AE-CF=4,在Rt △MHN 中,由勾股定理得出方程,解方程即可.【详解】(1)证明:连接MN ,如图1所示:∵四边形ABCD 是矩形,∴AD ∥BC ,AD=BC ,∠B=90°,∴∠EAM=∠FCN ,2222345AB BC +=+=,∵M ,N 分别是AD ,BC 的中点,∴AM=DM=BN=CN ,AM ∥BN ,∴四边形ABNM 是平行四边形,又∵∠B=90°,∴四边形ABNM 是矩形,∴MN=AB=3,在△AME 和△CNF 中,AM CN EAM FCN AE CF =⎧⎪∠=∠⎨⎪=⎩,∴△AME ≌△CNF (SAS ),∴EM=FN ,∠AEM=∠CFN ,∴∠MEF=∠NFE ,∴EM ∥FN ,∴四边形EMFN 是平行四边形,又∵AE=CF=1,∴EF=AC-AE-CF=3,∴MN=EF ,∴四边形EMFN 为矩形.(2)解:连接MN ,作MH ⊥BC 于H ,如图2所示:则四边形ABHM 是矩形,∴MH=AB=3,BH=AM=x ,∴HN=BC-BH-CN=4-2x ,∵四边形EMFN 为矩形,AE=CF=0.5,∴MN=EF=AC-AE-CF=4,在Rt △MHN 中,由勾股定理得:32+(4-2x )2=42,解得:x=72±, ∵0<x <2,∴x=72- 【点睛】本题考查了矩形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定、勾股定理等知识;熟练掌握矩形的判定与性质和勾股定理是解题的关键.5.(1)见解析;(2)7PA =4217BH 3)①(423,23)M +2635 【分析】(1)利用直角三角形斜边中线的性质可得DO=DA ,推出∠AEO=60°,进一步得出BC ∥AE ,CO ∥AB ,可得结论;(2)先计算出OA=43PB=23AP=7,再利用面积法计算BH 即可;(3)①求出直线PM 的解析式为3,再利用两点间的距离公式计算即可; ②易得直线BC 的解析式为y=33-x+4,联立直线BC 和直线PM 的解析式成方程组,求得点G 的坐标,再利用三角形面积公式计算.【详解】(1)证明:∵Rt△OAB中,D为OB的中点,∴AD=12OB,OD=BD=12OB,∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:在Rt△AOB中,∠AOB=30°,OB=8,∴AB=4,∴OA=∵四边形ABCE是平行四边形,∴PB=PE,PC=PA,∴PB=∴PC PA===∴1122ABCS AC BH AB BE∆=⋅⋅=⋅⋅,即114 22BH⨯=⨯⨯∴BH(3)①∵C(0,4),设直线AC的解析式为y=kx+4,∵P(0),∴0=,解得,k=3-,∴y=x+4,∵∠APM=90°,∴直线PM的解析式为,∵P(0),∴0=2×, 解得,m=-3,∴直线PM 的解析式为, 设M (x,2x-3), ∵AP=∴(x-2+)2=(2, 化简得,x 2x-4=0,解得,x 1=4,x 2=4(不合题意舍去),当x=4时,y=2×(4)-3= ∴M(4,故答案为:(4,②∵(0,4),C B∴直线BC的解析式为:43y x =-+,联立34y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩,解得65x y ⎧=⎪⎪⎨⎪=⎪⎩,∴6)5G ,161=4252PBG PBA S S S ∆∆∴+=⨯+⨯=阴 【点睛】本题考查的是平行四边形的判定,等边三角形的性质,两点间的距离,正方形的性质,矩形的性质,一次函数的图象和性质,掌握相关的判定定理和性质定理是解题的关键.6.(1)9或5;(2)①见解析,②见解析【分析】(1)分两种情况:①如图1-1,得出正方形ABCD 的边长为3,求出正方形ABCD 的面积为9;②如图1-2,过点B 作EF ⊥l 1于E ,交l 4于F ,则EF ⊥l 4,证明△ABE ≌△BCF (AAS ),得出AE=BF=2由勾股定理求出(2)①过点B 作EF ⊥l 1于E ,交l 4于F ,作DM ⊥l 4于M ,证明△ABE ≌△BCF (AAS ),得出AE=BF ,同理△CDM ≌△BCF (AAS ),得出△ABE ≌△CDM (AAS ),得出BE=DM 即可; ②由①得出AE=BF=h 2+h 3=h 2+h 1,得出正方形ABCD 的面积S=AB 2=AE 2+BE 2,即可得到答案.【详解】解:(1)①如图,当点B D ,分别在14,l l 上时,面积为:339⨯=;②如图,当点B D ,分别在23,l l 上时,过点B 作EF ⊥l 1于E ,交l 4于F ,则EF ⊥l 4,∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF ,在△ABE 和△BCF 中90ABE BCF AEB BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△BCF (AAS ),∴AE=BF=2,∴AB=2222215AE BE +=+=,∴正方形ABCD 的面积=AB 2=5;综上所述,正方形ABCD 的面积为9或5;(2)①证明:过点B 作EF ⊥l 1于E ,交l 4于F ,作DM ⊥l 4于M ,如图所示:则EF ⊥l 4,∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF ,在△ABE 和△BCF 中,90ABE BCF AEB BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△BCF (AAS ),∴AE=BF ,同理△CDM ≌△BCF (AAS ),∴△ABE ≌△CDM (AAS ),∴BE=DM ,即h 1=h 3.②解:由①得:AE=BF=h 2+h 3=h 2+h 1,∵正方形ABCD 的面积:S=AB 2=AE 2+BE 2,∴S=(h 2+h 1)2+h 12=2h 12+2h 1h 2+h 22.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.7.(1)12;(2)2S 1=36 +S 2.【分析】(1)根据已知条件证得四边形ABOC 是正方形,在点B 左侧取点G ,连接AG ,使AG=AE ,利用HL 证得Rt △ABG ≌Rt △ACE ,得到∠GAB=∠EAC,GB=CE ,再利用45DAE ︒∠=证得△GAD ≌△EAD ,得到DE=GB+BD ,由此求得DOE ∆的周长;(2) 在OB 上取点F ,使AF=AE ,根据HL 证明Rt △ABF ≌Rt △ACE ,得到∠FAE=∠ABC=90︒,再证明△ADE ≌△ADF ,利用面积相加关系得到四边形AEDF 的面积=S △ACE +S 四边形ACOF +S △ODE ,根据三角形全等的性质得到2S △ADE =S 正方形ABOC +S △OD E ,即可得到2S △ADE =36 +S △ODE .【详解】(1)∵点A 的坐标为(6,6)-,AB x ⊥轴,AC y ⊥轴,∴AB=BO=AC=OC=6,∴四边形ABOC 是菱形,∵∠BOC=90︒,∴四边形ABOC 是正方形,在点B 左侧取点G ,连接AG ,使AG=AE ,∵四边形ABOC 是正方形,∴AB=AC ,∠ABG=∠ACE=90︒,∴Rt △ABG ≌Rt △ACE ,∴∠GAB=∠EAC,GB=CE ,∵∠BAE+∠EAC=90︒,∴∠GAB+∠BAE=90︒,即∠GAE=90︒,∵45DAE ︒∠=∴∠GAD=45DAE ︒∠=,又∵AD=AD,AG=AE ,∴△GAD ≌△EAD ,∴DE=GD=GB+BD,∴DOE ∆的周长=DE+OD+OE=GB+BD+OD+OE=OB+OC=6+6=12(2) 2S 1=36 +S 2,理由如下:在OB 上取点F ,使AF=AE ,∵AB=AC ,∠ABF=∠ACE=90︒,∴Rt △ABF ≌Rt △ACE ,∴∠BAF=∠CAE,∴∠FAE=∠ABC=90︒,∵∠DAE=45︒,∴∠DAF=∠DAE=45︒,∵AD=AD ,∴△ADE ≌△ADF ,∵四边形AEDF 的面积=S △ACE +S 四边形ACOF +S △ODE ,∴2S △ADE =S 正方形ABOC +S △OD E ,∴2S △ADE =36 +S △ODE.即:2S 1=36 +S 2【点睛】此题考查三角形全等的判定及性质,根据题中的已知条件证得三角形全等,即可利用性质得到边长相等,面积相等的关系,(2)中需根据面积的加减关系进行推导,这是此题的难点.8.(1)①45;②△ADE≌△ECF,理由见解析;(2)25.【分析】(1)①根据矩形的性质得到90ABC BCD ∠=∠=︒,根据角平分线的定义得到45EBC ∠=︒,根据三角形内角和定理计算即可;②利用ASA 定理证明ADE ECF ≅;(2)连接HB ,证明四边形NBEH 是矩形,得到NE BH =,根据勾股定理求出BH 即可.【详解】(1)①∵四边形ABCD 为矩形,∴∠ABC=∠BCD=90°,∵BE 平分∠ABC,∴∠EBC=45°,∴∠BEC=45°,故答案为45;②△ADE≌△ECF,理由如下:∵四边形ABCD 是矩形,∴∠ABC=∠C=∠D=90°,AD=BC .∵FE⊥AE,∴∠AEF=90°.∴∠AED+∠FEC=180°-∠AEF=90°.∵∠AED+∠DAE=90°,∴∠FEC=∠EAD,∵BE 平分∠ABC,∴∠BEC=45°.∴∠EBC=∠BEC.∴AD=EC.在△ADE 和△ECF 中,DAE CEF AD ECADE ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE≌△ECF;(2)连接HB ,如图2,∵FH∥CD,∴∠HFC=180°-∠C=90°.∴四边形HFCD 是矩形.∴DH=CF,∵△ADE≌△ECF,∴DE=CF.∴DH=DE.∴∠DHE=∠DEH=45°.∵∠BEC=45°,∴∠HEB=180°-∠DEH -∠BEC=90°.∵NH∥BE,NB∥HE,∴四边形NBEH 是平行四边形.∴四边形NBEH 是矩形.∴NE=BH.∵四边形ABCD 是矩形,∴∠BAH=90°.∵在Rt△BAH 中,AB=4,AH=2,【点睛】本题考查的是矩形的判定和性质、全等三角形的判定和性质以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.9.(1)32)见详解.(1)根据所给的60°,判断出等边三角形,得出BE=6,根据所给比例关系,求出CE ,然后求出三角形面积;(2)利用已知条件能够求出ABF ≌ADH ,之后需要构造全等图形,使所求的BG+GD 转化在同一直线上,然后根据含有30°的特殊直角三角形的关系,即可证明出结果.【详解】解:(1) 如图:过A 点作AN ⊥BE ,交BE 于N .∵60ABC ∠=︒,6AB AE ==∴△ABE 为等边三角形,∴AB=BE=AE=6即:AN=33∵:5:2BC CE =∴:5:3BC BE =∵BE=6∴BC=10∴EC=4 ∴113346322ACE S AN EC ==⨯=即:ACE △的面积为3.(2)如图:延长GD 至P 使DP=BG ,连接AP ,∵AH=AF ,∴∠AFH=∠AHF即:∠AFB=∠AHD ,又∵AF=AH ,BF=DH ,∴ABF ≌ADH∴AB=AD又∵180ABG ADG ∠+∠=︒,180ADP ADG ∠+∠=︒,∴∠ABG=∠ADP∵BG=DP ,∴ABG ≌ADP △∴AG=AP ,∠BAG=∠DAP∵∠ABC=60°∴∠BAD=120°即:∠GAP=120°∴∠AGP=∠APG=60°,又∵AM ⊥GD∴3,∵BG=GP∴BG+GD=GD+DP=GP即:3.【点睛】本题重点考察在平行四边形中利用平行四边形的性质证明图形面积,以及构造全等图形求多边之间的关系,构造全等三角形是本题的解题关键.10.(1)①证明见解析;②证明见解析;(2)241n -.【分析】(1)①先根据1n =可得AD AB =,再根据矩形的性质可得90DAE ABF ∠=∠=︒,然后根据直角三角形的性质、垂直的定义可得DEA AFB ∠=∠,最后根据三角形全等的判定定理与性质即可得证;②如图(见解析),先根据(1)的结论可得AE BF =,再根据等腰三角形的三线合一可得HAF DAF ∠=∠,然后根据矩形的性质、平行线的性质可得AFG DAF ∠=∠,从而可得HAF AFG ∠=∠,最后根据等腰三角形的定义可得AG GF =,由此即可得证; (2)如图(见解析),先根据线段中点的定义可得AE BE =,再根据角平分线的性质可得,AE EM DM AD nAB ===,从而可得BE EM =,然后根据直角三角形全等的判定定理与性质可得BF MF =,设BF MF x ==,最后在Rt CDF 中,利用勾股定理求出x 的值,从而可得BF 、CF 的值,由此即可得出答案.【详解】(1)①当1n =时,AD AB =四边形ABCD 是矩形90DAE ABF ∴∠=∠=︒90BAF AFB ∴∠+∠=︒AF DE ⊥90BAF DEA ∴∠+∠=︒DEA AFB ∴∠=∠在ADE 和BAF △中,90DAE ABF DEA AFB AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ADE BAF AAS ∴≅AE BF ∴=;②如图,过点A 作AF DH ⊥,交BC 于点F由(1)可知,AE BF =,AH AD AF DH =⊥HAF DAF ∴∠=∠(等腰三角形的三线合一)四边形ABCD 是矩形//AD BC ∴AFG DAF ∴∠=∠HAF AFG ∴∠=∠AG GF ∴=又GF BF BG AE BG =+=+AE BG AG ∴+=;(2)如图,过点E 作EM DF ⊥于点M ,连接EF四边形ABCD 是矩形,,90AD BC nAB AB CD A B C ∴===∠=∠=∠=︒点E 是AB 的中点 12AE BE AB ∴==,,ADE EDF EA AD EM DF ∠=∠⊥⊥,AE EM DM AD nAB ∴===BE EM ∴=在Rt BEF △和Rt MEF 中,BE ME EF EF =⎧⎨=⎩()Rt BEF Rt MEF HL ∴≅∴=BF MF设BF MF x ==,则CF BC BF nAB x =-=-,DF DM MF nAB x =+=+ 在Rt CDF 中,222+=CD CF DF ,即222()()AB nAB x nAB x +-=+解得14x AB n= 14BF AB n ∴=,214144n CF nAB AB AB n n-=-= 则224144114n AB CF n n BF AB n-==- 故答案为:241n -.【点睛】本题考查了矩形的性质、等腰三角形的三线合一、三角形全等的判定定理与性质、勾股定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.。

平行四边形单元测试提优卷试题

平行四边形单元测试提优卷试题

平行四边形单元测试提优卷试题一、选择题1.如图,菱形ABCD 的边长为4,60,A E ∠=是边AD 的中点,F 是边AB 上的一个动点,将线段EF 绕着E 逆时针旋转60,得到EG ,连接EG CG 、,则BG CG +的最小值为( )A .33B .27C .43D .223+2.如图,在平行四边形ABCD 中,30, 6, 63,BCD BC CD E ︒∠===是AD 边上的中点,F 是AB 边上的一动点,将AEF ∆沿EF 所在直线翻折得到A EF '∆,连接A C ',则A C '的最小值为( )A .319B .313C .3193-D .633.在菱形ABCD 中,60ADC ∠=︒,点E 为AB 边的中点,点P 与点A 关于DE 对称,连接DP 、BP 、CP ,下列结论:①DP CD =;②222AP BP CD +=;③75DCP ∠=︒;④150CPA ∠=︒,其中正确的是( )A .①②B .①②③C .①②④D .①②③④4.如图,在菱形ABCD 中,AC 与BD 相交于点O ,AB =4,BD =43,E 为AB 的中点,点P 为线段AC 上的动点,则EP+BP 的最小值为( )A .4B .5C .7D .85.如图,锐角△ABC 中,AD 是高,E,F 分别是AB,AC 中点,EF 交AD 于G,已知GF=1,AC=6,△DEG 的周长为10,则△ABC 的周长为( )A .27-32B .28-32C .28-42D .29-526.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,E 是AC 上的一点,且AB=AE ,过点A 作AF ⊥BE ,垂足为F ,交BD 于点G ,点H 在AD 上,且EH ∥AF.若正方形ABCD 的边长为2,下列结论:①OE=OG ;②EH=BE ;③AH=222-,其中正确的有( )A .0个B .1个C .2个D .3个7.如图,在▭ABCD 中,AB =4,BC =6,∠ABC =60°,点P 为▭ABCD 内一点,点Q 在BC 边上,则PA +PD +PQ 的最小值为( )A 3719B .3C .3D .108.如图,在正方形ABCD 中,点E ,F 分别在BC 和CD 上,过点A 作GA AE ⊥,CD 的延长线交AG 于点G ,BE DF EF +=,若30DAF ∠=︒,则BAE ∠的度数为( )A .15°B .20°C .25°D .30°9.如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE =DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .给出如下几个结论:①△AED ≌△DFB :②GC 平分∠BGD ;③S 四边形BCDG =34CG 2;④∠BGE 的大小为定值.其中正确的结论个数为( )A .1B .2C .3D .410.如图,在△ABC 中,AB =3,AC =4,BC =5,△ABD ,△ACE ,△BCF 都是等边三角形,下列结论中:①AB ⊥AC ;②四边形AEFD 是平行四边形;③∠DFE =150°;④S 四边形AEFD =5.正确的个数是( )A .1个B .2个C .3个D .4个二、填空题11.在平行四边形ABCD 中,30,3,2A AD BD ∠=︒==,则平行四边形ABCD 的面积等于_____.12.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是_____.13.如图,正方形ABCD 的对角线相交于点O ,对角线长为1cm ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_____.14.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.15.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.16.如图,在平行四边形ABCD 中,AC ⊥AB ,AC 与BD 相交于点O ,在同一平面内将△ABC 沿AC 翻折,得到△AB’C ,若四边形ABCD 的面积为24cm 2,则翻折后重叠部分(即S △ACE ) 的面积为________cm 2.17.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.18.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.19.如图,正方形ABCD 的边长为4,点E 为AD 的延长线上一点,且DE =DC ,点P 为边AD 上一动点,且PC ⊥PG ,PG =PC ,点F 为EG 的中点.当点P 从D 点运动到A 点时,则CF 的最小值为___________20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②S △ABG =32S △FGH ;③△DEF ∽△ABG ;④AG+DF =FG .其中正确的是_____.(把所有正确结论的序号都选上)三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.如图,在四边形ABCD 中,AB ∥DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AE =,3OE =,求线段CE 的长.23.如图,在矩形ABCD 中,点E 是AD 上的一点(不与点A ,D 重合),ABE ∆沿BE 折叠,得BEF ,点A 的对称点为点F .(1)当AB AD =时,点F 会落在CE 上吗?请说明理由.(2)设()01AB m m AD=<<,且点F 恰好落在CE 上. ①求证:CF DE =. ②若AE n AD=,用等式表示m n ,的关系. 24.如图,在菱形ABCD 中,AB =2cm ,∠ADC =120°.动点E 、F 分别从点B 、D 同时出发,都以0.5cm/s 的速度向点A 、C 运动,连接AF 、CE ,分别取AF 、CE 的中点G 、H .设运动的时间为ts (0<t <4).(1)求证:AF ∥CE ;(2)当t 为何值时,△ADF 32; (3)连接GE 、FH .当t 为何值时,四边形EHFG 为菱形.25.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接,PG PC .(1)求证:,PG PC PG PC ⊥=.简析:由Р是线段DF 的中点,//DC CF ,不妨延长GP 交DC 于点M ,从而构造出一对全等的三角形,即_______≅________.由全等三角形的性质,易证CMG 是_______三角形,进而得出结论;(2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PG PC 的值,写出你的猜想并加以证明;(3)当6,2AB BE ==时,菱形ABCD 和菱形BEFG 的顶点都按逆时针排列,且60ABC BEF ∠=∠=︒.若点A B E 、、在一条直线上,如图2,则CP =________;若点A B G 、、在一条直线上,如图3,则CP =________.26.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.27.如图,点A 的坐标为(6,6)-,AB x ⊥轴,垂足为B ,AC y ⊥轴,垂足为C ,点,D E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,45DAE ︒∠=.(1)如图1,当点D 在线段BO 上时,求DOE ∆的周长;(2)如图2,当点D 在线段BO 的延长线上时,设ADE ∆的面积为1S ,DOE ∆的面积为2S ,请猜想1S 与2S 之间的等量关系,并证明你的猜想.28.如图,四边形ABCD 是边长为3的正方形,点E 在边AD 所在的直线上,连接CE ,以CE 为边,作正方形CEFG (点C 、E 、F 、G 按逆时针排列),连接BF.(1)如图1,当点E 与点D 重合时,BF 的长为 ;(2)如图2,当点E 在线段AD 上时,若AE=1,求BF 的长;(提示:过点F 作BC 的垂线,交BC 的延长线于点M ,交AD 的延长线于点N.)(3)当点E 在直线AD 上时,若AE=4,请直接写出BF 的长.29.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.(1)当1x =时,点M 的坐标为( , )(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围.(3)在x 轴正半轴上存在点Q ,使得QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用x 的式子表示)30.已知:如图,在ABC 中,直线PQ 垂直平分AC ,与边AB 交于点E ,连接CE ,过点C 作//CF BA 交PQ 于点F ,连接AF .(1)求证:四边形AECF 是菱形;(2)若8AC =,AE=5,则求菱形AECF 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;先证明E点与E'点重合,再在Rt△EBC中,EB=23,BC=4,求EC的长.【详解】取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;∵MN∥AD,∴HM=12 AE,∵HB⊥HM,AB=4,∠A=60°,∴MB=2,∠HMB=60°,∴HM=1,∴AE'=2,∴E点与E'点重合,∵∠AEB=∠MHB=90°,∴∠CBE=90°,在Rt△EBC中,3BC=4,∴7,故选A.【点睛】本题考查菱形的性质,直角三角形的性质;确定G点的运动轨迹,是找到对称轴的关键.2.C解析:C【分析】如图,先作辅助线,首先根据垂直条件,求出线段ME、DE长度,然后运用勾股定理求出DE的长度,再根据翻折的性质,当折线'EA,'AC与线段CE重合时,线段'AC长度最短,可以求出最小值.【详解】如图,连接EC,过点E 作EM ⊥CD 交CD 的延长线于点M.四边形ABCD 是平行四边形,6AD BC AD BC ∴==,,E 为AD 的中点,30BCD ∠=︒,330DE EA MDE BCD ∴==∠=∠=︒,,又 EM CD ⊥,133322ME DE DM ∴===,, 3315363.CM CD DM ∴=+=+= 根据勾股定理得: 22223153319.22CE ME CM ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭根据翻折的性质,可得'3EA EA ==,当折线'EA ,'AC 与线段CE 重合时,线段'AC 长度最短,此时'AC= 3193-. 【点睛】本题是平行四边形翻折问题,主要考查直角三角形勾股定理,根据题意作出辅助线是解题的关键.3.C解析:C【分析】如图,设DE 交AP 于0,根据菱形的性质、翻折不变性-判断即可解决问题;【详解】解:如图,设DE 交AP 于O.∵四边形ABCD 是菱形∴DA=DC=AB∵A.P关于DE对称,∴DE⊥AP,OA=OP∴DA=DP∴DP=CD,故①正确∵AE=EB,AO=OP∴OE//PB,∴PB⊥PA∴∠APB=90°∴2222PA PB AB CD+==,故②正确若∠DCP=75°,则∠CDP=30°∵LADC=60°∴DP平分∠ADC,显然不符合题意,故③错误;∵∠ADC=60°,DA=DP=DC∴∠DAP=∠DPA,∠DCP=∠DPC,∠CPA=(360°-60°)=150°,故④正确.故选:C【点睛】本题考查菱形的性质、轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.C解析:C【解析】【分析】连结DE交AC于点P,连结BP,根据菱形的性质推出AO是BD的垂直平分线,推出PE+PB=PE+PD=DE且值最小,根据勾股定理求出DE的长即可.【详解】如图,设AC,BD相交于O,∵四边形ABCD是菱形,∴AC⊥BD,AO=12AC,BO=12BD=3∵AB=4,∴AO=2,连结DE交AC于点P,连结BP,作EM⊥BD于点M,∵四边形ABCD是菱形,∴AC⊥BD,且DO=BO,即AO是BD的垂直平分线,∴PD =PB ,∴PE+PB =PE+PD =DE 且值最小,∵E 是AB 的中点,EM ⊥BD ,∴EM =12AO =1,BM =12BO ,∴DM =DO+OM =32BO =,∴DE ==,故选C .【点睛】此题考查了轴对称-最短路线问题,关键是根据菱形的判定和三角函数解答.5.C解析:C【解析】【分析】由中点性质先得AF =3,再用勾股定理求出AG =DG =AG =,已知△DEG 的周长为10,所以求得EG+DE 的值,进一步证得AB=2DE,BD=2EG,从而求得△ABC 的周长.【详解】∵ E,F 分别是AB,AC 中点,EF 交AD 于G,∴EF ∥BC ,11AF AC 6322==⨯= ∵AD 是高∴∠ADC=∠AGF=90°在Rt △AGF 中AG ===∵EF ∥BC∴1AG AF DG FC== ∴FG 是△ADC 的中位线∴DC=2GF=2∴ ∵ △DEG 的周长为10,∴ 在Rt △ADB 中,点E 是AB 边的中点,点G 是AD 的中点,∴AB=2DE ,BD=2EG∴AB+BD=2(EG+DE )∴△ABC的周长为:故答案为C【点睛】此题主要考查了直角三角形的性质、勾股定理、中位线性质等知识点.在直角三角形中,斜边上的中线等于斜边的一半.6.D解析:D【分析】根据正方形的性质及全等三角形的判定与性质即可分别求证判断.【详解】在正方形ABCD中,AO=BO,∠AOG=∠BOE,AC⊥BD∵AF⊥BE,∴∠EAF+∠BEO=∠BEO+∠OBE=90°,∴∠OAG=∠OBE,∴△OAG≌△OBE,故OE=OG,①正确;∵AB=AE,∴∠ABE=∠AEB,∵EH∥AF∴HE⊥BE,∴∠AEF+∠AEH=∠ABE+∠CBE,∴∠AEH=∠CBE又∵AE=AB=CB,∠HAE=∠ECB=45°,∴△AEH≌△CBE,∴EH=BE,②正确;∵△AEH≌△=∴AH=CE=AC-AE=,③正确.故选D【点睛】此题主要考查正方形的性质与线段的证明,解题的关键是熟知正方形的性质定理及全等三角形的判定与性质.7.C解析:C【分析】如下图,将△APD绕点A逆时针旋转60°至△AFE处,通过边长转换,可将PA+PD+PQ转化为PF+EF+PQ的形式,再利根据两点之间线段最短,得出最小值.【详解】如下图,将△APD绕点A逆时针旋转60°至△AFE处,连接FP,过点E作BC的垂线,交BC于点G,AD于点H,过点A作BC的垂线,交BC于点K∵△AFE 是△APD 绕点A 逆时针旋转60°得到∴∠FAP=60°,∠EAD=60°,AF=AP ,EF=PD∴△APF 是等边三角形,∴AP=PF∴PA +PD +PQ =PF+FE+PQ ≥EG∵四边形ABCD 是平行四边形,BC=6∴AE=AD=BC=6,AD ∥BC∴在Rt △AHE 中,AH=3,3∵HG ⊥BC ,AK ⊥BC ,AD ∥BC∴AK ⊥AD ,GH ⊥AD ,∴AK=HG∵∠ABC=60°,AB=4∴在Rt △ABK 中,BK=2,3∴3∴32353=故选:C【点睛】本题考查最值问题,解题关键是旋转△APD ,将PA +PD +PQ 转化为PF+EF+PQ 的形式.8.A解析:A【分析】根据已知条件先证明△ABE ≌△ADG ,得到AE=AG ,再证明△AEF ≌△AGF ,得到EAF GAF ∠=∠,根据30DAF ∠=︒,设BAE ∠=x,利用GA AE ⊥得到方程求出x 即可求解.【详解】在正方形ABCD 中,AB=AD,90ABE ADG BAD ∠=∠=∠=︒∵GA AE ⊥∴90EAD DAG ∠+∠=︒又90EAD BAE ∠+∠=︒∴DAG BAE ∠∠=∴△ABE ≌△ADG (ASA )∴AE=AG ,BE=DG,∵BE DF EF +=∴BE DF DG DF EF +=+=∴EF=GF∴△AEF ≌△AGF (SSS )∴EAF GAF ∠=∠∵30DAF ∠=︒,设BAE ∠=x,∴EAF GAF ∠=∠=x+30°∵GA AE ⊥∴90EAF GAF ∠+∠=︒故x+30°+ x+30°=90°解得x=15°故选A .【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知正方形的性质及全等三角形的判定定理.9.D解析:D【分析】①先证明△ABD 为等边三角形,根据“SAS”证明△AED≌△DFB;②证明∠BGE=60︒=∠BCD,从而得点B 、C 、D 、G 四点共圆,因此∠BGC=∠DGC=60︒; ③过点C 作CM⊥GB 于M,CN⊥GD 于N.证明△CBM≌△CDN,所以S 四边形BCDG =S 四边形CMGN ,易求后者的面积;④∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60︒,故为定值.【详解】解:①∵ABCD 为菱形,∴AB=AD,∵AB=BD,∴△ABD 为等边三角形,∴∠A=∠BDF=60︒又∵AE=DF,AD =BD,∴△AED≌△DFB(SAS ),故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60︒=∠BCD,即∠BGD+∠BCD=180︒,∴点B 、C 、D 、G 四点共圆,∴∠BGC=∠BDC=60︒,∠DGC=∠DBC=60︒,∴∠BGC=∠DGC=60︒,故本选项正确;③过点C 作CM⊥GB 于M,CN⊥GD 于N (如图),则△CBM≌△CDN(AAS ),∴S 四边形BCDG =S 四边形CMGNS 四边形CMGN =2S △CMG ,∵∠CGM=60︒, ∴GM=12CG,CM 3 ∴S 四边形CMGN =2S △CMG =2×12×12332, 故本选项正确;④∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60︒,为定值,故本选项正确;综上所述,正确的结论有①②③④,故选:D.【点睛】本题考查了菱形的性质、全等三角形的判定、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.10.C解析:C【分析】由222AB AC BC +=,得出∠BAC =90°,则①正确;由等边三角形的性质得∠DAB =∠EAC =60°,则∠DAE =150°,由SAS 证得△ABC ≌△DBF ,得AC =DF =AE =4,同理△ABC ≌△EFC (SAS ),得AB =EF =AD =3,得出四边形AEFD 是平行四边形,则②正确;由平行四边形的性质得∠DFE=∠DAE =150°,则③正确;∠FDA =180°-∠DFE =30°,过点A 作AM DF ⊥于点M ,1143622AEFD SDF AM DF AD ===⨯⨯=,则④不正确;即可得出结果.【详解】解:∵22234=5+,∴222AB AC BC +=,∴∠BAC=90°,∴AB ⊥AC ,故①正确; ∵△ABD ,△ACE 都是等边三角形,∴∠DAB=∠EAC=60°,又∴∠BAC=90°,∴∠DAE=150°,∵△ABD 和△FBC 都是等边三角形,∴BD=BA ,BF=BC ,∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC ,在△ABC 与△DBF 中,BD BA DBF ABC BF BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DBF (SAS ),∴AC=DF=AE=4,同理可证:△ABC ≌△EFC (SAS ),∴AB=EF=AD=3,∴四边形AEFD 是平行四边形,故②正确;∴∠DFE=∠DAE=150°,故③正确;∴∠FDA=180°-∠DFE=180°-150°=30°,过点A 作AM DF ⊥于点M , ∴1143622AEFD S DF AM DF AD ===⨯⨯=, 故④不正确;∴正确的个数是3个,故选:C .【点睛】本题考查了平行四边形的判定与性质、勾股定理的逆定理、全等三角形的判定与性质、等边三角形的性质、平角、周角、平行是四边形面积的计算等知识;熟练掌握平行四边形的判定与性质是解题的关键.二、填空题11.43或23【分析】分情况讨论作出图形,通过解直角三角形得到平行四边形的底和高的长度,根据平行四边形的面积公式即可得到结论.【详解】解:过D 作DE AB ⊥于E ,在Rt ADE △中,30A ∠=︒,23AD =, 132DE AD ∴==,332AE AD ==, 在Rt BDE △中,2BD =,22222(3)1BE BD DE ∴=-=-=,如图1,4AB ∴=,∴平行四边形ABCD 的面积4343AB DE ==⨯=,如图2,2AB =,∴平行四边形ABCD 的面积2323AB DE ==⨯=,如图3,过B 作BE AD ⊥于E ,在Rt ABE △中,设AE x =,则23DE x =-,30A ∠=︒,33BE x =, 在Rt BDE △中,2BD =, 22232()(23)x x ∴=+-, 3x ∴=,23x =(不合题意舍去),1BE ∴=,∴平行四边形ABCD 的面积12323AD BE ==⨯=,如图4,当AD BD ⊥时,平行四边形ABCD 的面积43AD BD ==,故答案为:323【点睛】本题考查了平行四边形的性质,平行四边形的面积公式的运用、30度角的直角三角形的性质,根据题意作出图形是解题的关键.12.(-10,3)【解析】试题分析:根据题意可知△CEF∽△OFA,可根据相似三角形的性质对应边成比例,可求得OF=2CE ,设CE=x ,则BE=8-x ,然后根据折叠的性质,可得EF=8-x ,根据勾股定理可得2224(8)x x +=-,解得x =3,则OF=6,所以OC=10,由此可得点E 的坐标为(-10,3). 故答案为:(-10,3)13.218cm 【分析】根据正方形的性质可以证明△AEO ≌CFO ,就可以得出S △AEO =S △CFO ,就可以求出△AOD 面积等于正方形面积的14,根据正方形的面积就可以求出结论.【详解】解:如图:∵正方形ABCD的对角线相交于点O,∴△AEO与△CFO关于O点成中心对称,∴△AEO≌CFO,∴S△AEO=S△CFO,∴S△AOD=S△DEO+S△CFO,∵对角线长为1cm,∴S正方形ABCD=1112⨯⨯=12cm2,∴S△AOD=18cm2,∴阴影部分的面积为18cm2.故答案为:18cm2.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用正方形的面积及三角形的面积公式的运用,在解答时证明△AEO≌CFO是关键.14.37【分析】如图,延长CB到T,使得BT=DE,连接DT,作点B关于直线AC的对称点W,连接TW,DW,过点W作WK⊥BC交BC的延长线于K.证明BE=DT,BD=DW,把问题转化为求DT+DW的最小值.【详解】解:如图,延长CB到T,使得BT=DE,连接DT,作点B关于直线AC的对称点W,连接TW,DW,过点W作WK⊥BC交BC的延长线于K.∵△ABC ,△DEF 都是等边三角形,BC=3DE=3,∴BC=AB=3,DE=1,∠ACB=∠EDF=60°,∴DE ∥TC ,∵DE=BT=1,∴四边形DEBT 是平行四边形,∴BE=DT ,∴BD+BE=BD+AD ,∵B ,W 关于直线AC 对称,∴CB=CW=3,∠ACW=∠ACB=60°,DB=DW ,∴∠WCK=60°,∵WK ⊥CK ,∴∠K=90°,∠CWK=30°,∴CK=12CW=32,, ∴TK=1+3+32=112,∴= ∴DB+BE=DB+DT=DW+DT≥TW ,∴∴BD+BE ,.【点睛】本题考查轴对称-最短问题,等边三角形的性质,解直角三角形,平行四边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题. 15.8或12【分析】根据平行四边形的性质得到BC=AD=5,∠BAE=∠DEA ,∠ABF=∠BFC ,根据角平分线的性质得到DE=AD=5,CF=BC=5,即可求出答案.【详解】在ABCD 中,AB ∥CD ,BC=AD=5,∴∠BAE=∠DEA ,∠ABF=∠BFC ,∵BAD ∠的平分线交CD 于点E ,∴∠BAE=∠DAE ,∴∠DAE=∠DEA ,∴DE=AD=5,同理:CF=BC=5,∴AB=CD=DE+CF-EF=5+5-2=8或AB=DE+CF+EF=5+5+2=12,故答案为:8或12.【点睛】此题考查平行四边形的性质,角平分线的性质,等腰三角形的等角对等边的判定,解题中注意分类思想的运用,避免漏解.16.6【分析】由折叠的性质可得∠BAC=∠B'AC=90°,AB=AB',S△ABC=S△AB'C=12cm2,可证点B,点A,点B'三点共线,通过证明四边形ACDB'是平行四边形,可得B'E=CE,即可求解.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,S△ABC=1242=12cm2,∵在同一平面内将△ABC沿AC翻折,得到△AB′C,∴∠BAC=∠B'AC=90°,AB=AB',S△ABC=S△AB'C=12cm2,∴∠BAB'=180°,∴点B,点A,点B'三点共线,∵AB∥CD,AB'∥CD,∴四边形ACDB'是平行四边形,∴B'E=CE,∴S△ACE=12S△AB'C=6cm2,故答案为:6.【点睛】本题考查了翻折变换,平行四边形的判定和性质,证明点B,点A,点B'三点共线是本题的关键.17.16或10【分析】等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C时,作辅助线,构建平行四边形AGHD和直角三角形EGB',计算EG和B'G的长,根据勾股定理可得B'D的长;【详解】∵四边形ABCD是矩形,∴DC=AB=16,AD=BC=18.分两种情况讨论:(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.∵四边形ABCD是矩形,∴AB∥CD,∠A=90°又GH∥AD,∴四边形AGHD是平行四边形,又∠A=90°,∴四边形AGHD是矩形,∴AG=DH,∠GHD=90°,即B'H⊥CD,又B'D=B'C,∴DH=HC=18CD=,AG=DH=8,3∵AE=3,∴BE=EB'=AB-AE=16-3=13,EG=AG-AE=8-3=5,在Rt△EGB'中,由勾股定理得:GB′2213512,∴B'H=GH×GB'=18-12=6,在Rt△B'HD中,由勾股定理得:B′D22+=6810综上,DB'的长为16或10.故答案为: 16或10【点睛】本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论.18.65【分析】先由正方形的性质得到∠ABF 的角度,从而得到∠AEB 的大小,再证△AEB ≌△AED ,得到∠AED 的大小【详解】∵四边形ABCD 是正方形∴∠ACB=∠ACD=∠BAC=∠CAD=45°,∠ABC=90°,AB=AD∵∠FBC=20°,∴ABF=70°∴在△ABE 中,∠AEB=65°在△ABE 与△ADE 中45AB AD BAE EAD AE AE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△ADE∴∠AED=∠AEB=65°故答案为:65°【点睛】本题考查正方形的性质和三角形全等的证明,解题关键是利用正方形的性质,推导出∠AEB 的大小.19.22【分析】由正方形ABCD 的边长为4,得出AB=BC=4,∠B=90°,得出AC=42,当P 与D 重合时,PC=ED=PA ,即G 与A 重合,则EG 的中点为D ,即F 与D 重合,当点P 从D 点运动到A 点时,则点F 运动的路径为DF ,由D 是AE 的中点,F 是EG 的中点,得出DF 是△EAG 的中位线,证得∠FDA=45°,则F 为正方形ABCD 的对角线的交点,CF ⊥DF ,此时CF 最小,此时CF=12AG=22. 【详解】解:连接FD∵正方形ABCD 的边长为4,∴AB=BC=4,∠B=90°,∴AC=,当P 与D 重合时,PC=ED=PA ,即G 与A 重合,∴EG 的中点为D ,即F 与D 重合,当点P 从D 点运动到A 点时,则点F 运动的轨迹为DF ,∵D 是AE 的中点,F 是EG 的中点,∴DF 是△EAG 的中位线,∴DF ∥AG ,∵∠CAG=90°,∠CAB=45°,∴∠BAG=45°,∴∠EAG=135°,∴∠EDF=135°,∴∠FDA=45°,∴F 为正方形ABCD 的对角线的交点,CF ⊥DF ,此时CF 最小,此时CF=12AG=故答案为:【点睛】本题主要考查了正方形的性质,掌握正方形的性质是解题的关键.20.①②④.【分析】利用折叠性质得∠CBE=∠FBE ,∠ABG=∠FBG ,BF=BC=10,BH=BA=6,AG=GH ,则可得到∠EBG=12∠ABC ,于是可对①进行判断;在Rt △ABF 中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x ,则GH=x ,GF=8-x ,HF=BF-BH=4,利用勾股定理得到x 2+42=(8-x )2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF ∽△DFE ,利用相似比得到43DE AF DF AB ==,而623AB AG ==,所以AB DE AG DF≠,所以△DEF 与△ABG 不相似,于是可对③进行判断.【详解】解:∵△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,∴∠CBE =∠FBE ,∠ABG =∠FBG ,BF =BC =10,BH =BA =6,AG =GH ,∴∠EBG =∠EBF+∠FBG =12∠CBF+12∠ABF =12∠ABC =45°,所以①正确;在Rt △ABF 中,AF =8,∴DF =AD ﹣AF =10﹣8=2,设AG =x ,则GH =x ,GF =8﹣x ,HF =BF ﹣BH =10﹣6=4,在Rt △GFH 中,∵GH 2+HF 2=GF 2,∴x 2+42=(8﹣x )2,解得x =3,∴GF =5,∴AG+DF =FG =5,所以④正确;∵△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,∴∠BFE =∠C =90°,∴∠EFD +∠AFB =90°,而∠AFB +∠ABF =90°,∴∠ABF =∠EFD ,∴△ABF ∽△DFE , ∴AB DF =AF DE , ∴DE DF =AF AB =86=43, 而AB AG =63=2, ∴AB AG ≠DE DF , ∴△DEF 与△ABG 不相似;所以③错误.∵S △ABG =12×6×3=9,S △GHF =12×3×4=6, ∴S △ABG =32S △FGH ,所以②正确. 故答案是:①②④.【点睛】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.三、解答题21.(1)见解析(2)10【分析】(1)先证明AFE DBE ∆≅∆,得到AF DB =,AF CD =,再证明四边形ADCF 是平行四边形,再根据“直角三角形斜边上的中线等于斜边的一半”得到1 2AD DC BC==,即可证明四边形ADCF是菱形。

八年级初二数学第二学期平行四边形单元达标测试提优卷

八年级初二数学第二学期平行四边形单元达标测试提优卷

八年级初二数学第二学期平行四边形单元达标测试提优卷一、选择题1.如图,正方形ABCD 的边长为定值,E 是边CD 上的动点(不与点C ,D 重合),AE 交对角线BD 于点F , FG AE ⊥交BC 于点G ,GH BD ⊥于点H ,连结AG 交BD 于点N .现给出下列命题:① AF FG =;②DF DE =;③FH 的长度为定值;④GE BG DE =+;⑤222BN DF NF +=.真命题有( )A .2个B .3个C .4个D .5个2.在正方形 ABCD 中, P 为 AB 的中点,BE PD ⊥的延长线于点 E ,连接 AE 、 BE ,FA AE ⊥ 交 DP 于点 F ,连接 BF 、FC ,下列结论:① ABE ADF ≅ ;② FB = AB ;③ CF PD ⊥ ;④ FC = EF . 其中正确的是( )A .①②④B .①③④C .①②③D .①②③④3.如图,矩形ABCD 中,AB =23,BC =6,P 为矩形内一点,连接PA ,PB ,PC ,则PA +PB +PC 的最小值是( )A .3B .21C .3D .54.如图,在一张矩形纸片ABCD 中,AB=4,BC=8,点E ,F 分别在AD ,BC 上,将ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分∠DCH ;③线段BF 的取值范围为3≤BF ≤4;④当点H 与点A 重合时,EF=5A .①②③④B .①④C .①②④D .①③④5.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PD =2,下列结论:①EB ⊥ED ;②∠AEB =135°;③S 正方形ABCD =5+22;④PB =2;其中正确结论的序号是( )A .①③④B .②③④C .①②④D .①②③6.如图,ABCD 中,点E 是AD 上一点,BE ⊥AB ,△ABE 沿BE 对折得到△BEG ,过点D 作DF ∥EG 交BC 于点F ,△DFC 沿DF 对折,点C 恰好与点G 重合,则AB AD的值为( )A .12B .33C .22D .327.如图,在菱形ABCD 中,AB=AC=1,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,则下列结论:①△ABF ≌△CAE ;②∠FHC=∠B ;③△ADO ≌△ACH ;④=3ABCD S 菱形;其中正确的结论个数是( )A .1个B .2个C .3个D .4个8.已知菱形ABCD 的面积为83,对角线AC 的长为43,∠BCD=60°,M 为BC 的中点,若P 为对角线AC 上一动点,则PB+PM 的最小值为( )A .3B .2C .23D .49.如图,正方形ABCD 的边长为2,Q 为CD 边上(异于C ,D ) 的一个动点,AQ 交BD 于点M .过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P ,连接NQ ,下面结论:①AM=MN ;②MP=2;③△CNQ 的周长为3;④BD+2BP=2BM ,其中一定成立的是( )A .①②③④B .①②③C .①②④D .①④10.如图,一个四边形花坛ABCD ,被两条线段MN , EF 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1、S 2、S 3、S 4,若MN ∥AB ∥DC ,EF ∥DA ∥CB ,则有( )A .S 1= S 4B .S 1 + S 4 = S 2 + S 3C .S 1 + S 3 = S 2 + S 4D .S 1·S 4 = S 2·S 3二、填空题11.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62,那么BC=______.12.如图,动点E F 、分别在正方形ABCD 的边AD BC 、上,AE CF =,过点C 作CG EF ⊥,垂足为G ,连接BG ,若4AB =,则线段BG 长的最小值为_________.13.如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为_____.14.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.15.如图,有一张矩形纸条ABCD ,AB =10cm ,BC =3cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为_____cm .16.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.OABC 的顶点A ,C 分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.17.如图,在△ABC 中,AB =AC ,E ,F 分别是BC ,AC 的中点,以AC 为斜边作Rt △ADC ,若∠CAD =∠BAC =45°,则下列结论:①CD ∥EF ;②EF =DF ;③DE 平分∠CDF ;④∠DEC =30°;⑤AB 2CD ;其中正确的是_____(填序号)18.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.19.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.三、解答题21.如图,在四边形ABCD 中,AB ∥DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AE =,3OE =,求线段CE 的长.22.如图1,在正方形ABCD 中,点M 、N 分别在边BC 、CD 上,AM 、AN 分别交BD 于点P 、Q ,连接CQ 、MQ .且CQ MQ =.(1)求证:QAB QMC ∠=∠(2)求证:90AQM ∠=︒(3)如图2,连接MN ,当2BM =,3CN =,求AMN 的面积图1 图223.(1)如图①,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求EAF ∠的度数;(2)如图②,在Rt ABD ∆中,90,BAD AD AB ︒∠==,点M ,N 是BD 边上的任意两点,且45MAN ︒∠=,将ABM ∆绕点A 逆时针旋转90度至ADH ∆位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正方形ABCD 的边长为12,GF=6,BM= 32,求EG ,MN 的长.24.如图,在Rt ABC ∆中,90,40,60B AC cm A ∠=︒=∠=︒,点D 从点C 出发沿CA 方向以4/cm 秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm 秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个地点也随之停止运动.设点,D E 运动的时间是t 秒(010t <≤).过点D 作DF BC ⊥于点F ,连接,DE EF .(1)试问四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(2)当t 为何值时,90FDE ∠=︒?请说明理由.25.如图,在正方形ABCD 中,点E 是BC 边所在直线上一动点(不与点B 、C 重合),过点B 作BF ⊥DE ,交射线DE 于点F ,连接CF .(1)如图,当点E 在线段BC 上时,∠BDF=α.①按要求补全图形;②∠EBF =______________(用含α的式子表示);③判断线段 BF ,CF ,DF 之间的数量关系,并证明.(2)当点E 在直线BC 上时,直接写出线段BF ,CF ,DF 之间的数量关系,不需证明.26.在平面直角坐标中,四边形OCNM 为矩形,如图1,M 点坐标为(m ,0),C 点坐标为(0,n ),已知m ,n 满足550n m -+-=.(1)求m ,n 的值;(2)①如图1,P ,Q 分别为OM ,MN 上一点,若∠PCQ =45°,求证:PQ =OP+NQ ; ②如图2,S ,G ,R ,H 分别为OC ,OM ,MN ,NC 上一点,SR ,HG 交于点D .若∠SDG =135°,55HG =,则RS =______; (3)如图3,在矩形OABC 中,OA =5,OC =3,点F 在边BC 上且OF =OA ,连接AF ,动点P 在线段OF 是(动点P 与O ,F 不重合),动点Q 在线段OA 的延长线上,且AQ =FP ,连接PQ 交AF 于点N ,作PM ⊥AF 于M .试问:当P ,Q 在移动过程中,线段MN 的长度是否发生变化?若不变求出线段MN 的长度;若变化,请说明理由.27.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 以每分钟10个单位的速度运动,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值.(3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由.28.已知:如图,在ABC 中,直线PQ 垂直平分AC ,与边AB 交于点E ,连接CE ,过点C 作//CF BA 交PQ 于点F ,连接AF .(1)求证:四边形AECF 是菱形;(2)若8AC =,AE=5,则求菱形AECF 的面积.29.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.30.如图,矩形ABCD 中,点O 是对角线BD 的中点,过点O 的直线分别交AB ,CD 于点E ,F .(1)求证:四边形DEBF 是平行四边形;(2)若四边形DEBF 是菱形,则需要增加一个条件是_________________,试说明理由; (3)在(2)的条件下,若AB=8,AD=6,求EF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题意,连接CF ,由正方形的性质,可以得到△ABF ≌△CBF ,则AF=CF ,∠BAF=∠BCF ,由∠BAF=∠FGC=∠BCF ,得到AF=CF=FG ,故①正确;连接AC ,与BD 相交于点O ,由正方形性质和等腰直角三角形性质,证明△AOF ≌△FHG ,即可得到EH=AO ,则③正确;把△ADE 顺时针旋转90°,得到△ABM ,则证明△MAG ≌△EAG ,得到MG=EG ,即可得到EG=DE+BG ,故④正确;②无法证明成立,即可得到答案.【详解】解:连接CF ,在正方形ABCD 中,AB=BC ,∠ABF=∠CBF=45°, 在△ABF 和△CBF 中,45AB BC ABF CBF BF BF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△CBF (SAS ),∴AF=CF ,∠BAF=∠BCF ,∵FG ⊥AE ,∴在四边形ABGF 中,∠BAF+∠BGF=360°-90°-90°=180°, 又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF ,∴∠CGF=∠BCF∴CF=FG ,∴AF=FG ;①正确;连接AC 交BD 于O .∵四边形ABCD 是正方形,HG ⊥BD ,∴∠AOF=∠FHG=90°,∵∠OAF+∠AFO=90°,∠GFH+∠AFO=90°, ∴∠OAF=∠GFH ,∵FA=FG ,∴△AOF ≌△FHG ,∴FH=OA=定值,③正确;如图,把△ADE 顺时针旋转90°,得到△ABM ,∴AM=AE ,BM=DE ,∠BAM=∠DAE ,∵AF=FG ,AF ⊥FG ,∴△AFG 是等腰直角三角形,∴∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△AMG 和△AEG 中,45AM AE EAG MAG AG AG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AMG ≌△AEG ,∴MG=EG ,∵MG=MB+BG=DE+BG ,∴GE= DE+BG ,故④正确;如图,△ADE 顺时针旋转90°,得到△ABM ,记F 的对应点为P ,连接BP 、PN , 则有BP=DF ,∠ABP=∠ADB=45°,∵∠ABD=45°,∴∠PBN=90°,∴BP 2+BN 2=PN 2,由上可知△AFG 是等腰直角三角形,∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△ANP 和△ANF 中,45AP AF EAG MAG AN AN =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ANP ≌△ANF ,∴PN=NF ,∴BP 2+BN 2=NF 2,即DF 2+BN 2=NF 2,故⑤正确;根据题意,无法证明②正确,∴真命题有四个,故选C.【点睛】本题考查了正方形的性质,全等三角形的判定与性质等知识,解题的关键是作辅助线构造出等腰三角形和全等三角形.2.D解析:D【解析】【分析】根据已知和正方形的性质推出∠EAB=∠DAF ,∠EBA=∠ADP ,AB=AD ,证△ABE ≌△ADF 即可;取EF 的中点M ,连接AM ,推出AM=MF=EM=DF ,证∠AMB=∠FMB ,BM=BM ,AM=MF ,推出△ABM ≌△FBM 即可;求出∠FDC=∠EBF ,推出△BEF ≌△DFC 即可.【详解】解:∵正方形ABCD ,BE ⊥ED ,EA ⊥FA ,∴AB=AD=CD=BC ,∠BAD=∠EAF=90°=∠BEF ,∵∠APD=∠EPB ,∴∠EAB=∠DAF ,∠EBA=∠ADP ,∵AB=AD ,∴△ABE ≌△ADF ,∴①正确;∴AE=AF ,BE=DF ,∴∠AEF=∠AFE=45°,取EF 的中点M ,连接AM ,∴AM ⊥EF ,AM=EM=FM ,∴BE ∥AM ,∵AP=BP ,∴AM=BE=DF ,∴∠EMB=∠EBM=45°,∴∠AMB=90°+45°=135°=∠FMB ,∵BM=BM ,AM=MF ,∴△ABM ≌△FBM ,∴AB=BF,∴②正确;∴∠BAM=∠BFM,∵∠BEF=90°,AM⊥EF,∴∠BAM+∠APM=90°,∠EBF+∠EFB=90°,∴∠APF=∠EBF,∵AB∥CD,∴∠APD=∠FDC,∴∠EBF=∠FDC,∵BE=DF,BF=CD,∴△BEF≌△DFC,∴CF=EF,∠DFC=∠FEB=90°,∴③正确;④正确;故选D.【点睛】本题主要考查对正方形的性质,等腰直角三角形,直角三角形斜边上的中线性质,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.3.B解析:B【解析】【分析】将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.【详解】解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB=ABBC3,∴∠ACB=30°,AC=2AB=43∵∠BCE=60°,∴∠ACE=90°,∴22(43)621故选B.【点睛】本题考查轴对称—最短问题、矩形的性质、旋转变换等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.4.D解析:D【分析】①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明即可判断出①正确;②根据菱形的对角线平分一组对角可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,即可判断出②错误;③点H与点A重合时,设BF=x,表示出AF=FC=8-x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,即可判断出③正确;④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,即可判断出④正确.【详解】①∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,故①正确;②∵四边形CFHE是菱形,∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,故②错误;③点H与点A重合时,设BF=x,则AF=FC=8-x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8-x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,故③正确;④如图,过点F作FM⊥AD于M,则ME=(8-3)-3=2,由勾股定理得,2225+=MF ME综上所述,结论正确的有①③④,故选:D.【点睛】本题考查了菱形的判定和性质,勾股定理,掌握知识点是解题关键.5.D解析:D【分析】先证明△APD≌△AEB得出BE=PD,∠APD=∠AEB,由等腰直角三角形的性质得出∠APE =∠AEP=45︒,得出∠APD=∠AEB=135︒,②正确;得出∠PEB=∠AEB﹣∠AEP=90︒,EB⊥ED,①正确;作BF⊥AE交AE延长线于点F,证出EF=BF2,得出AF=AE+EF=12,由勾股定理得出AB22+522AF BF+S正方形ABCD=AB2=5+2,③正确;EP2AE2,由勾股定理得出BP22+6,④错BE EP误;即可得出结论.【详解】解:∵∠EAB+∠BAP=90︒,∠PAD+∠BAP=90︒,∴∠EAB =∠PAD ,在△APD 和△AEB 中,AP AE PAD EAB AD AB =⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△AEB (SAS ),∴BE =PD ,∠APD =∠AEB ,∵AE =AP ,∠EAP =90︒,∴∠APE =∠AEP =45︒,∴∠APD =135︒,∴∠AEB =135︒,②正确;∴∠PEB =∠AEB ﹣∠AEP =135︒﹣45︒=90︒,∴EB ⊥ED ,①正确;作BF ⊥AE 交AE 延长线于点F ,如图所示:∵∠AEB =135︒,∴∠EFB =45︒,∴EF =BF ,∵BE =PD =2,∴EF =BF =2, ∴AF =AE +EF =1+2,AB =22AF BF +=22(12)(2)++=522+,∴S 正方形ABCD =AB 2=(522+)2=5+22,③正确;EP =2AE =2,BP =22BE EP +=222(2)+=6,④错误;故选:D .【点睛】本题考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.6.B解析:B【分析】根据平行线的性质和轴对称的性质,利用SAS 证明BEG DEG ≅,进而得到ADG 90∠=︒,设AB=x ,则AG=2x ,CD=x ,,即可求解.【详解】解:在ABCD 中∵DF ∥EG∴∠DEG=∠DFB∵△ABE 沿BE 对折得到△BEG∴∠DEG =2∠A∵∠DFB =∠C +∠CDF∠A=∠C∴∠CDF=∠A∵△DFC 沿DF 对折∴∠BGE=∠DGEBG=DGEG=EG∴BEG DEG ≅∵BE⊥AB∴ADG 90∠=︒设AB=x ,则AG=2x ,CD=x ,=∴3AB AD == 故选:B .【点睛】此题主要考查平行线的性质、轴对称的性质、全等三角形的判断和性质、勾股定理,熟练运用平行线的性质和轴对称的性质证明BEG DEG ≅是解题关键.7.B解析:B【分析】根据菱形的性质,利用SAS 证明即可判断①;根据△ABF ≌△CAE 得到∠BAF=∠ACE ,再利用外角的性质以及菱形内角度数即可判断②;通过说明∠CAH≠∠DAO ,判断△ADO ≌△ACH 不成立,可判断③;再利用菱形边长即可求出菱形面积,可判断④.【详解】解:∵在菱形ABCD 中,AB=AC=1,∴△ABC 为等边三角形,∴∠B=∠CAE=60°,又∵AE=BF ,∴△ABF ≌△CAE (SAS ),故①正确;∴∠BAF=∠ACE ,∴∠FHC=∠ACE+∠HAC=∠BAF+∠HAC=60°,故②正确;∵∠B=∠CAE=60°,则在△ADO 和△ACH 中,∠OAD=60°=∠CAB ,∴∠CAH≠60°,即∠CAH≠∠DAO ,∴△ADO ≌△ACH 不成立,故③错误;∵AB=AC=1,过点A 作AG ⊥BC ,垂足为G ,∴∠BAG=30°,BG=12, ∴AG=22AB BG -=32, ∴菱形ABCD 的面积为:BC AG ⨯=312⨯=32,故④错误; 故正确的结论有2个,故选B.【点睛】本题考查了全等三角形判定和性质,菱形的性质和面积,等边三角形的判定和性质,外角的性质,解题的关键是利用菱形的性质证明全等.8.C解析:C【分析】作点B 关于对角线AC 的对称点,该对称点与D 重合,连接DM ,则PB 与PM 之和的最小值为DM 的长;由菱形的面积可求出BD=4,由题意可证△BCD 是等边三角形,由等边三角形的性质可得DM ⊥BC ,CM=BM=2,由勾股定理可求DM=23.【详解】解:作点B 关于对角线AC 的对称点,该对称点与D 重合,连接DM ,则PB 与PM 之和的最小值为DM 的长;∵菱形ABCD的面积为83,对角线AC长为43,∴BD=4,∵BC=CD,∠BCD=60°,∴△BCD是等边三角形,∴BD=BC=4,∵M是BC的中点,∴DM⊥BC,CM=BM=2,在Rt△CDM中,CM=2,CD=4,∴DM=2216423-,CD CM=-=故选:C.【点睛】本题考查了轴对称-最短路线问题,菱形的性质,等边三角形的性质,直角三角形勾股定理;掌握利用轴对称求最短距离,将PB与PM之和的最小值转化为线段DM的长是解题的关键.9.C解析:C【分析】连接AC交BD于O,作ME⊥AB于E,MF⊥BC于F,延长CB到H,使得BH=DQ.①正确.只要证明△AME≌△NMF即可;②正确.只要证明△AOM≌△MPN即可;③错误.只要证明∠ADQ≌△ABH,由此推出△ANQ≌△ANH即可;④正确.只要证明△AME≌△NMF,证得四边形EMFB是正方形即可解决问题;【详解】连接AC交BD于O,作ME⊥AB于E,MF⊥BC于F,延长CB到H,使得BH=DQ.∵四边形ABCD是正方形,∴AC⊥BD,222,∠DBA=∠DBC=45°,∴ME=MF,∵∠MEB=∠MFB=∠EBF=90°,∴四边形EMFB是矩形,∵ME=MF,∴四边形EMFB是正方形,∴∠EMF=∠AMN=90°,∴∠AME=∠NMF,∵∠AEM=∠MFN=90°,∴△AME≌△NMF(ASA),∴AM=MN,故①正确;∵∠OAM+∠AMO=90°,∠AMO+∠NMP=90°,∴∠AMO=∠MNP,∵∠AOM=∠NPM=90°,∴△AOM≌△MPN(AAS),∴,故②正确;∵DQ=BH,AD=AB,∠ADQ=∠ABH=90°,∴∠ADQ≌△ABH(SAS),∴AQ=AH,∠QAD=∠BAH,∴∠BAH+∠BAQ=∠DAQ+∠BAQ=90°,∵AM=MN,∠AMN=90°,∴∠MAN=45°,∴∠NAQ=∠NAH=45°,∴△ANQ≌△ANH(SAS),∴NQ=NH=BN+BH=BN+DQ,∴△CNQ的周长=CN+CQ+BN+DQ=4,故③错误;∵BD+2BP=2BO+2BP=2AO+2BP=2PM+2BP,∴BD+2BP=2BM,故④正确.故选:C.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.10.D解析:D【分析】由于在四边形中,MN∥AB∥DC,EF∥DA∥CB,因此MN、EF把一个平行四边形分割成四个小平行四边形.可设MN到DC的距离为h1,MN到AB的距离为h2,根据AB=CD,DE=AF,EC=FB及平行四边形的面积公式即可得出答案.【详解】解:∵MN∥AB∥DC,EF∥DA∥CB,∴四边形ABCD,四边形ADEF,四边形BCEF,红、紫、黄、白四边形都为平行四边形,∴AB=CD,DE=AF,EC=BF.设MN到DC的距离为h1,MN到AB的距离为h2,则S1=DE•h1,S2=AF•h2,S3=EC•h1,S4=FB•h2,因为DE,h1,FB,h2的关系不确定,所以S1与S4的关系无法确定,故A错误;S1+S4=DE•h1+FB•h2=AF•h1+FB•h2,S2+S3=AF•h2+EC•h1=AF•h2+FB•h1,故B错误;S1+S3=CD•h1,S2+S4=AB•h2,又AB=CD,而h1不一定与h2相等,故C错误;S1·S4=DE•h1•FB•h2=AF•h1•FB•h2,S2·S3=AF•h2•EC•h1=AF•h2•FB•h1,所以S1·S4=S2·S3,故D正确;故选:D.【点睛】本题考查平行四边形的判定与性质,注意掌握平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=a•h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.二、填空题11.8【分析】通过作辅助线使得△CAO≌△GBO,证明△COG为等腰直角三角形,利用勾股定理求出CG 后,即可求出BC的长.【详解】如图,延长CB到点G,使BG=AC.∵根据题意,四边形ABED为正方形,∴∠4=∠5=45°,∠EBA=90°,∴∠1+∠2=90°又∵三角形BCA为直角三角形,AB为斜边,∴∠2+∠3=90°∴∠1=∠3∴∠1+∠5=∠3+∠4,故∠CAO=∠GBO,在△CAO和△GBO中,CA GB CAO GBO AO BO =⎧⎪∠=∠⎨⎪=⎩故△CAO ≌△GBO ,∴CO =GO=62,∠7=∠6,∵∠7+∠8=90°,∴∠6+∠8=90°,∴三角形COG 为等腰直角三角形,∴CG=()()2222=6262=12CO GO ++, ∵CG=CB+BG ,∴CB=CG -BG=12-4=8,故答案为8.【点睛】本题主要考查正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,根据题意建立正确的辅助线以及掌握正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质是解答本题的关键. 12.102-【分析】连结AC ,取OC 中点M ,连结 MB ,MG ,则MB ,MG 为定长,利用两点之间线段最短解决问题即可.【详解】连接AC ,交EF 于O ,∵AD ∥BC ,∴∠EAO =∠FCO ,∠AEO =∠CFO ,∵AE =CF ,∴△AEO ≌△CFO (ASA ),∴OA =OC ,∴O 是正方形的中心,∵AB =BC =4,∴AC =2OC =2,取OC 中点M ,连结 MB ,MG ,过点M 作MH ⊥BC 于H ,∵MC =12OC , ∴MH =CH =1,∴BH =4−1=3,由勾股定理可得MB在Rt △GOC 中,M 是OC 的中点,则MG =12OC∵BG≥BM−MG ,当B ,M ,G 三点共线时,BG ,.【点睛】本题主要考查了正方形的性质,根据正方形的性质得出当E ,F 运动到AD ,BC 的中点时,MG 最小是解决本题的关键.13.4【分析】根据三个角都是直角的四边形是矩形,得四边形AEPF 是矩形,根据矩形的对角线相等,得EF =AP ,则EF 的最小值即为AP 的最小值,根据垂线段最短,知:AP 的最小值即等于直角三角形ABC 斜边上的高.【详解】解:连接AP ,∵在△ABC 中,AB =3,AC =4,BC =5,∴AB 2+AC 2=BC 2,即∠BAC =90°.又∵PE ⊥AB 于E ,PF ⊥AC 于F ,∴四边形AEPF 是矩形,∴EF =AP ,∵AP 的最小值即为直角三角形ABC 斜边上的高,设斜边上的高为h ,则S △ABC =1122BC h AB AC ⋅=⋅ ∴1153422h ⨯⋅=⨯⨯ ∴h=2.4,∴EF 的最小值为2.4,故答案为:2.4.【点睛】本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.14.8或12【分析】根据平行四边形的性质得到BC=AD=5,∠BAE=∠DEA,∠ABF=∠BFC,根据角平分线的性质得到DE=AD=5,CF=BC=5,即可求出答案.【详解】在ABCD中,AB∥CD,BC=AD=5,∴∠BAE=∠DEA,∠ABF=∠BFC,∠的平分线交CD于点E,∵BAD∴∠BAE=∠DAE,∴∠DAE=∠DEA,∴DE=AD=5,同理:CF=BC=5,∴AB=CD=DE+CF-EF=5+5-2=8或AB=DE+CF+EF=5+5+2=12,故答案为:8或12.【点睛】此题考查平行四边形的性质,角平分线的性质,等腰三角形的等角对等边的判定,解题中注意分类思想的运用,避免漏解.15101【分析】探究点E的运动轨迹,寻找特殊位置解决问题即可.【详解】如图1中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt△ADE中,则有x2=32+(9﹣x)2,解得x=5,∴DE=10﹣1-5=4(cm),如图2中,当点M 运动到MB ′⊥AB 时,DE ′的值最大,DE ′=10﹣1﹣3=6(cm ),如图3中,当点M 运动到点B ′落在CD 时, 22221310NB C N C B ''''=+=+=DB ′(即DE ″)=10﹣1﹣10=(9﹣10)(cm ),∴点E 的运动轨迹E →E ′→E ″,运动路径=EE ′+E ′B ′=6﹣4+6﹣(910101)(cm ).101.【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.16.5【分析】过点B 作BD ⊥l 2,交直线l 2于点D ,过点B 作BE ⊥x 轴,交x 轴于点E .则22OE BE +OABC 是平行四边形,所以OA=BC ,又由平行四边形的性质可推得∠OAF=∠BCD ,则可证明△OAF ≌△BCD ,所以OE 的长固定不变,当BE 最小时,OB 取得最小值,从而可求.【详解】解:过点B 作BD ⊥l 2,交直线x=4于点D ,过点B 作BE ⊥x 轴,交x 轴于点E ,直线l 1与OC 交于点M ,与x 轴交于点F ,直线l 2与AB 交于点N .∵四边形OABC 是平行四边形,∴∠OAB=∠BCO ,OC ∥AB ,OA=BC ,∵直线l 1与直线l 2均垂直于x 轴,∴AM ∥CN ,∴四边形ANCM 是平行四边形,∴∠MAN=∠NCM ,∴∠OAF=∠BCD ,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC ,在△OAF 和△BCD 中,FOA DBC OA BCOAF BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAF ≌△BCD (ASA ),∴BD=OF=1,∴OE=4+1=5,∴OB=22OE BE +.由于OE 的长不变,所以当BE 最小时(即B 点在x 轴上),OB 取得最小值,最小值为OB=OE=5.故答案为:5.【点睛】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质,以及勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.17.①②③⑤【分析】根据三角形中位线定理得到EF=12AB,EF∥AB,根据直角三角形的性质得到DF=12AC,根据三角形内角和定理、勾股定理计算即可判断.【详解】∵E,F分别是BC,AC的中点,∴EF=12AB,EF∥AB,∵∠ADC=90°,∠CAD=45°,∴∠ACD=45°,∴∠BAC=∠ACD,∴AB∥CD,∴EF∥CD,故①正确;∵∠ADC=90°,F是AC的中点,∴DF=CF=12 AC,∵AB=AC,EF=12 AB,∴EF=DF,故②正确;∵∠CAD=∠ACD=45°,点F是AC中点,∴△ACD是等腰直角三角形,DF⊥AC,∠FDC=45°,∴∠DFC=90°,∵EF//AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°,∴∠EFD=∠EFC+∠DFC=135°,∴∠FED=∠FDE=22.5°,∵∠FDC=45°,∴∠CDE=∠FDC-∠FDE=22.5°,∴∠FDE=∠CDE,∴DE平分∠FDC,故③正确;∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°,∴∠DEC=∠FEC﹣∠FED=45°,故④错误;∵△ACD是等腰直角三角形,∴AC2=2CD2,∴CD,∵AB=AC,∴AB CD,故⑤正确;故答案为:①②③⑤.【点睛】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.18.【分析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后确定CM的范围.【详解】解:作AB的中点M,连接EM、CM.在Rt△ABC中,AB=22AC BC+=2286+=10,∵M是直角△ABC斜边AB上的中点,∴CM=12AB=5.∵E是BD的中点,M是AB的中点,∴ME=12AD=2.∴5﹣2≤CE≤5+2,即3≤CE≤7.∴最大值为7,故答案为:7.【点睛】本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.192【解析】【分析】根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG即可.【详解】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=3,EB=AB-AD=1,∵四边形EFCB为矩形,∴FC=BE=1,∵AB∥FC,∴∠GFC=∠DAF=45°,∴GC=FC=1,∴22112FG GC FC=+=+=,故答案为:2.【点睛】本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.20.2【分析】分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN=12CD=2,∴点G移动路径的长是2,故答案为:2.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G 的运动轨迹为△HCD 的中位线MN .三、解答题21.(1)见解析;(2)11【分析】(1)根据题意先证明四边形ABCD 是平行四边形,再由AB=AD 可得平行四边形ABCD 是菱形;(2)根据菱形的性质得出OA 的长,根据直角三角形斜边中线定理得出OE=12AC ,在Rt ACE ∆应用勾股定理即可解答.【详解】(1)证明:∵AB CD ∥,∴OAB DCA ∠=∠,∵AC 为DAB ∠的平分线,∴OAB DAC ∠=∠,∴DCA DAC ∠=∠,∴CD AD AB ==,∵AB CD ∥,∴四边形ABCD 是平行四边形,∵AD AB =,∴ABCD 是菱形;(2)∵四边形ABCD 是菱形∴AO CO =∵CE AB ⊥∴90AEC ∠=︒∴26AC OE ==在Rt ACE ∆中,2211CE AC AE -故答案为(211.【点睛】本题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,熟练掌握菱形的判定与性质是解题的关键.22.(1)见解析(2)见解析(3)15【分析】(1)根据四边形ABCD 是正方形,得到∠QBA =∠QBC ,进而可得△QBA ≌ △QBC ,∠QAB =∠QCB ,再根据CQ =MQ ,得到∠QCB =∠QMC ,即可求证;(2)根据∠QAB =∠QMC ,∠QMC +∠QMB =180°,得到∠QAB +∠QMB =180°,在四边形QABM 中,∠QAB +∠QMB +∠ABM +∠AQM =360°可得∠ABM +∠AQM =180°,再根据∠ABM =90°即可求解;(3)设正方形ABCD 的边长为a ,延长ND 至点H ,使DH =BM =2,证得△ADH ≌△ABM ,得到∠DAH =∠BAM ,且AH =AM ,由(2)知,△QAM 是等腰直角三角形,易得∠NAM =∠NAH ,进而得到△NAM ≌ △NAH ,在Rt △MNC 中,利用勾股定理得到6a =,即可求解.【详解】解:(1)∵四边形ABCD 是正方形∴∠QBA =∠QBC在△QBA 和△QBC 中BA BC QBA QBC QB QB =⎧⎪∠=∠⎨⎪=⎩∴△QBA ≌ △QBC (SAS )∴∠QAB =∠QCB又∵CQ =MQ∴∠QCB =∠QMC∴∠QAB =∠QMC (2)∵∠QAB =∠QMC又∵∠QMC +∠QMB =180°∴∠QAB +∠QMB =180°在四边形QABM 中∠QAB +∠QMB +∠ABM +∠AQM =360°∴∠ABM +∠AQM =180°而∠ABM =90°∴∠AQM =90°(3)设正方形ABCD 的边长为a ,则2MC a =-,3ND a =-延长ND 至点H ,使DH =BM =2易证△ADH ≌ △ABM∴∠DAH =∠BAM ,且AH =AM由(2)知,△QAM 是等腰直角三角形∴∠QAM =45°∴∠DAN +∠BAM =45°∴∠DAN +∠DAH =45°即∠NAH =45°∴∠NAM =∠NAH∴△NAM ≌ △NAH (SAS )∴NM =NH =()321a a -+=-在Rt △MNC 中,222MN MC NC =+∴()()222123a a -=-+∴6a = ∴11651522AMN AHN S S AD NH ==⋅=⨯⨯=【点睛】此题主要考查正方形的性质、全等三角形的判断和性质、四边形的内角和、等腰直角三角形的性质及勾股定理,灵活运用性质是解题关键. 23.(1)见解析;(2)MN 2=ND 2+DH 2,理由见解析;(3)EG=4,MN=52【分析】(1)根据高AG 与正方形的边长相等,证明三角形全等,进而证明角相等,从而求出解. (2)用三角形全等和正方形的对角线平分每一组对角的知识可证明结论.(3)设EG=BE=x ,根据正方形的边长得出CE ,CF ,EF ,在Rt △CEF 中利用勾股定理得到方程,求出EG 的长,设MN=a ,根据MN 2=ND 2+BM 2解出a 值即可.【详解】解:(1)在Rt △ABE 和Rt △AGE 中,AB=AG ,AE=AE ,∴Rt △ABE ≌Rt △AGE (HL ).∴∠BAE=∠GAE .同理,∠GAF=∠DAF .∴∠EAF =12∠BAD =45°;(2)MN 2=ND 2+DH 2.∵∠BAM=∠DAH ,∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN ,又∵AM=AH ,AN=AN ,∴△AMN ≌△AHN (SAS ).∴MN=HN ,∵∠BAD=90°,AB=AD ,∴∠ABD=∠ADB=45°,∴∠HDN=∠HDA+∠ADB=90°,∴NH 2=ND 2+DH 2,∴MN 2=ND 2+DH 2;(3)∵正方形ABCD 的边长为12,∴AB=AG=12,由(1)知,BE=EG ,DF=FG .设EG=BE=x ,则CE=12-x ,∵GF=6=DF ,∴CF=12-6=6,EF=EG+GF=x+6,在Rt △CEF 中,∵CE 2+CF 2=EF 2,∴(12-x )2+62=(x+6)2,解得x=4,即EG=BE=4,在Rt △ABD 中, 22AB AD +2,在(2)中,MN 2=ND 2+DH 2,BM=DH ,∴MN 2=ND 2+BM 2.设MN=a ,则a 2=()(2212222a+, 即a 2=()(22232a +, ∴a=52MN =52【点睛】本题考查正方形的性质,四边相等,对角线平分每一组对角,以及全等三角形的判定和性质,勾股定理的知识点等.24.(1)四边形AEFD 能够成为菱形,理由见解析;(2)5t =,理由见解析.【分析】(1)能;首先证明四边形AEFD 为平行四边形,当AE =AD 时,四边形AEFD 为菱形,即40﹣4t =2t ,解方程即可解决问题;(2)当∠FDE =90°时,AEFD 为矩形,再根据线段的长度关系列方程求得.【详解】解:(1)四边形AEFD 能够成为菱形,理由如下:在DFC ∆中,90,30DFC C ∠=︒∠=︒,4DC t =,∴2DF t =,又∵2AE t =,∴AE DF =,∵,AB BC DF BC ⊥⊥,∴//AE DF ,又∵AE DF =,∴四边形AEFD 为平行四边形,如图1,当AE AD =时,四边形AEFD 为菱形,即4042t t -=,解得203t =.∴当203t =秒时,四边形AEFD 为菱形. (2)如图2,当90FDE ∠=︒时,四边形EBFD 为矩形,在Rt AED ∆中,60A ∠=︒,则30ADE ∠=︒,∴2AD AE =,即4044t t -=,解得5t =.【点睛】本题考查平行四边形的判定和性质、菱形的判定、直角三角形的判定和性质、矩形的性质等知识,解题的关键是方程思想,学会构建方程解决问题.25.(1)①详见解析;②45°-α;③2DF BF CF =+,详见解析;(2)。

平行四边形单元测试提优卷

平行四边形单元测试提优卷

平行四边形单元测试提优卷一、解答题1.在四边形ABCD 中,AD ∥BC ,AB=8cm ,AD=16cm ,BC=22cm ,∠ABC=90°.点P 从点A 出发,以1cm/s 的速度向点D 运动,点Q 从点C 同时出发,以3cm/s 的速度向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.(1)当t= 时,四边形ABQP 成为矩形?(2)当t= 时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.2.如图,在矩形ABCD 中,AD nAB =,E ,F 分别在AB ,BC 上.(1)若1n =,①如图,AF DE ⊥,求证:AE BF =;②如图,点G 为点F 关于AB 的对称点,连结AG ,DE 的延长线交AG 于H ,若AH AD =,猜想AE 、BF 、AG 之间的数量关系,并证明你的猜想.(2)如图,若M 、N 分别为DC 、AD 上的点,则EM FN的最大值为_____(结果用含n 的式子表示);(3)如图,若E 为AB 的中点,ADE EDF ∠=∠.则CF BF的值为_______(结果用含n 的式子表示).3.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.4.在矩形ABCD 中,连结AC ,点E 从点B 出发,以每秒1个单位的速度沿着B A →的路径运动,运动时间为t (秒).以BE 为边在矩形ABCD 的内部作正方形BEHG .(1)如图,当ABCD 为正方形且点H 在ABC ∆的内部,连结,AH CH ,求证:AH CH =;(2)经过点E 且把矩形ABCD 面积平分的直线有______条;(3)当9,12AB BC ==时,若直线AH 将矩形ABCD 的面积分成1:3两部分,求t 的值.5.如图①,已知正方形ABCD 中,E ,F 分别是边AD ,CD 上的点(点E ,F 不与端点重合),且AE=DF ,BE ,AF 交于点P ,过点C 作CH ⊥BE 交BE 于点H .(1)求证:AF ∥CH ;(2)若AB=23 ,AE=2,试求线段PH 的长;(3)如图②,连结CP 并延长交AD 于点Q ,若点H 是BP 的中点,试求 CP PQ的值. 6.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;拓展:在图①中,若G 在AD ,且45GCE ∠︒=,则GE BE GD +=成立吗?为什么? 运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠︒==,16AB BC ==,E 是AB 上一点,且45DCE ∠︒=,4BE =,求DE 的长.7.已知正方形ABCD 与正方形(点C 、E 、F 、G 按顺时针排列),是的中点,连接,.(1)如图1,点E 在上,点在的延长线上,求证:DM =ME ,DM ⊥.ME简析: 由是的中点,AD ∥EF ,不妨延长EM 交AD 于点N ,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE 是 三角形,进而得出结论.(2)如图2, 在DC 的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C 、E 、F 、G 按顺时针排列.若点E 在直线CD 上,则DM= ;若点E 在直线BC 上,则DM= .8.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.(1)当1x =时,点M 的坐标为( , )(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围.(3)在x 轴正半轴上存在点Q ,使得QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用x 的式子表示)9.已知E ,F 分别为正方形ABCD 的边BC ,CD 上的点,AF ,DE 相交于点G ,当E ,F 分别为边BC ,CD 的中点时,有:①A F=DE ;②AF ⊥DE 成立.试探究下列问题:(1)如图1,若点E 不是边BC 的中点,F 不是边CD 的中点,且CE=DF ,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E ,F 分别在CB 的延长线和DC 的延长线上,且CE=DF ,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE 和BF ,若点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,请判断四边形MNPQ 是“矩形、菱形、正方形”中的哪一种,并证明你的结论.10.已知:如图,在ABC 中,直线PQ 垂直平分AC ,与边AB 交于点E ,连接CE ,过点C 作//CF BA 交PQ 于点F ,连接AF .(1)求证:四边形AECF是菱形;(2)若8AC ,AE=5,则求菱形AECF的面积.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)112;(2)112或4;(3)四边形PBQD不能成为菱形【分析】(1)由∠B=90°,AP∥BQ,由矩形的判定可知当AP=BQ时,四边形ABQP成为矩形;(2)由(1)可求得点P、Q与点A、B为顶点的四边形为平行四边形;然后由当PD=CQ 时,CDPQ是平行四边形,求得t的值;(3)由PD∥BQ,当PD=BQ=BP时,四边形PBQD能成为菱形,先由PD=BQ求出运动时间t的值,再代入求BP,发现BP≠PD,判断此时四边形PBQD不能成为菱形;设Q点的速度改变为vcm/s时,四边形PBQD在时刻t为菱形,根据PD=BQ=BP列出关于v、t的方程组,解方程组即可求出点Q的速度.【详解】(1)如图1,∵∠B=90°,AP∥BQ,∴当AP=BQ时,四边形ABQP成为矩形,此时有t=22﹣3t,解得t=112.∴当t=112时,四边形ABQP成为矩形;故答案为112; (2)如图1,当t=112时,四边形ABQP 成为矩形, 如图2,当PD=CQ 时,四边形CDPQ 是平行四边形,则16﹣t=3t ,解得:t=4, ∴当t=112或4时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形; 故答案为112或4; (3)四边形PBQD 不能成为菱形.理由如下:∵PD ∥BQ ,∴当PD=BQ=BP 时,四边形PBQD 能成为菱形.由PD=BQ ,得16﹣t=22﹣3t ,解得:t=3,当t=3时,PD=BQ=13,BP=22AB AP + =228t +=2283+=73≠13,∴四边形PBQD 不能成为菱形;如果Q 点的速度改变为vcm/s 时,能够使四边形PBQD 在时刻ts 为菱形,由题意,得221622168t vtt t -=-⎧⎪⎨-=+⎪⎩,解得62t v =⎧⎨=⎩. 故点Q 的速度为2cm/s 时,能够使四边形PBQD 在某一时刻为菱形.【点睛】此题属于四边形的综合题.考查了矩形的判定、菱形的判定以及勾股定理等知识.注意掌握分类讨论思想与方程思想的应用是解此题的关键.2.(1)①见解析;②AG FB AE =+,证明见解析;(2)21n ;(3)241n -【分析】(1)①证明△ADE ≌△BAF (ASA )可得结论.②结论:AG=BF+AE .如图2中,过点A 作AK ⊥HD 交BC 于点K ,证明AE=BK ,AG=GK ,即可解决问题.(2)如图3中,设AB=a ,AD=na ,求出ME 的最大值,NF 的最小值即可解决问题. (3)如图4中,延长DE 交CB 的延长线于H .设AB=2k ,则AD=BC=2kn ,求出CF ,BF 即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,n=1,∴AD=AB ,∴四边形ABCD 是正方形,∴∠DAB=∠B=90°,∵AF ⊥DE ,∴∠ADE+∠DAF=90°,∠DAF+∠BAF=90°,∴∠ADE=∠BAF ,∴△ADE ≌△BAF (ASA ),∴AE=BF ;②结论:AG=BF+AE .理由:如图2中,过点A 作AK ⊥HD 交BC 于点K ,由(1)可知AE=BK ,∵AH=AD ,AK ⊥HD ,∴∠HAK=∠DAK ,∵AD ∥BC ,∴∠DAK=∠AKG ,∴∠HAK=∠AKG ,∴AG=GK ,∵GK=GB+BK=BF+AE ,∴AG=BF+AE ;(2)如图3中,设AB=a ,AD=na ,当ME 的值最大时,NF 的值最小时,ME NF 的值最大, 当ME 是矩形ABCD 的对角线时,ME 的值最大,最大值=()222na 1a n +=+•a ,当NF ⊥AD 时,NF 的值最小,最小值=a ,∴ME NF 的最大值=21a n +⋅=21n +, 故答案为:21n +;(3)如图4中,延长DE 交CB 的延长线于H .设AB=2k ,则AD=BC=2kn ,∵AD ∥BH ,∴∠ADE=∠H ,∵AE=EB=k ,∠AED=∠BEH ,∴△AED ≌△BEH (ASA ),∴AD=BH=2kn ,∴CH=4kn ,∵∠ADE=∠EDF ,∠ADE=∠H ,∴∠H=∠EDF ,∴FD=FH ,设DF=FH=x ,在Rt △DCF 中,∵CD 2+CF 2=DF 2,∴(2k)2+(4kn-x)2=x 2, ∴2142n x k n+=⋅, ∴221441422n n CF kn k k n n +-=-⋅=⋅,241222n k BF kn k n n-=-⋅=, ∴22412412n k CF n n k BFn-⋅==-, 故答案为:241n -.【点睛】本题考查了矩形的性质,正方形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.3.(1)见解析;(2;(3)2【分析】(1)由线段垂直平分线的性质可得BE=DE ,BF=DF ,可得∠EBD=∠EDB ,∠FBD=∠FDB ,由角平分线的性质可得∠EBD=∠BDF=∠EDB=∠DBF ,可证BE ∥DF ,DE ∥BF ,可得四边形DEBF 是平行四边形,即可得结论;(2)由菱形的性质和外角性质可得∠DFC=30°,由直角三角形的性质可求CF 的长;(3)过点D 作BC 的垂线,垂足为H ,根据菱形的性质得出∠DFH=∠ABC=30°,从而得到DH 的长度,再利用底乘高得出结果.【详解】解:证明:(1)∵BD 平分∠ABC ,∴∠ABD=∠DBC ,∵EF 垂直平分BD ,∴BE=DE ,BF=DF ,∵∠EBD=∠EDB ,∠FBD=∠FDB ,∴∠EBD=∠BDF ,∠EDB=∠DBF ,∴BE ∥DF ,DE ∥BF ,∴四边形DEBF 是平行四边形,且BE=DE ,∴四边形BEDF 是菱形;(2)过点D 作DH ⊥BC 于点H ,∵四边形BEDF是菱形,∴BF=DF=DE=2,∴∠FBD=∠FDB=∠BDE=15°,∴∠DFH=30°,且DH⊥BC,∴DH=12DF=1,FH=3DH=3,∵∠C=45°,DH⊥BC,∴∠C=∠CDH=45°,∴DH=CH=1,∴FC=FH+CH=3+1;(3)过点D作BC的垂线,垂足为H,∵四边形BEDF是菱形,∠BDE=15°,∴∠DBF=∠BDF=∠ABD=15°,∴∠DFH=∠ABC=30°,∵DE=DF=2,∴DH=1,∴菱形BEDF的面积=BF×DH=2×1=2.【点睛】本题考查了菱形的判定和性质,线段垂直平分线的性质,直角三角形的性质等知识,掌握菱形的判定方法是本题的关键.4.(1)见解析;(2)1条;(3)7211t=或185t=【分析】(1)证△AEH≌△CGH(SAS),即可得出AH=CH;(2)连接BD交AC于O,作直线OE即可;(3)分两种情况:①连接AH交BC于M,证出BM=CM=12BC=6,由题意得BE=BG=EH=GH=t,则AE=9-t,GM=6-t,由三角形面积关系得出方程,解方程即可;②连接AH 交CD 于M ,交BC 的延长线于K ,证出DM=CM=12CD ,证△KCM ≌△ADM 得CK=DA=12,则BK=BC+CK=24,且BE=BG=EH=GH=t ,则AE=9-t ,GK=24-t ,由三角形面积关系得出方程,解方程即可.【详解】解:(1)四边形BEHG 是正方形, BE BG ∴=,90BEH BGH ∠=∠=︒,90AEH CGH ∠=∠=︒, 又AB BC =,AE CG ∴=,又EH HG =,()AEH CGH SAS ∴∆≅∆,AH CH ∴=.(2)解:连接BD 交AC 于O ,如图1所示:作直线OE ,则直线OE 矩形ABCD 面积平分,即经过点E 且把矩形ABCD 面积平分的直线有1条,故答案为:1;(3) 解:分两种情况:①如图2所示:连接AH 交BC 于M ,∵四边形ABCD 是矩形,∴△ABC 的面积=△ADC 的面积,∵直线AH 将矩形ABCD 的面积分成1:3两部分,∴△ABM 的面积=△ACM 的面积,∴BM=CM=12CD=6, 由题意得:BE=BG=EH=GH=t ,则AE=9-t ,GM=6-t ,∵△ABM 的面积=△AEH 的面积+正方形BEHG 的面积+△GHM 的面积,∴12×6×9=12t (9-t )+t ²+12t (6-t ),解得:185t=;②如图3所示:连接AH交CD于M,交BC的延长线于K,∵四边形ABCD是矩形,∴∠MCK=∠B=∠D=∠BCD=90°,AD=BC=12,CD=AB=9,△ABC的面积=△ADC的面积,∵直线AH将矩形ABCD的面积分成1:3两部分,∴△ADM的面积=△ACM的面积,∴DM=CM=12CD=92,在△KCM和△ADM中,∠=∠⎧⎪=⎨⎪∠=∠⎩D MCKDM CMAMD KMC,∴△KCM≌△ADM(ASA),∴CK=DA=12,∴BK=BC+CK=24,由题意得:BE=BG=EH=GH=t,则AE=9-t,GK=24-t,∵△ABK的面积=△AEH的面积+正方形BEHG的面积+△GHK的面积,∴12×24×9=12t(9-t)+t²+12t(24-t),解得:7211t=,综上所述,7211t=或185t=,故答案为:7211t=或185t=.【点睛】本题是四边形综合题目,考查了正方形的性质、矩形的性质、全等三角形的判定与性质、三角形面积以及分类讨论等知识;本题综合性强,熟练掌握正方形的性质和矩形的性质,证明三角形全等是解题的关键.5.(1)见解析;(2)33)CPPQ=4.【分析】(1)先证△ABE≌△DAF,然后通过角度转化,可得AF⊥BE,从而证平行;(2)先在Rt △ABE 中利用勾股定理求得BE 的长,在利用△ABE 的面积,求得AP 的长,最后利用PH=BP -BH 求得PH 的长;(3)设QP=a ,CP=b ,可推导出在Rt △APE 中,QE=QA=QP ,然后分别用a 、b 表示CP 和PQ 代入可求得.【详解】(1)证明:在正方形ABCD 中,AB=DA ,∠EAB=∠D=90°又∵AE=DF∴△ABE ≌△DAF(SAS)∴∠ABE=∠DAF又∵∠DAF+∠FAB=∠EAB=90°∴∠ABE+∠FAB=90°∴∠APB=90°∴AF ⊥BE又∵CH ⊥BE∴AF ∥CH(2)解:在正方形ABCD 中,∠EAB=90°,, AE= 2∴=从而由S △ABE = 12 AB·AE= 12 BE·AP 得:∴在Rt △ABP 中,= =3又容易得:△ABP ≌△BCH ∴∴(3)解:在正方形ABCD 中,AB=BC ,AD ∥BC∵CH ⊥BP ,PH=BH∴CP=BC∴∠CBP-=∠CPB而∠CPB=∠QPE ∠CBP=∠QEP∴∠QPE=∠QEP∴在Rt △APE 中 ∠QAP=∠QPA∴QE=QP=QA在四边形QABC 中,设QP=a CP=b则AB=BC=b , AQ=a ,QC=a+b∴b²+(b-a)2=(a+b)2∴b²=4ab 即b=4a即 aCP b PQ = =4. 【点睛】本题考查正方形的性质、全等的证明、勾股定理的应用和直角三角形斜边中线的性质,第(3)问的解题关键是推导得出QE=QA=QP .6.(1)见解析;(2)GE=BE+GD 成立,理由见解析;(3)685【分析】(1)利用已知条件,可证出△BCE ≌△DCF (SAS ),即可得到CE=CF ;(2)借助(1)的结论得出∠BCE =∠DCF ,再通过角的计算得出∠GCF =∠GCE ,由SAS 可得△ECG ≌△FCG ,则EG=GF ,从而得出GE=DF+GD=BE+GD ;(3)过C 作CG ⊥AD ,交AD 延长线于G ,先证四边形ABCG 是正方形(有一组邻边相等的矩形是正方形),再设DE =x ,利用(1)、(2)的结论,在Rt △AED 中利用勾股定理构造方程即可求出DE .【详解】(1)证明:如图①,在正方形ABCD 中,BC=CD ,∠B =∠ADC =90°,∴∠CDF=90°,即∠B =∠CDF =90°,在△BCE 和△DCF 中, BC DC B CDF BE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF (SAS ),∴CE=CF ;(2)解:如图①,GE=BE+GD 成立,理由如下:由(1)得△BCE ≌△DCF ,∴∠BCE=∠DCF ,∴∠ECD +∠ECB=∠ECD +∠FCD ,即∠ECF =∠BCD =90°,又∵∠GCE =45°,∴∠GCF =∠ECF −∠ECG =45°,则∠GCF=∠GCE ,在△GEC 和△GFC 中,CE CF GCE GCF GC GC =⎧⎪∠=∠⎨⎪=⎩,∴△GEC ≌△GFC (SAS ),∴EG=GF ,∴GE=DF+GD=BE+GD ;(3)解:如图②,过C 作CG ⊥AD 于G ,∴∠CGA=90°,在四边形ABCD中,AD∥BC,∠A=∠B=90°,∴四边形ABCG为矩形,又∵AB=BC,∴四边形ABCG为正方形,∴AG=BC=AB=16,∵∠DCE=45°,由(1)和(2)的结论可得:ED=BE+DG,设DE=x,∵4BE=,∴AE=12,DG=x−4,∴AD=AG−DG=20−x在Rt△AED中,由勾股定理得:DE2=AD2+AE2,即x2=(20−x)2+122解得:685=x,即685= DE.【点睛】本题是一道几何综合题,内容主要涉及全等三角形的判定与性质和勾股定理的应用,重点考查学生的数学学习能力,是一道好题.7.(1)等腰直角;(2)结论仍成立,见解析;(32或4217.【分析】(1)结论:DM⊥EM,DM=EM.只要证明△AMH≌△FME,推出MH=ME,AH=EF=EC,推出DH=DE,因为∠EDH=90°,可得DM⊥EM,DM=ME;(2)结论不变,证明方法类似;(3)分两种情形画出图形,理由勾股定理以及等腰直角三角形的性质解决问题即可;【详解】解:(1)△AMN ≌△FME ,等腰直角.如图1中,延长EM交AD于H.∵四边形ABCD 是正方形,四边形EFGC 是正方形,∴0ADE DEF 90∠=∠=,AD CD =,∴//AD EF ,∴MAH MFE ∠=∠,∵AM MF =,AMH FME ∠=∠,∴△AMH ≌△FME ,∴MH ME =,AH EF EC ==,∴DH DE =,∵0EDH 90∠=,∴DM ⊥EM ,DM=ME .(2)结论仍成立.如图,延长EM 交DA 的延长线于点H,∵四边形ABCD 与四边形CEFG 都是正方形,∴0ADE DEF 90∠=∠=,AD CD =,∴AD ∥EF,∴MAH MFE ∠=∠.∵AM FM =,AMH FME ∠=∠,∴△AMF ≌△FME(ASA), …∴MH ME =,AH FE=CE =,∴DH DE =.在△DHE 中,DH DE =,0EDH 90∠=,MH ME =,∴=DM EM ,DM ⊥EM.(3)①当E 点在CD 边上,如图1所示,由(1)的结论可得三角形DME 为等腰直角三角形,则DM 的长为2DE 2,此时DE EC DC 532=-=-=,所以2DM = ②当E 点在CD 的延长线上时,如图2所示,由(2)的结论可得三角形DME 为等腰直角三角形,则DM的长为2DE2,此时DE DCCE538=+=+=,所以42DM=;③当E点在BC上是,如图三所示,同(1)、(2)理可得到三角形DME为等腰直角三角形,证明如下:∵四边形ABCD与四边形CEFG都是正方形, 且点E在BC上∴AB//EF,∴HAM EFM∠=∠,∵M为AF中点,∴AM=MF∵在三角形AHM与三角形EFM中:HAM EFMAM MFAMH EMF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMH≌△FME(ASA),∴MH ME=,AH FE=CE=,∴DH DE=.∵在三角形AHD与三角形DCE中:90AD DCDAH DCEAH EF=⎧⎪∠=∠=⎨⎪=⎩,∴△AHD≌△DCE(SAS),∴ADH CDE∠=∠,∵∠ADC=∠ADH+∠HDC=90°,∴∠HDE=∠CDE+∠HDC=90°,∵在△DHE中,DH DE=,0EDH90∠=,MH ME=,∴三角形DME为等腰直角三角形,则DM的长为2DE2,此时在直角三角形DCE中2222DE DC CE5334=+=+=,所以DM=17【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质,灵活运用相关的定理、正确作出辅助线是解题的关键.8.(1)点M的坐标为(51),;(2)()44y x=-()04x<<;(3)()224160Q x x ++-,, ()234160Q x x +--, ,()24160Q x x +-,,()25160(224)Q x x x --<<, 【分析】(1)过点M 作ME OA ⊥,由“AAS ”可证COP PEM ∆≅∆,可得4CO PE ==,1OP ME ==,即可求点M 坐标;(2)由(1)可知COP PEM ∆≅∆,设OP=x ,则可得M 点坐标为(4+x ,x ),由直线OB 解析式可得N (x ,x ),即可知MN=4,由一组对边平行而且相等的四边形是平行四边形即可证明四边形BCNM 是平行四边形,进而可求y 与x 的函数关系式;(3)首先画出符合要求的点Q 的图形,共分三种情况,第一种情况:当MN 为底边时,第二种情况:当M 为顶点MN 为腰时,第三种情况:当N 为顶点MN 为腰时,然后根据图形特征结合勾股定理求出各种情况点的坐标即可解答.【详解】解:(1)如图,过点M 作ME OA ⊥,CP PM ⊥90CPO MPE ∴∠+∠=︒,且90CPO PCO ∠+∠=︒PCO MPE ∴∠=∠,且CP PM =,90COP PEM ∠=∠=︒ ()COP PEM AAS ∴∆≅∆4CO PE ∴==,1OP ME ==5OE ∴=∴点M 坐标为(5,1)故答案为(5,1)(2)由(1)可知COP PEM ∆≅∆4CO PE ∴==,OP ME x ==∴点M 坐标为(4,)x x +四边形OABC 是边长为4的正方形,∴点(4,4)B∴直线BO 的解析式为:y x =//MN AO ,交BO 于点N ,∴点N 坐标为(,)x x4MN BC ∴==,且//BC MN∴四边形BCNM 是平行四边形4(4)y x ∴=- (04)x <<(3)在x 轴正半轴上存在点Q ,使得QMN ∆是等腰三角形,此时点Q 的坐标为:1(2,0)Q x +,22(416Q x x +--,0),23(416Q x x ++-,240)(16Q x x +-,250)(16Q x x --,0)其中(04)x <<,理由:当(2)可知,(04)OP x x =<<,4MN PE ==,//MN x 轴,所以共分为以下几种请:第一种情况:当MN 为底边时,作MN 的垂直平分线,与x 轴的交点为1Q ,如图2所示111222PQ PE MN ===, 12OQ x ∴=+,1(2,0)Q x ∴+第二种情况:如图3所示,当M 为顶点MN 为腰时,以M 为圆心,MN 的长为半径画弧交x 轴于点2Q 、3Q ,连接2MQ 、3MQ ,则234MQ MQ ==,2222Q E MQ ME ∴=-222416OQ OE Q E x x ∴=-=+--,22(416Q x x ∴+--,0),32Q E Q E =,233416OQ OE Q E x x =+=++-,23(416Q x x ∴++-,0);第三种情况,当以N 为顶点、MN 为腰时,以N 为圆心,MN 长为半径画圆弧交x 轴正半轴于点4Q ,当022x <<时,如图4所示,则2224416PQ NQ NP x =-=-,24416OQ OP PQ x x ∴=+=+-,即24(16Q x x +-,0).当22x =时,则4ON =,此时Q 点与O 点重合,舍去;当224x <<时,如图5,以N 为圆心,MN 为半径画弧,与x 轴的交点为4Q ,5Q .4Q 的坐标为:24(16Q x x -0).2516OQ x x =-25(16Q x x ∴-0)所以,综上所述,1(2,0)Q x +,22(416Q x x +--,0),23(416Q x x ++-,240)(16Q x x +-,250)(16Q x x --,0)使QMN ∆是等腰三角形.【点睛】本题考查四边形综合题,解题的关键是明确题意,画出相应的图象,找出所求问题需要的条件,利用数形结合的思想解答问题.9.(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.【解析】试题分析:(1)因为四边形ABCD 为正方形,CE=DF ,可证△ADF ≌△DCE (SAS ),即可得到AF=DE ,∠DAF=∠CDE ,又因为∠ADG+∠EDC=90°,即有AF ⊥DE ;(2)∵四边形ABCD 为正方形,CE=DF ,可证△ADF ≌△DCE (SAS ),即可得到AF=DE ,∠E=∠F ,又因为∠ADG+∠EDC=90°,即有AF ⊥DE ;(3)设MQ ,DE 分别交AF 于点G ,O ,PQ 交DE 于点H ,因为点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,可得MQ=PN=12DE ,PQ=MN=12AF ,MQ ∥DE ,PQ ∥AF ,然后根据AF=DE ,可得四边形MNPQ 是菱形,又因为AF ⊥DE 即可证得四边形MNPQ 是正方形.试题解析:(1)上述结论①,②仍然成立,理由是:∵四边形ABCD 为正方形,∴AD=DC ,∠BCD=∠ADC=90°,在△ADF 和△DCE 中,∵DF=CE ,∠ADC=∠BCD=90°,AD=CD ,∴△ADF ≌△DCE (SAS ),∴AF=DE ,∠DAF=∠CDE ,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF ⊥DE ; (2)上述结论①,②仍然成立,理由是:∵四边形ABCD 为正方形,∴AD=DC ,∠BCD=∠ADC=90°,在△ADF 和△DCE 中,∵DF=CE ,∠ADC=∠BCD=90°,AD=CD ,∴△ADF ≌△DCE (SAS ),∴AF=DE ,∠E=∠F ,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF ⊥DE ;(3)四边形MNPQ 是正方形.理由是:如图,设MQ ,DE 分别交AF 于点G ,O ,PQ 交DE 于点H ,∵点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,∴MQ=PN=12DE ,PQ=MN=12AF ,MQ ∥DE ,PQ ∥AF ,∴四边形OHQG 是平行四边形,∵AF=DE ,∴MQ=PQ=PN=MN ,∴四边形MNPQ 是菱形,∵AF ⊥DE ,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ 是正方形.考点:1.四边形综合题;2.综合题.10.(1)答案见解析;(2)24【分析】(1) 首先利用ASA 证明△CDF ≌△ADE ,进而得到AE=CF ,于是得四边形AECF 是平行四边形,再根据对角线互相垂直的平行四边形是菱形即可得到结论;(2)首先利用勾股定理求出DE 的长,再利用对角线乘积的一半求出菱形的面积.【详解】(1)∵CF// AB ,∴∠DCF= ∠DAE ,∵PQ 垂直平分AC ,∴CD= AD ,在△CDF 和△ADE 中,DCF DAE CD ADCDF ADE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CDF ≌△ADE ,∴CF=AE,∵CF ∥AE ,∴四边形AECF 是平行四边形,∵PQ 垂直平分AC ,∴AE=CE ,∴四边形AECF 是菱形;(2)∵四边形AECF 是菱形,∴△ADE 是直角三角形,∵AD=142AC ,AE=5 , ∴3==,∴EF= 2DE=6, ∴菱形AECF 的面积为11862422AC EF ⋅=⨯⨯=. 【点睛】此题考查菱形的判定及性质定理,三角形全等的判定定理,线段垂直平分线的性质定理,勾股定理,正确掌握菱形的判定及性质定理是解题的关键.。

八年级初二数学下学期平行四边形单元测试提优卷试卷

八年级初二数学下学期平行四边形单元测试提优卷试卷

八年级初二数学下学期平行四边形单元测试提优卷试卷一、选择题1.如图,在Rt △ABC 中,∠A=30°,BC=2,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为( )A .2B .3C .4D .23 2.已知点A (4,0),B (0,﹣4),C (a ,2a )及点D 是一个平行四边形的四个顶点,则线段CD 的长的最小值为( )A .65B .125C .32D .42 3.如图,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心1O ,再从中心1O 走到正方形1O GFH 的中点2O ,又从中心2O 走到正方形2O IHJ 的中心3O ,再从中心3O 走到正方形3O KJP 的中心4O ,一共走了312m ,则长方形花坛ABCD 的周长是( )A .36mB .48mC .96mD .60m4.如图,已知正方形ABCD 的边长为2,点,E F 在正方形ABCD 内, ,EAB FDC ∆∆都是等边三角形,则EF 的长为( )A .23B .32-C 31D 35.如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点且AE CF =,下列说法中正确的是( )①BE DF =;②//BE DF ;③AB DE =;④四边形EBFD 为平行四边形;⑤ADE ABE S S ∆∆=;⑥AF CE =.A .①⑥B .①②④⑥C .①②③④D .①②④⑤⑥6.如图:点E 、F 为线段BD 的两个三等分点,四边形AECF 是菱形,且菱形AECF 的周长为20,BD 为24,则四边形ABCD 的面积为( )A .24B .36C .72D .1447.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片,使AD 落在BC 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB ,AC 于点E 、G ,连结GF ,给出下列结论①∠AGD =110.5°;②S △AGD =S △OGD ;③四边形AEFG 是菱形;④BF =2OF ;⑤如果S △OGF =1,那么正方形ABCD 的面积是12+82,其中正确的有( )个.A .2个B .3个C .4个D .5个8.如图,点O (0,0),A (0,1)是正方形1OAA B 的两个顶点,以1OA 对角线为边作正方形121OA A B ,再以正方形的对角线2OA 作正方形121OA A B ,…,依此规律,则点8A 的坐标是( )A.(-8,0)B.(0,8)C.(0,82)D.(0,16)9.如图,ABCD中,点E是AD上一点,BE⊥AB,△ABE沿BE对折得到△BEG,过点D作DF∥EG交BC于点F,△DFC沿DF对折,点C恰好与点G重合,则ABAD的值为()A.12B.33C.22D.3210.如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=725.其中正确结论的个数是()A.2个B.3个C.4个D.5个二、填空题11.如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是直线AB、AC上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连结AM、MN,若AC=6,AB=5,则AM-MN的最大值为________.12.如图,四边形ABCD是菱形,∠DAB=48°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=_____度.13.已知在矩形ABCD 中,3,3,2AB BC ==点P 在直线BC 上,点Q 在直线CD 上,且,AP PQ ⊥当AP PQ =时,AP =________________.14.菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (23,0),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,-1),则EP 十BP 的最小值为__________.15.如图,在平行四边形ABCD ,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论:①∠BCD =2∠DCF ;②EF =CF ;③S △CDF =S △CEF ;④∠DFE =3∠AEF ,-定成立的是_________.(把所有正确结论的序号都填在横线上)16.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .17.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ︒∠=,依次延长, , AB BC CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点, , , ,F H M N 则四边形FHMN 的面积为___________.18.如图,矩形纸片ABCD,AB=5,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O,F,且OP=OF,则AF的值为______.19.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt△ABC中,∠ACB=90°,若点D是斜边AB的中点,则CD=12AB,运用:如图2,△ABC中,∠BAC=90°,AB=2,AC=3,点D是BC的中点,将△ABD沿AD翻折得到△AED连接BE,CE,DE,则CE的长为_____.20.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠BAC=45°,则下列结论:①CD∥EF;②EF=DF;③DE平分∠CDF;④∠DEC=30°;⑤AB=2CD;其中正确的是_____(填序号)三、解答题21.在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点,PF⊥BD于点F,PA=PF.(1)试判断四边形AGFP的形状,并说明理由.(2)若AB=1,BC=2,求四边形AGFP的周长.22.在矩形ABCD 中,连结AC ,点E 从点B 出发,以每秒1个单位的速度沿着B A →的路径运动,运动时间为t (秒).以BE 为边在矩形ABCD 的内部作正方形BEHG .(1)如图,当ABCD 为正方形且点H 在ABC ∆的内部,连结,AH CH ,求证:AH CH =;(2)经过点E 且把矩形ABCD 面积平分的直线有______条;(3)当9,12AB BC ==时,若直线AH 将矩形ABCD 的面积分成1:3两部分,求t 的值.23.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.24.如图,M 为正方形ABCD 的对角线BD 上一点.过M 作BD 的垂线交AD 于E ,连BE ,取BE 中点O .(1)如图1,连AO MO 、,试证明90AOM ︒∠=;(2)如图2,连接AM AO 、,并延长AO 交对角线BD 于点N ,试探究线段DM MN NB 、、之间的数量关系并证明;(3)如图3,延长对角线BD 至Q 延长DB 至P ,连,CP CQ 若2,9PB PQ ==,且135PCQ ︒∠=,则PC .(直接写出结果)25.如图1,点E 为正方形ABCD 的边AB 上一点,EF EC ⊥,且EF EC =,连接AF ,过点F 作FN 垂直于BA 的延长线于点N .(1)求EAF ∠的度数;(2)如图2,连接FC 交BD 于M ,交AD 于P ,试证明:2BD BG DG AF DM =+=+.26.已知:在矩形ABCD 中,点F 为AD 中点,点E 为AB 边上一点,连接CE 、EF 、CF ,EF 平分∠AEC .(1)如图1,求证:CF ⊥EF;(2)如图2,延长CE 、DA 交于点K, 过点F 作FG ∥AB 交CE 于点G 若,点H 为FG 上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;(3)如图3, 过点H 作HN ⊥CH 交AB 于点N,若EN=11,FH-GH=1,求GK 长.27.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。

八年级初二数学第二学期平行四边形单元测试提优卷试题

八年级初二数学第二学期平行四边形单元测试提优卷试题

一、选择题1.如图,已知正方形ABCD 的边长为2,点,E F 在正方形ABCD 内, ,EAB FDC ∆∆都是等边三角形,则EF 的长为( )A .23-B .232-C .31-D .32. 如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP=EF ;②AP ⊥EF ;③△APD 一定是等腰三角形;④∠PFE=∠BAP ;⑤PD=2EC .其中正确结论的番号是( )A .①②④⑤B .①②③④⑤C .①②④D .①④3.如图,点E 是正方形ABCD 外一点,连接AE 、BE 和DE ,过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =3.下列结论:①△APD ≌△AEB ;②EB ⊥ED ;③点B 到直线AE 的距离为7;④S 正方形ABCD =8+14.则正确结论的个数是( )A .1B .2C .3D .44.如图,长方形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠得到△AFE ,且点F 在长方形ABCD 内,将AF 延长交边BC 于点G ,若BG=3CG ,则AD AB=( )A.54B.1 C.52D.625.如图,ABCD中,点E是AD上一点,BE⊥AB,△ABE沿BE对折得到△BEG,过点D作DF∥EG交BC于点F,△DFC沿DF对折,点C恰好与点G重合,则ABAD的值为()A.12B.33C.22D.326.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AD=12AC,M、N、P分别是OA、OB、CD的中点,下列结论:①CN⊥BD;②MN=NP;③四边形MNCP是菱形;④ND平分∠PNM.其中正确的有()A.1 个B.2 个C.3 个D.4 个7.已知菱形ABCD的面积为83,对角线AC的长为43,∠BCD=60°,M为BC的中点,若P为对角线AC上一动点,则PB+PM的最小值为()A .3B .2C .23D .48.如图,正方形ABCD 的边长为2,Q 为CD 边上(异于C ,D ) 的一个动点,AQ 交BD 于点M .过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P ,连接NQ ,下面结论:①AM=MN ;②MP=2;③△CNQ 的周长为3;④BD+2BP=2BM ,其中一定成立的是( )A .①②③④B .①②③C .①②④D .①④9.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE 、BO .若60COB ∠=︒,2FO FC ==,则下列结论:①FB OC ⊥;②EOB CMB △≌△;③四边形EBFD 是菱形;④23MB =.其中正确结论的个数是( )A .1个B .2个C .3个D .4个10.如图,一个四边形花坛ABCD ,被两条线段MN , EF 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1、S 2、S 3、S 4,若MN ∥AB ∥DC ,EF ∥DA ∥CB ,则有( )A .S 1= S 4B .S 1 + S 4 = S 2 + S 3C .S 1 + S 3 = S 2 + S 4D .S 1·S 4 = S 2·S 3二、填空题11.如图,正方形ABCD 中,DAC ∠的平分线交DC 于点E ,若P ,Q 分别是AD 和AE 上的动点,则DQ+PQ 能取得最小值4时,此正方形的边长为______________.12.如图,在矩形ABCD中,AB=2,AD=3,E为BC边上一动点,作EF⊥AE,且EF=AE.连接DF,AF.当DF⊥EF时,△ADF的面积为_____.13.在锐角三角形ABC中,AH是边BC的高,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC.其中正确的是_________.14.如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC为一边作正方形BDEC设正方形的对称中心为O,连接AO,则AO=_____.15.如图,在平面直角坐标系中,直线112y x=+与x轴、y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD,则D点坐标是_______;在y轴上有一个动点M,当MDC△的周长值最小时,则这个最小值是_______.16.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.17.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .18.在菱形ABCD 中,M 是AD 的中点,AB =4,N 是对角线AC 上一动点,△DMN 的周长最小是2+23,则BD 的长为___________.19.如图所示,在四边形ABCD 中,顺次连接四边中点E 、F 、G 、H ,构成一个新的四边形,请你对四边形ABCD 添加一个条件,使四边形EFGH 成一个菱形,这个条件是__________.20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.如图,在矩形ABCD 中,点E 是AD 上的一点(不与点A ,D 重合),ABE ∆沿BE 折叠,得BEF ,点A 的对称点为点F .(1)当AB AD =时,点F 会落在CE 上吗?请说明理由.(2)设()01AB m m AD=<<,且点F 恰好落在CE 上. ①求证:CF DE =.②若AE n AD=,用等式表示m n ,的关系. 23.综合与探究如图1,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF ,解答下列问题:(1)研究发现:如果AB AC =,90BAC ∠=︒①如图2,当点D 在线段BC 上时(与点B 不重合),线段CF 、BD 之间的数量关系为______,位置关系为_______.②如图3,当点D 在线段BC 的延长线上时,①中的结论是否仍成立并说明理由. (2)拓展发现:如果AB AC ≠,点D 在线段BC 上,点F 在ABC ∆的外部,则当ACB =∠_______时,CF BD ⊥.24.如图,在菱形ABCD 中,AB =2cm ,∠ADC =120°.动点E 、F 分别从点B 、D 同时出发,都以0.5cm/s的速度向点A、C运动,连接AF、CE,分别取AF、CE的中点G、H.设运动的时间为ts (0<t<4).(1)求证:AF∥CE;(2)当t为何值时,△ADF的面积为32cm2;(3)连接GE、FH.当t为何值时,四边形EHFG为菱形.25.已知,在△ABC中,∠BAC=90°,∠ABC=45°,D为直线BC上一动点(不与点B,C 重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BC与CF的位置关系是,BC、CF、CD三条线段之间的数量关系为;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请猜想BC与CF的位置关系BC,CD,CF三条线段之间的数量关系并证明;(3)如图3,当点D在线段BC的反向延长线上时,点A,F分别在直线BC的两侧,其他条件不变.若正方形ADEF的对角线AE,DF相交于点O,OC=132,DB=5,则△ABC的面积为.(直接写出答案)26.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.27.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B ∠=︒,3AB =,6=BC ,求OAC 的面积;(3)如果30B ∠=︒,23AB =,当AED 是直角三角形时,求BC 的长.28.探究:如图①,△ABC 是等边三角形,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、AN ,延长MC 交AN 于点P .(1)求证:△ACN ≌△CBM ;(2)∠CPN = °;(给出求解过程)(3)应用:将图①的△ABC 分别改为正方形ABCD 和正五边形ABCDE ,如图②、③,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、DN ,延长MC 交DN 于点P ,则图②中∠CPN = °;(直接写出答案)(4)图③中∠CPN = °;(直接写出答案)(5)拓展:若将图①的△ABC 改为正n 边形,其它条件不变,则∠CPN = °(用含n 的代数式表示,直接写出答案).29.在直角梯形ABCD 中,AB ∥CD ,∠BCD =90°,AB =AD =10cm ,BC =8cm 。

人教版平行四边形单元达标测试提优卷试题

人教版平行四边形单元达标测试提优卷试题

人教版平行四边形单元达标测试提优卷试题一、选择题1.如图,菱形ABCD 中,AC 交BD 于点O ,DE BC ⊥于点E ,连接OE ,若50BCD ∠=︒,则OED ∠的度数是( )A .35°B .30°C .25°D .20°2.如图,菱形ABCD 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD 延长线上的一点,且CD =DE ,连结BE 分别交AC ,AD 于点F 、G ,连结OG ,则下列结论:①OG =12AB ;②与△EGD 全等的三角形共有5个;③S 四边形ODGF >S △ABF ;④由点A 、B 、D 、E 构成的四边形是菱形.其中正确的是( )A .①④B .①③④C .①②③D .②③④3.在菱形ABCD 中,60ADC ∠=︒,点E 为AB 边的中点,点P 与点A 关于DE 对称,连接DP 、BP 、CP ,下列结论:①DP CD =;②222AP BP CD +=;③75DCP ∠=︒;④150CPA ∠=︒,其中正确的是( )A .①②B .①②③C .①②④D .①②③④4.如图,正方形ABCD 的周长是16,P 是对角线AC 上的个动点,E 是CD 的中点,则PE +PD 的最小值为( )A .5B .3C .2D .45.点E 是正方形ABCD 对角线AC 上,且EC=2AE ,Rt △FEG 的两条直角边EF 、EG 分别交BC、DC于M、N两点,若正方形ABCD的边长为a,则四边形EMCN的面积()A.23a2B.14a2C.59a2D.49a26.如图,菱形ABCD中,∠ABC=60°,AB=4,对角线AC、BD交于点O,E是线段BO上一动点,F是射线DC上一动点,若∠AEF=120°,则线段EF的长度的整数值的个数有()A.1个B.2个C.3个D.4个7.线段AB上有一动点C(不与A,B重合),分别以AC,BC为边向上作等边△ACM和等边△BCN,点D是MN的中点,连结AD,BD,在点C的运动过程中,有下列结论:①△ABD可能为直角三角形;②△ABD可能为等腰三角形;③△CMN可能为等边三角形;④若AB=6,则AD+BD的最小值为37. 其中正确的是()A.②③B.①②③④C.①③④D.②③④8.下列命题中,真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个B.2个C.1个D.0个9.如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△A DE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=725.其中正确结论的个数是()A .2个B .3个C .4个D .5个10.如图,在ABC 中,AB=5,AC=12,BC=13,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( )A .6013B .3013C .2413D .1213二、填空题11.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC = ,则平行四边形ABCD 的周长等于______________ .12.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .13.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则2020C =______.14.已知在矩形ABCD 中,3,3,2AB BC ==点P 在直线BC 上,点Q 在直线CD 上,且,AP PQ ⊥当AP PQ =时,AP =________________.15.如图,有一张矩形纸条ABCD ,AB =10cm ,BC =3cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为_____cm .16.菱形ABCD 的周长为24,∠ABC=60°,以AB 为腰在菱形外作底角为45°的等腰△ABE ,连结AC ,CE ,则△ACE 的面积为___________.17.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.18.在平面直角坐标系xOy 中,点A 、B 分别在x 轴、y 轴的正半轴上运动,点M 为线段AB 的中点.点D 、E 分别在x 轴、y 轴的负半轴上运动,且DE =AB =10.以DE 为边在第三象限内作正方形DGFE ,则线段MG 长度的最大值为_____.19.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ︒∠=,依次延长, , AB BC CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点, , , ,F H M N 则四边形FHMN 的面积为___________.20.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.在四边形ABCD 中,90A B C D ∠∠∠∠====,10AB CD ==,8BC AD ==.()1P 为边BC 上一点,将ABP 沿直线AP 翻折至AEP 的位置(点B 落在点E 处) ①如图1,当点E 落在CD 边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B 铅笔加粗加黑).并直接写出此时DE =______;②如图2,若点P 为BC 边的中点,连接CE ,则CE 与AP 有何位置关系?请说明理由; ()2点Q 为射线DC 上的一个动点,将ADQ 沿AQ 翻折,点D 恰好落在直线BQ 上的点'D 处,则DQ =______; 23.如图,矩形OBCD 中,OB =5,OD =3,以O 为原点建立平面直角坐标系,点B ,点D 分别在x 轴,y 轴上,点C 在第一象限内,若平面内有一动点P ,且满足S △POB =13S 矩形OBCD ,问:(1)当点P 在矩形的对角线OC 上,求点P 的坐标;(2)当点P 到O ,B 两点的距离之和PO +PB 取最小值时,求点P 的坐标.24.如图,在Rt ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动.同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts (0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF .(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,DEF 为直角三角形?请说明理由.25.(1)如图①,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求EAF ∠的度数;(2)如图②,在Rt ABD ∆中,90,BAD AD AB ︒∠==,点M ,N 是BD 边上的任意两点,且45MAN ︒∠=,将ABM ∆绕点A 逆时针旋转90度至ADH ∆位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正方形ABCD 的边长为12,GF=6,BM= 32,求EG ,MN 的长.26.在矩形ABCD 中,连结AC ,点E 从点B 出发,以每秒1个单位的速度沿着B A →的路径运动,运动时间为t (秒).以BE 为边在矩形ABCD 的内部作正方形BEHG .(1)如图,当ABCD 为正方形且点H 在ABC ∆的内部,连结,AH CH ,求证:AH CH =;(2)经过点E 且把矩形ABCD 面积平分的直线有______条;(3)当9,12AB BC ==时,若直线AH 将矩形ABCD 的面积分成1:3两部分,求t 的值.27.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.28.如图,四边形ABCD 是边长为3的正方形,点E 在边AD 所在的直线上,连接CE ,以CE 为边,作正方形CEFG (点C 、E 、F 、G 按逆时针排列),连接BF.(1)如图1,当点E 与点D 重合时,BF 的长为 ;(2)如图2,当点E 在线段AD 上时,若AE=1,求BF 的长;(提示:过点F 作BC 的垂线,交BC 的延长线于点M ,交AD 的延长线于点N.)(3)当点E 在直线AD 上时,若AE=4,请直接写出BF 的长.29.如图,ABCD 中,60ABC ∠=︒,连结BD ,E 是BC 边上一点,连结AE 交BD 于点F .(1)如图1,连结AC ,若6AB AE ==,:5:2BC CE =,求ACE △的面积; (2)如图2,延长AE 至点G ,连结AG 、DG ,点H 在BD 上,且BF DH =,AF AH =,过A 作AM DG ⊥于点M .若180ABG ADG ∠+∠=︒,求证:3BG GD AG +=.30.如图,矩形ABCD 中,点O 是对角线BD 的中点,过点O 的直线分别交AB ,CD 于点E ,F .(1)求证:四边形DEBF 是平行四边形;(2)若四边形DEBF 是菱形,则需要增加一个条件是_________________,试说明理由; (3)在(2)的条件下,若AB=8,AD=6,求EF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据直角三角形的斜边中线性质可得OE BE OD ==,根据菱形性质可得1652DBE ABC ︒∠=∠=,从而得到OEB ∠度数,再依据90OED OEB ︒∠=-∠即可. 【详解】 解:∵四边形ABCD 是菱形,50BCD ︒∠=,∵O 为BD 中点,1652DBE ABC ︒∠=∠=. DE BC ⊥,∴在 Rt BDE ∆中,OE BE OD ==,65OEB OBE ︒∴∠=∠=.906525OED ︒︒︒∴∠=-=.故选:C .【点睛】本题主要考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.2.A解析:A【分析】由AAS 证明△ABG ≌△DEG ,得出AG=DG ,证出OG 是△ACD 的中位线,得出OG=12CD=12AB ,①正确;先证明四边形ABDE 是平行四边形,证出△ABD 、△BCD 是等边三角形,得出AB=BD=AD ,因此OD=AG ,得出四边形ABDE 是菱形,④正确;由菱形的性质得得出△ABG ≌△BDG ≌△DEG ,由SAS 证明△ABG ≌△DCO ,得出△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,得出②不正确;证出OG 是△ABD 的中位线,得出OG ∥AB ,OG=12AB ,得出△GOD ∽△ABD ,△ABF ∽△OGF ,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;③不正确;即可得出结果.【详解】∵四边形ABCD 是菱形,∴AB =BC =CD =DA ,AB ∥CD ,OA =OC ,OB =OD ,AC ⊥BD ,∴∠BAG =∠EDG ,△ABO ≌△BCO ≌△CDO ≌△AOD ,∵CD =DE ,∴AB =DE ,在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△DEG (AAS ),∴AG =DG ,∴OG 是△ACD 的中位线,∴OG =12CD =12AB , ∴①正确;∵AB ∥CE ,AB =DE ,∴四边形ABDE 是平行四边形,∵∠BCD =∠BAD =60°,∴△ABD 、△BCD 是等边三角形,∴AB =BD =AD ,∠ODC =60°,∴OD =AG ,四边形ABDE 是菱形,④正确;∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG ,在△ABG 和△DCO 中,OD AGODC BAG60 AB DC ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ABG≌△DCO(SAS),∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,∴②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=12 AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面积=14△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;③不正确;正确的是①④.故选A.【点睛】本题考查菱形的判定与性质, 全等三角形的判定与性质,三角形中位线的性质,熟练掌握性质,能通过性质推理出图中线段、角之间的关系是解题关键.3.C解析:C【分析】如图,设DE交AP于0,根据菱形的性质、翻折不变性-判断即可解决问题;【详解】解:如图,设DE交AP于O.∵四边形ABCD是菱形∴DA=DC=AB∵A.P关于DE对称,∴DE⊥AP,OA=OP∴DA=DP∴DP=CD,故①正确∵AE=EB,AO=OP∴OE//PB,∴PB⊥PA∴∠APB=90°∴2222PA PB AB CD+==,故②正确若∠DCP=75°,则∠CDP=30°∵LADC=60°∴DP平分∠ADC,显然不符合题意,故③错误;∵∠ADC=60°,DA=DP=DC∴∠DAP=∠DPA,∠DCP=∠DPC,∠CPA=(360°-60°)=150°,故④正确.故选:C【点睛】本题考查菱形的性质、轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.A解析:A【解析】【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PE+PD=BE最小,而BE是直角△CBE的斜边,利用勾股定理即可得出结果.【详解】解:如图,连接BE,设BE与AC交于点P',∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.即P在AC与BE的交点上时,PD+PE最小,即为BE的长度.∴直角△CBE中,∠BCE=90°,BC=4,CE=12CD=2,∴224225 BE=+=【点睛】本题题考查了轴对称中的最短路线问题,要灵活运用正方形的性质、对称性是解决此类问题的重要方法,找出P 点位置是解题的关键5.D解析:D【解析】【分析】根据题意过E 作EK 垂直于直线CD ,垂足为K ,再过E 作EL 垂直于直线BC ,垂足为L ,只要证明ENK ELM ∆≅∆,则可计算EKCL ENCM S S =四边形.【详解】解:根据题意过E 作EK 垂直于直线CD ,垂足为K ,再过E 作EL 垂直于直线BC ,垂足为L.四边形ABCD 为正方形∴EL=EK,EK CD EL BC ⊥⊥∴90ELM EKN ︒∠=∠=90BCD ︒∠=90KEL ︒∴∠= FEG 为直角三角形90KEM LEM KEM NEK ︒∴∠+∠=∠+∠=LEM NEK ∴∠=∠ENK ELM ∴∆≅∆2224()39EKCL ENCM S Sa a ∴===四边形 故选D.【点睛】本题主要考查正方形的性质,关键在于根据题意做辅助线. 6.C解析:C【解析】连结CE,根据菱形的性质和全等三角形的判定可得△ABE≌△CBE,根据全等三角形的性质可得AE=CE,设∠OCE=a,∠OAE=a,∠AEO=90°﹣a,可得∠ECF=∠EFC,根据等角对等边可得CE=EF,从而得到AE=EF,在Rt△ABO中,根据含30°的直角三角形的性质得到AO=2,可得2≤AE≤4,从而得到EF的长的整数值可能是2,3,4.【详解】解:如图,连结CE,∵在菱形ABCD中,AB=BC,∠ABE=∠CBE=30°,BE=BE,∴△ABE≌△CBE,∴AE=CE,设∠OCE=a,∠OAE=a,∠AEO=90°﹣a,∴∠DEF=120°﹣(90°﹣a)=30°+a,∴∠EFC=∠CDE+∠DEF=30°+30°+a=60°+a,∵∠ECF=∠DCO+∠OCE=60°+a,∴∠ECF=∠EFC,∴CE=EF,∴AE=EF,∵AB=4,∠ABE=30°,∴在Rt△ABO中,AO=2,∵OA≤AE≤AB,∴2≤AE≤4,∴AE的长的整数值可能是2,3,4,即EF的长的整数值可能是2,3,4.故选:C.【点睛】考查了菱形的性质,全等三角形的判定与性质,等角对等边,根据含30°的直角三角形的性质,解题的关键是添加辅助线,证明△ABE≌△CBE.7.D解析:D【分析】根据题意并结合图形,我们可以得出当C为AB的中点时,可判断所给结论正确与否.【详解】解:当C为AB中点时,有图如下,∵ACM 与BCN 为等边三角形,∵C 为AB 中点,∴AM=AC=MC=NC=BC=NB,MD=ND ,∵MCN 60∠=︒∴CMN CNM 60∠∠==︒∴CMN 为等边三角形,③正确;∵AMD BND 120∠∠==︒∴AMD BND ≅∴AD=BD,△ABD 此时为等腰三角形,②正确;当C 为AB 中点时,AD+BD 值最小,∵D 为MN 的中点,∴CD 为MN 的垂直平分线, ∴1MD 4AB =,∵AB=6, ∴22333CD 322⎛⎫=-= ⎪⎝⎭∴223337AD 32⎛⎫=+= ⎪ ⎪⎝⎭∵AD=BD ∴AD+BD=37若△ABD 可能为直角三角形,则ADB 90∠=︒,∴CD 为AB 的垂直平分线∴ADC 45∠=︒∴AC=CD,与所求结论不符,①错误.故选:D .【点睛】本题考查的知识点是等边三角形的性质以及全等三角形的判定定理及性质,弄清题意,画出当C 为AB 中点时的图形是解题的关键. 8.C解析:C【分析】正确的命题是真命题,根据矩形的判定定理,菱形的判定定理及平行四边形的判定定理依次判断.【详解】①对角线相等且互相平分的四边形是矩形,故该项错误;②四条边相等的四边形是菱形,故该项错误;③一组对边平行且相等的四边形是平行四边形,故该项正确;故选:C.【点睛】此题考查真命题的定义,正确掌握矩形、菱形、平行四边形的判定定理是解题的关键. 9.D解析:D【分析】根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;根据角的和差关系求得∠GAF=45°;在直角△ECG中,根据勾股定理可证CE=2DE;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;求出S△ECG,由S△FCG=35GCE S即可得出结论.【详解】①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:∵∠BAG=∠FAG,∠DAE=∠FAE.又∵∠BAD=90°,∴∠EAG=45°;③正确.理由:设DE=x,则EF=x,EC=12-x.在直角△ECG中,根据勾股定理,得:(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=x=4,CE=12-x=8,∴CE=2DE;④正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;⑤正确.理由:∵S△ECG=12GC•CE=12×6×8=24.∵S△FCG=35GCES∆=3245⨯=725.故选D.【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.10.B解析:B【分析】先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用面积法可求得AP最短时的长,然后即可求出AM最短时的长.【详解】解:连接AP,在ABC中,AB=5,AC=12,BC=13,∴AB2+AC2=BC2,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴EF=AP.∵M是EF的中点,∴AM=12 AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴S△ABC=1122BC AP AB AC⋅=⋅,∴1113512 22AP⨯=⨯⨯,∴AP最短时,AP=60 13,∴当AM最短时,AM=12AP=3013.故选:B.【点睛】此题主要考查学生对勾股定理逆定理的应用、矩形的判定和性质、垂线段最短和直角三角形斜边上的中线的理解和掌握,此题涉及到动点问题,有一定难度.二、填空题11.12或20【分析】根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【详解】解:情况一:当BC边上的高在平行四边形的内部时,如图1所示:在平行四边形ABCD中,BC边上的高为4,AB=5,AC=25,在Rt△ACE中,由勾股定理可知:2222(25)42CE AC AE,在Rt△ABE中,由勾股定理可知:2222BE AB AE543=-=-=,∴BC=BE+CE=3+2=5,此时平行四边形ABCD的周长等于2×(AB+BC)=2×(5+5)=20;情况二:当BC边上的高在平行四边形的外部时,如图2所示:在平行四边形ABCD中,BC边上的高为AE=4,AB=5,AC=25在Rt △ACE 中,由勾股定理可知:2222(25)42CE AC AE , 在Rt △ABE 中,由勾股定理可知:2222BE AB AE 543=-=-=,∴BC=BE-CE=3-2=1,∴平行四边形ABCD 的周长为2×(AB+BC)=2×(5+1)=12,综上所述,平行四边形ABCD 的周长等于12或20.故答案为:12或20.【点睛】此题主要考查了平行四边形的性质以及勾股定理等知识,分高在平行四边形内部还是外部讨论是解题关键. 12.25【详解】由于点B 与点D 关于AC 对称,所以如果连接DE ,交AC 于点P ,那PE+PB 的值最小.在Rt △CDE 中,由勾股定理先计算出DE 的长度,即为PE+PB 的最小值.连接DE ,交AC 于点P ,连接BD .∵点B 与点D 关于AC 对称,∴DE 的长即为PE+PB 的最小值,∵AB=4,E 是BC 的中点,∴CE=2,在Rt △CDE 中, DE=25.考点:(1)、轴对称-最短路线问题;(3)、正方形的性质.13.201812【分析】根据几何图形特征,先求出1C 、2C 、3C ,根据求出的结果,找出规律,从而得出2020C .【详解】∵点E 是BC 的中点,ED ∥AB ,EF ∥AC∴DE 、EF 是△ABC 的中位线∵等边△ABC 的边长为1∴AD=DE=EF=AF =12 则1C =1422⨯=同理可求得:2C =1,3C =12 发现规律:规律为依次缩小为原来的12 ∴2020C =201812故答案为:201812.【点睛】 本题考查找规律和中位线的性质,解题关键是求解出几组数据,根据求解的数据寻找规律.14.322或3102【分析】 根据点P 在直线BC 上,点Q 在直线CD 上,分两种情况:1.P 、Q 点位于线段上;2.P 、Q 点位于线段的延长上,再通过三角形全等得出相应的边长,最后根据勾股即可求解.【详解】解:当P 点位于线段BC 上,Q 点位于线段CD 上时:∵四边形ABCD 是矩形,AP PQ ⊥∴∠BAP=∠CPQ ,∠APB=∠PQC∵AP PQ =∴ABP PCQ ≅∴PC=AB=32,BP=BC-PC=3-32=32∴AP=223322+()()=322当P 点位于线段BC 的延长线上,Q 点位于线段CD 的延长线上时:∵四边形ABCD 是矩形,AP PQ ⊥∴∠BAP=∠CPQ ,∠APB=∠PQC∵AP PQ =∴ABP PCQ ≅∴PC=AB=32,BP=BC+PC=3+32=92∴AP=223922+()()=3102故答案为:322或3102 【点睛】 此题主要考查三角形全等的判定及性质、勾股定理,熟练运用判定定理和性质定理是解题的关键.15.101-【分析】探究点E 的运动轨迹,寻找特殊位置解决问题即可.【详解】如图1中,当点M 与A 重合时,AE =EN ,设AE =EN =xcm ,在Rt △ADE 中,则有x 2=32+(9﹣x )2,解得x =5,∴DE =10﹣1-5=4(cm ),如图2中,当点M 运动到MB ′⊥AB 时,DE ′的值最大,DE ′=10﹣1﹣3=6(cm ),如图3中,当点M 运动到点B ′落在CD 时,22221310NB C N C B ''''=++=DB′(即DE″)=10﹣1﹣10=(9﹣10)(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=6﹣4+6﹣(910101)(cm).101.【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.16.9或31).【分析】分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.【详解】解:①如图1,延长EA交DC于点F,∵菱形ABCD的周长为24,∴AB=BC=6,∵∠ABC=60°,∴三角形ABC是等边三角形,∴∠BAC=60°,当EA⊥BA时,△ABE是等腰直角三角形,∴AE=AB=AC=6,∠EAC=90°+60°=150°,∴∠FAC=30°,∵∠ACD=60°,∴∠AFC=90°,∴CF=12AC=3,则△ACE的面积为:12AE×CF=12×6×3=9;②如图2,过点A 作AF ⊥EC 于点F ,由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,∵AB=BE=BC=6,∴∠BEC=∠BCE=15°,∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,∴AF=12AE ,AF=CF=22AC=32 ∵AB=BE=6,∴AE=2∴2236AE AF -=∴EC=EF+FC=3632则△ACE 的面积为:12EC×AF=1(3632)329(31)2⨯⨯=. 故答案为:9或31).【点睛】本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.17.65【分析】先由正方形的性质得到∠ABF 的角度,从而得到∠AEB 的大小,再证△AEB ≌△AED ,得到∠AED 的大小【详解】∵四边形ABCD 是正方形∴∠ACB=∠ACD=∠BAC=∠CAD=45°,∠ABC=90°,AB=AD∵∠FBC=20°,∴ABF=70°∴在△ABE 中,∠AEB=65°在△ABE 与△ADE 中45AB AD BAE EAD AE AE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△ADE∴∠AED=∠AEB=65°故答案为:65°【点睛】本题考查正方形的性质和三角形全等的证明,解题关键是利用正方形的性质,推导出∠AEB的大小.18.10+55【分析】取DE的中点N,连结ON、NG、OM.根据勾股定理可得55NG=.在点M与G之间总有MG≤MO+ON+NG(如图1),M、O、N、G四点共线,此时等号成立(如图2).可得线段MG的最大值.【详解】如图1,取DE的中点N,连结ON、NG、OM.∵∠AOB=90°,∴OM=12AB=5.同理ON=5.∵正方形DGFE,N为DE中点,DE=10,∴222210555NG DN DG++===.在点M与G之间总有MG≤MO+ON+NG(如图1),如图2,由于∠DNG的大小为定值,只要∠DON=12∠DNG,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立,∴线段MG取最大值10+55.故答案为:10+55.【点睛】此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.19.1382+【分析】如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,首先利用正方形性质结合题意求出AD=CD=AG=DQ=1,然后进一步根据菱形性质得出DE=EF=DG=2,再后通过证明四边形NKQR是矩形得出QR=NK=2,进一步可得2221382=+=+,再延长NS交ML于点Z,利用全等三角形性质与判定证FN FR NR明四边形FHMN为正方形,最后进一步求解即可.【详解】如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,∵ABCD为正方形,∴∠CDG=∠GDK=90°,∵正方形ABCD面积为1,∴AD=CD=AG=DQ=1,∴DG=CT=2,∵四边形DEFG为菱形,∴DE=EF=DG=2,同理可得:CT=TN=2,∵∠EFG=45°,∴∠EDG=∠SCT=∠NTK=45°,∵FE∥DG,CT∥SN,DG⊥CT,∴∠FQP=∠FRN=∠DQE=∠NKT=90°,∴2FQ=FE+EQ=22+∵∠NKT=∠KQR=∠FRN=90°,∴四边形NKQR是矩形,∴QR=NK=2,∴FR=FQ+QR=222+,NR=KQ=DK−DQ=2121+-=,∴2221382FN FR NR=+=+,再延长NS交ML于点Z,易证得:△NMZ≅△FNR(SAS),∴FN=MN,∠NFR=∠MNZ,∵∠NFR+∠FNR=90°,∴∠MNZ+∠FNR=90°,即∠FNM=90°,同理可得:∠NFH=∠FHM=90°,∴四边形FHMN为正方形,∴正方形FHMN的面积=21382FN=+,故答案为:1382+.【点睛】本题主要考查了正方形和矩形性质与判定及与全等三角形性质与判定的综合运用,熟练掌握相关方法是解题关键.20.2或3.5【分析】分别从当Q运动到E和B之间、当Q运动到E和C之间去分析求解即可求得答案.【详解】如图,∵E是BC的中点,∴BE=CE= 12BC=9,①当Q运动到E和B之间,则得:3t﹣9=5﹣t,解得:t=3.5;②当Q运动到E和C之间,则得:9﹣3t=5﹣t,解得:t=2,∴当运动时间t为2秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【点睛】“点睛”此题考查了梯形的性质以及平行四边形的判定与性质.解题时注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.三、解答题21.(1)见解析(2)10【分析】(1)先证明AFE DBE ∆≅∆,得到AF DB =,AF CD =,再证明四边形ADCF 是平行四边形,再根据“直角三角形斜边上的中线等于斜边的一半”得到12AD DC BC ==,即可证明四边形ADCF 是菱形。

人教版平行四边形单元测试提优卷试卷

人教版平行四边形单元测试提优卷试卷

一、选择题1.如图,在正方形ABCD 中,点P 是AB 的中点,BE DP ⊥的延长线于点E ,连接AE ,过点A 作FA AE ⊥交DP 于点F ,连接BF 、FC.下列结论中:ABE ①≌ADF ;PF EP EB =+②;BCF ③是等边三角形;ADF DCF ④∠∠=;APFCDFSS.=⑤其中正确的是( )A .①②③B .①②④C .②④⑤D .①③⑤ 2.平行四边形的对角线分别为 x 、y ,一边长为 12,则 x 、y 的值可能是( ) A .8 与 14B .10 与 14C .18 与 20D .4 与 283.已知点M 是平行四边形ABCD 内一点(不含边界),设12MAD MBA θθ∠=∠=,,3 MCB θ∠=,4MDC θ∠=.若110,AMB ∠=︒ 90CMD ∠=︒,60BCD ∠=︒,则( )A .142310θθθθ+--=︒B .241330θθθθ+--=︒C .142330θθθθ+--=︒D .241340θθθθ+--=︒4.如图,P 为ABCD 内一点,过点P 分别作AB ,AD 的平行线,交 ABCD 的四边于E 、F 、G 、H 四点,若BHPE 面积为6,GPFD 面积为4,则APC △的面积为( )A .23B .32C .1D .25.如图,在△ABC 中,∠ABC 和∠ACB 的角平分线相交于点O .过点O 作EF ∥BC 交AB 于E .交AC 于F .过点O 作OD ⊥AC 于D .下列五个结论:其中正确的有( )(1) EF=BE+CF;(2)∠BOC=90°+12∠A;(3)点O到△ABC各边的距离都相等;(4)设OD=m.若AE十AF =n,则S△AEF= mn;(5)S△AEF=S△FOC.A.2个B.3个C.4个D.5个6.如图,点O(0,0),A(0,1)是正方形1OAA B的两个顶点,以1OA对角线为边作正方形121OA A B,再以正方形的对角线2OA作正方形121OA A B,…,依此规律,则点8A的坐标是()A.(-8,0)B.(0,8)C.(0,82)D.(0,16)7.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD于G,取DG的中点H,连结AH,EH,FH.下列结论:①∠EFH=45°;②△AHD≌△EHF;③∠AEF+∠HAD=45°;④若BEEC=2,则1113BEHAHESS.其中结论正确的是()A.①②③B.①②④C.②③④D.①②③④8.在菱形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的一点(不与端点重合),对于任意的菱形ABCD,下面四个结论中:①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形正确的结论的个数是()A .1个B .2个C .3个D .4个9.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =185.其中正确结论的个数是( )A .1B .2C .3D .410.如图,BD 为平行四边形ABCD 的对角线,45DBC ∠=︒,DE BC ⊥于E ,BF CD ⊥于F ,DE 、BF 相交于H ,直线BF 交线段AD 的延长线于G ,下面结论:①2BD BE =;②A BHE =∠∠;③AB BH =;④BHD BDG ∠=∠其中正确的个数是( )A .1B .2C .3D .4二、填空题11.在平行四边形ABCD 中,30,23,2A AD BD ∠=︒==,则平行四边形ABCD 的面积等于_____.12.如图,在矩形ABCD 中,4AB =,2AD =,E 为边CD 的中点,点P 在线段AB 上运动,F 是CP 的中点,则CEF ∆的周长的最小值是____________.13.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDGFDGS S =,正确的有__________________.14.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则2020C =______.15.在锐角三角形ABC 中,AH 是边BC 的高,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG=CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM=∠ABC .其中正确的是_________.16.如图,在平行四边形ABCD 中,AC ⊥AB ,AC 与BD 相交于点O ,在同一平面内将△ABC 沿AC 翻折,得到△AB’C ,若四边形ABCD 的面积为24cm 2,则翻折后重叠部分(即S △ACE ) 的面积为________cm 2.17.如图,矩形ABCD 的面积为36,BE 平分ABD ∠,交AD 于E ,沿BE 将ABE ∆折叠,点A 的对应点刚好落在矩形两条对角线的交点F 处.则ABE ∆的面积为________.18.如图,矩形ABCD 中,CE CB BE ==,延长BE 交AD 于点M ,延长CE 交AD 于点F ,过点E 作EN BE ⊥,交BA 的延长线于点N ,23FE AN ==,,则BC =_________.19.如图,长方形ABCD 中,26AD =,12AB =,点Q 是BC 的中点,点P 在AD 边上运动,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为______,20.李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D 落在AB 边的点F 处,得折痕AE ,再折叠,使点C 落在AE 边的点G 处,此时折痕恰好经过点B ,如果AD=a ,那么AB 长是多少?”常明说;“简单,我会. AB 应该是_____”.常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B ,而是经过了AB 边上的M 点,如果AD=a ,测得EC=3BM ,那么AB 长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.三、解答题21.如图,在Rt ABC ∆中,90ABC ∠=︒,30C ∠=︒,12AC cm =,点E 从点A 出发沿AB 以每秒1cm 的速度向点B 运动,同时点D 从点C 出发沿CA 以每秒2cm 的速度向点A 运动,运动时间为t 秒(06t <<),过点D 作DF BC ⊥于点F .(1)试用含t 的式子表示AE 、AD 、DF 的长;(2)如图①,连接EF ,求证四边形AEFD 是平行四边形;(3)如图②,连接DE ,当t 为何值时,四边形EBFD 是矩形?并说明理由. 22.已知正方形ABCD .(1)点P 为正方形ABCD 外一点,且点P 在AB 的左侧,45APB ∠=︒. ①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平行四边形. ②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.(2)如图(3),点F 在正方形ABCD 内且满足BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当13AE CF =时.请直接写出HC 的长________.23.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .(1)求证:四边形BCEF 是平行四边形;(2)若∠DEF =90°,DE =8,EF =6,当AF 为 时,四边形BCEF 是菱形.24.如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A D 、不重合),射线PE 与BC 的延长线交于点Q .(1)求证:PDE QCE ∆≅∆;(2)若PB PQ =,点F 是BP 的中点,连结EF AF 、, ①求证:四边形AFEP 是平行四边形; ②求PE 的长.25.共顶点的正方形ABCD 与正方形AEFG 中,AB =13,AE =52. (1)如图1,求证:DG =BE ;(2)如图2,连结BF ,以BF 、BC 为一组邻边作平行四边形BCHF . ①连结BH ,BG ,求BHBG的值; ②当四边形BCHF 为菱形时,直接写出BH 的长.26.在平面直角坐标中,四边形OCNM 为矩形,如图1,M 点坐标为(m ,0),C 点坐标为(0,n ),已知m ,n 满足550n m -+-=.(1)求m ,n 的值;(2)①如图1,P ,Q 分别为OM ,MN 上一点,若∠PCQ =45°,求证:PQ =OP+NQ ; ②如图2,S ,G ,R ,H 分别为OC ,OM ,MN ,NC 上一点,SR ,HG 交于点D .若∠SDG =135°,55HG 2=,则RS =______; (3)如图3,在矩形OABC 中,OA =5,OC =3,点F 在边BC 上且OF =OA ,连接AF ,动点P 在线段OF 是(动点P 与O ,F 不重合),动点Q 在线段OA 的延长线上,且AQ =FP ,连接PQ 交AF 于点N ,作PM ⊥AF 于M .试问:当P ,Q 在移动过程中,线段MN 的长度是否发生变化?若不变求出线段MN 的长度;若变化,请说明理由.27.如图,四边形ABCD 是边长为3的正方形,点E 在边AD 所在的直线上,连接CE ,以CE 为边,作正方形CEFG (点C 、E 、F 、G 按逆时针排列),连接BF.(1)如图1,当点E 与点D 重合时,BF 的长为 ;(2)如图2,当点E 在线段AD 上时,若AE=1,求BF 的长;(提示:过点F 作BC 的垂线,交BC 的延长线于点M ,交AD 的延长线于点N.) (3)当点E 在直线AD 上时,若AE=4,请直接写出BF 的长.28.如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使60AEB ∠=︒.(1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则60AEB ∠=︒;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q . ①当PQ BE ⊥时,求证:2BP AP =;②当PQ BE =时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由. 29.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 以每分钟10个单位的速度运动,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值. (3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由.30.已知:在矩形ABCD 中,点F 为AD 中点,点E 为AB 边上一点,连接CE 、EF 、CF ,EF 平分∠AEC .(1)如图1,求证:CF ⊥EF;(2)如图2,延长CE 、DA 交于点K, 过点F 作FG ∥AB 交CE 于点G 若,点H 为FG 上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;(3)如图3, 过点H 作HN ⊥CH 交AB 于点N,若EN=11,FH-GH=1,求GK 长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据正方形的性质可得AB AD =,再根据同角的余角相等求出BAE DAF ∠∠=,再根据等角的余角相等求出ABE ADF ∠∠=,然后利用“角边角”证明ABE ≌ADF ;根据全等三角形对应边相等可得AE AF =,判断出AEF 是等腰直角三角形,过点A 作AM EF ⊥于M ,根据等腰直角三角形点的性质可得AM MF =,再根据点P 是AB 的中点得到AP BP =,然后利用“角角边”证明APM 和BPE 全等,根据全等三角形对应边相等可得BE AM =,EP MP =,然后求出PF EP EB =+;根据全等三角形对应边相等求出DF BE AM ==,再根据同角的余角相等求出DAM CDF ∠∠=,然后利用“边角边”证明ADM 和DCF 全等,根据全等三角形对应角相等可得ADF DCF ∠∠=,CFD DMA 90∠∠==;再求出CD CF ≠,判定BCF 不是等边三角形;求出CF FP >,AM DF =,然后求出APFCDFSS<.【详解】在正方形ABCD 中,AB AD =,DAF BAF 90∠∠+=,FA AE ⊥,BAE BAF 90∠∠∴+=,BAE DAF ∠∠∴=, BE DP ⊥,ABE BPE 90∠∠∴+=,又ADF APD 90∠∠+=,BPE APD(∠∠=对顶角相等), ABE ADF ∠∠∴=, 在ABE 和ADF 中,BAE DAF AB ADABE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ABE ∴≌()ADF ASA ,故①正确;AE AF ∴=,BE DF =, AEF ∴是等腰直角三角形,过点A 作AM EF ⊥于M ,则AM MF =, 点P 是AB 的中点, AP BP ∴=,在APM 和BPE 中, 90BPE APD BEP AMP AP BP ∠=∠⎧⎪∠=∠=⎨⎪=⎩, APM ∴≌()BPE AAS , BE AM ∴=,EP MP =,PF MF PM BE EP ∴=+=+,故②正确;BE DF =,FM AM BE ==, AM DF ∴=,又ADM DAM 90∠∠+=,ADM CDF 90∠∠+=, DAM CDF ∠∠∴=, 在ADM 和DCF ,AD DC DAM CDF AM DF =⎧⎪∠=∠⎨⎪=⎩, ADM ∴≌()DCF SAS ,CF DM ∴=,ADF DCF ∠∠=,CFD DMA 90∠∠==,故④正确;在Rt CDF 中,CD CF >,BC CD =,CF BC ∴≠,BCF ∴不是等边三角形,故③错误;CF DM DF FM EM FM EF FP ==+=+=≠,又AM DF =,APF CDF S S ∴<,故⑤错误;综上所述,正确的有①②④,故选B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,同角或等角度余角相等的性质,三角形的面积,综合性较强,难度较大,熟练掌握正方形的性质是解题的关键,作辅助线利用等腰直角三角形的性质并构造出全等三角形是本题的难点.2.C解析:C【分析】如下图,将平行四边形ABCD 向上平移,得到平行四边形ADEF ,使得BC 与AD 重合,在△BDF 中,利用三角形三边关系可得到x+y 与x -y 的取值范围,从而得到结论.【详解】如下图,将平行四边形ABCD 向上平移,得到平行四边形ADEF ,使得BC 与AD 重合,连接BD ,DF根据题意,设AB=12,BD=x ,DF=y则AF=AB=12,BF=24∴在△BDF 中,BD+FD >BF ,即:x+y >24在△BDF 中,BD -FD <BF ,即:x -y <24满足条件的只有C 选项故选:C【点睛】本题考查三角形三边关系,解题关键是将题干中已知线段和需要求解的线段转化到同一个三角形中去.3.D解析:D【分析】依据平行四边形的性质以及三角形内角和定理,可得θ2-θ1=10°,θ4-θ3=30°,两式相加即可得到θ2+θ4-θ1-θ3=40°.【详解】解:∵四边形ABCD 是平行四边形,∴∠BAD=∠BCD=60°,∴∠BAM=60°-θ1,∠DCM=60°-θ3,∴△ABM 中,60°-θ1+θ2+110°=180°,即θ2-θ1=10°①,△DCM 中,60°-θ3+θ4+90°=180°,即θ4-θ3=30°②,由②+①,可得(θ4-θ3)+(θ2-θ1)=40°,2413 40θθθθ∴+--=︒;故选:D.【点睛】本题主要考查了平行四边形的性质以及三角形内角和定理等知识;熟练掌握平行四边形的对角相等是解题的关键.4.C解析:C【分析】根据平行四边形的性质得到四个平行四边形,且S △ AEP =S △ AGP ,S △PHC =S △ PFC ,S △ABC = S △ADC , 利用面积比较的关系即可求出答案.【详解】由题意知:四边形BHPE 、四边形AEPG 、四边形HCFP 、四边形GPFD 均为平行四边形, ∴S △ AEP =S △ AGP ,S △PHC =S △ PFC ,S △ABC = S △ADC ,又S △ABC =S △AEP +S 四边形BHPE +S △PHC -S △APC ①,S △ADC =S △AGP +S 四边形GPFD +S △PFC +S △APC ②,②-①得,0=S 四边形BHPE -S 四边形GPFD +2S △APC ,即2S △APC =6-4=2,S △APC =1.故选:C.【点睛】此题考查平行四边形的性质,平行四边形一条对角线将平行四边形的面积平分.5.B解析:B【分析】由在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得②1902BOC A ∠=+∠︒正确;由平行线的性质和角平分线的定义得出BEO ∆和CFO ∆是等腰三角形得出EF BE CF =+故①正确;由角平分线定理与三角形面积的求解方法,即可求得③设OD m =,AE AF n +=,则12AEF S mn ∆=,故③错误;E 、F 不可能是三角形ABC 的中点,则EF 不能为中位线故④正确.【详解】解:在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O , 12OBC ABC ∴∠=∠,12OCB ACB ∠=∠,180A ABC ACB ∠+∠+∠=︒, 1902OBC OCB A ∴∠+∠=︒-∠, 1180()902BOC OBC OCB A ∴∠=︒-∠+∠=︒+∠;故(2)正确; 在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,OBC OBE ∴∠=∠,OCB OCF ∠=∠,//EF BC ,OBC EOB ∴∠=∠,OCB FOC ∠=∠,EOB OBE ∴∠=∠,FOC OCF ∠=∠,BE OE ∴=,CF OF =,EF OE OF BE CF ∴=+=+,故(1)正确;过点O 作OM AB ⊥于M ,作ON BC ⊥于N ,连接OA ,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,ON OD OM m ∴===,1111()2222AEF AOE AOF S S S AE OM AF OD OD AE AF mn ∆∆∆∴=+=+=+=;故(3)正确,(4)错误;12EOB S BE OM ∆=,12OCF S FC OD ∆=, OM OD =,BE 不一定等于CF ,EOB S ∆∴不一定等于FOC S .故(5)错误,综上可知其中正确的结论是(1)(2)(3),故选:B .【点睛】此题考查了三角形中位线定理的运用,以及平行线的性质、等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.6.D解析:D【分析】根据题意和图形可看出每经过一次变化,都顺时针旋转45°,可求出从A 到A 3变化后的坐标,再求出A 1、A 2、A 3、A 4、A 5,继而得出A 8坐标即可.【详解】解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°∵从A 到3A 经过了3次变化,∵45°×3=135°,1×3=,∴点3A 所在的正方形的边长为,点3A 位置在第四象限,∴点3A 的坐标是(2,-2),可得出:1A 点坐标为(1,1),2A 点坐标为(0,2),3A 点坐标为(2,-2),4A 点坐标为(0,-4),5A 点坐标为(-4,-4),6A (-8,0),A 7(-8,8),8A (0,16),故选D.【点睛】本题考查了规律题,点的坐标,观察出每一次的变化特征是解答本题的关键.7.A解析:A【分析】①根据正方形的性质证明∠ADB =45°,进而得△DFG 为等腰直角三角形,根据等腰三角形的三线合一性质得∠EFH =12∠EFD =45°,故①正确; ②根据矩形性质得AF =EB ,∠BEF =90°,再证明△AFH ≌△EGH 得EH =AH ,进而证明△EHF ≌△AHD ,故②正确;③由△EHF ≌△AHD 得∠EHF =∠AHD ,怀AH =EH 得∠AEF +∠HEF =45°,进而得∠AEF +∠HAD =45°,故③正确;④如图,过点H 作MN ⊥AD 于点M ,与BC 交于点N ,设EC =FD =FG =x ,则BE =AF =EG =2x ,BC =DC =AB =AD =3x ,HM =12x ,AM =52x ,HN =52x ,由勾股定理得AH 2,再由三角形的面积公式得BEH AHE S S,便可判断④的正误.【详解】证明:①在正方形ABCD中,∠ADC=∠C=90°,∠ADB=45°,∵EF∥CD,∴∠EFD=90°,∴四边形EFDC是矩形.在Rt△FDG中,∠FDG=45°,∴FD=FG,∵H是DG中点,∴∠EFH=12∠EFD=45°故①正确;②∵四边形ABEF是矩形,∴AF=EB,∠BEF=90°,∵BD平分∠ABC,∴∠EBG=∠EGB=45°,∴BE=GE,∴AF=EG.在Rt△FGD中,H是DG的中点,∴FH=GH,FH⊥BD,∵∠AFH=∠AFE+∠GFH=90°+45°=135°,∠EGH=180°﹣∠EGB=180°﹣45°=135°,∴∠AFH=∠EGH,∴△AFH≌△EGH(SAS),∴EH=AH,∵EF=AD,FH=DH,∴△EHF≌△AHD(SSS),故②正确;③∵△EHF≌△AHD,∴∠EHF=∠AHD,∴∠AHE=∠DHF=90°,∵AH=EH,∴∠AEH=45°,即∠AEF+∠HEF=45°,∵∠HEF=∠HAD,∴∠AEF+∠HAD=45°,故③正确;④如图,过点H作MN⊥AD于点M,与BC交于点N,设EC=FD=FG=x,则BE=AF=EG=2x,∴BC=DC=AB=AD=3x,HM =12x,AM=52x,HN=52x,∴22225113222AH x x x⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭=,∴211021132BEHAHEBE HNS=S AH⋅=,故④错误;故选:A.【点睛】本题主要考查正方形的性质、矩形的性质、等腰三角形的性质及勾股定理,这是一道几何综合型题,关键是根据正方形的性质得到线段的等量关系,然后利用矩形、等腰三角形的性质进行求解即可.8.D解析:D【分析】根据菱形的判定和性质,矩形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【详解】①如图,连接AC,BD交于O,四边形ABCD是菱形,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④如图,当四边形ABCD为正方形时,四边形MNPQ是正方形,故至少存在一个四边形MNPQ是正方形;故④正确;综上,①②③④4个均正确,故选:D.【点睛】本题考查了平行四边形的判定和性质,菱形的判定,正方形的判定,矩形的判定,熟记各定理是解题的关键.9.D解析:D【分析】由正方形和折叠的性质得出AF=AB,∠B=∠AFG=90°,由HL即可证明Rt△ABG≌Rt△AFG,得出①正确;设BG=x,则CG=BC−BG=6−x,GE=GF+EF=BG+DE=x+2,由勾股定理求出x=3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB=∠FCG,证出平行线,得出③正确;根据三角形的特点及面积公式求出△FGC的面积=185,得出④正确.【详解】∵四边形ABCD是正方形,∴AB =AD =DC =6,∠B =D =90°,∵CD =3DE ,∴DE =2,∵△ADE 沿AE 折叠得到△AFE ,∴DE =EF =2,AD =AF ,∠D =∠AFE =∠AFG =90°,∴AF =AB ,∵在Rt △ABG 和Rt △AFG 中,AG AG AB AF =⎧⎨=⎩, ∴Rt △ABG ≌Rt △AFG (HL ),∴①正确;∵Rt △ABG ≌Rt △AFG ,∴BG =FG ,∠AGB =∠AGF ,设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,在Rt △ECG 中,由勾股定理得:CG 2+CE 2=EG 2,∵CG =6−x ,CE =4,EG =x +2∴(6−x )2+42=(x +2)2解得:x =3,∴BG =GF =CG =3,∴②正确;∵CG =GF ,∴∠CFG =∠FCG ,∵∠BGF =∠CFG +∠FCG ,又∵∠BGF =∠AGB +∠AGF ,∴∠CFG +∠FCG =∠AGB +∠AGF ,∵∠AGB =∠AGF ,∠CFG =∠FCG ,∴∠AGB =∠FCG ,∴AG ∥CF ,∴③正确;∵△CFG 和△CEG 中,分别把FG 和GE 看作底边,则这两个三角形的高相同. ∴35CFG CEG S FG S GE ==, ∵S △GCE =12×3×4=6, ∴S △CFG =35×6=185, ∴④正确;正确的结论有4个,【点睛】本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.10.B解析:B【分析】通过判断△BDE 为等腰直角三角形,根据等腰直角三角形的性质和勾股定理可对①进行判断;根据等角的余角相等得到∠BHE=∠C ,再根据平行四边形的性质得到∠A=∠C ,则∠A=∠BHE ,于是可对②进行判断;证明△BEH ≌△DEC ,得到BH=CD ,接着由平行四边形的性质得AB=CD ,则AB=BH ,可对③进行判断;因为∠BHD=90°+∠EBH ,∠BDG=90°+∠BDE ,由∠BDE >∠EBH ,推出∠BDG >∠BHD ,可判断④.【详解】解:∵∠DBC=45°,DE ⊥BC ,∴△BDE 为等腰直角三角形,,BE DE BD ∴====,所以①错误;∵BF ⊥CD ,∴∠C+∠CBF=90°,而∠BHE+∠CBF=90°,∴∠BHE=∠C ,∵四边形ABCD 为平行四边形,∴∠A=∠C ,∴∠A=∠BHE ,所以②正确;在△BEH 和△DEC 中BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEH ≌△DEC ,∴BH=CD ,∵四边形ABCD 为平行四边形,∴AB=CD ,∴AB=BH ,所以③正确;∵∠BHD=90°+∠EBH ,∠BDG=90°+∠BDE ,∵∠BDE=∠DBE >∠EBH ,∴∠BDG >∠BHD ,所以④错误;故选:B .本题考查平行四边形的性质,全等三角形的性质和判定,等腰直角三角形的判定和性质,三角形外角的性质.熟练掌握平行四边形的性质并能灵活运用是解题关键,本题中主要用到平行四边形对边相等,对角相等.二、填空题11.43或23 【分析】分情况讨论作出图形,通过解直角三角形得到平行四边形的底和高的长度,根据平行四边形的面积公式即可得到结论.【详解】解:过D 作DE AB ⊥于E ,在Rt ADE △中,30A ∠=︒,23AD =, 132DE AD ∴==,332AE AD ==, 在Rt BDE △中,2BD =,22222(3)1BE BD DE ∴=-=-=,如图1,4AB ∴=,∴平行四边形ABCD 的面积4343AB DE ==⨯=,如图2,2AB =,∴平行四边形ABCD 的面积2323AB DE ==⨯=,如图3,过B 作BE AD ⊥于E ,在Rt ABE △中,设AE x =,则23DE x =,30A ∠=︒,33BE x =, 在Rt BDE △中,2BD =, 22232()(23)x x ∴=+-, 3x ∴=,23x =(不合题意舍去),1BE ∴=,∴平行四边形ABCD 的面积12323AD BE ==⨯=,如图4,当AD BD ⊥时,平行四边形ABCD 的面积43AD BD ==, 故答案为:323 【点睛】本题考查了平行四边形的性质,平行四边形的面积公式的运用、30度角的直角三角形的性质,根据题意作出图形是解题的关键. 12.222【分析】由题意根据三角形的中位线的性质得到EF=12PD ,得到C △CEF =CE+CF+EF=CE+12(CP+PD )=12(CD+PC+PD )=12C △CDP ,当△CDP 的周长最小时,△CEF 的周长最小;即PC+PD 的值最小时,△CEF 的周长最小;并作D 关于AB 的对称点D ′,连接CD ′交AB 于P ,进而分析即可得到结论.【详解】解:∵E 为CD 中点,F 为CP 中点,∴EF=12PD , ∴C △CEF =CE+CF+EF=CE+12(CP+PD )=12(CD+PC+PD )=12C △CDP ∴当△CDP 的周长最小时,△CEF 的周长最小;即PC+PD 的值最小时,△CEF 的周长最小;如图,作D 关于AB 的对称点T ,连接CT ,则PD=PT ,∵AD=AT=BC=2,CD=4,∠CDT=90°,∴22224442 CT CD DT++=∵△CDP的周长=CD+DP+PC=CD+PT+PC,∵PT+PC≥CT,∴PT+PC≥42∴PT+PC的最小值为2,∴△PDC的最小值为4+42∴C△CEF=12C△CDP=222.故答案为:222.【点睛】本题考查轴对称-最短距离问题以及三角形的周长的计算等知识,解题的关键是学会利用轴对称解决最值问题.13.①③④【分析】由矩形的性质可得AB=CD,AD=BC,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD,由角平分线的性质和余角的性质可得∠F=∠FAD=45°,可得AD=DF=BC,可判断①;通过证明△DCG≌△BEG,可得∠BGE=∠DGC,BG=DG,即可判断②③;过点G作GH⊥CD于H,设AD=4x=DF,AB=3x,由勾股定理可求BD=5x,由等腰直角三角形的性质可得HG=CH=FH=12x,DG=GB=522x,由三角形面积公式可求解,可判断④.【详解】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD,∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠F=∠FAD,∴AD=DF,∴BC=DF,故①正确;∵∠EAB=∠BEA=45°,∴AB=BE=CD ,∵∠CEF=∠AEB=45°,∠ECF=90°,∴△CEF 是等腰直角三角形,∵点G 为EF 的中点,∴CG=EG ,∠FCG=45°,CG ⊥AG ,∴∠BEG=∠DCG=135°,在△DCG 和△BEG 中,===BE CD BEG DCG CG EG ⎧⎪∠∠⎨⎪⎩,∴△DCG ≌△BEG (SAS ).∴∠BGE=∠DGC ,BG=DG ,∵∠BGE <∠AEB ,∴∠DGC=∠BGE <45°,∵∠CGF=90°,∴∠DGF <135°,故②错误;∵∠BGE=∠DGC ,∴∠BGE+∠DGA=∠DGC+∠DGA ,∴∠CGA=∠DGB=90°,∴BG ⊥DG ,故③正确;过点G 作GH ⊥CD 于H ,∵34AB AD =, ∴设AD=4x=DF ,AB=3x ,∴CF=CE=x ,22AB AD x +,∵△CFG ,△GBD 是等腰直角三角形,∴HG=CH=FH=12x ,DG=GB=522x , ∴S △DGF =12×DF×HG=x 2,S △BDG =12DG×GB=254x 2,∴254BDG FDG S S =,故④正确;故答案为:①③④. 【点睛】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.14.201812【分析】根据几何图形特征,先求出1C 、2C 、3C ,根据求出的结果,找出规律,从而得出2020C .【详解】∵点E 是BC 的中点,ED ∥AB ,EF ∥AC∴DE 、EF 是△ABC 的中位线∵等边△ABC 的边长为1∴AD=DE=EF=AF =12 则1C =1422⨯= 同理可求得:2C =1,3C =12发现规律:规律为依次缩小为原来的12 ∴2020C =201812故答案为:201812.【点睛】 本题考查找规律和中位线的性质,解题关键是求解出几组数据,根据求解的数据寻找规律.15.①②③④【分析】根据正方形的性质和SAS 可证明△ABG ≌△AEC ,然后根据全等三角形的性质即可判断①;设BG 、CE 相交于点N ,AC 、BG 相交于点K ,如图1,根据全等三角形对应角相等可得∠ACE =∠AGB ,然后根据三角形的内角和定理可得∠CNG =∠CAG =90°,于是可判断②;过点E 作EP ⊥HA 的延长线于P ,过点G 作GQ ⊥AM 于Q ,如图2,根据余角的性质即可判断④;利用AAS 即可证明△ABH ≌△EAP ,可得EP =AH ,同理可证GQ =AH ,从而得到EP =GQ ,再利用AAS 可证明△EPM ≌△GQM ,可得EM =GM ,从而可判断③,于是可得答案.【详解】解:在正方形ABDE 和ACFG 中,AB =AE ,AC =AG ,∠BAE =∠CAG =90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;设BG、CE相交于点N,AC、BG相交于点K,如图1,∵△ABG≌△AEC,∴∠ACE=∠AGB,∵∠AKG=∠NKC,∴∠CNG=∠CAG=90°,∴BG⊥CE,故②正确;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,∵AH⊥BC,∴∠ABH+∠BAH=90°,∵∠BAE=90°,∴∠EAP+∠BAH=90°,∴∠ABH=∠EAP,即∠EAM=∠ABC,故④正确;∵∠AHB=∠P=90°,AB=AE,∴△ABH≌△EAP(AAS),∴EP=AH,同理可得GQ=AH,∴EP=GQ,∵在△EPM和△GQM中,90P MQG EMP GMQ EP GQ ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△EPM ≌△GQM (AAS ),∴EM =GM ,∴AM 是△AEG 的中线,故③正确.综上所述,①②③④结论都正确.故答案为:①②③④.【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.16.6【分析】由折叠的性质可得∠BAC=∠B'AC=90°,AB=AB',S △ABC =S △AB'C =12cm 2,可证点B ,点A ,点B'三点共线,通过证明四边形ACDB'是平行四边形,可得B'E=CE ,即可求解.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,S △ABC =1242⨯=12cm 2,∵在同一平面内将△ABC 沿AC 翻折,得到△AB ′C ,∴∠BAC=∠B'AC=90°,AB=AB',S △ABC =S △AB'C =12cm 2,∴∠BAB'=180°,∴点B ,点A ,点B'三点共线,∵AB ∥CD ,AB'∥CD ,∴四边形ACDB'是平行四边形,∴B'E=CE ,∴S △ACE =12S △AB'C =6cm 2, 故答案为:6.【点睛】本题考查了翻折变换,平行四边形的判定和性质,证明点B ,点A ,点B'三点共线是本题的关键.17.6【分析】先证明△AEB ≌△FEB ≌△DEF ,从而可知S △ABE =13S △DAB ,即可求得△ABE 的面积. 【详解】解:由折叠的性质可知:△AEB ≌△FEB∴∠EFB=∠EAB=90°∵ABCD为矩形∴DF=FB∴EF垂直平分DB∴ED=EB在△DEF和△BEF中DF=BF EF=EF ED=EB∴△DEF≌△BEF∴△AEB≌△FEB≌△DEF∴13666AEB FEB DEF ABCDS S S S∆∆∆====⨯=矩形.故答案为6.【点睛】本题主要考查的是折叠的性质、矩形的性质、线段垂直平分线的性质和判定、全等三角形的判定和性质,证得△AEB≌△FEB≌△DEF是解题的关键.18.663【分析】通过四边形ABCD是矩形以及CE CB BE==,得到△FEM是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM,NK,KE的值,进而得到NE的值,再利用30°直角三角形的性质及勾股定理得到BN,BE即可.【详解】解:如图,设NE交AD于点K,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠MFE=∠FCB,∠FME=∠EBC∵CE CB BE==,∴△BCE为等边三角形,∴∠BEC=∠ECB=∠EBC=60°,∵∠FEM=∠BEC,∴∠FEM=∠MFE=∠FME=60°,∴△FEM是等边三角形,FM=FE=EM=2,∵EN⊥BE,∴∠NEM=∠NEB=90°,∴∠NKA=∠MKE=30°,∴KM=2EM=4,NK=2AN=6,∴在Rt△KME中,=∴NE=NK+KE=6+∵∠ABC=90°,∴∠ABE=30°,∴BN=2NE=12+43, ∴BE=22663BN NE -=+,∴BC=BE=663,故答案为:663【点睛】本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.19.6.5或8或18【分析】根据题意分BP QP =、BQ QP =两种情况分别讨论,再结合勾股定理求解即可.【详解】解:∵四边形ABCD 是矩形,26AD =,点Q 是BC 的中点∴13BQ =∴①当BP QP =时,过点P 作PM BQ ⊥交BQ 于点M ,如图,则 6.5BM MQ ==,且四边形ABMP 为矩形∴ 6.5AP BM ==②当BQ QP =时,以点Q 为圆心,BQ 为半径作圆,与AD 交于P '、P ''两点,如图,过Q 作QN P P '''⊥,交P P '''于点N ,则可知P N P N '''=∵在Rt P NQ ',13P Q '=,12NQ AB == ∴222213125P N P Q NQ ''=-=-=同理,在Rt P NQ ''中,5P N ''= ∴2655822AD P N P N AP '''----'===,85518AP AP P N P N ''''''=++=++= 即P '、P ''为满足条件的P 点的位置∴8AP =或18∴综上所述,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为6.5或8或18. 故答案是:6.5或8或18【点睛】本题考查了矩形的性质、等腰三角形的性质以及勾股定理等知识,根据等腰三角形的性质进行分类讨论是一个难点,也是解题的关键.202a3212a 【分析】(1)根据折叠的性质可得出,四边形AFED 为正方形,CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=,得出AB=AE ,继而可得解;(2)结合(1)可知,AE AM 2a ==,因为EC=3BM ,所以有1BM 2FM =,求出BM ,继而可得解.【详解】解:(1)由折叠的性质可得,CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=, ∴AB=AE , ∵2AE 22a a == ∴AB 2a =.(2)结合(1)可知,AE AM ==,∴FM a =-,∵EC=3BM , ∴1BM 2FM =∴BM =∴AB =+=.;12a . 【点睛】 本题是一道关于折叠的综合题目,主要考查折叠的性质,弄清题意,结合图形找出线段间的数量关系是解题的关键.三、解答题21.(1)AE t =;122AD t =-;DF t =;(2)证明见解析;(3)3t =;理由见解析.【分析】(1)根据题意用含t 的式子表示AE 、CD ,结合图形表示出AD ,根据直角三角形的性质表示出DF ;(2)根据对边平行且相等的四边形是平行四边形证明;(3)根据矩形的定义列出方程,解方程即可.【详解】解:(1)由题意得,AE t =,2CD t =,则122AD AC CD t =-=-,∵DF BC ⊥,30C ∠=︒,∴12DF CD t == (2)∵90ABC ∠=︒,DF BC ⊥,∴AB DF , ∵AE t =,DF t =,∴AE DF =,∴四边形AEFD 是平行四边形;(3)当3t =时,四边形EBFD 是矩形,理由如下:∵90ABC ∠=︒,30C ∠=︒, ∴162BC AC cm ==, ∵BE DF ∥,∴BE DF =时,四边形EBFD 是平行四边形,即6t t -=,解得,3t =,∵90ABC ∠=︒,∴四边形EBFD 是矩形,∴3t =时,四边形EBFD 是矩形.【点睛】本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.22.(1)①证明见详解;②45PAQ ∠=︒,见解析;(2)5.【分析】(1)①只要证明//PB AC 即可解决问题;②如图2中,连接QC ,作DT DQ ⊥交QC 的延长线于T ,利用全等三角形的性质解决问题即可;(2)如图3中,延长EH 交BC 于点G ,设AE=x ,由题意易得AB=BC=CF=EG=3x ,然后可得CG=2x ,HG=3x-3,CH=3x-1,利用勾股定理求解即可.【详解】(1)①证明:四边形ABCD 是正方形,∴//B DP C ,45DAC ∠=︒,∴135PAC ∠=︒45APB ∠=︒,∴+180APB PAC ∠∠=︒,∴//PB AC∴四边形APBC 是平行四边形; ②四边形PADQ 是平行四边形,∴DQ//,//,AP AD PQ AD PQ BC ==,AD//B C ,∴,//PQ BC PQ BC =,∴四边形PQCB 是平行四边形,∴QC//BP ,∴45APQ DQC ∠=∠=︒,90ADC QDT ∠=∠=︒,∴DQ=DT ,45,T DQT ADQ CDT ∠=∠=︒∠=∠,AD=DC ,∴ADQ CDT ≌,∴45AQD T ∠=∠=︒,AP//DQ ,∴45PAQ DQA ∠=∠=︒;(3)CH=5,理由如下:。

人教版平行四边形单元达标测试提优卷

人教版平行四边形单元达标测试提优卷

人教版平行四边形单元达标测试提优卷一、解答题1.已知,四边形ABCD是正方形,点E是正方形ABCD所在平面内一动点(不与点D重合),AB=AE,过点B作DE的垂线交DE所在直线于F,连接CF.提出问题:当点E运动时,线段CF与线段DE之间的数量关系是否发生改变?探究问题:(1)首先考察点E的一个特殊位置:当点E与点B重合(如图①)时,点F与点B也重合.用等式表示线段CF与线段DE之间的数量关系:;(2)然后考察点E的一般位置,分两种情况:情况1:当点E是正方形ABCD内部一点(如图②)时;情况2:当点E是正方形ABCD外部一点(如图③)时.在情况1或情况2下,线段CF与线段DE之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF,用等式表示线段AF、CF、DF三者之间的数量关系:.=,对角线AC,BD交于点O,2.如图,在四边形ABCD中,AB∥DC,AB AD⊥交AB的延长线于点E,连接OE.AC平分BAD∠,过点C作CE AB(1)求证:四边形ABCD 是菱形;(2)若5AE =,3OE =,求线段CE 的长.3.综合与实践.问题情境:如图①,在纸片ABCD □中,5AD =,15ABCD S =,过点A 作AE BC ⊥,垂足为点E ,沿AE 剪下ABE △,将它平移至DCE '的位置,拼成四边形AEE D '.独立思考:(1)试探究四边形AEE D '的形状.深入探究:(2)如图②,在(1)中的四边形纸片AEE D '中,在EE '.上取一点F ,使4EF =,剪下AEF ,将它平移至DE F ''的位置,拼成四边形AFF D ',试探究四边形AFF D '的形状;拓展延伸:(3)在(2)的条件下,求出四边形AFF D '的两条对角线长;(4)若四边形ABCD 为正方形,请仿照上述操作,进行一次平移,在图③中画出图形,标明字母,你能发现什么结论,直接写出你的结论.4.如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF .(1)求证:四边形BFEP 为菱形;(2)当E 在AD 边上移动时,折痕的端点P 、Q 也随着移动.①当点Q 与点C 重合时, (如图2),求菱形BFEP 的边长;②如果限定P 、Q 分别在线段BA 、BC 上移动,直接写出菱形BFEP 面积的变化范围.5.如图1,点E 为正方形ABCD 的边AB 上一点,EF EC ⊥,且EF EC =,连接AF ,过点F 作FN 垂直于BA 的延长线于点N .(1)求EAF ∠的度数;(2)如图2,连接FC 交BD 于M ,交AD 于P ,试证明:2BD BG DG AF DM =+=+.6.探究:如图①,△ABC 是等边三角形,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、AN ,延长MC 交AN 于点P .(1)求证:△ACN ≌△CBM ;(2)∠CPN = °;(给出求解过程)(3)应用:将图①的△ABC 分别改为正方形ABCD 和正五边形ABCDE ,如图②、③,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、DN ,延长MC 交DN 于点P ,则图②中∠CPN = °;(直接写出答案)(4)图③中∠CPN = °;(直接写出答案)(5)拓展:若将图①的△ABC 改为正n 边形,其它条件不变,则∠CPN = °(用含n 的代数式表示,直接写出答案).7.已知:在矩形ABCD 中,点F 为AD 中点,点E 为AB 边上一点,连接CE 、EF 、CF ,EF 平分∠AEC . (1)如图1,求证:CF ⊥EF;(2)如图2,延长CE 、DA 交于点K, 过点F 作FG ∥AB 交CE 于点G 若,点H 为FG 上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;(3)如图3, 过点H 作HN ⊥CH 交AB 于点N,若EN=11,FH-GH=1,求GK 长.8.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF =①求证:EF 与BD 互相平分;②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒,2246B BP PD +=时,求PD 之长.9.如图,在矩形ABCD 中,AD =nAB ,E ,F 分别在AB ,BC 上.(1)若n =1,AF ⊥DE .①如图1,求证:AE =BF ;②如图2,点G 为CB 延长线上一点,DE 的延长线交AG 于H ,若AH =AD ,求证:AE +BG =AG ;(2)如图3,若E 为AB 的中点,∠ADE =∠EDF .则CF BF的值是_____________(结果用含n 的式子表示).10.在四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF,GH分别交边AB、CD,AD、BC于点E、F、G、H.(1)观察发现:如图①,若四边形ABCD是正方形,且EF⊥GH,易知S△BOE=S△AOG,又因为S△AOB=14S四边形ABCD,所以S四边形AEOG=S正方形ABCD;(2)类比探究:如图②,若四边形ABCD是矩形,且S四边形AEOG=14S矩形ABCD,若AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);(3)拓展迁移:如图③,若四边形ABCD是平行四边形,且S四边形AEOG=14S▱ABCD,若AB=3,AD=5,BE=1,则AG=.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)DE2CF;(2)在情况1与情况2下都相同,详见解析;(3)AF+CF=2DF或|AF-CF|2【分析】(1)易证△BCD是等腰直角三角形,得出2CB,即可得出结果;(2)情况1:过点C作CG⊥CF,交DF于G,设BC交DF于P,由ASA证得△CDG≌△CBF,得出DG=FB,CG=CF,则△GCF是等腰直角三角形,2CF,连接BE,设∠CDG=α,则∠CBF=α,∠DEA=∠ADE=90°-α,求出∠DAE=2α,则∠EAB=90°-2α,∠BEA=∠ABE=12(180°-∠EAB)=45°+α,∠CBE=45°-α,推出∠FBE=45°,得出△BEF是等腰直角三角形,则EF=BF,推出EF=DG,DE=FG,得出2CF;情况2:过点C 作CG ⊥CF 交DF 延长线于G ,连接BE ,设CD 交BF 于P ,由ASA 证得△CDG ≌△CBF ,得出DG=FB ,CG=CF ,则△GCF 是等腰直角三角形,得CF ,设∠CDG=α,则∠CBF=α,证明△BEF 是等腰直角三角形,得出EF=BF ,推出DE=FG ,得出CF ;(3)①当F 在BC 的右侧时,作HD ⊥DF 交FA 延长线于H ,由(2)得△BEF 是等腰直角三角形,EF=BF ,由SSS 证得△ABF ≌△AEF ,得出∠EFA=∠BFA=12∠BFE=45°,则△HDF 是等腰直角三角形,得DF ,DH=DF ,∵∠HDF=∠ADC=90°,由SAS 证得△HDA ≌△FDC ,得CF=HA ,即可得出;②当F 在AB 的下方时,作DH ⊥DE ,交FC 延长线于H ,在DF 上取点N ,使CN=CD ,连接BN ,证明△BFN 是等腰直角三角形,得BF=NF ,由SSS 证得△CNF ≌△CBF ,得∠NFC=∠BFC=12∠BFD=45°,则△DFH 是等腰直角三角形,得,DF=DH ,由SAS证得△ADF ≌△CDH ,得出CH=AF ,即可得出DF ;③当F 在DC 的上方时,连接BE ,作HD ⊥DF ,交AF 于H ,由(2)得△BEF 是等腰直角三角形,EF=BF ,由SSS 证得△ABF ≌△AEF ,得∠EFA=∠BFA=12∠BFE=45°,则△HDF 是等腰直角三角形,得出DF ,DH=DF ,由SAS 证得△ADC ≌△HDF ,得出AH=CF ,即可得出;④当F 在AD 左侧时,作HD ⊥DF 交AF 的延长线于H ,连接BE ,设AD 交BF 于P ,证明△BFE 是等腰直角三角形,得EF=BF ,由SSS 证得△ABF ≌△AEF ,得∠EFA=∠BFA=12∠BFE=45°,则∠DFH=∠EFA=45°,△HDF 是等腰直角三角形,得DH=DF ,,由SAS 证得△HDA ≌△FDC ,得出AF=CF ,即可得出DF .【详解】解:(1)∵四边形ABCD 是正方形,∴CD=CB ,∠BCD=90°,∴△BCD 是等腰直角三角形,∴CB ,当点E 、F 与点B 重合时,则CF ,故答案为:CF ;(2)在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中结论相同;理由如下:情况1:∵四边形ABCD 是正方形,∴CD=CB=AD=AB=AE ,∠BCD=∠DAB=∠ABC=90°,过点C 作CG ⊥CF ,交DF 于G ,如图②所示:则∠BCD=∠GCF=90°,∴∠DCG=∠BCF ,设BC 交DF 于P ,∵BF ⊥DE ,∴∠BFD=∠BCD=90°,∵∠DPC=∠FPB ,∴∠CDP=∠FBP ,在△CDG 和△CBF 中,DCG BCF CD CBCDG CBF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△CDG ≌△CBF (ASA ),∴DG=FB ,CG=CF ,∴△GCF 是等腰直角三角形,∴2,连接BE ,设∠CDG=α,则∠CBF=α,∠ADE=90°-α,∵AD=AE ,∴∠DEA=∠ADE=90°-α,∴∠DAE=180°-2(90°-α)=2α,∴∠EAB=90°-2α,∵AB=AE ,∴∠BEA=∠ABE=12(180°-∠EAB )=12(180°-90°+2α)=45°+α, ∴∠CBE=90°-(45°+α)=45°-α,∴∠FBE=∠CBE+∠CBF=45°-α+α=45°,∵BF ⊥DE ,∴△BEF 是等腰直角三角形,∴EF=BF ,∴EF=DG ,∴EF+EG=DG+EG ,即DE=FG ,∴2CF ;情况2:过点C 作CG ⊥CF 交DF 延长线于G ,连接BE ,设CD 交BF 于P ,如图③所示:∵∠GCF=∠BCD=90°,∴∠DCG=∠BCF ,∵∠FPD=∠BPC ,∴∠FDP=∠PBC ,在△CDG 和△CBF 中,DCG BCF CD CBCDG CBF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△CDG ≌△CBF (ASA ),∴DG=FB ,CG=CF ,∴△GCF 是等腰直角三角形,∴2,设∠CDG=α,则∠CBF=α,同理可知:∠DEA=∠ADE=90°-α,∠DAE=2α,∴∠EAB=90°+2α,∵AB=AE ,∴∠BEA=∠ABE=45°-α,∴∠FEB=∠DEA-∠AEB=90°-α-(45°-α)=45°,∵BF ⊥DE ,∴△BEF 是等腰直角三角形,∴EF=BF ,∴EF=DG ,∴DE=FG ,∴2CF ;(3)①当F 在BC 的右侧时,作HD ⊥DF 交FA 延长线于H ,如图④所示:由(2)得:△BEF 是等腰直角三角形,EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ⎧⎪⎨⎪⎩===,∴△ABF ≌△AEF (SSS ),∴∠EFA=∠BFA=12∠BFE=45°, ∴△HDF 是等腰直角三角形,∴2,DH=DF ,∵∠HDF=∠ADC=90°,∴∠HDA=∠FDC ,在△HDA 和△FDC 中,DH DF HDA FDC DA DC ⎧⎪∠∠⎨⎪⎩===,∴△HDA ≌△FDC (SAS ),∴CF=HA , 2,即2DF ;②当F 在AB 的下方时,作DH ⊥DE ,交FC 延长线于H ,在DF 上取点N ,使CN=CD ,连接BN ,如图⑤所示:设∠DAE=α,则∠CDN=∠CND=90°-α,∴∠DCN=2α,∴∠NCB=90°-2α,∵CN=CD=CB ,∴∠CNB=∠CBN=12(180°-∠NCB )=12(180°-90°+2α)=45°+α, ∵∠CNE=180°-∠CND=180°-(90°-α)=90°+α,∴∠FNB=90°+α-(45°+α)=45°,∴△BFN 是等腰直角三角形,∴BF=NF ,在△CNF 和△CBF 中,CN CB CF CF NF BF ⎧⎪⎨⎪⎩===,∴△CNF ≌△CBF (SSS ),∴∠NFC=∠BFC=12∠BFD=45°, ∴△DFH 是等腰直角三角形,∴2,DF=DH ,∵∠ADC=∠HDE=90°,∴∠ADF=∠CDH ,在△ADF 和△CDH 中,AD CD ADF CDH DF DH ⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△CDH (SAS ),∴CH=AF ,∴FH=CH+CF=AF+CF ,∴AF+CF=2DF ;③当F 在DC 的上方时,连接BE ,作HD ⊥DF ,交AF 于H ,如图⑥所示:由(2)得:△BEF 是等腰直角三角形,EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ⎧⎪⎨⎪⎩===,∴△ABF ≌△AEF (SSS ), ∴∠EFA=∠BFA=12∠BFE=45°, ∴△HDF 是等腰直角三角形,∴2,DH=DF ,∵∠ADC=∠HDF=90°,∴∠ADH=∠CDF ,在△ADC 和△HDF 中,AD CD ADH CDF DH DF ⎧⎪∠∠⎨⎪⎩===,∴△ADC ≌△HDF (SAS ),∴AH=CF ,∴HF=AF-AH=AF-CF ,∴2DF ;④当F 在AD 左侧时,作HD ⊥DF 交AF 的延长线于H ,连接BE ,设AD 交BF 于P ,如图⑦所示:∵AB=AE=AD ,∴∠AED=∠ADE ,∵∠PFD=∠PAB=90°,∠FPD=∠BPA ,∴∠ABP=∠FDP ,∴∠FEA=∠FBA ,∵AB=AE ,∴∠AEB=∠ABE ,∴∠FEB=∠FBE ,∴△BFE 是等腰直角三角形,∴EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ⎧⎪⎨⎪⎩===,∴△ABF ≌△AEF (SSS ),∴∠EFA=∠BFA=12∠BFE=45°, ∴∠DFH=∠EFA=45°,∴△HDF 是等腰直角三角形,∴DH=DF ,2DF ,∵∠HDF=∠CDA=90°,∴∠HDA=∠FDC ,在△HDA 和△FDC 中,DH DF HDA FDC AD CD ⎧⎪∠∠⎨⎪⎩===,∴△HDA ≌△FDC (SAS ),∴AF=CF ,∴AH-AF=CF-AF=HF ,∴CF-AF=2DF , 综上所述,线段AF 、CF 、DF 三者之间的数量关系:AF+CF=2DF 或|AF-CF|=2DF , 故答案为:AF+CF=2DF 或|AF-CF|=2DF .【点睛】 本题是四边形综合题,主要考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形内角和定理、等腰三角形的性质等知识;熟练掌握全等三角形的判定与性质和等腰直角三角形的判定与性质是解题的关键.2.(1)见解析;(2)11 【分析】(1)根据题意先证明四边形ABCD 是平行四边形,再由AB=AD 可得平行四边形ABCD 是菱形;(2)根据菱形的性质得出OA 的长,根据直角三角形斜边中线定理得出OE=12AC ,在Rt ACE ∆应用勾股定理即可解答.【详解】(1)证明:∵AB CD ∥,∴OAB DCA ∠=∠,∵AC 为DAB ∠的平分线,∴OAB DAC ∠=∠,∴DCA DAC ∠=∠,∴CD AD AB ==,∵AB CD ∥,∴四边形ABCD 是平行四边形,∵AD AB =,∴ABCD 是菱形;(2)∵四边形ABCD 是菱形∴AO CO =∵CE AB ⊥∴90AEC ∠=︒∴26AC OE ==在Rt ACE ∆中,2211CE AC AE -故答案为(211.【点睛】本题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,熟练掌握菱形的判定与性质是解题的关键.3.(1)矩形;(2)菱形;(3)4)见解析【分析】(1)由平移推出AD EE '=,即可证得四边形AEE D '是平行四边形,再根据AE BC ⊥,得到90AEE '∠=︒即可得到结论;(2)由平移推出AD FF '=,证得四边形AFF D '是平行四边形,根据AE EF ⊥得到90AEE '∠=︒,再根据勾股定理求出AF=5=AD ,即可证得四边形AFF D '是菱形;(3)先利用勾股定理求出DF ==,再根据菱形的面积求出F A ';(4)在BC 边上取点E ,连接AE ,平移△ABE 得到△DCF ,可得四边形AEFD 是平行四边形.【详解】(1)四边形AEE D '是矩形,在ABCD □中,//AD BC ,AD BC =,由平移可知:BE CE ''=,∴BC EE '=,∴AD EE '=,∴四边形AEE D '是平行四边形,∵AE BC ⊥,∴90AEE '∠=︒,∴四边形AEE D '是矩形;(2)四边形AFF D '是菱形,在矩形AEE D '中,//AD EE ' ,AD EE '=,由平移可知:EF E F ='',∴EE FF ''=,∴AD FF '=,∴四边形AFF D '是平行四边形,∵AE EF ⊥,∴90AEE '∠=︒,在Rt AEF ,5AF ===, ∴AF AD =,∴四边形AFF D '是菱形;(3)连接F A ',在Rt DFE '△中,DF ==,15ABCD AFF D S S '==平行四边形菱形,∴·30F A FD '=,∴310F A'=;(4)在BC上取一点E,连接AE,平移△ABE得到△DCF,可得四边形AEFD是平行四边形.【点睛】此题考查了平行四边形的性质,矩形的判定定理,菱形的判定及性质,平移的性质的应用,勾股定理.4.(1)证明过程见解析;(2)①边长为53cm,②225cm S9cm3≤≤.【分析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD-DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=53cm即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.【详解】解:(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt △CDE 中,DE =22CE -CD =4cm ,∴AE =AD ﹣DE =5cm -4cm =1cm ;在Rt △APE 中,AE =1,AP =3-PB =3﹣PE ,∴222EP =1(3-EP)+,解得:EP =53cm , ∴菱形BFEP 的边长为53cm ; ②当点Q 与点C 重合时,点E 离点A 最近,由①知,此时AE =1cm ,BP=53cm , 2BFEP 5S =BP AE=cm 3⋅四边形,当点P 与点A 重合时,点E 离点A 最远,此时四边形ABQE 为正方形,AE =AB =3cm , 2ABQE BFEP S =S =9cm 正方形四边形,∴菱形的面积范围:225cm S 9cm 3≤≤.【点睛】本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识,求出PE 是本题的关键.5.(1)∠EAF=135°;(2)证明见解析.【分析】(1)根据正方形的性质,找到证明三角形全等的条件,只要证明△EBC ≌△FNE (AAS )即可解决问题;(2)过点F 作FG ∥AB 交BD 于点G .首先证明四边形ABGF 为平行四边形,再证明△FGM ≌△DMC (AAS )即可解决问题;【详解】(1)解:∵四边形ABCD 是正方形,∴90B N CEF ∠=∠=∠=︒,∴90NEF CEB ∠+∠=,90CEB BCE ∠+∠=,∴NEF ECB ∠=∠,∵EC EF =,∴EBC ∆≌FNE ∆∴FN BE =,EN BC =,∵BC AB =∴EN AB =∴EN AE AB AE -=-∴AN BE =,∴FN AN =,∵FN AB ⊥,∴45NAF ∠=,∴135EAF =∠(2)证明:过点F 作//FG AB 交BD 于点G .由(1)可知135EAF =∠,∵45ABD ∠=︒∴135180EAF ABD ∠=︒+∠=︒,∴//AF BG ,∵//FG AB ,∴四边形ABGF 为平行四边形,∴AF BG =,FG AB =,∵AB CD =,∴FG CD =,∵//AB CD ,∴//FG CD ,∴FGM CDM ∠=∠,∵FMG CMD ∠=∠∴FGM ∆≌CDM ∆∴GM DM =,∴2DG DM =,∴2BD BG DG AF DM =+=+.【点睛】本题考查全等三角形的判定和性质、正方形的性质、平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.6.(1)见解析;(2)120;(3)90;(4)72;(5)360n. 【分析】(1)利用等边三角形的性质得到BC=AC ,∠ACB=∠ABC ,从而得到△ACN ≌△CBM. (2)利用全等三角形的性质得到∠CAN=∠BCM ,再利用三角形的外角等于与它不相邻的两个内角的和,即可求解.(3)利用正方形(或正五边形)的性质得到BC=DC ,∠ABC=∠BCD ,从而判断出△DCN ≌△CBM ,再利用全等三角形的性质得到∠CDN=∠BCM ,再利用内角和定理即可得到答案.(4)由(3)的方法即可得到答案.(5)利用正三边形,正四边形,正五边形,分别求出∠CPN 的度数与边数的关系式,即可得到答案.【详解】(1)∵△ABC 是等边三角形,∴BC=AC ,∠ACB=∠BAC=∠ABC=60︒,∴∠ACN=∠CBM=120︒,在△CAN 和△CBM 中, CN BM ACN CBM AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACN ≌△CBM.(2)∵△ACN ≌△CBM.∴∠CAN=∠BCM ,∵∠ABC=∠BMC+∠BCM ,∠BAN=∠BAC+∠CAN ,∴∠CPN=∠BMC+∠BAN=∠BMC+∠BAC+∠CAN=∠BMC+∠BAC+∠BCM=∠ABC+∠BAC=60︒+60︒,=120︒,故答案为:120.(3)将等边三角形换成正方形,∵四边形ABCD 是正方形,∴BC=DC ,∠ABC=∠BCD=90︒,∴∠MBC=∠DCN=90︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩,∴△DCN ≌△CBM ,∴∠CDN=∠BCM ,∵∠BCM=∠PCN ,∴∠CDN=∠PCN ,在Rt △DCN 中,∠CDN+∠CND=90︒,∴∠PCN+∠CND=90︒,∴∠CPN=90︒,故答案为:90.(4)将等边三角形换成正五边形,∴∠ABC=∠DCB=108︒,∴∠MBC=∠DCN=72︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩,∴△DCN ≌△CBM ,∴∠BMC=∠CND ,∠BCM=∠CDN ,∵∠BCM=∠PCN ,∴∠CND=∠PCN ,在△CDN 中,∠CDN+∠CND=∠BCD=108︒,∴∠CPN=180︒-(∠CND+∠PCN)=180︒-(∠CND+∠CDN)=180︒-108︒,=72︒,故答案为:72.(5)正三边形时,∠CPN=120︒=3603, 正四边形时,∠CPN=90︒=3604, 正五边形时,∠CPN=72︒=3605, 正n 边形时,∠CPN=360n , 故答案为: 360n.【点睛】此题考查正多边形的性质,三角形全等的判定及性质,图形在发生变化但是解题的思路是不变的,依据此特点进行解题是解此题的关键.7.(1)证明见解析;(2)证明见解析;(3)CN=25.【解析】【分析】(1)如图,延长EF交CD延长线于点Q,先证明CQ=CE,再证明△FQD≌△FEA,根据全等三角形的对应边相等可得EF=FQ,再根据等腰三角形的性质即可得CF⊥EF;(2)分别过点F、H作FM⊥CE ,HP⊥CD,垂足分别为M、P,证明四边形DFHP是矩形,继而证明△HPC≌△FMK,根据全等三角形的性质即可得CH=FK;(3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α,先证明得到FG=CG=GE,∠CGT=2α,再由FG是BC的中垂线,可得BG = CG,∠CGT=∠FGK=∠BGT=2α,再证明HN∥BG,得到四边形HGBN是平行四边形,继而证明△HNC≌△KGF,推导可得出HT=CT=TN ,由FH-HG=1,所以设GH=m,则BN=m,FH=m+1,CE=2FG=4m+2,继而根据22222=-=-,可得关于m的方程,解方程求得m的值即可求得答案. BC CN BN CE BE【详解】(1)如图,延长EF交CD延长线于点Q,∵矩形ABCD,AB∥CD,∴∠AEF=∠CQE,∠A=∠QDF,又∵EF 平分∠AEC ,∴∠AEF=∠CEF,∴∠CEF=∠CQE,∴CQ=CE,∵点F是AD中点,∴AF=DF,∴△FQD≌△FEA,∴EF=FQ,又∵CE=CQ,∴CF⊥EF;(2)分别过点F、H作FM⊥CE ,HP⊥CD,垂足分别为M、P,∵CQ=CE ,CF⊥EF,∴∠DCF=∠FCE,又∵FD⊥CD,∴FM=DF,∵FG//AB,∴∠DFH=∠DAC=90°,∴∠DFH=∠FDP=∠DPH=90°,∴四边形DFHP是矩形,∴DF=HP,∴FM= DF=HP,∵∠CHG=∠BCE,AD∥BC,FG∥CD,∴∠K=∠BCE=∠CHG=∠DCH,又∵∠FMK=∠HPC=90°,∴△HPC≌△FMK,∴CH=FK;(3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α,∵FG∥CD ,∴∠DCF=∠CFG,∴∠FCG=∠CFG,∴FG=CG,∵CF⊥EF,∴∠FEG+∠FCG=90°,∠CFG+∠GFE=90°,∴∠GFE=∠FEG,∴GF=FE,∴FG=CG=GE,∠CGT=2α,∵FG是BC的中垂线,∴BG = CG,∠CGT=∠FGK=∠BGT=2α,∵∠CHG=∠BCE=90°-2α,∠CHN=90°,∴∠GHN=∠FGK=∠BGT=2α,∴HN∥BG,∴四边形HGBN是平行四边形,∴HG=BN ,HN=BG = CG =FG ,∴△HNC ≌△KGF ,∴GK=CN ,∠HNC=∠FGK=∠NHT=2α,∴HT=CT=TN ,∵FH-HG=1,∴设GH=m ,则BN=m ,FH=m+1,CE=2FG=4m+2,∵GT=1122EN =,∴CN=2HT=11+2m , ∵22222BC CN BN CE BE =-=-,∴2222(112)(42)(11)m m m m +-=+-+∴1176m =-(舍去),27m =, ∴CN=GK=2HT=25.【点睛】 本题考查的是四边形综合题,涉及了等腰三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,矩形的性质与判定,三角形外角的性质等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.8.(1)①详见解析;②详见解析;(2)当BE ≠DF 时,(BE +DF )2+EF 2=2AB 2仍然成立,理由详见解析;(3)2622PD =-【分析】(1)①连接ED 、BF ,证明四边形BEDF 是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;(2)过D 作DM ⊥BE 交BE 的延长线于M ,连接BD ,证明四边形EFDM 是矩形,得到EM=DF ,DM=EF ,∠BMD=90°,根据勾股定理计算;(3)过P 作PE ⊥PD ,过B 作BELPE 于E ,根据(2)的结论求出PE ,结合图形解答.【详解】(1)证明:①连接ED 、BF ,∵BE ∥DF ,BE =DF ,∴四边形BEDF 是平行四边形,∴BD 、EF 互相平分;②设BD 交EF 于点O ,则OB =OD =12BD ,OE =OF =12EF . ∵EF ⊥BE ,∴∠BEF=90°.在Rt△BEO中,BE2+OE2=OB2.∴(BE+DF)2+EF2=(2BE)2+(2OE)2=4(BE2+OE2)=4OB2=(2OB)2=BD2.在正方形ABCD中,AB=AD,BD2=AB2+AD2=2AB2.∴(BE+DF)2+EF2=2AB2;(2)解:当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由如下:如图2,过D作DM⊥BE交BE的延长线于M,连接BD.∵BE∥DF,EF⊥BE,∴EF⊥DF,∴四边形EFDM是矩形,∴EM=DF,DM=EF,∠BMD=90°,在Rt△BDM中,BM2+DM2=BD2,∴(BE+EM)2+DM2=BD2.即(BE+DF)2+EF2=2AB2;(3)解:过P作PE⊥PD,过B作BE⊥PE于E,则由上述结论知,(BE+PD)2+PE2=2AB2.∵∠DPB=135°,∴∠BPE=45°,∴∠PBE=45°,∴BE=PE.∴△PBE是等腰直角三角形,∴BP2BE,2+2PD=6,∴2BE+2PD=6,即BE+PD=6,∵AB=4,∴(6)2+PE2=2×42,解得,PE =∴BE =∴PD =﹣.【点睛】本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.9.(1)①证明见解析;②证明见解析;(2)241n -.【分析】(1)①先根据1n =可得AD AB =,再根据矩形的性质可得90DAE ABF ∠=∠=︒,然后根据直角三角形的性质、垂直的定义可得DEA AFB ∠=∠,最后根据三角形全等的判定定理与性质即可得证;②如图(见解析),先根据(1)的结论可得AE BF =,再根据等腰三角形的三线合一可得HAF DAF ∠=∠,然后根据矩形的性质、平行线的性质可得AFG DAF ∠=∠,从而可得HAF AFG ∠=∠,最后根据等腰三角形的定义可得AG GF =,由此即可得证; (2)如图(见解析),先根据线段中点的定义可得AE BE =,再根据角平分线的性质可得,AE EM DM AD nAB ===,从而可得BE EM =,然后根据直角三角形全等的判定定理与性质可得BF MF =,设BF MF x ==,最后在Rt CDF 中,利用勾股定理求出x 的值,从而可得BF 、CF 的值,由此即可得出答案.【详解】(1)①当1n =时,AD AB =四边形ABCD 是矩形90DAE ABF ∴∠=∠=︒90BAF AFB ∴∠+∠=︒AF DE ⊥90BAF DEA ∴∠+∠=︒DEA AFB ∴∠=∠在ADE 和BAF △中,90DAE ABF DEA AFB AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ADE BAF AAS ∴≅AE BF ∴=;②如图,过点A 作AF DH ⊥,交BC 于点F由(1)可知,AE BF =,AH AD AF DH =⊥HAF DAF ∴∠=∠(等腰三角形的三线合一)四边形ABCD 是矩形//AD BC ∴AFG DAF ∴∠=∠HAF AFG ∴∠=∠AG GF ∴=又GF BF BG AE BG =+=+AE BG AG ∴+=;(2)如图,过点E 作EM DF ⊥于点M ,连接EF四边形ABCD 是矩形,,90AD BC nAB AB CD A B C ∴===∠=∠=∠=︒点E 是AB 的中点12AE BE AB ∴== ,,ADE EDF EA AD EM DF ∠=∠⊥⊥,AE EM DM AD nAB ∴===BE EM ∴=在Rt BEF △和Rt MEF 中,BE ME EF EF =⎧⎨=⎩()Rt BEF Rt MEF HL ∴≅∴=BF MF设BF MF x ==,则CF BC BF nAB x =-=-,DF DM MF nAB x =+=+ 在Rt CDF 中,222+=CD CF DF ,即222()()AB nAB x nAB x +-=+ 解得14x AB n= 14BF AB n ∴=,214144n CF nAB AB AB n n-=-= 则224144114n AB CF n n BF AB n-==- 故答案为:241n -.【点睛】本题考查了矩形的性质、等腰三角形的三线合一、三角形全等的判定定理与性质、勾股定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.10.(1)14;(2)mbAGa;(3)53【分析】(1)如图①,根据正方形的性质和全等三角形的性质即可得到结论;(2)如图②,过O作ON⊥AD于N,OM⊥AB于M,根据图形的面积得到14mb=14AG•a,于是得到结论;(3)如图③,同理:过O作QM⊥AB,PN⊥AD,先根据平行四边形面积可得OM和ON 的比,同理可得S△BOE=S△AOG,根据面积公式可计算AG的长.【详解】解:(1)如图①,∵四边形ABCD是正方形,∴OA=OC,∠OAG=∠EBO=45°,∠AOB=90°,∵EF⊥GH,∴∠EOG=90°,∴∠BOE=∠AOG(SAS),∴△BOE≌△AOG,∴S△BOE=S△AOG,又∵S△AOB=14S四边形ABCD,∴S四边形AEOG=14S正方形ABCD,故答案为:14.(2)解:如图②,过O作OM⊥AB于M,ON⊥AD于N,∴S△AOB=S△AOD=14S矩形ABCD,∵S四边形AEOG=14S矩形ABCD,∴S△AOB=S四边形AEOG,∴S△BOE=S△AOG,∵S△BOE=12BE•OM=14mb,S△AOG=12AG•ON=14AG•a,∴mb=AG•a,∴AG=mba;(3)如图③,过O作OM⊥AB于M,ON⊥AD于N,∵S△AOB=S△AOD=14S▱ABCD,S四边形AEOG=14S▱ABCD,∴S△AOB=S四边形AEOG,∴S△BOE=S△AOG,∵S△BOE=12BE•OM=12OM,S△AOG=12AG•ON,∴OM=AG•ON,∵S▱ABCD=3×2OM=5×2 ON,∴53 OMON,∴AG=53;【点睛】本题是四边形综合题,考查了正方形、矩形、平行四边形的性质及三角形、四边形的面积问题,认真阅读材料,理解并证明S△BOE=S△AOG是解决问题的关键.。

人教版平行四边形单元达标测试提优卷试卷

人教版平行四边形单元达标测试提优卷试卷

人教版平行四边形单元达标测试提优卷试卷一、解答题1.在四边形ABCD 中,90A B C D ∠∠∠∠====,10AB CD ==,8BC AD ==.()1P 为边BC 上一点,将ABP 沿直线AP 翻折至AEP 的位置(点B 落在点E 处)①如图1,当点E 落在CD 边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B 铅笔加粗加黑).并直接写出此时DE =______;②如图2,若点P 为BC 边的中点,连接CE ,则CE 与AP 有何位置关系?请说明理由;()2点Q 为射线DC 上的一个动点,将ADQ 沿AQ 翻折,点D 恰好落在直线BQ 上的点'D 处,则DQ =______;2.如图1,ABC ∆是以ACB ∠为直角的直角三角形,分别以AB ,BC 为边向外作正方形ABFG ,BCED ,连结AD ,CF ,AD 与CF 交于点M ,AB 与CF 交于点N .(1)求证:ABD FBC ∆≅∆;(2)如图2,在图1基础上连接AF 和FD ,若6AD =,求四边形ACDF 的面积. 3.在ABCD 中,以AD 为边在ABCD 内作等边ADE ∆,连接BE . (1)如图1,若点E 在对角线BD 上,过点A 作AHBD ⊥于点H ,且75DAB ∠=︒,AB 6=,求AH 的长度;(2)如图2,若点F 是BE 的中点,且CF BE ⊥,过点E 作MNCF ,分别交AB ,CD 于点,M N ,在DC 上取DG CN =,连接CE ,EG .求证:①CEN DEG ∆∆≌; ②ENG ∆是等边三角形.4.已知:如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交于BE 的延长线于点F ,且AF=DC ,连接CF .(1)求证:D 是BC 的中点;(2)如果AB=AC ,试判断四边形ADCF 的形状,并证明你的结论. 5.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图1,90MON ∠=,点A 为边OM 上一定点,点B 为边ON 上一动点,以AB 为一边在∠MON 的内部作正方形ABCD ,过点C 作CF OM ⊥,垂足为点F (在点O 、A 之间),交BD 与点E ,试探究AEF ∆的周长与OA 的长度之间的等量关系该兴趣小组进行了如下探索:(动手操作,归纳发现)(1)通过测量图1、2、3中线段AE 、AF 、EF 和OA 的长,他们猜想AEF ∆的周长是OA 长的_____倍.请你完善这个猜想(推理探索,尝试证明)为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程: (2)如图4,过点C 作CG ON ⊥,垂足为点G 则90CGB ∠=90GCB CBG ∴∠+∠=又四边形ABCD 正方形,AB BC =,90ABC ∠=则90CBG ABO ∠+∠=GCB ABO ∴∠=∠在CBE ∆与ABE ∆中, (类比探究,拓展延伸)(3)如图5,当点F 在线段OA 的延长线上时,直接写出线段AE 、EF 、AF 与OA 长度之间的等量关系为 .6.如图①,已知正方形ABCD 中,E ,F 分别是边AD ,CD 上的点(点E ,F 不与端点重合),且AE=DF ,BE ,AF 交于点P ,过点C 作CH ⊥BE 交BE 于点H .(1)求证:AF ∥CH ;(2)若3,AE=2,试求线段PH 的长;(3)如图②,连结CP 并延长交AD 于点Q ,若点H 是BP 的中点,试求CPPQ的值. 7.如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF .(1)求证:四边形BFEP 为菱形;(2)当E 在AD 边上移动时,折痕的端点P 、Q 也随着移动. ①当点Q 与点C 重合时, (如图2),求菱形BFEP 的边长;②如果限定P 、Q 分别在线段BA 、BC 上移动,直接写出菱形BFEP 面积的变化范围. 8.矩形ABCD 中,AB =3,BC =4.点E ,F 在对角线AC 上,点M ,N 分别在边AD ,BC 上. (1)如图1,若AE =CF =1,M ,N 分别是AD ,BC 的中点.求证:四边形EMFN 为矩形. (2)如图2,若AE =CF =0.5,02AM CN x x ==<<(),且四边形EMFN 为矩形,求x 的值.9.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 的面积可能等于534吗?如果能,求此时x 的值;如果不能,请说明理由. 10.问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,EB EC =,45EBC ∠=︒,DBC △为等边三角形. ①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由. 实践操作(2)在长方形ABCD 中,8AB =,10AD =.①如图3,点E 在AB 边上,点F 在AD 边上,请用圆规和无刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹) 思维探究②如图4,点E 是直线AB 上的动点,点P 是平面内一点,点E 与点C 关于BP 互为勾股顶针点,直线CP 与直线AD 交于点F .在点E 运动过程中,线段BE 与线段AF 的长度是否会相等?若相等,请直接写出AE 的长;若不相等,请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)①6;②结论://P EC A ;(2)为4和16. 【分析】()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.理由勾股定理可得DE .②如图2中,结论:EC//PA.只要证明PA BE ⊥,EC BE ⊥即可解决问题.()2分两种情形分别求解即可解决问题.【详解】解:()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.在Rt ADE 中,90D ∠=,10AE AB ==,8AD =,22221086DE AE AD ∴=-=-=,故答案为6.②如图2中,结论://P EC A .理由:由翻折不变性可知:AE AB =,PE PB =,PA ∴垂直平分线段BE , 即PA BE ⊥,PB PC PE ==,90BEC ∠∴=,EC BE ∴⊥, //EC PA ∴.()2①如图31-中,当点Q 在线段CD 上时,设DQ QD'x ==.在Rt AD'B 中,AD'AD 8==,AB 10=,AD'B 90∠=,22BD'AB AD'6∴=-=,在Rt BQC 中,222CQ BC BQ +=,222(10x)8(x 6)∴-+=+,x 4∴=, DQ 4∴=.②如图32-中,当点Q 在线段DC 的延长线上时,DQ //AB , DQA QAB ∠∠∴=,DQA AQB ∠∠=,QAB AQB ∠∠∴=, AB BQ 10∴==,在Rt BCQ 中,CQ BQ 6==,DQ DC CQ 16∴=+=,综上所述,满足条件的DQ 的值为4或16.故答案为4和16. 【点睛】本题属于几何变换综合题,考查了矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题. 2.(1)详见解析;(2)18 【分析】(1)根据正方形的性质得出BC=BD ,AB=BF ,∠CBD=∠ABF=90°,求出∠ABD=∠CBF ,根据全等三角形的判定得出即可;(2)根据全等三角形的性质得出∠BAD=∠BFC ,AD=FC=6,求出AD ⊥CF ,根据三角形的面积求出即可. 【详解】 解:(1)四边形ABFG 、BCED 是正方形,AB FB ∴=,CB DB =,90ABF CBD ∠=∠=︒, ABF ABC CBD ABC ∴∠+∠=∠+∠,即ABD CBF ∠=∠ 在ABD ∆和FBC ∆中,AB FB ABD CBF DB CB =⎧⎪∠=∠⎨⎪=⎩()ABD FBC SAS ∴∆≅∆;图1 图2(2)ABD FBC ∆≅∆,BAD BFC ∴∠=∠,6AD FC ==,180AMF BAD CNA ∴∠=︒-∠-∠ 180()BFC BNF =︒-∠+∠1809090=︒-︒=︒ AD CF ∴⊥-ACD ACF DFM ACM ACDF S S S S S ∆∆∆∆∴=++四边形11112222AD CM CF AM DM FM AM CM =⋅+⋅+⋅-⋅1133(6)(6)1822CM AM AM CM AM CM =++---⋅=【点睛】本题考查了正方形的性质,全等三角形的性质和判定,三角形的面积等知识点,能求出△ABD ≌△FBC 是解此题的关键.3.(1)AH 2)①证明见解析;②证明见解析 【分析】(1)根据等边三角形的性质得到∠DAE =60°,根据等腰三角形的性质得到∠DAH =∠EAH ,求出∠HAB =45°,根据等腰直角三角形的性质计算,得到答案;(2)①根据线段垂直平分线的性质得到CB =CE ,根据平行四边形的性质得到AD =BC ,得到DE =CE ,利用SAS 定理证明结论;②根据全等三角形的性质得到EN =EG ,根据等边三角形的判定定理证明即可. 【详解】(l )∵ADE ∆是等边三角形,∴60DAE ∠=︒. ∵AHBD ⊥,∴1302DAH HAE DAE ︒∠=∠=∠=. ∵75DAB ∠=︒,∴753045BAH BAD DAH ︒︒︒∠=∠-∠=-=.∴AH BH === (2)①∵点F 是BE 的中点,且CF BE ⊥, ∴线段CF 是线段BE 的垂直平分线. ∴CE CB =,ECF BCF ∠=∠. ∵ADE ∆是等边三角形,∴DE AD =. ∵四边形ABCD 是平行四边形,∴AD BC =,∴DE CE =.∴EDC ECD ∠=∠.在DEG ∆和CEN ∆中,DG CN GDE NCE DE CE =⎧⎪∠=∠⎨⎪=⎩,∴()CEN DEG SAS ∆∆≌.②由①知:CEN DEG ∆∆≌,∴EN EG =. ∵AD BC ∥,∴180ADC BCD ︒∠+∠=. ∵60ADE ∠=︒,∴120EDC BCD ︒∠+∠=.∵ECF BCF ∠=∠,EDC ECD ∠=∠,∴60DCF ∠=︒. ∵CFMN ,∴60DNE DCF ∠=∠=︒.∴ENG ∆是等边三角形. 【点睛】本题考查的是平行四边形的性质、全等三角形的判定和性质、等边三角形的判定和性质,掌握平行四边形的性质定理、全等三角形的判定定理和性质定理是解题的关键. 4.(1)见详解;(2)四边形ADCF 是矩形;证明见详解. 【分析】(1)可证△AFE ≌△DBE ,得出AF=BD ,进而根据AF=DC ,得出D 是BC 中点的结论; (2)若AB=AC ,则△ABC 是等腰三角形,根据等腰三角形三线合一的性质知AD ⊥BC ;而AF 与DC 平行且相等,故四边形ADCF 是平行四边形,又AD ⊥BC ,则四边形ADCF 是矩形. 【详解】(1)证明:∵E 是AD 的中点, ∴AE=DE . ∵AF ∥BC ,∴∠FAE=∠BDE ,∠AFE=∠DBE . 在△AFE 和△DBE 中,FAE BDE AFE DBE AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS ). ∴AF=BD . ∵AF=DC , ∴BD=DC .即:D 是BC 的中点.(2)解:四边形ADCF 是矩形; 证明:∵AF=DC ,AF ∥DC , ∴四边形ADCF 是平行四边形. ∵AB=AC ,BD=DC , ∴AD ⊥BC 即∠ADC=90°. ∴平行四边形ADCF 是矩形. 【点睛】此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用.解题的关键是熟练掌握矩形的判定方法,以及全等三角形的判定和性质进行证明.5.(1)2;(2)证明见解析过程;(3)AE+EF-AF=2OA . 【分析】(1)通过测量可得;(2)过点C 作CG ⊥ON ,垂足为点G ,由AAS 可证△ABO ≌△BCG ,可得BG=AO ,BO=CG ,由SAS 可证△ABE ≌△CBE ,可得AE=CE ,由线段的和差关系可得结论; (3)过点C 作CG ⊥ON ,垂足为点G ,由AAS 可证△ABO ≌△BCG ,可得BG=AO ,BO=CG ,由SAS 可证△ABE ≌△CBE ,可得AE=CE ,可得结论. 【详解】解:(1)△AEF 的周长是OA 长的2倍,故答案为:2;(2)如图4,过点C 作CG ⊥ON ,垂足为点G ,则∠CGB=90°,∴∠GCB+∠CBG=90°,又∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∠DBC=∠DBA=45°,则∠CBG+∠ABO=90°,∴∠GCB=∠ABO ,在△BCG 与△ABO 中,GCB ABO GCB AOB BC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCG ≌△ABO (AAS ),∴BG=AO ,CG=BO ,∵∠AOB=90°=∠CGB=∠CFO ,∴四边形CGOF 是矩形,∴CF=GO ,CG=OF=OB ,在△ABE 和△CBE 中,BE BE ABE CBE AB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBE (SAS ),∴AE=CE ,∴△AEF 的周长=AE+EF+AF=CE+EF+AF=CF+AF=GO+AF=BG+BO+AF=2AO ;(3)如图5,过点C 作CG ⊥ON 于点G ,则∠CGB=90°,∴∠GCB+∠CBG=90°,又∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∠DBC=∠DBA=45°,则∠CBG+∠ABO=90°,∴∠GCB=∠ABO ,在△BCG 与△ABO 中GCB ABO GCB AOB BC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCG ≌△ABO (AAS ),∴BG=AO ,BO=CG ,∵∠AOB=90°=∠CGB=∠CFO ,∴四边形CGOF 是矩形,∴CF=GO ,CG=OF=OB ,在△ABE 和△CBE 中,BE BE ABE CBE AB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBE (SAS ),∴AE=CE ,∴AE+EF-AF=EF+CE-AF=NB+BO-(OF-AO )=OA+OB-(OB-OA )=2OA .【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质,矩形的判定和性质,添加恰当的辅助线构造全等三角形是本题的关键.6.(1)见解析;(2)33)CP PQ=4. 【分析】(1)先证△ABE ≌△DAF ,然后通过角度转化,可得AF ⊥BE ,从而证平行;(2)先在Rt △ABE 中利用勾股定理求得BE 的长,在利用△ABE 的面积,求得AP 的长,最后利用PH=BP -BH 求得PH 的长;(3)设QP=a ,CP=b ,可推导出在Rt △APE 中,QE=QA=QP ,然后分别用a 、b 表示CP 和PQ 代入可求得.【详解】(1)证明:在正方形ABCD 中,AB=DA ,∠EAB=∠D=90°又∵AE=DF∴△ABE ≌△DAF(SAS)∴∠ABE=∠DAF又∵∠DAF+∠FAB=∠EAB=90°∴∠ABE+∠FAB=90°∴∠APB=90°∴AF ⊥BE又∵CH ⊥BE∴AF ∥CH(2)解:在正方形ABCD 中,∠EAB=90°,, AE= 2∴=从而由S △ABE = 12 AB·AE= 12BE·AP 得:∴在Rt △ABP 中,= =3又容易得:△ABP ≌△BCH ∴∴(3)解:在正方形ABCD 中,AB=BC ,AD ∥BC∵CH ⊥BP ,PH=BH∴CP=BC∴∠CBP-=∠CPB而∠CPB=∠QPE ∠CBP=∠QEP∴∠QPE=∠QEP∴在Rt △APE 中 ∠QAP=∠QPA∴QE=QP=QA在四边形QABC 中,设QP=a CP=b则AB=BC=b , AQ=a ,QC=a+b∴b²+(b-a)2=(a+b)2∴b²=4ab 即b=4a即 aCP b PQ = =4. 【点睛】本题考查正方形的性质、全等的证明、勾股定理的应用和直角三角形斜边中线的性质,第(3)问的解题关键是推导得出QE=QA=QP .7.(1)证明过程见解析;(2)①边长为53cm ,②225cm S 9cm 3≤≤. 【分析】(1)由折叠的性质得出PB =PE ,BF =EF ,∠BPF =∠EPF ,由平行线的性质得出∠BPF =∠EFP ,证出∠EPF =∠EFP ,得出EP =EF ,因此BP =BF =EF =EP ,即可得出结论;(2)①由矩形的性质得出BC =AD =5cm ,CD =AB =3cm ,∠A =∠D =90°,由对称的性质得出CE =BC =5cm ,在Rt △CDE 中,由勾股定理求出DE =4cm ,得出AE =AD -DE =1cm ;在Rt △APE 中,由勾股定理得出方程,解方程得出EP =53cm 即可; ②当点Q 与点C 重合时,点E 离点A 最近,由①知,此时AE =1cm ;当点P 与点A 重合时,点E 离点A 最远,此时四边形ABQE 为正方形,AE =AB =3cm ,即可得出答案.【详解】解:(1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,∴点B 与点E 关于PQ 对称,∴PB =PE ,BF =EF ,∠BPF =∠EPF ,又∵EF ∥AB ,∴∠BPF =∠EFP ,∴∠EPF =∠EFP ,∴EP =EF ,∴BP =BF =EF =EP ,∴四边形BFEP 为菱形;(2)①∵四边形ABCD 是矩形,∴BC =AD =5cm ,CD =AB =3cm ,∠A =∠D =90°,∵点B 与点E 关于PQ 对称,∴CE =BC =5cm ,在Rt △CDE 中,DE 4cm ,∴AE =AD ﹣DE =5cm -4cm =1cm ;在Rt △APE 中,AE =1,AP =3-PB =3﹣PE ,∴222EP =1(3-EP)+,解得:EP =53cm , ∴菱形BFEP 的边长为53cm ; ②当点Q 与点C 重合时,点E 离点A 最近,由①知,此时AE =1cm ,BP=53cm , 2BFEP 5S =BP AE=cm 3⋅四边形,当点P 与点A 重合时,点E 离点A 最远,此时四边形ABQE 为正方形,AE =AB =3cm , 2ABQE BFEP S =S =9cm 正方形四边形, ∴菱形的面积范围:225cm S 9cm 3≤≤.【点睛】本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识,求出PE 是本题的关键.8.(1)见详解;(2)72x =-【分析】(1)连接MN ,由勾股定理求出AC=5,证出四边形ABNM 是矩形,得MN=AB=3,证△AME ≌△CNF (SAS ),得出EM=FN ,∠AEM=∠CFN ,证EM ∥FN ,得四边形EMFN 是平行四边形,求出MN=EF ,即可得出结论;(2)连接MN ,作MH ⊥BC 于H ,则MH=AB=3,BH=AM=x ,得HN=BC-BH-CN=4-2x ,由矩形的性质得出MN=EF=AC-AE-CF=4,在Rt △MHN 中,由勾股定理得出方程,解方程即可.【详解】(1)证明:连接MN ,如图1所示:∵四边形ABCD 是矩形,∴AD ∥BC ,AD=BC ,∠B=90°,∴∠EAM=∠FCN ,2222345AB BC +=+=,∵M ,N 分别是AD ,BC 的中点,∴AM=DM=BN=CN ,AM ∥BN ,∴四边形ABNM 是平行四边形,又∵∠B=90°,∴四边形ABNM 是矩形,∴MN=AB=3,在△AME 和△CNF 中,AM CN EAM FCN AE CF =⎧⎪∠=∠⎨⎪=⎩,∴△AME ≌△CNF (SAS ),∴EM=FN ,∠AEM=∠CFN ,∴∠MEF=∠NFE ,∴EM ∥FN ,∴四边形EMFN 是平行四边形,又∵AE=CF=1,∴EF=AC-AE-CF=3,∴MN=EF ,∴四边形EMFN 为矩形.(2)解:连接MN ,作MH ⊥BC 于H ,如图2所示:则四边形ABHM 是矩形,∴MH=AB=3,BH=AM=x ,∴HN=BC-BH-CN=4-2x ,∵四边形EMFN 为矩形,AE=CF=0.5,∴MN=EF=AC-AE-CF=4,在Rt △MHN 中,由勾股定理得:32+(4-2x )2=42,解得:x=72±, ∵0<x <2,∴x=722-. 【点睛】本题考查了矩形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定、勾股定理等知识;熟练掌握矩形的判定与性质和勾股定理是解题的关键.9.(1)见解析;(2)不变,见解析;(3)能,12x =-或12+ 【分析】(1)由折叠的性质得到BE=EP ,BF=PF ,得到BE=BF ,根据菱形的性质得到AB ∥CD ∥FG ,BC ∥EH ∥AD ,于是得到结论;(2)由菱形的性质得到BE=BF ,AE=FC ,推出△ABC 是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;(3)记AC 与BD 交于点O ,得到∠ABD=30°,解直角三角形得到AO=1,S 四边形ABCD AEFCHG 时,得到S △BEF +S △DGH GH 与BD 交于点M ,求得GM=12x ,根据三角形的面积列方程即可得到结论. 【详解】解:()1折叠后B 落在BD 上, ,BE EP ∴=BF PF = BD 平分,ABC ∠BE BF ∴=,∴四边形BEPF 为菱形,同理四边形GDHP 为菱形,////,// //,AB CD FG BC EH AD ∴∴四边形AEPG 为平行四边形,AG EP BE ∴==.()2不变.理由如下:由()1得.AG BE =四边形BEPF 为菱形,,.BE BF AE FC ∴==60,BAC ABC ∠=︒为等边三角60B D ∴∠=∠=︒,,,EF BE GH DG ∴==36AEFCHG C AE EF FC CH GH AG AB ∴=+++++==六边形为定值.()3记AC 与BD 交于点O .2,60,AB BAC =∠=30,ABD ∴∠=1,AO ∴=3,BO =12332ABC S ∴=⨯=23ABCD S ∴=四边形当六边形AEFCHG 534 53233344DEF DGH S S +==由()1得BE AG =AE DG ∴=DG x =2BE x ∴=-记GH 与BD 交于点,M12GM x ∴=,3DM x = 23DHG S x ∴= 同理()223323344BEF Sx x x =-=+ 223333334x x x +=化简得22410,x x -+= 解得121x =-221x = ∴当212x =-或212+时,六边形AEPCHG 534 【点睛】此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x 表示出相关的线段,是一道基础题目.10.(1)①D 、E ,②A ,理由见解析;(2)①作图见解析;②BE 与AF 可能相等,AE 的长度分别为43,367,2或18. 【分析】(1)根据互为顶点,互为勾股顶针点的定义即可判断.(2)①以C 为圆心,CB 为半径画弧交AD 于F ,连接CF ,作∠BCF 的角平分线交AB 于E ,点E ,点F 即为所求.②分四种情形:如图①中,当BE AF =时;如图②中,当BE AF =时;如图③中,当BE BC AF ==时,此时点F 与D 重合;如图④中,当BE CB AF ==时,点F 与点D重合,分别求解即可解决问题.【详解】解:(1)根据互为顶点,互为勾股顶针点的定义可知: ①点A 与点D 和E 关于BC 互为顶针点;②点D 与点A 关于BC 互为勾股顶针点,理由:如图2中,∵△BDC 是等边三角形,∴∠D =60°,∵AB =AC ,∠ABC =30°,∴∠ABC =∠ACB =30°,∴∠BAC =120°,∴∠A +∠D =180°,∴点D 与点A 关于BC 互为勾股顶针点,故答案为:D 和E ,A .(2)①如图,点E 、F 即为所求(本质就是点B 关于CE 的对称点为F ,相当于折叠).②BE 与AF 可能相等,情况如下:情况一:如图①,由上一问易知,,BE EP BC PC ==,当BE AF =时,设AE x =,连接EF ,∵,,90BE EP AF EF EF EAF FPE ===∠=∠=︒, ∴()EAF FPE HL ∆∆≌,∴AE PF x ==,在Rt CDF ∆中,()1082DF AD AF x x =-=--=+,10CF PC PF x =-=-,∴2228(2)(10)x x ++=-, 解得43x =,即43AE =; 情况二:如图②当BE AF =时,设AE x =,同法可得PF AE x ==,则8BE AF x ==-,FP FG GP EG AG AE x =+=+==,则18DF x =-,10CF x =+,在Rt CDF ∆中,则有2228(18)(10)x x +-=+,解得:367x =; 情况三:如图③,当BE BC AF ==时,此时点D 与F 重合,可得1082AE BE AB =-=-=; 情况四:如图④,当BE CB AF ==时,此时点D 与F 重合,可得18AE AB BE AB BC =+=+=. 综上所述,BE 与AF 可能相等,AE 的长度分别为43,367,2或18.【点睛】本题属于四边形综合题,考查了矩形的性质,等边三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.。

人教版八年级初二数学第二学期平行四边形单元达标测试提优卷试题

人教版八年级初二数学第二学期平行四边形单元达标测试提优卷试题

人教版八年级初二数学第二学期平行四边形单元达标测试提优卷试题一、选择题1.如图,正方形ABCD 中,点E F 、分别在边BC CD 、上,且AE EF FA ==,有下列结论:①ABE ADF ∆≅∆;②CE CF =;③75AEB ∠=︒;④BE DF EF +=;⑤A ABE DF CEF S S S ∆∆∆+=;其中正确的有( )个.A .2B .3C .4D .52.如图,在菱形ABCD 中,两对角线AC 、BD 交于点O ,AC =8,BD =6,当△OPD 是以PD 为底的等腰三角形时,CP 的长为( )A .2B .185C .75D .523.正方形ABCD ,正方形CEFG 如图放置,点B 、C 、E 在同一条直线上,点P 在BC 边上,PA =PF ,且∠APF =90°,连接AF 交CD 于点M .有下列结论:①EC =BP ;②AP =AM :③∠BAP =∠GFP ;④AB 2+CE 2=12AF 2;⑤S 正方形ABCD +S 正方形CGFE =2S △APF ,其中正确的是( )A .①②③B .①③④C .①②④⑤D .①③④⑤4.如图,在ABC ,90C ∠=︒,8AC =,6BC =,点P 为斜边AB 上一动点,过点P 作PE AC ⊥于点E ,PF BC ⊥于点F ,连结EF ,则线段EF 的最小值为( )A .1.2B .2.4C .2.5D .4.85.如图,在正方形ABCD 中,4AB =,E 是对角线AC 上的动点,以DE 为边作正方形DEFG ,H 是CD 的中点,连接GH ,则GH 的最小值为( )A .2B .51-C .2D .422-6.如图,长方形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠得到△AFE ,且点F 在长方形ABCD 内,将AF 延长交边BC 于点G ,若BG=3CG ,则AD AB=( )A .54B .1C .5D .627.如图,在ABCD 中,2,AB AD F =是CD 的中点,作BE AD ⊥于点E ,连接EF BF 、,下列结论:①CBF ABF ∠=∠;②FE FB =;③2EFB S S ∆=四边形DEBC ;④3BFE DEF ∠=∠;其中正确的个数是( )A .1B .2C .3D .48.如图,矩形ABCD 的对角线AC 、BD 交于点O ,点P 在边AD 上从点A 到点D 运动,过点P 作PE ⊥AC 于点E ,作PF ⊥BD 于点F ,已知AB=3,AD=4,随着点P 的运动,关于PE+PF 的值,下面说法正确的是( )A .先增大,后减小B .先减小,后增大C .始终等于2.4D .始终等于39.如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为( )A .0.5B .2.5C .2D .110.如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,2BD AD =,点E ,F ,G 分别是OA ,OB ,CD 的中点,EG 交FD 于点H ,下列4个结论中说法正确的有( )①ED CA ⊥;②EF EG =;③12FH FD =;④12EFD ACD S S =△△.A .①②B .①②③C .①③④D .①②③④二、填空题11.如图,菱形ABCD 的BC 边在x 轴上,顶点C 坐标为(3,0)-,顶点D 坐标为(0,4),点E 在y 轴上,线段//EF x 轴,且点F 坐标为(8,6),若菱形ABCD 沿x 轴左右运动,连接AE 、DF ,则运动过程中,四边形ADFE 周长的最小值是_______.12.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.13.如图,在正方形ABCD 中,点,E F 将对角线AC 三等分,且6AC =.点P 在正方形的边上,则满足5PE PF +=的点P 的个数是________个.14.在锐角三角形ABC 中,AH 是边BC 的高,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG=CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM=∠ABC .其中正确的是_________.15.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.16.如图,在平行四边形ABCD 中,AC ⊥AB ,AC 与BD 相交于点O ,在同一平面内将△ABC 沿AC 翻折,得到△AB’C ,若四边形ABCD 的面积为24cm 2,则翻折后重叠部分(即S △ACE ) 的面积为________cm 2.17.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ︒∠=,依次延长, , AB BC CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点, , , ,F H M N 则四边形FHMN 的面积为___________.18.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.19.在菱形ABCD 中,M 是AD 的中点,AB =4,N 是对角线AC 上一动点,△DMN 的周长最小是2+3BD 的长为___________.20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.在等边三角形ABC 中,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的上方作菱形ADEF ,且∠DAF=60°,连接CF .(1)(观察猜想)如图(1),当点D 在线段CB 上时,①BCF ∠= ;②,,BC CD CF 之间数量关系为 .(2)(数学思考):如图(2),当点D 在线段CB 的延长线上时,(1)中两个结论是否仍然成立?请说明理由.(3)(拓展应用):如图(3),当点D 在线段BC 的延长线上时,若6AB =,13CD BC =,请直接写出CF 的长及菱形ADEF 的面积..22.如图正方形ABCD ,DE 与HG 相交于点O (O 不与D 、E 重合).(1)如图(1),当90GOD ∠=︒,①求证:DE GH =; ②求证:2GD EH DE +>;(2)如图(2),当45GOD ∠=︒,边长4AB =,25HG =,求DE 的长.23.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.24.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(090α︒<<︒),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,BEF ∠的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出BEF ∠的度数;(3)联结AF ,求证:2DE =.25.如图,锐角ABC ∆,AB AC =,点D 是边BC 上的一点,以AD 为边作ADE ∆,使AE AD =,EAD BAC ∠=∠.(1)过点E 作//EF DC 交AB 于点F ,连接CF (如图①)①请直接写出EAB ∠与DAC ∠的数量关系;②试判断四边形CDEF 的形状,并证明;(2)若60BAC ∠=,过点C 作//CF DE 交AB 于点F ,连接EF (如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.26.如图,点A 的坐标为(6,6)-,AB x ⊥轴,垂足为B ,AC y ⊥轴,垂足为C ,点,D E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,45DAE ︒∠=.(1)如图1,当点D 在线段BO 上时,求DOE ∆的周长;(2)如图2,当点D 在线段BO 的延长线上时,设ADE ∆的面积为1S ,DOE ∆的面积为2S ,请猜想1S 与2S 之间的等量关系,并证明你的猜想.27.(1)问题探究:如图①,在四边形ABCD 中,AB ∥CD ,E 是BC 的中点,AE 是∠BAD 的平分线,则线段AB ,AD ,DC 之间的等量关系为 ;(2)方法迁移:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,E 是BC 的中点,AE 是∠BAF 的平分线,试探究线段AB ,AF ,CF 之间的等量关系,并证明你的结论;(3)联想拓展:如图③,AB ∥CF ,E 是BC 的中点,点D 在线段AE 上,∠EDF =∠BAE ,试探究线段AB ,DF ,CF 之间的数量关系,并证明你的结论.28.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值.(3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由.29.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.(1)当1x =时,点M 的坐标为( , )(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围.(3)在x 轴正半轴上存在点Q ,使得QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用x 的式子表示)30.如图,已知正方形ABCD 与正方形CEFG 如图放置,连接AG ,AE .(1)求证:AG AE =(2)过点F 作FP AE ⊥于P ,交AB 、AD 于M 、N ,交AE 、AG 于P 、Q ,交BC 于H ,.求证:NH =FM【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由已知得AB AD =,AE AF =,利用“HL ”可证ABE ADF ∆≅∆,利用全等的性质判断①②③正确,在AD 上取一点G ,连接FG ,使AG GF =,由正方形,等边三角形的性质可知15DAF ∠=︒,从而得30DGF ∠=︒,设1DF =,则2AG GF ==,3DG =AD ,CF ,EF 的长,判断④⑤的正确性.【详解】解:AB AD =,AE AF EF ==,()ABE ADF HL ∴∆≅∆,AEF ∆为等边三角形,BE DF ∴=,又BC CD =,CE CF ∴=, 11()(9060)1522BAE BAD EAF ∴∠=∠-∠=︒-︒=︒, 9075AEB BAE ∴∠=︒-∠=︒,∴①②③正确,在AD 上取一点G ,连接FG ,使AG GF =,则15DAF GFA ∠=∠=︒,230DGF DAF ∴∠=∠=︒,设1DF =,则2AG GF ==,3DG =23AD CD ∴==+13CF CE CD DF ==-=226EF CF ∴==2BE DF +=,∴④错误,⑤12232ABE ADF S S AD DF ∆∆+=⨯⨯= 1232CEF S CE CF ∆=⨯=∴⑤正确.∴正确的结论有:①②③⑤.故选C .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的运用.关键是利用全等三角形的性质,把条件集中到直角三角形中,运用勾股定理求解.2.C解析:C【解析】【分析】过O 作OE ⊥CD 于E .根据菱形的对角线互相垂直平分得出OB ,OC 的长,AC ⊥BD ,再利用勾股定理列式求出CD ,然后根据三角形的面积公式求出OE .在Rt △OED 中,利用勾股定理求出ED .根据等腰三角形三线合一的性质得出PE ,利用CP =CD -PD 即可得出结论.【详解】过O 作OE ⊥CD 于E .∵菱形ABCD 的对角线AC 、BD 相交于点O ,∴OB 12=BD 12=⨯6=3,OA=OC12=AC12=⨯8=4,AC⊥BD,由勾股定理得:CD2222OD OC34=+=+=5.∵12OC×OD=12CD×OE,∴12=5OE,∴OE=2.4.在Rt△ODE中,DE=22OD OE-=223 2.4-=1.8.∵OD=OP,∴PE=ED=1.8,∴CP=CD-PD=5-1.8-1.8=1.4=75.故选C.【点睛】本题考查了菱形的性质,等腰三角形的性质,勾股定理,求出OE的长是解题的关键.3.D解析:D【分析】①由同角的余角相等可证出△EPF≌△BAP,由此即可得出EF=BP,再根据正方形的性质即可得出①成立;②没有满足证明AP=AM的条件;③根据平行线的性质可得出∠GFP=∠EPF,再由∠EPF=∠BAP即可得出③成立;④在Rt△ABP中,利用勾股定理即可得出④成立;⑤结合④即可得出⑤成立.综上即可得出结论.【详解】①∵∠EPF+∠APB=90°,∠APB+∠BAP=90°,∴∠EPF=∠BAP.在△EPF和△BAP中,有EPF BAPFEP PBAPA PF∠∠⎧⎪∠∠⎨⎪⎩===,∴△EPF≌△BAP(AAS),∴EF=BP,∵四边形CEFG为正方形,∴EC=EF=BP,即①成立;②无法证出AP=AM;③∵FG∥EC,∴∠GFP=∠EPF ,又∵∠EPF=∠BAP ,∴∠BAP=∠GFP ,即③成立;④由①可知EC=BP ,在Rt △ABP 中,AB 2+BP 2=AP 2,∵PA=PF ,且∠APF=90°,∴△APF 为等腰直角三角形,∴AF 2=AP 2+EP 2=2AP 2,∴AB 2+BP 2=AB 2+CE 2=AP 2=12AF 2,即④成立; ⑤由④可知:AB 2+CE 2=AP 2,∴S 正方形ABCD +S 正方形CGFE =2S △APF ,即⑤成立.故成立的结论有①③④⑤.故选D .【点睛】本题考查了正方形的性质、全等三角形的判定及性质、平行线的性质以及勾股定理,解题的关键是逐条分析五条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,通过证明三角形全等以及利用勾股定理等来验证题中各结论是否成立是关键.4.D解析:D【分析】连接PC ,当CP ⊥AB 时,PC 最小,利用三角形面积解答即可.【详解】 解:连接PC ,∵PE ⊥AC ,PF ⊥BC ,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP 是矩形,∴EF=PC ,∴当PC 最小时,EF 也最小,即当CP ⊥AB 时,PC 最小,∵AC=8,BC=6,∴AB=10,∴PC 的最小值为:68 4.810AC BC PC AB ⋅⨯===∴线段EF长的最小值为4.8.故选:D.【点睛】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.5.A解析:A【分析】取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,再根据正方形及勾股定理求出OE,即可得到GH 的长.【详解】取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,∵AD=AB=4,∴AO=12AB=2在Rt△AOE中,由勾股定理可得OE2+AE2=AO2=4,即2OE2=4解得OE=2∴GH的最小值为2故选A.【点睛】本题考查了正方形的性质,根据题意确定E点的位置是解题关键.6.B解析:B【解析】【分析】根据中点定义得出DE=CE,再根据折叠的性质得出DE=EF,AF=AD,∠AFE=∠D=90°,从而得出CE=EF,连接EG,利用“HL”证明△ECG≌△EFG,根据全等三角形性质得出CG=FG,设CG=a,则BC=4a,根据长方形性质得出AD=BC=4a,再求出AF=4a,最后求出AG=AF+FG=5a,最后利用勾股定理求出AB,从而进一步得出答案即可.【详解】如图,连接EG ,∵点E 是CD 中点,∴DE=EC ,根据折叠性质可得:AD=AF ,DE=EF ,∠D=∠AFE=90°,∴CE=EF ,在Rt △ECG 与Rt △EFG 中,∵EG=EG ,EC=EF ,∴Rt △ECG ≌Rt △EFG (HL ),∴CG=FG ,设CG=a ,∴BG=3CG=3a , ∴BC=4a , ∴AF=AD=BC=4a . ∴AG=5a . 在Rt △ABG 中, ∴224AB AG BG a -=, ∴1AD AB=, 故选B.【点睛】本题主要考查了长方形与勾股定理及全等三角形判定和性质的综合运用,熟练掌握相关概念是解题关键,7.C解析:C【分析】由平行四边形的性质结合AB=2AD ,CD=2CF 可得CF=CB ,从而可得∠CBF=∠CFB ,再根据CD ∥AB ,得∠CFB=∠ABF ,继而可得CBF ABF ∠=∠,可以判断①正确;延长EF 交BC 的延长线与M ,证明△DFE 与△CFM(AAS),继而得EF=FM=12EM ,证明∠CBE=∠AEB=90°,然后根据直角三角形斜边中线的性质即可判断②正确;由上可得S △BEF =S △BMF ,S △DFE =S △CFM ,继而可得S △EBF =S △BMF =S △EDF +S △FBC ,继而可得2EFB S S ∆=四边形DEBC ,可判断③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,则可得AD//FN ,则有∠DEF=∠EFN ,根据等腰三角形的性质可得∠BFE=2∠EFN ,继而得∠BFE=2∠DEF ,判断④错误.【详解】∵四边形ABCD 是平行四边形,∴AD=BC ,AB=CD ,AD//BC ,∵AB=2AD ,CD=2CF ,∴CF=CB ,∴∠CBF=∠CFB ,∵CD ∥AB ,∴∠CFB=∠ABF ,∴CBF ABF ∠=∠,故①正确;延长EF 交BC 的延长线与M ,∵AD//BC ,∴∠DEF=∠M ,又∵∠DFE=∠CFM ,DF=CF ,∴△DFE 与△CFM(AAS),∴EF=FM=12EM , ∵BF ⊥AD ,∴∠AEB=90°,∵在平行四边形ABCD 中,AD ∥BC ,∴∠CBE=∠AEB=90°,∴BF=12EM , ∴BF=EF ,故②正确;∵EF=FM ,∴S △BEF =S △BMF ,∵△DFE ≌△CFM ,∴S △DFE =S △CFM ,∴S △EBF =S △BMF =S △EDF +S △FBC ,∴2EFB S S ∆=四边形DEBC ,故③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,∴∠AEB=∠FEN ,∴AD//EF ,∴∠DEF=∠EFN ,又∵EF=FB ,∴∠BFE=2∠EFN ,∴∠BFE=2∠DEF ,故④错误,所以正确的有3个,故选C.【点睛】本题考查了平行四边形的性质,直角三角形斜边中线的性质,等腰三角形的判断与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.8.C解析:C【分析】在矩形ABCD 中,由矩形边长,可得矩形面积是12,进而得134AOD ABCD S S ==矩形,由矩形对角线相等且互相平分得AO OC =,OB OD =,AC BD =,利用勾股定理可解得5AC =,则52OA OD ==,111()3222AOD AOP DOP S S S OA PE OD PF OA PE PF =+=+=+==,即可求出PE+PF 的值.【详解】解:连接PO ,如下图:∵在矩形ABCD 中,AB=3,AD=4,∴12ABCD S AB BC ==矩形,AO OC =,OB OD =,AC BD =,225AC AB +BC ,∴1112344AOD ABCD S S ==⨯=矩形, 52OA OD ==, 11115()()322222AOD AOP DOP S S S OA PE OD PF OA PE PF PE PF =+=+=+=⨯+=,∴122.45PE PF+==;故选C.【点睛】本题主要考查了矩形的性质,利用等积法间接求三角形的高线长及用勾股定理求直角三角形的斜边;利用面积法求解,是本题的解题突破点.9.B解析:B【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.【详解】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,如图,将ΔEFB绕点E旋转60°,使EF与EG重合,得到ΔEFB≅ΔEHG,从而可知ΔEBH为等边三角形,点G在垂直于HE的直线HN上,如图,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则1351=2.5222CM MP CP HE EC=+=+=+=.故选B.【点睛】本题考查了线段极值问题,构造图形计算,是极值问题中比较典型的类型.分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是解本题的关键.10.B解析:B【分析】由等腰三角形“三线合一”得ED⊥CA,根据三角形中位线定理可得EF=12AB;由直角三角形斜边上中线等于斜边一半可得EG=12CD,即可得EF=EG;连接FG,可证四边形DEFG是平行四边形,即可得FH=12FD,由三角形中位线定理可证得S△OEF=14S△AOB,进而可得S△EFD=S△OEF+S△ODE=316S▱ABCD,而S△ACD=12S▱ABCD,推出S△EFD12S△ACD,即可得出结论.【详解】连接FG,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD=BC,AD∥BC,AB=CD,AB∥CD,∵BD=2AD,∴OD=AD,∵点E为OA中点,∴ED⊥CA,故①正确;∵E、F、G分别是OA、OB、CD的中点,∴EF∥AB,EF=12 AB,∵∠CED=90°,G是CD的中点,∴EG=12 CD,∴EF=EG,故②正确;∵EF∥AB,AB∥CD,∴EF∥CD,EF=EG=DG,∴四边形DEFG是平行四边形,∴FH=DH,即FH=12FD,故③正确;∵△OEF∽△OAB,∴S△OEF=14S△AOB,∵S△AOB=S△AOD=14S▱ABCD,S△ACD=12S▱ABCD,∴S△OEF=116S▱ABCD,∵AE=OE,∴S△ODE=12S△AOD=18S▱ABCD,∴S△EFD=S△OEF+S△ODE=116S▱ABCD+18S▱ABCD316=S▱ABCD,∵12S△ACD14=S▱ABCD,∴S△EFD12≠S△ACD,故④错误;综上,①②③正确;故选:B.【点睛】本题考查了平行四边形性质和判定,三角形中位线定理,三角形面积,直角三角形斜边上中线性质,等腰三角形性质等知识;熟练运用三角形中位线定理、等腰三角形的性质是解题关键.二、填空题11.18【分析】由题意可知AD、EF是定值,要使四边形ADFE周长的最小,AE+DF的和应是最小的,运用“将军饮马”模型作点E关于AD的对称点E1,同时作DF∥AF1,此时AE+DF的和即为E1F1,再求四边形ADFE周长的最小值.【详解】在Rt△COD中,OC=3,OD=4,CD,∵ABCD是菱形,∴AD=CD=5,∵F坐标为(8,6),点E在y轴上,∴EF=8,作点E 关于AD 的对称点E 1,同时作DF ∥AF 1,则E 1(0,2),F 1(3,6),则E 1F 1即为所求线段和的最小值,在Rt △AE 1F 1中,E 1F 1=22211EE +EF =-+(8-5)=52(62), ∴四边形ADFE 周长的最小值=AD +EF +AE +DF = AD +EF + E 1F 1=5+8+5=18.【点睛】本题考查菱形的性质、“将军饮马”作对称点求线段和的最小值,比较综合,难度较大.12.①③④【分析】由矩形的性质可得AB=CD ,AD=BC ,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD ,由角平分线的性质和余角的性质可得∠F=∠FAD=45°,可得AD=DF=BC ,可判断①;通过证明△DCG ≌△BEG ,可得∠BGE=∠DGC ,BG=DG ,即可判断②③;过点G 作GH ⊥CD 于H ,设AD=4x=DF ,AB=3x ,由勾股定理可求BD=5x ,由等腰直角三角形的性质可得HG=CH=FH=12x ,52,由三角形面积公式可求解,可判断④. 【详解】解:∵四边形ABCD 是矩形,∴AB=CD ,AD=BC ,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD ,∵AE 平分∠BAD ,∴∠BAE=∠DAE=45°,∴∠F=∠FAD ,∴AD=DF ,∴BC=DF ,故①正确;∵∠EAB=∠BEA=45°,∴AB=BE=CD ,∵∠CEF=∠AEB=45°,∠ECF=90°,∴△CEF 是等腰直角三角形,∵点G 为EF 的中点,∴CG=EG ,∠FCG=45°,CG ⊥AG ,∴∠BEG=∠DCG=135°,在△DCG 和△BEG 中,===BE CD BEG DCG CG EG ⎧⎪∠∠⎨⎪⎩,∴△DCG ≌△BEG (SAS ).∴∠BGE=∠DGC ,BG=DG ,∵∠BGE <∠AEB ,∴∠DGC=∠BGE <45°,∵∠CGF=90°,∴∠DGF <135°,故②错误;∵∠BGE=∠DGC ,∴∠BGE+∠DGA=∠DGC+∠DGA ,∴∠CGA=∠DGB=90°,∴BG ⊥DG ,故③正确;过点G 作GH ⊥CD 于H ,∵34AB AD =, ∴设AD=4x=DF ,AB=3x ,∴CF=CE=x ,22AB AD x +,∵△CFG ,△GBD 是等腰直角三角形,∴HG=CH=FH=12x ,DG=GB=522x ,∴S △DGF =12×DF×HG=x 2,S △BDG =12DG×GB=254x 2, ∴254BDG FDG S S ,故④正确;故答案为:①③④.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.13.8个【分析】作点F 关于BC 的对称点M ,连接FM 交BC 于点N ,连接EM ,交BC 于点H ,可得点H 到点E 和点F 的距离之和最小,可求最小值,即可求解.【详解】如图,作点F 关于BC 的对称点M ,连接FM 交BC 于点N ,连接EM ,交BC 于点H , ∵点E ,F 将对角线AC 三等分,且AC =6,∴EC =4,FC =2=AE ,∵点M 与点F 关于BC 对称,∴CF =CM =2,∠ACB =∠BCM =45°,∴∠ACM =90°,∴EM则在线段BC 存在点H 到点E 和点F 的距离之和最小为5,在点H 右侧,当点P 与点C 重合时,则PE +PF =4+2=6,∴点P 在CH 上时,PE +PF ≤6,在点H 左侧,当点P 与点B 重合时,∵FN ⊥BC ,∠ABC =90°,∴FN ∥AB , ∴△CFN ∽△CAB ,∴FN CN CF 1===AB CB CA 3,∵AB =BC =2AC =∴FN =13AB ,CN =13BC∴BN =BC -CN =,BF =,∵AB =BC ,CF =AE ,∠BAE =∠BCF ,∴△ABE≌△CBF(SAS),∴BE=BF=10,∴PE+PF=210,∴点P在BH上时,25<PE+PF<210,∴在线段BC上点H的左右两边各有一个点P使PE+PF=5,同理在线段AB,AD,CD上都存在两个点使PE+PF=5.即共有8个点P满足PE+PF=5,故答案为8.【点睛】本题考查了正方形的性质,最短路径问题,在BC上找到点H,使点H到点E和点F的距离之和最小是本题的关键.14.①②③④【分析】根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP =GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.【详解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;设BG、CE相交于点N,AC、BG相交于点K,如图1,∵△ABG ≌△AEC ,∴∠ACE =∠AGB ,∵∠AKG =∠NKC ,∴∠CNG =∠CAG =90°,∴BG ⊥CE ,故②正确;过点E 作EP ⊥HA 的延长线于P ,过点G 作GQ ⊥AM 于Q ,如图2,∵AH ⊥BC ,∴∠ABH +∠BAH =90°,∵∠BAE =90°,∴∠EAP +∠BAH =90°,∴∠ABH =∠EAP ,即∠EAM =∠ABC ,故④正确;∵∠AHB =∠P =90°,AB =AE ,∴△ABH ≌△EAP (AAS ),∴EP =AH ,同理可得GQ =AH ,∴EP =GQ ,∵在△EPM 和△GQM 中,90P MQG EMP GMQ EP GQ ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△EPM ≌△GQM (AAS ),∴EM =GM ,∴AM 是△AEG 的中线,故③正确.综上所述,①②③④结论都正确.故答案为:①②③④.【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.15.8或12【分析】根据平行四边形的性质得到BC=AD=5,∠BAE=∠DEA,∠ABF=∠BFC,根据角平分线的性质得到DE=AD=5,CF=BC=5,即可求出答案.【详解】在ABCD中,AB∥CD,BC=AD=5,∴∠BAE=∠DEA,∠ABF=∠BFC,∵BAD∠的平分线交CD于点E,∴∠BAE=∠DAE,∴∠DAE=∠DEA,∴DE=AD=5,同理:CF=BC=5,∴AB=CD=DE+CF-EF=5+5-2=8或AB=DE+CF+EF=5+5+2=12,故答案为:8或12.【点睛】此题考查平行四边形的性质,角平分线的性质,等腰三角形的等角对等边的判定,解题中注意分类思想的运用,避免漏解.16.6【分析】由折叠的性质可得∠BAC=∠B'AC=90°,AB=AB',S△ABC=S△AB'C=12cm2,可证点B,点A,点B'三点共线,通过证明四边形ACDB'是平行四边形,可得B'E=CE,即可求解.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,S△ABC=1242⨯=12cm2,∵在同一平面内将△ABC沿AC翻折,得到△AB′C,∴∠BAC=∠B'AC=90°,AB=AB',S△ABC=S△AB'C=12cm2,∴∠BAB'=180°,∴点B,点A,点B'三点共线,∵AB∥CD,AB'∥CD,∴四边形ACDB'是平行四边形,∴B'E=CE,∴S△ACE=12S△AB'C=6cm2,故答案为:6.【点睛】本题考查了翻折变换,平行四边形的判定和性质,证明点B,点A,点B'三点共线是本题的关键.17.1382+【分析】如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,首先利用正方形性质结合题意求出AD=CD=AG=DQ=1,然后进一步根据菱形性质得出DE=EF=DG=2,再后通过证明四边形NKQR是矩形得出QR=NK=2,进一步可得2221382FN FR NR=+=+,再延长NS交ML于点Z,利用全等三角形性质与判定证明四边形FHMN为正方形,最后进一步求解即可.【详解】如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,∵ABCD为正方形,∴∠CDG=∠GDK=90°,∵正方形ABCD面积为1,∴AD=CD=AG=DQ=1,∴DG=CT=2,∵四边形DEFG为菱形,∴DE=EF=DG=2,同理可得:CT=TN=2,∵∠EFG=45°,∴∠EDG=∠SCT=∠NTK=45°,∵FE ∥DG ,CT ∥SN ,DG ⊥CT ,∴∠FQP=∠FRN=∠DQE=∠NKT=90°,∴FQ=FE+EQ=2+∵∠NKT=∠KQR=∠FRN=90°,∴四边形NKQR 是矩形,∴,∴FR=FQ+QR=2+,NR=KQ=DK −11=,∴22213FN FR NR =+=+再延长NS 交ML 于点Z ,易证得:△NMZ ≅△FNR(SAS),∴FN=MN ,∠NFR=∠MNZ ,∵∠NFR+∠FNR=90°,∴∠MNZ+∠FNR=90°,即∠FNM=90°,同理可得:∠NFH=∠FHM=90°,∴四边形FHMN 为正方形,∴正方形FHMN 的面积=213FN =+故答案为:13+【点睛】本题主要考查了正方形和矩形性质与判定及与全等三角形性质与判定的综合运用,熟练掌握相关方法是解题关键.18.7【分析】①若m n =,则AF EC =,先根据平行四边形的性质得出//,AD BC AD BC =,再根据平行四边形的判定(一组对边平行且相等或两组对边分别平行)即可得;②先根据平行四边形的性质与判定得出四边形ABEF 、四边形CDFE 都是平行四边形,从而可得11,44EFG ABEF EFH CDFE S S S S ∆∆==,再根据28ABCD ABEF CDFE S S S =+= 和1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆=+=+四边形即可得出答案.【详解】 四边形ABCD 是平行四边形//,AD BC AD BC ∴=,,AF EC n m BC BCm n === AF EC ∴=AD AF BC EC ∴-=-,即DF BE =∴四边形AECF 、四边形BEDF 都是平行四边形//,//AE CF BF DE ∴∴四边形EGFH 是平行四边形综上,图中共有4个平行四边形如图,连接EF1,,AF EC n m BC B n Cm ==+= AF EC BC AD ∴+==AF DF AD +=EC DF ∴= AF BE ∴=∴四边形ABEF 、四边形CDFE 都是平行四边形11,44EFG ABEF EFH CDFE S S S S ∆∆∴== 28ABCD ABEF CDFE S S S =+=1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆∴=+=+四边形 1()4ABEF CDFE S S =+12874=⨯= 故答案为:4;7.【点睛】本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题关键. 19.4【分析】根据题意,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+3由DM=122AD =,则BM=3AMB=90°,则得到△ABD 为等边三角形,即可得到BD 的长度.【详解】解:如图:连接BD ,BM ,则AC 垂直平分BD ,则BN=DN ,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+23, ∵AD=AB=4,M 是AD 的中点,∴AM=DM=122AD =, ∴BM=23,∵222222(23)16AM BM AB +=+==,∴△ABM 是直角三角形,即∠AMB=90°;∵BM 是△ABD 的中线,∴△ABD 是等边三角形,∴BD=AB=AD=4.故答案为:4.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD 是等边三角形.20.102【分析】根据平行四边形的性质、角平分线的性质证明AD=DE=3,再根据BAD BEC ∠=∠证明BC=BE ,由此根据三角形的三线合一及勾股定理求出BF ,即可求出平行四边形的面积.【详解】过点B 作BF CD ⊥于点F ,如图所示.∵AE 是BAD ∠的平分线,∴DAE BAE ∠=∠.∵四边形ABCD 是平行四边形,∴53CD AB BC AD BAD BCE AB CD ====∠=∠,,,∥, ∴BAE DEA ∠=∠,∴DAE DEA ∠=∠,∴3DE AD ==,∴2CE CD DE =-=.∵BAD BEC ∠=∠,∴BCE BEC ∠=∠,∴BC=BE, ∴112CF EF CE ===,∴BF ===∴平行四边形ABCD 的面积为5BF CD ⋅==.故答案为:【点睛】此题考查平行四边形的性质:对边平行且相等,对角相等,等腰三角形的等角对等边的性质、三线合一的性质,勾股定理.三、解答题21.(1)①120°;② BC =CD +CF ;(2)不成立,见解析;(3)8,【分析】(1)①根据菱形的性质以及等边三角形的性质,推出△ACF ≌△ABD ,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到CF=BD ,再根据BD+CD=BC ,即可得出CF+CD=BC ;(2)依据△ABD ≌△ACF ,即可得到∠ACF+∠BAC=180°,进而得到AB ∥CF ;依据△ABD ≌△ACF 可得BD=CF ,依据CD-BD=BC ,即可得出CD-CF=BC ;(3)依据≅△△ADB AFC ,即可得到8==+=CF BD BC CD ,利用ABC ∆是等边三角形,AH BC ⊥,可得132===BH HC BC ,即可得出HD 的长度,利用勾股定理即可求出AD 的长度,即可得出结论.【详解】解:(1) 在等边△ABC 中,AB=AC ,∠BAC=∠ACB=∠ABC=60°∴∠BAD+∠DAC=60°在菱形ADEF 中AD=AF∵∠DAF=∠DAC+∠FAC=60°∴∠CAF=∠DAB又∵AC=AB ,AF=AD∴△ACF ≌△ABD∴∠ACF=∠ABD=60°,CF=BD∴∠BCF=∠ACB+∠ACF=120°故答案为:120°②∵BC=BD+CD ,BD=CF∴BD=CF+CD故答案为:BC=CD+CF(2)不成立理由:∵ABC ∆是等边三角形∴60BAC ABC ACB ∠=∠=∠=,AB AC =又∵60DAF ∠=∴BAC BAF DAF BAF ∠-∠=∠-∠∴FAC DAB ∠=∠∵四边形ADEF 是菱形∴AD AF =∴≅△△ADB AFC∴DB FC =,18060120ACF ABD ∠=∠=-=∴1206060BCF ACF ACB ∠=∠-∠=-=∵BC CD BD =-∴BC CD CF =-(3)8=CF ,菱形ADEF 的面积是263∵60BAC DAF ∠=∠=∴BAD CAF ∠=∠又∵AB AC =,AD AF =∴≅△△ADB AFC∴16683CF BD BC CD ==+=+⨯=∴如图,过点A 作AH BC ⊥于点H ,连接FD∵ABC 是等边三角形,AH BC ⊥ ∴116322BH HC BC ===⨯= ∴325HD HC CD =+=+=∵22236927AH AB BH =-=-=∴222725213AD AH DH ++=∴12222AFDADEFS S∆==⨯⨯=菱形【点睛】此题属于四边形综合题,主要考查了全等三角形的判定和性质,菱形的性质,等边三角形的判定和性质的综合运用,利用已知条件判定△DAB≌△FAC是解本题的关键.22.(1)①证明见解析;②证明见解析;(2)DE=.【分析】(1)过点D作//DM GH交BC延长线于点M,连接EH,①由正方形的性质可得//AD BC,AD CD=,90A ADC DCM∠=∠=∠=︒,即可证明四边形DGHM是平行四边形,可得DM=GH,由90GOD∠=︒可得∠EDM=90°,根据直角三角形两锐角互余的性质可得12∠=∠,利用ASA可证明△ADE≌△CDM,可得DE=DM,即可证明DE=GH;②由①得DM=DE,根据勾股定理可得,利用三角形三边关系即可得结论;(2)过点D作DN//GH交BC于点N,作ADM CDN∠=∠,DM交BA延长线于点M,可证明四边形GHND为平行四边形,可得DN HG=,GD HN=,根据勾股定理可求出CN的长,利用AAS可证明ADM CDN∆∆≌,可得AM NC=,DM DN=,根据平行线的性质∠EDN=45°,根据角的和差故选可得∠MDE=∠EDN,利用SAS可证明MDE NDE∆∆≌,即可证明AE CN EN+=,设AE x=,利用勾股定理可求出x的值,进而利用勾股定理求出DE的值即可得答案.【详解】(1)如图(1),过点D作//DM GH交BC延长线于点M,连接EH,EM,①∵四边形ABCD为正方形,∴//AD BC,AD CD=,90A ADC DCM∠=∠=∠=︒∴四边形DGHM为平行四边形,∴DM=GH,GD HM=,∵90GOD∠=︒,∴90EDM EOH∠=∠=︒,∴290EDC∠+∠=︒,∵90ADC∠=︒,∴190EDC∠+∠=︒,∴12∠=∠,在ADE∆和CDM∆中12A DCMAD DC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ADE CDM∆∆≌,∴DE DM=,∴DE GH=.。

人教版八年级初二数学第二学期平行四边形单元达标测试提优卷试题

人教版八年级初二数学第二学期平行四边形单元达标测试提优卷试题

人教版八年级初二数学第二学期平行四边形单元达标测试提优卷试题一、解答题1.在数学的学习中,有很多典型的基本图形.(1)如图①,ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D 、E .试说明ABD CAE ≌;(2)如图②,ABC 中,90BAC ∠=︒,AB AC =,点D 、A 、F 在同一条直线上,BD DF ⊥,3AD =,4BD =.则菱形AEFC 面积为______.(3)如图③,分别以Rt ABC 的直角边AC 、AB 向外作正方形ACDE 和正方形ABFG ,连接EG ,AH 是ABC 的高,延长HA 交EG 于点I ,若6AB =,8AC =,求AI 的长度.2.在矩形ABCD 中,AE ⊥BD 于点E ,点P 是边AD 上一点,PF ⊥BD 于点F ,PA =PF . (1)试判断四边形AGFP 的形状,并说明理由.(2)若AB =1,BC =2,求四边形AGFP 的周长.3.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC 、CF 为邻边作平行四边形ECFG .(1)求证:四边形ECFG 是菱形;(2)连结BD 、CG ,若120ABC ∠=︒,则BDG ∆是等边三角形吗?为什么? (3)若90ABC ∠=︒,10AB =,24AD =,M 是EF 的中点,求DM 的长.4.已知:如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交于BE 的延长线于点F ,且AF=DC ,连接CF .(1)求证:D 是BC 的中点;(2)如果AB=AC ,试判断四边形ADCF 的形状,并证明你的结论.5.如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A D 、不重合),射线PE 与BC 的延长线交于点Q .(1)求证:PDE QCE ∆≅∆;(2)若PB PQ =,点F 是BP 的中点,连结EF AF 、,①求证:四边形AFEP 是平行四边形;②求PE 的长.6.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.7.已知正方形,ABCD 点F 是射线DC 上一动点(不与,C D 重合).连接AF 并延长交直线BC 于点E ,交BD 于,H 连接CH .在EF 上取一点,G 使ECG DAH ∠=∠. (1)若点F 在边CD 上,如图1,①求证:CH CG ⊥.②求证:GFC 是等腰三角形.(2)取DF 中点,M 连接MG .若3MG =,正方形边长为4,则BE = .8.类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”. (1)已知:如图1,在“准等边四边形”ABCD 中,BC ≠AB ,BD ⊥CD ,AB =3,BD =4,求BC 的长;(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;(3)如图2,在△ABC 中,AB =AC=2,∠BAC =90°.在AB 的垂直平分线上是否存在点P ,使得以A ,B ,C ,P 为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.9.如图,锐角ABC ∆,AB AC =,点D 是边BC 上的一点,以AD 为边作ADE ∆,使AE AD =,EAD BAC ∠=∠.(1)过点E 作//EF DC 交AB 于点F ,连接CF (如图①)①请直接写出EAB ∠与DAC ∠的数量关系;②试判断四边形CDEF 的形状,并证明;(2)若60BAC ∠=,过点C 作//CF DE 交AB 于点F ,连接EF (如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.10.已知:如图,在ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,CF BA交PQ于点F,连接AF.过点C作//(1)求证:四边形AECF是菱形;AC=,AE=5,则求菱形AECF的面积.(2)若8【参考答案】***试卷处理标记,请不要删除一、解答题AI=.1.(1)见解析;(2)24;(3)5【分析】(1)证∠BDA=∠CEA=90°,∠CAE=∠ABD,由AAS证明△ABD≌△CAE即可;(2)连接CE,交AF于O,由菱形的性质得∠COA=∠ADB=90°,同(1)得△ABD≌△CAO(AAS),得OC=AD=3,OA=BD=4,由三角形面积公式求出S△AOC=6,即可得出答案;(3)过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,同(1)得△ACH ≌△EAM (AAS ),△ABH ≌△GAN (AAS ),得EM =AH =GN ,证△EMI ≌△GNI (AAS ),得EI =GI ,证∠EAG =90°,由勾股定理求出EG =10,再由直角三角形的性质即可得出答案.【详解】(1)证明:∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△CAE (AAS );(2)解:连接CE ,交AF 于O ,如图②所示:∵四边形AEFC 是菱形,∴CE ⊥AF ,∴∠COA =∠ADB =90°,同(1)得:△ABD ≌△CAO (AAS ),∴OC =AD =3,OA =BD =4,∴S △AOC =12OA •OC =12×4×3=6, ∴S 菱形AEFC =4S △AOC =4×6=24,故答案为:24;(3)解:过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,如图③所示: ∴∠EMI =∠GNI =90°,∵四边形ACDE 和四边形ABFG 都是正方形,∴∠CAE =∠BAG =90°,AC =AE =8,AB =AG =6,同(1)得:△ACH ≌△EAM (AAS ),△ABH ≌△GAN (AAS ),∴EM =AH =GN ,在△EMI 和△GNI 中,EIM GIH EMI GNI EM GN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点,∵∠CAE =∠BAG =∠BAC =90°,∴∠EAG =90°,在Rt △EAG 中, EG =22AE AG +=2286+=10,∵I 是EG 的中点,∴AI =12EG =12×10=5.【点睛】本题是四边形综合题目,考查了正方形的性质、菱形的性质、等腰直角三角形的性质、全等三角形的判定与性质、直角三角形斜边上的中线性质、勾股定理、三角形面积等知识;本题综合性强,熟练掌握正方形的性质和菱形的性质,证明三角形全等是解题的关键.2.(1)四边形AGFP 是菱形,理由见解析;(2)四边形AGFP 的周长为:252【分析】(1)根据矩形的性质和菱形的判定解答即可;(2)根据全等三角形的判定和性质,以及利用勾股定理解答即可.【详解】解:(1)四边形AGFP 是菱形,理由如下:∵四边形ABCD 是矩形,∴∠BAP =90°,∵PF ⊥BD ,PA =PF ,∴∠PBA =∠PBF ,∵AE ⊥BD ,∴∠PBF+∠BGE =90°,∵∠BAP =90°,∴∠PBA+∠APB =90°,∴∠APB =∠BGE ,∵∠AGP =∠BGE ,∴∠APB =∠AGP ,∴AP =AG ,∵PA =PF ,∴AG =PF ,∵AE ⊥BD ,PF ⊥BD ,∴AE ∥PF ,∴四边形AGFP 是平行四边形,∵PA =PF ,∴平行四边形AGFP 是菱形;(2)在Rt △ABP 和Rt △FBP 中,∵PB =PB ,PA =PF ,∴Rt △ABP ≌Rt △FBP (HL ),∴AB =FB =1,∵四边形ABCD 是矩形,∴AD =BC =2,∴BD =设PA =x ,则PF =x ,PD =2﹣x ,PF 1,在Rt △DPF 中,DF 2+PF 2=PD 2,∴2221)(2)x x +=-解得:x ,∴四边形AGFP 的周长为:4x =42=. 【点睛】 此题考查矩形的性质,菱形的判定,全等三角形的判定和性质和勾股定理,解题的关键是熟练掌握所学的知识定理进行解题.3.(1)详见解析;(2)是,详见解析;(3)【分析】(1)平行四边形的性质可得AD ∥BC ,AB ∥CD ,再根据平行线的性质证明∠CEF=∠CFE ,根据等角对等边可得CE=CF ,再有条件四边形ECFG 是平行四边形,可得四边形ECFG 为菱形,即可解决问题;(2)先判断出∠BEG=120°=∠DCG ,再判断出AB=BE ,进而得出BE=CD ,即可判断出△BEG ≌△DCG (SAS ),再判断出∠CGE=60°,进而得出△BDG 是等边三角形,即可得出结论;(3)首先证明四边形ECFG 为正方形,再证明△BME ≌△DMC 可得DM=BM ,∠DMC=∠BME ,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到△BDM 是等腰直角三角形,由等腰直角三角形的性质即可得到结论.【详解】(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=12∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵BE CDBEM DCM EM CM=⎧⎪∠=∠⎨⎪=⎩,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴22221024AB AD++=26,∴21322DM BD==【点睛】本题主要考查了平行四边形的判定与性质,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质,正方形的判定与性质,等腰直角三角形的判定和性质等知识点,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.4.(1)见详解;(2)四边形ADCF是矩形;证明见详解.【分析】(1)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论;(2)若AB=AC,则△ABC是等腰三角形,根据等腰三角形三线合一的性质知AD⊥BC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.【详解】(1)证明:∵E 是AD 的中点,∴AE=DE .∵AF ∥BC ,∴∠FAE=∠BDE ,∠AFE=∠DBE .在△AFE 和△DBE 中,FAE BDE AFE DBE AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS ).∴AF=BD .∵AF=DC ,∴BD=DC .即:D 是BC 的中点.(2)解:四边形ADCF 是矩形;证明:∵AF=DC ,AF ∥DC ,∴四边形ADCF 是平行四边形.∵AB=AC ,BD=DC ,∴AD ⊥BC 即∠ADC=90°.∴平行四边形ADCF 是矩形.【点睛】此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用.解题的关键是熟练掌握矩形的判定方法,以及全等三角形的判定和性质进行证明.5.(1)见解析;(2)①见解析;②6PE =【分析】(1)由四边形ABCD 是正方形知∠D=∠ECQ=90°,由E 是CD 的中点知DE=CE ,结合∠DEP=∠CEQ 即可得证;(2)①由PB=PQ 知∠PBQ=∠Q ,结合AD ∥BC 得∠APB=∠PBQ=∠Q=∠EPD ,由△PDE ≌△QCE 知PE=QE ,再由EF ∥BQ 知PF=BF ,根据Rt △PAB 中AF=PF=BF 知∠APF=∠PAF ,从而得∠PAF=∠EPD ,据此即可证得PE ∥AF ,从而得证;②设AP x =,则1PD x =-,1CQ x =-,2BQ x =-,利用三角形中位线定理得到()122EF x =-,由EF AP =,构造方程即可求得23x =,在Rt PDE ∆中,利用勾股定理即可求解.【详解】(1)∵四边形ABCD 是正方形,∴∠D=∠ECQ=90°,∵E 是CD 的中点,∴DE=CE ,又∵∠DEP=∠CEQ ,∴△PDE ≌△QCE (ASA );(2)①∵PB=PQ ,∴∠PBQ=∠Q ,∵AD ∥BC ,∴∠APB=∠PBQ=∠Q=∠EPD ,∵△PDE ≌△QCE ,∴PE=QE ,∵PF=BF ,∴EF 是PBQ ∆的中位线,∴EF ∥BQ ,∴在Rt △PAB 中,AF=PF=BF ,∴∠APF=∠PAF ,∴∠PAF=∠EPD ,∴PE ∥AF ,∵EF ∥BQ ∥AD ,∴四边形AFEP 是平行四边形;②设AP x =,则1PD x =-,∴1CQ x =-,∴2BQ x =-,∵EF 是PBQ ∆的中位线, ∴()122EF x =-, ∵EFAP =, ∴()122x x -=, ∴23x =, 在Rt PDE ∆中,222PD DE PE +=,即22221(1)()32PE -+=,∴6PE =. 【点睛】本题考查了正方形的性质、全等三角形的判定与性质、三角形中位线定理、平行四边形的判定和性质以及勾股定理等知识点.掌握全等三角形的判定定理和性质定理、正方形的性质是解题的关键.6.(1)8-2t,8-t;(2)83或74【分析】(1)根据P、Q的运动速度以及AB和CD的长即可表示;(2)分PQ=PB、BP=BQ和QP=QB三种情况进行分析即可.【详解】解:(1)由题意可得:DP=2t,AQ=t,∴PC=8-2t,BQ=8-t,故答案为:8-2t,8-t;(2)当PQ=PB时,如图①,QH=BH,则t+2t=8,解得,t=83,当PQ=BQ时,(2t-t)2+62=(8-t)2,解得,t=74,当BP=BQ时,(8-2t)2+62=(8-t)2,方程无解;∴当t=83或74时,△BPQ为等腰三角形.【点睛】本题考查的是矩形的性质、等腰三角形的判定,掌握性质并灵活运用性质是解题的关键,注意分情况讨论思想的应用.7.(1)①见解析;②GFC是等腰三角形,证明见解析;(2)4+4﹣【分析】(1)①只要证明△DAH≌△DCH,即可解决问题;②只要证明∠CFG=∠FCG,即可解决问题;(2)分两种情形解决问题:①当点F在线段CD上时,连接DE.②当点F在线段DC的延长线上时,连接DE.分别求出EC即可解决问题.【详解】(1)①证明:∵四边形ABCD是正方形,∴∠ADB =∠CDB =45°,DA =DC ,在△DAH 和△DCH 中,DA DC ADH CDH DH DH =⎧⎪∠=∠⎨⎪=⎩,∴△DAH ≌△DCH ,∴∠DAH =∠DCH ;∵∠ECG=∠DAH ,∴∠ECG=∠DCH ,∵∠ECG+∠FCG=∠FCE=90°,∴∠DCH+∠FCG=90°,∴CH ⊥CG.②∵在Rt △ADF 中,∠DFA+∠DAF =90°,由①得∠DCH+∠FCG=90°,∠DAH =∠DCH ;∴∠DFA =∠FCG ,又∵∠DFA =∠CFG ,∴∠CFG =∠FCG ,∴GF =GC ,∴△GFC 是等腰三角形(2)BE 的长为 4+25或425- .①如图①当点F 在线段CD 上时,连接DE .∵∠GFC =∠GCF ,又∵在Rt △FCG 中,∠GEC+∠GFC =90°,∠GCF+∠GCE =90°,∴∠GCE =∠GEC ,∴EG =GC =FG ,∴G是EF的中点,∴GM是△DEF的中位线∴DE=2MG=6,在Rt△DCE中,CE=22DE DC-=2264-=25,∴BE=BC+CE=4+25.②当点F在线段DC的延长线上时,连接DE.同法可知GM是△DEC的中位线,∴DE=2GM=5,在Rt△DCE中,CE22DE DC-2264-5∴BE=BC﹣CE=4﹣5综上所述,BE的长为4+54﹣25【点睛】本题考查正方形的性质、全等三角形的判定和性质、三角形的中位线定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(1)5;(2)正确,证明详见解析;(3)存在,有四种情况,面积分别是:7 1+2,31+2,13+22,33+22【分析】(1)根据勾股定理计算BC的长度,(2)根据对角线互相垂直平分的四边形是菱形判断,(3)有四种情况,作辅助线,将四边形分成两个三角形和一个四边形或两个三角形,相加可得结论.【详解】(1)∵BD⊥CD∴∠BDC=90°,BC>CD∵在“准等边四边形”ABCD中,BC≠AB,∴AB =AD =CD =3,∵BD=4,∴BC =225CD BD +=,(2)正确.如图所示:∵AB =AD∴ΔABD 是等腰三角形.∵AC ⊥BD .∴AC 垂直平分BD .∴BC =CD∴CD =AB =AD =BC∴四边形 ABCD 是菱形.(3)存在四种情况,如图2,四边形ABPC 是“准等边四边形”,过C 作CF PE ⊥于F ,则∠CFE=90,∵EP 是AB 的垂直平分线,∴90AEF A ==∠∠ ,∴四边形AEFC 是矩形,在Rt ABC 中,2,2AB AC BC === , ∴22CF AE BE ===, ∵2AB PC ==∴2262PF PC CF =-= ∴BEP CFP AEFC S S S S =++四边形ABPC 矩形1262126222222222=⨯+⨯⎭332+= 如图4,四边形ABPC 是“准等边四边形”,∵2AP BP AC AB ==== ,∴ABP △是等边三角形, ∴2313(2)221422ABP ABC S S S =+=⨯+⨯⨯=+四边形ACBP ; 如图5,四边形ABPC 是“准等边四边形”,∵2AB BP BC === ,PE 是AB 的垂直平分线,∴,PD AB ⊥ E 是AB 的中点,∴1222BE AB == , ∴2222214222PE PB BE ⎛⎫=-=-= ⎪ ⎪⎝⎭∴ACBP 11417222122APB ABC S S S =+=⨯⨯+⨯⨯=+四边形 如图6,四边形ABPC 是“准等边四边形”,过P 作PF AC ⊥于F ,连接AP ,∵2AB AC PB ===∴62PE =, ∴1612312222222APB APC ABPC S S S =+=⨯+=四边形【点睛】本题考查了四边形综合题,矩形和菱形的判定和性质,“准等边四边形”的定义等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形和矩形解题,学会用分类讨论的思想解决问题,难度较大,属于中考压轴题.9.(1)①EAB DAC ∠=∠; ② 平行四边形,证明见解析;(2)成立,证明见解析.【分析】(1)①根据EAD BAC ∠=∠,两角有公共角BAD ∠,可证EAB DAC ∠=∠;②连接EB ,证明△EAB ≌△DAC ,可得,ABE ACD EB CD ∠=∠=,再结合平行线的性质和等腰三角形的判定定理可得EF=DC ,由此可根据一组对边平行且相等的四边形是平行四边形证明四边形CDEF 为平行四边形.(2)根据60BAC ∠=︒,可证明△AED 和△ABC 为等边三角形,再根据ED ∥FC 结合等边三角形的性质,得出∠AFC=∠BDA ,求证△ABD ≌△CAF ,得出ED=CF ,进而求证四边形EDCF 是平行四边形.【详解】解:(1)①EAB DAC ∠=∠,理由如下:∵EAD BAC ∠=∠,EAD EAB BAD ∠=∠+∠,BAC BAD DAC ∠=∠+∠, ∴EAB BAD BAD DAC ∠+∠=∠+∠,∴EAB DAC ∠=∠;②证明:如下图,连接EB,在△EAB 和△DAC 中∵AE AD EAB DAC AB AC =⎧⎪∠=∠⎨⎪=⎩∴△EAB ≌△DAC (SAS )∴,ABE ACD EB CD ∠=∠=,∵AB AC =,∴ABC ACD ∠=∠,∴ABE ABC ∠=∠,∵//EF DC ,∴EFB ABC ∠=∠,∴ABE EFB ∠=∠,∴EB EF =,∴DC EF =∴四边形CDEF 为平行四边形;(2)成立;理由如下:理由如下:∵60BAC ∠=︒,∴=60EAD BAC ∠=∠︒,∵AE=AD ,AB=AC ,∴△AED 和△ABC 为等边三角形,∴∠B=60°,∠ADE=60°,AD=ED,∵ED ∥FC ,∴∠EDB=∠FCB ,∵∠AFC=∠B+∠BCF=60°+∠BCF ,∠BDA=∠ADE+∠EDB=60°+∠EDB ,∴∠AFC=∠BDA ,在△ABD 和△CAF 中,60BDA AFC B BAC AB CA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ABD ≌△CAF (AAS ),∴AD=FC ,∵AD=ED ,∴ED=CF ,又∵ED ∥CF ,∴四边形EDCF 是平行四边形.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质和判定,等边三角形的性质和判定,平行四边形的判定定理,平行线的性质.在做本题时可先以平行四边形的判定定理进行分析,在后两问中已知一组对边平行,所以只需证明这一组对边相等即可,一般证明线段相等就是证明相应的三角形全等.本题中是间接证明全等,在证明线段相等的过程中还应用到等腰三角形的判定定理(第(1)小题的第②问)和等边三角形的性质(第(2)小题),难度较大.10.(1)答案见解析;(2)24【分析】(1) 首先利用ASA 证明△CDF ≌△ADE ,进而得到AE=CF ,于是得四边形AECF 是平行四边形,再根据对角线互相垂直的平行四边形是菱形即可得到结论;(2)首先利用勾股定理求出DE 的长,再利用对角线乘积的一半求出菱形的面积.【详解】(1)∵CF// AB ,∴∠DCF= ∠DAE ,∵PQ 垂直平分AC ,∴CD= AD ,在△CDF 和△ADE 中,DCF DAE CD ADCDF ADE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CDF ≌△ADE ,∴CF=AE,∵CF ∥AE ,∴四边形AECF 是平行四边形,∵PQ 垂直平分AC ,∴AE=CE ,∴四边形AECF 是菱形;(2)∵四边形AECF 是菱形,∴△ADE 是直角三角形,∵AD=142AC ,AE=5 , ∴3==,∴EF= 2DE=6, ∴菱形AECF 的面积为11862422AC EF ⋅=⨯⨯=. 【点睛】此题考查菱形的判定及性质定理,三角形全等的判定定理,线段垂直平分线的性质定理,勾股定理,正确掌握菱形的判定及性质定理是解题的关键.。

人教版八年级初二数学第二学期平行四边形单元测试提优卷试卷

人教版八年级初二数学第二学期平行四边形单元测试提优卷试卷

人教版八年级初二数学第二学期平行四边形单元测试提优卷试卷一、选择题1.如图,将5个全等的阴影小正方形摆放得到边长为1的正方形ABCD ,中间小正方形的各边的中点恰好为另外4个小正方形的一个顶点,小正方形的边长为2a -(a 、b 为正整数),则+a b 的值为( )A .10B .11C .12D .132.如图,正方形ABCD 的边长为定值,E 是边CD 上的动点(不与点C ,D 重合),AE 交对角线BD 于点F , FG AE ⊥交BC 于点G ,GH BD ⊥于点H ,连结AG 交BD 于点N .现给出下列命题:① AF FG =;②DF DE =;③FH 的长度为定值;④GE BG DE =+;⑤222BN DF NF +=.真命题有( )A .2个B .3个C .4个D .5个 3.如图,在正方形ABCD 中,CE =MN ,∠MCE =35°,那么∠ANM 等于( )A .45°B .50°C .55°D .60°4.如图,正方形ABCD 中,4AB =,点E 在BC 边上,点F 在CD 边上,连接AE 、EF 、AF ,下列说法:①若E 为BC 中点,1CF =,则90AEF ∠=︒;②若E 为BC 中点,90AEF ∠=︒,则1CF =;③若90AEF ∠=︒,1CF =,则点E 为BC 中点,正确的有( )个A .0B .1C .2D .35.如图,在一张矩形纸片ABCD 中,AB=4,BC=8,点E ,F 分别在AD ,BC 上,将ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分∠DCH ;③线段BF 的取值范围为3≤BF ≤4;④当点H 与点A 重合时,EF=25.其中正确的结论是()A .①②③④B .①④C .①②④D .①③④6.如图,在矩形ABCD 中,1,2AD AC AE =平分BAD ∠交CD 于点E ,给出以下结论:①ADE ∆为等腰直角三角形;②BOC ∆为等边三角形;③70DOE ︒∠=;④3;EOC EAC ∠=∠⑤OE 是ACD ∆的中位线.其中正确的结论有( )A .2个B .3个C .4个D .5个7.如图,在Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为边,在AB 的同侧作正方形ABHI ,ACFG ,BCED .若图中两块阴影部分的面积分别记为1S ,2S ,则对1S ,2S 的大小判断正确的是( )A .12S S >B .12S SC .12S S <D .无法确定8.如图,在菱形ABCD 中,5AB cm =,120ADC =∠︒,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1/cm s ,点F 的速度为2/cm s ,经过t 秒DEF ∆为等边三角形,则t 的值为( )A .34B .43C .32D .539.如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE =DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .给出如下几个结论:①△AED ≌△DFB :②GC 平分∠BGD ;③S 四边形BCDG =3CG 2;④∠BGE 的大小为定值.其中正确的结论个数为( )A .1B .2C .3D .410.在菱形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的一点(不与端点重合),对于任意的菱形ABCD ,下面四个结论中:①存在无数个四边形MNPQ 是平行四边形;②存在无数个四边形MNPQ 是矩形;③存在无数个四边形MNPQ 是菱形;④至少存在一个四边形MNPQ 是正方形正确的结论的个数是( )A .1个B .2个C .3个D .4个二、填空题11.如图,在平行四边形ABCD中,AB=6,BC=4,∠A=120°,E是AB的中点,点F在平行四边形ABCD的边上,若△AEF为等腰三角形,则EF的长为_____.12.如图,在矩形ABCD中,∠ACB=30°,BC=23,点E是边BC上一动点(点E不与B,C重合),连接AE,AE的中垂线FG分别交AE于点F,交AC于点G,连接DG,GE.设AG=a,则点G到BC边的距离为_____(用含a的代数式表示),ADG的面积的最小值为_____.13.如图,有一张矩形纸条ABCD,AB=10cm,BC=3cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为_____cm.14.如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC为一边作正方形BDEC设正方形的对称中心为O,连接AO,则AO=_____.15.如图,在平行四边形ABCD中,AC⊥AB,AC与BD相交于点O,在同一平面内将△ABC 沿AC翻折,得到△AB’C,若四边形ABCD的面积为24cm2,则翻折后重叠部分(即S△ACE) 的面积为________cm2.16.如图,在ABC 中,D 是AB 上任意一点,E 是BC 的中点,过C 作//CF AB ,交DE 的延长线于F ,连BF ,CD ,若30FDB ∠=︒,45ABC ∠=︒,22BC =,则DF =_________.17.如图,矩形纸片ABCD ,AB =5,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则AF 的值为______.18.如图,在△ABC 中,AB =AC ,E ,F 分别是BC ,AC 的中点,以AC 为斜边作Rt △ADC ,若∠CAD =∠BAC =45°,则下列结论:①CD ∥EF ;②EF =DF ;③DE 平分∠CDF ;④∠DEC =30°;⑤AB =2CD ;其中正确的是_____(填序号)19.在菱形ABCD 中,M 是AD 的中点,AB =4,N 是对角线AC 上一动点,△DMN 的周长最小是2+3BD 的长为___________.20.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.三、解答题21.如图,在Rt ABC 中,90ACB ∠=︒,过点C 的直线//MN AB ,D 为AB 边上一点,过点D 作DE BC ⊥,交直线MN 于E ,垂足为F ,连接CD 、BE(1)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由; (2)当D 为AB 中点时,A ∠等于 度时,四边形BECD 是正方形.22.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.23.正方形ABCD 中,对角线AC 与BD 交于点O ,点P 是正方形ABCD 对角线BD 上的一个动点(点P 不与点B ,O ,D 重合),连接CP 并延长,分别过点D ,B 向射线作垂线,垂足分别为点M ,N .(1)补全图形,并求证:DM =CN ;(2)连接OM ,ON ,判断OMN 的形状并证明.24.已知:如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交于BE 的延长线于点F ,且AF=DC ,连接CF .(1)求证:D 是BC 的中点;(2)如果AB=AC ,试判断四边形ADCF 的形状,并证明你的结论.25.如图,ABC 是等腰直角三角形,90,ACB ∠=︒分别以,AB AC 为直角边向外作等腰直角ABD △和等腰直角,ACE G 为BD 的中点,连接,,CG BE ,CD BE 与CD 交于点F .(1)证明:四边形ACGD 是平行四边形;(2)线段BE 和线段CD 有什么数量关系,请说明理由;(3)已知2,BC =求EF 的长度(结果用含根号的式子表示).26.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 的面积可能等于53吗?如果能,求此时x 的值;如果不能,请说明理由.27.类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”.(1)已知:如图1,在“准等边四边形”ABCD 中,BC ≠AB ,BD ⊥CD ,AB =3,BD =4,求BC 的长;(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;(3)如图2,在△ABC 中,AB =AC=2,∠BAC =90°.在AB 的垂直平分线上是否存在点P ,使得以A ,B ,C ,P 为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.28.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;拓展:在图①中,若G 在AD ,且45GCE ∠︒=,则GE BE GD +=成立吗?为什么?运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠︒==,16AB BC ==,E 是AB 上一点,且45DCE ∠︒=,4BE =,求DE 的长.29.如图,在矩形 ABCD 中, AB =16 , BC =18 ,点 E 在边 AB 上,点 F 是边 BC 上不与点 B 、C 重合的一个动点,把△EBF 沿 EF 折叠,点B 落在点 B' 处.(I)若 AE =0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;(II)若 AE =3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;(III)若AE =8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.30.在边长为5的正方形ABCD 中,点E 在边CD 所在直线上,连接BE ,以BE 为边,在BE 的下方作正方形BEFG ,并连接AG .(1)如图1,当点E 与点D 重合时,AG = ;(2)如图2,当点E 在线段CD 上时,DE =2,求AG 的长;(3)若AG =517,请直接写出此时DE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】通过小正方形的边长表示出大正方形的边长,再利用a 、b 为正整数的条件分析求解.【详解】 解:由题意可知,22221a a AD --=⨯+⨯= ∴(42)(4)22a a b ---=∵a 、b 都是正整数∴4a - =0,4a-2=2b∴a=4,b=7∴a+b=11故选:B.【点睛】本题考查了正方形的性质以及有理数、无理数的性质,表示出大正方形的边长利用有理数、无理数的性质求出a 、b 是关键.2.C解析:C【分析】根据题意,连接CF ,由正方形的性质,可以得到△ABF ≌△CBF ,则AF=CF ,∠BAF=∠BCF ,由∠BAF=∠FGC=∠BCF ,得到AF=CF=FG ,故①正确;连接AC ,与BD 相交于点O ,由正方形性质和等腰直角三角形性质,证明△AOF ≌△FHG ,即可得到EH=AO ,则③正确;把△ADE 顺时针旋转90°,得到△ABM ,则证明△MAG ≌△EAG ,得到MG=EG ,即可得到EG=DE+BG ,故④正确;②无法证明成立,即可得到答案.【详解】解:连接CF ,在正方形ABCD 中,AB=BC ,∠ABF=∠CBF=45°,在△ABF 和△CBF 中,45AB BC ABF CBF BF BF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△CBF (SAS ),∴AF=CF ,∠BAF=∠BCF ,∵FG ⊥AE ,∴在四边形ABGF 中,∠BAF+∠BGF=360°-90°-90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF ,∴∠CGF=∠BCF∴CF=FG ,∴AF=FG ;①正确;连接AC 交BD 于O .∵四边形ABCD 是正方形,HG ⊥BD ,∴∠AOF=∠FHG=90°,∵∠OAF+∠AFO=90°,∠GFH+∠AFO=90°,∴∠OAF=∠GFH ,∵FA=FG ,∴△AOF ≌△FHG ,∴FH=OA=定值,③正确;如图,把△ADE 顺时针旋转90°,得到△ABM ,∴AM=AE ,BM=DE ,∠BAM=∠DAE ,∵AF=FG ,AF ⊥FG ,∴△AFG 是等腰直角三角形,∴∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△AMG 和△AEG 中,45AM AE EAG MAG AG AG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AMG ≌△AEG ,∴MG=EG ,∵MG=MB+BG=DE+BG ,∴GE= DE+BG ,故④正确;如图,△ADE 顺时针旋转90°,得到△ABM ,记F 的对应点为P ,连接BP 、PN , 则有BP=DF ,∠ABP=∠ADB=45°,∵∠ABD=45°,∴∠PBN=90°,∴BP 2+BN 2=PN 2,由上可知△AFG 是等腰直角三角形,∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△ANP 和△ANF 中,45AP AF EAG MAG AN AN =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ANP ≌△ANF ,∴PN=NF ,∴BP 2+BN 2=NF 2,即DF 2+BN 2=NF 2,故⑤正确;根据题意,无法证明②正确,∴真命题有四个,故选C.【点睛】本题考查了正方形的性质,全等三角形的判定与性质等知识,解题的关键是作辅助线构造出等腰三角形和全等三角形.3.C解析:C【分析】过B 作BF ∥MN 交AD 于F ,则∠AFB =∠ANM ,根据正方形的性质得出∠A =∠EBC =90°,AB =BC ,AD ∥BC ,推出四边形BFNM 是平行四边形,得出BF =MN =CE ,证Rt △ABF ≌Rt △BCE ,推出∠AFB =∠ECB 即可.【详解】解:过B 作BF ∥MN 交AD 于F ,则∠AFB =∠ANM ,∵四边形ABCD 是正方形,∴∠A =∠EBC =90°,AB =BC ,AD ∥BC ,∴FN ∥BM ,BF ∥MN ,∴四边形BFNM 是平行四边形,∴BF =MN ,∵CE =MN ,∴CE =BF ,在Rt △ABF 和Rt △BCE 中BF CE AB BC =⎧⎨=⎩∴Rt △ABF ≌Rt △BCE (HL ),∴∠ABF =∠MCE =35°,∴∠ANM =∠AFB =55°,故选:C .【点睛】本题考查了直角三角形全等的判定即性质,还涉及正方形的性质以及平行四边形的判定与性质,构造全等三角形是解题关键.4.D解析:D【解析】【分析】正方形的边长相等,因为AB=4,所以其他三边也为4,正方形的四个角都是直角,①若E 为BC 中点,1CF =,则能求出AE 2+EF 2=AF 2,用勾股定理可得90AEF ∠=︒.②若E 为BC 中点,90AEF ∠=︒,用勾股定理列方程可求得CF ,③若90AEF ∠=︒,1CF =,用勾股定理列方程可求得BE ,【详解】解:①若E 为BC 中点,1CF =,∵AB=4,∴BE=CE=2,DF=3,∴AE 2=42+22=20,EF 2=22+12=5,AF 2=42+32=25,∴AE 2+ EF 2=AF 2,∴90AEF ∠=︒;故①正确,②若E 为BC 中点,90AEF ∠=︒,设CF x =;则DF=4-x.∴AE 2=42+22=20,EF 2=4+x 2,AF 2=42+(4-x )2,∵90AEF ∠=︒∴∴AE 2+ EF 2=AF 2,∴20+4+ x 2=42+(4-x )2解得x=1;即CF=1.③若90AEF ∠=︒,1CF =,则DF=3,设BE=x ,∴AE 2+ EF 2=AF 2,即42+x 2+1+(4-x )2=42+32解得x=2,即BE=2,E 为BC 的中点.故①②③正确,答案选D.【点睛】本题考查了正方形的性质及勾股定理及勾股定理逆定理的应用,解题关键是应用勾股定理列方程并求解.5.D解析:D【分析】①先判断出四边形CFHE 是平行四边形,再根据翻折的性质可得CF=FH ,然后根据邻边相等的平行四边形是菱形证明即可判断出①正确;②根据菱形的对角线平分一组对角可得∠BCH=∠ECH ,然后求出只有∠DCE=30°时EC 平分∠DCH ,即可判断出②错误;③点H 与点A 重合时,设BF=x ,表示出AF=FC=8-x ,利用勾股定理列出方程求解得到BF 的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,即可判断出③正确;④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,即可判断出④正确.【详解】①∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,故①正确;②∵四边形CFHE是菱形,∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,故②错误;③点H与点A重合时,设BF=x,则AF=FC=8-x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8-x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,故③正确;④如图,过点F作FM⊥AD于M,则ME=(8-3)-3=2,由勾股定理得,2225MF ME+=综上所述,结论正确的有①③④,故选:D.【点睛】本题考查了菱形的判定和性质,勾股定理,掌握知识点是解题关键.6.B解析:B【分析】由矩形的性质可得AO=CO=DO=BO,∠DAB=∠ABC=∠DCB=∠CDA=90°,AD∥BC,AB∥CD,由角平分线的性质和平行线的性质可判断①,由锐角三角函数可求∠ACD=30°,即可判断②,由三角形内角和定理可求∠DOE的度数,即可判断③④,由直角三角形的性质可求CE的长,即可判断⑤.【详解】∵四边形ABCD 是矩形∴AO =CO =DO =BO ,∠DAB =∠ABC =∠DCB =∠CDA =90°,AD ∥BC ,AB ∥CD ∵AE 平分∠BAD∴∠DAE =∠EAB =45°∵AB ∥CD∴∠DEA =∠EAB =45°∴∠DEA =∠DAE =45°∴AD =DE ,且∠ADE =90°∴△ADE 是等腰直角三角形故①正确∵AD =12AC ,∠ADC =90° ∴∠ACD =30°∴∠OCB =60°,且OB =OC ∴△OBC 是等边三角形故②正确∵△OBC 是等边三角形∴OB =OC =BC∴OD =OA =AD =OC =OB∴∠ODA =∠OAD =∠DOA =60°,∠OCD =∠ODC =30°,且OD =DE∴∠DOE =280013︒-︒=75° 故③错误∵∠EAC =∠OAD−∠DAE =15°,∠EOC =∠DOC−∠DOE =180°−∠DOA−75°=120°−75°=45° ∴∠EOC =3∠EAC故④正确∵∠ACD =30°,∴AD=12AC ,AC=2AD∴,且DE =DO =AD ∴CE∴OE 不是△ACD 的中位线,故⑤错误故选:B .【点睛】本题考查了矩形的性质,等边三角形的判定和性质,等腰三角形的性质,求出∠ACD =30°是本题的关键.7.B解析:B【分析】连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,根据已知条件易证△BHK≌△ABC,继而由全等三角形的性质得S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,再由全等三角形的判定可得△BCJ≌△HKL,进而可得S1=S△BHK=S△ABC,由正方形的性质和全等三角形的判定可知△ABC≌△AIG,继而可得S△ABC=S△AIG=S2,等量代换即可求解.【详解】解:连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,由题意可知:四边形BCED是正方形,四边形ACFG是正方形,四边形ABHI是正方形,∠ACB=90°∴∠CEH=∠ECK=90° ,CE=BC∵∠BKH=90°,∴四边形CEHK是矩形,∴ CE=HK又∠HBK+∠ABC=90°, ∠BAC+∠ABC=90°∴∠HBK=∠BAC∴△BHK≌△ABC(AAS)∴S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,∵∠ABC+∠CBJ=90°,∠BHK+∠KHL=90°∴∠CBJ=∠KHL∴△BCJ≌△HKL(ASA)∴S△BCJ=S△HKL,∴S1=S△BHK=S△ABC,∵四边形ACFG是正方形,四边形ABHI是正方形,∴AB=AI,AC=AG,∠G=∠ACB=90°∴△ABC≌△AIG(SAS)∴S△ABC=S△AIG=S2,即S1=S2故选:B【点睛】本题主要考查正方形的性质,全等三角形的判定及其性质,解题的关键是熟练掌握正方形的性质及全等三角形的判定方法.8.D解析:D【分析】连接BD,证出△ADE≌△BDF,得到AE=BF,再利用AE=t,CF=2t,则BF=BC-CF=5-2t求出时间t的值.【详解】解:连接BD,∵四边形ABCD是菱形,∠ADC=120°,∴AB=AD,∠ADB=12∠ADC=60°,∴△ABD是等边三角形,∴AD=BD,又∵△DEF是等边三角形,∴∠EDF=∠DEF=60°,又∵∠ADB=60°,∴∠ADE=∠BDF,在△ADE和△BDF中,AD BDA DBCADE BDF=⎧⎪∠=∠⎨⎪∠=∠⎩∴△ADE≌△BDF(ASA),∴AE=BF,∵AE=t,CF=2t,∴BF=BC−CF=5−2t,∴t=5−2t∴t=53,故选:D.【点睛】本题考查全等三角形,等边三角形,菱形等知识,熟练掌握全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质为解题关键.9.D解析:D①先证明△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;②证明∠BGE=60︒=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60︒;③过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG=S四边形CMGN,易求后者的面积;④∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60︒,故为定值.【详解】解:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60︒又∵AE=DF,AD=BD,∴△AED≌△DFB(SAS),故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60︒=∠BCD,即∠BGD+∠BCD=180︒,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60︒,∠DGC=∠DBC=60︒,∴∠BGC=∠DGC=60︒,故本选项正确;③过点C作CM⊥GB于M,CN⊥GD于N(如图),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGNS四边形CMGN=2S△CMG,∵∠CGM=60︒,∴GM=12CG,CM=32CG,∴S四边形CMGN=2S△CMG=2×12×12CG×32=34CG2,故本选项正确;④∵∠BGE=∠BDG+∠DBF=∠BDG+∠GD F=60︒,为定值,故本选项正确;综上所述,正确的结论有①②③④,【点睛】本题考查了菱形的性质、全等三角形的判定、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.10.D解析:D【分析】根据菱形的判定和性质,矩形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【详解】①如图,连接AC,BD交于O,四边形ABCD是菱形,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④如图,当四边形ABCD 为正方形时,四边形MNPQ 是正方形,故至少存在一个四边形MNPQ 是正方形;故④正确;综上,①②③④4个均正确,故选:D .【点睛】本题考查了平行四边形的判定和性质,菱形的判定,正方形的判定,矩形的判定,熟记各定理是解题的关键.二、填空题11.33或3或572 【分析】△AEF 为等腰三角形,分三种情况讨论,由等腰三角形的性质和30°直角三角形性质、平行四边形的性质可求解.【详解】解:当AE AF =时,如图,过点A 作AH EF ⊥于H ,E 是AB 的中点,132AE AB ∴==, =AE AF ,AH EF ⊥,120A ∠=︒,30AEF AFE ∴∠=∠=︒,FH EH =,1322AH AE ∴==,333EH AH ==, 233EF EH ∴==,当AF EF =时,如图2,过点A 作AN CD ⊥于N ,过点F 作FM AB ⊥于M ,图2在平行四边形ABCD 中,6AB =,4BC =,120A ∠=︒,4AD BC ∴==,60ADC ∠=︒,30DAN ∴∠=︒,122DN AD ∴==,323AN DN ==, //AB CD ,AN CD ⊥,FM AB ⊥,23AN MF ∴==,AF EF =,FM AB ⊥,32AM ME ∴==, 22957124EF ME MF ∴=+=+=; 当3AE EF ==时,如图3,图33EF ∴=,综上所述:EF 的长为33357. 【点睛】 本题考查了平行四边形的性质,等腰三角形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键.12.42a - 33【分析】先根据直角三角形含30度角的性质和勾股定理得AB =2,AC =4,从而得CG 的长,作辅助线,构建矩形ABHM 和高线GM ,如图2,通过画图发现:当GE ⊥BC 时,AG 最小,即a 最小,可计算a 的值,从而得结论.【详解】∵四边形ABCD 是矩形,∴∠B =90°,∵∠ACB =30°,BC =3,∴AB =2,AC =4,∵AG =a ,∴CG =4a -,如图1,过G 作MH ⊥BC 于H ,交AD 于M ,Rt△CGH中,∠ACB=30°,∴GH=12CG=42a-,则点G到BC边的距离为42a-,∵HM⊥BC,AD∥BC,∴HM⊥AD,∴∠AMG=90°,∵∠B=∠BHM=90°,∴四边形ABHM是矩形,∴HM=AB=2,∴GM=2﹣GH=422a--=2a,∴S△ADG11323222a aAD MG=⋅=⨯⨯=,当a最小时,△ADG的面积最小,如图2,当GE⊥BC时,AG最小,即a最小,∵FG是AE的垂直平分线,∴AG=EG,∴42aa -=,∴43a=,∴△ADG 34233=,故答案为:42a-,233.本题主要考查了垂直平分线的性质、矩形的判定和性质、含30度角的直角三角形的性质以及勾股定理,确定△ADG 的面积最小时点G 的位置是解答此题的关键.13.101- 【分析】探究点E 的运动轨迹,寻找特殊位置解决问题即可.【详解】如图1中,当点M 与A 重合时,AE =EN ,设AE =EN =xcm ,在Rt △ADE 中,则有x 2=32+(9﹣x )2,解得x =5,∴DE =10﹣1-5=4(cm ),如图2中,当点M 运动到MB ′⊥AB 时,DE ′的值最大,DE ′=10﹣1﹣3=6(cm ),如图3中,当点M 运动到点B ′落在CD 时,22221310NB C N C B ''''=+=+=DB ′(即DE ″)=10﹣1﹣10=(9﹣10)(cm ),∴点E 的运动轨迹E →E ′→E ″,运动路径=EE ′+E ′B ′=6﹣4+6﹣(910101)故答案为:101-.【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.14.72;【分析】连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,判定△AOC ≌△FOB (ASA ),即可得出AO=FO ,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.【详解】解:连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,∵O 是正方形DBCE 的对称中心,∴BO=CO ,∠BOC=90°,∵FO ⊥AO ,∴∠AOF=90°,∴∠BOC=∠AOF ,即∠AOC+∠BOA=∠FBO+∠BOA ,∴∠AOC=∠FBO , ∵∠BAC=90°,∴在四边形ABOC 中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO ,在△AOC 和△FOB 中,AOC FOB AO FOACO FBO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOC ≌△FOB (ASA ),∴AO=FO ,FB=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×22=2故答案为.【点睛】本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.15.6【分析】由折叠的性质可得∠BAC=∠B'AC=90°,AB=AB',S△ABC=S△AB'C=12cm2,可证点B,点A,点B'三点共线,通过证明四边形ACDB'是平行四边形,可得B'E=CE,即可求解.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,S△ABC=1242=12cm2,∵在同一平面内将△ABC沿AC翻折,得到△AB′C,∴∠BAC=∠B'AC=90°,AB=AB',S△ABC=S△AB'C=12cm2,∴∠BAB'=180°,∴点B,点A,点B'三点共线,∵AB∥CD,AB'∥CD,∴四边形ACDB'是平行四边形,∴B'E=CE,∴S△ACE=12S△AB'C=6cm2,故答案为:6.【点睛】本题考查了翻折变换,平行四边形的判定和性质,证明点B,点A,点B'三点共线是本题的关键.16.4【分析】证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.【详解】解:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED(ASA).∴CF=BD.∴四边形CDBF是平行四边形.作EM⊥DB于点M,∵四边形CDBF 是平行四边形,22BC =∴BE=122BC =,DF=2DE , 在Rt △EMB 中,EM 2+BM 2=BE 2且EM=BM∴EM=1,在Rt △EMD 中,∵∠EDM=30°,∴DE=2EM=2,∴DF=2DE=4.故答案为:4.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题, 17.207【分析】根据折叠的性质可得出DC=DE 、CP=EP ,由“AAS”可证△OEF ≌△OBP ,可得出OE=OB 、EF=BP ,设EF=x ,则BP=x 、DF=5-x 、BF=PC=3-x ,进而可得出AF=2+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,即可得AF 的长.【详解】解:∵将△CDP 沿DP 折叠,点C 落在点E 处,∴DC =DE =5,CP =EP .在△OEF 和△OBP 中,90EOF BOP B E OP OF ∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴△OEF ≌△OBP (AAS ),∴OE =OB ,EF =BP .设EF =x ,则BP =x ,DF =DE -EF =5-x ,又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC -BP =3-x ,∴AF =AB -BF =2+x .在Rt △DAF 中,AF 2+AD 2=DF 2,∴(2+x )2+32=(5-x )2,∴x =67∴AF=2+67=207故答案为:20 7【点睛】本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.18.①②③⑤【分析】根据三角形中位线定理得到EF=12AB,EF∥AB,根据直角三角形的性质得到DF=12AC,根据三角形内角和定理、勾股定理计算即可判断.【详解】∵E,F分别是BC,AC的中点,∴EF=12AB,EF∥AB,∵∠ADC=90°,∠CAD=45°,∴∠ACD=45°,∴∠BAC=∠ACD,∴AB∥CD,∴EF∥CD,故①正确;∵∠ADC=90°,F是AC的中点,∴DF=CF=12 AC,∵AB=AC,EF=12 AB,∴EF=DF,故②正确;∵∠CAD=∠ACD=45°,点F是AC中点,∴△ACD是等腰直角三角形,DF⊥AC,∠FDC=45°,∴∠DFC=90°,∵EF//AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°,∴∠EFD=∠EFC+∠DFC=135°,∴∠FED=∠FDE=22.5°,∵∠FDC=45°,∴∠CDE=∠FDC-∠FDE=22.5°,∴∠FDE=∠CDE,∴DE平分∠FDC,故③正确;∵AB =AC ,∠CAB =45°,∴∠B =∠ACB =67.5°,∴∠DEC =∠FEC ﹣∠FED =45°,故④错误;∵△ACD 是等腰直角三角形,∴AC 2=2CD 2,∴AC=2CD , ∵AB=AC ,∴AB =2CD ,故⑤正确; 故答案为:①②③⑤.【点睛】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.19.4【分析】根据题意,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+23,由DM=122AD =,则BM=23,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD 为等边三角形,即可得到BD 的长度.【详解】解:如图:连接BD ,BM ,则AC 垂直平分BD ,则BN=DN ,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+3 ∵AD=AB=4,M 是AD 的中点,∴AM=DM=122AD =, ∴BM=3∵2222223)16AM BM AB +=+==,∴△ABM 是直角三角形,即∠AMB=90°;∵BM 是△ABD 的中线,∴△ABD 是等边三角形,∴BD=AB=AD=4.故答案为:4.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD 是等边三角形.20【解析】【分析】根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG 即可.【详解】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=3,EB=AB-AD=1,∵四边形EFCB 为矩形,∴FC=BE=1,∵AB ∥FC ,∴∠GFC=∠DAF=45°,∴GC=FC=1,∴FG ===.【点睛】本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.三、解答题21.(1)四边形BECD 是菱形,理由见解析;(2)45︒【分析】(1)先证明//AC DE ,得出四边形BECD 是平行四边形,再“根据直角三角形斜边上的中线等于斜边的一半”证出CD BD =,得出四边形BECD 是菱形;(2)先求出45ABC ∠=︒,再根据菱形的性质求出90DBE ∠=︒,即可证出结论.【详解】解:当点D 是AB 的中点时,四边形BECD 是菱形;理由如下:∵DE BC ⊥,90DFE ∴∠=︒,∵90ACB ∠=︒,ACB DFB ∴∠=∠,//AC DE ∴,∵//MN AB ,即//CE AD ,∴四边形ADEC 是平行四边形,CE AD ∴=;D 为AB 中点,AD BD ∴=,BD CE ∴=,∵//BD CE ,∴四边形BECD 是平行四边形,∵90ACB ∠=︒,D 为AB 中点,12CD AB BD ∴==, ∴四边形BECD 是菱形;(2)当45A ∠=︒时,四边形BECD 是正方形;理由如下:∵90ACB ∠=︒,45A ∠=︒,45ABC ∴∠=︒,∵四边形BECD 是菱形,12ABC DBE ∴∠=∠, 90DBE ∴∠=︒,∴四边形BECD 是正方形.故答案为:45︒.【点睛】本题考查了平行四边形的判定、正方形的判定以及直角三角形的性质;根据题意证明线段相等和直角是解决问题的关键.22.(1)AG 2=GE 2+GF 2,理由见解析;(2【分析】(1)结论:AG 2=GE 2+GF 2.只要证明GA=GC ,四边形EGFC 是矩形,推出GE=CF ,在Rt △GFC 中,利用勾股定理即可证明;(2)作BN ⊥AG 于N ,在BN 上截取一点M ,使得AM=BM .设AN=x .易证AM=BM=2x ,,在Rt △ABN 中,根据AB 2=AN 2+BN 2,可得1=x 2+(x )2,解得,推出BG=BN÷cos30°即可解决问题. 【详解】解:(1)结论:AG 2=GE 2+GF 2.理由:连接CG .∵四边形ABCD 是正方形,∴A 、C 关于对角线BD 对称,∵点G 在BD 上,∴GA=GC ,∵GE ⊥DC 于点E ,GF ⊥BC 于点F ,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC 是矩形,∴CF=GE ,在Rt △GFC 中,∵CG 2=GF 2+CF 2,∴AG 2=GF 2+GE 2.(2)作BN ⊥AG 于N ,在BN 上截取一点M ,使得AM=BM .设AN=x .∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x ,MN=3x , 在Rt △ABN 中,∵AB 2=AN 2+BN 2,∴1=x 2+(2x+3x )2,解得x=62-, ∴BN=62+, ∴BG=BN÷cos30°=326+.【点睛】本题考查正方形的性质,矩形的判定和性质,勾股定理,直角三角形30度的性质.23.(1)见解析;(2)MON 为等腰直角三角形,见解析【分析】(1)如图1,由正方形的性质得CB =CD ,∠BCD =90°,再证明∠BCN =∠CDM ,然后根据“AAS”证明△CDM ≌△CBN ,从而得到DM =CN ;(2)如图2,利用正方形的性质得OD =OC ,∠ODC =∠OCB =45°,∠DOC =90°,再利用∠BCN =∠CDM 得到∠OCN =∠ODM ,则根据“SAS”可判断△OCN ≌△ODM ,从而得到ON =OM ,∠CON =∠DOM ,所以∠MON =∠DOC =90°,于是可判断△MON 为等腰直角三角形.【详解】(1)证明:如图1,∵四边形ABCD 为正方形,∴CB =CD ,∠BCD =90°,∵DM ⊥CP ,BN ⊥CP ,∴∠DMC =90°,∠BNC =90°,∵∠CDM+∠DCM =90°,∠BCN+∠DCM =90°,∴∠BCN =∠CDM ,在△CDM 和△CBN 中DMC CNB CD CBCDM BCN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CDM ≌△CBN ,∴DM =CN ;(2)解:△OMN 为等腰直角三角形.理由如下:如图2,∵四边形ABCD 为正方形,∴OD =OC ,∠ODC =∠OCB =45°,∠DOC =90°,∵∠BCN =∠CDM ,∴∠BCN ﹣45°=∠CDM ﹣45°,即∠OCN =∠ODM ,在△OCN 和△ODM 中CN DM OCN ODM OC OD =⎧⎪∠=∠⎨⎪=⎩, ∴△OCN ≌△ODM ,∴ON =OM ,∠CON =∠DOM ,∴∠MON =∠DOC =90°, ∴MON 为等腰直角三角形.【点睛】本题考查正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质;两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.也考查全等三角形的判定与性质.24.(1)见详解;(2)四边形ADCF 是矩形;证明见详解.【分析】(1)可证△AFE ≌△DBE ,得出AF=BD ,进而根据AF=DC ,得出D 是BC 中点的结论; (2)若AB=AC ,则△ABC 是等腰三角形,根据等腰三角形三线合一的性质知AD ⊥BC ;而AF 与DC 平行且相等,故四边形ADCF 是平行四边形,又AD ⊥BC ,则四边形ADCF 是矩形.【详解】(1)证明:∵E 是AD 的中点,∴AE=DE .∵AF ∥BC ,∴∠FAE=∠BDE ,∠AFE=∠DBE .在△AFE 和△DBE 中,FAE BDE AFE DBE AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS ).∴AF=BD .∵AF=DC ,∴BD=DC .即:D 是BC 的中点.(2)解:四边形ADCF 是矩形;证明:∵AF=DC ,AF ∥DC ,∴四边形ADCF 是平行四边形.∵AB=AC ,BD=DC ,∴AD ⊥BC 即∠ADC=90°.∴平行四边形ADCF 是矩形.【点睛】此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用.解题的关键是熟练掌握矩形的判定方法,以及全等三角形的判定和性质进行证明.25.(1)见解析;(2)BE =CD ,理由见解析;(3)EF【分析】(1)利用等腰直角三角形的性质易得BD=2BC ,因为G 为BD 的中点,可得BG=BC ,由∠CGB=45°,∠ADB=45得AD ∥CG ,由∠CBD+∠ACB=180°,得AC ∥BD ,得出四边形ACGD 为平行四边形;。

人教版平行四边形单元测试提优卷试题

人教版平行四边形单元测试提优卷试题

一、选择题1.如图,将5个全等的阴影小正方形摆放得到边长为1的正方形ABCD ,中间小正方形的各边的中点恰好为另外4个小正方形的一个顶点,小正方形的边长为2a b -(a 、b 为正整数),则+a b 的值为( )A .10B .11C .12D .132.如图,正方形ABCD 的周长是16,P 是对角线AC 上的个动点,E 是CD 的中点,则PE +PD 的最小值为( )A .25B .23C .22D .43.如图,在正方形ABCD 中,点P 是AB 的中点,BE DP ⊥的延长线于点E ,连接AE ,过点A 作FA AE ⊥交DP 于点F ,连接BF 、FC.下列结论中:ABE ①≌ADF ;PF EP EB =+②;BCF ③是等边三角形;ADF DCF ④∠∠=;APF CDF SS .=⑤其中正确的是( )A .①②③B .①②④C .②④⑤D .①③⑤4.如图,边长为8的正方形ABCD 的对角线交于点O ,点,E F 分别在边,CD DA 上(CE DE <),且90,,EOF OE BC ︒∠=的延长线交于点 ,,G OF CD 的延长线交于点,H E 恰为OG 的中点.下列结论:①OCE ODF ∆∆≌;②OG OH =;③210GH =.其中,正确结论的个数是( )A .0个B .1个C .2个D .3个5.如图,在平行四边形ABCD 中,272BC AB B CE AB =∠=︒⊥,,于E F ,为AD 的中点,则AEF ∠的大小是( )A .54︒B .60︒C .66︒D .72︒6.如图,正方形纸片ABCD ,P 为正方形AD 边上的一点(不与点A ,点D 重合).将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于点H ,折痕为EF ,连接,,BP BH BH 交EF 于点M ,连接PM .下列结论:①BE PE =;②BP EF =;③PB 平分APG ∠;④PH AP HC =+;⑤MH MF =,其中正确结论的个数是( )A.5B.4C.3D.27.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E且AB=AE,延长AB与DE 的延长线相交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③BF=AD;④S△BEF=S△ABC;⑤S△CEF=S△ABE;其中正确的有()A.2个B.3个C.4个D.5个8.平行四边形的一边长是12,那么这个平行四边形的两条对角线的长可以是()A.10和34 B.18和20 C.14和10 D.10和129.线段AB上有一动点C(不与A,B重合),分别以AC,BC为边向上作等边△ACM和等边△BCN,点D是MN的中点,连结AD,BD,在点C的运动过程中,有下列结论:①△ABD可能为直角三角形;②△ABD可能为等腰三角形;③△CMN可能为等边三角形;④若AB=6,则AD+BD的最小值为37. 其中正确的是()A .②③B .①②③④C .①③④D .②③④10.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形; ②四边形CDFE 不可能为正方形,③DE 长度的最小值为4; ④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①②③B .①④⑤C .①③④D .③④⑤二、填空题11.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为_____.12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.13.如图,正方形ABCD 中,DAC ∠的平分线交DC 于点E ,若P ,Q 分别是AD 和AE 上的动点,则DQ+PQ 能取得最小值4时,此正方形的边长为______________.14.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,AB =OB ,点E ,F 分别是OA ,OD 的中点,连接EF ,EM ⊥BC 于点M ,EM 交BD 于点N ,若∠CEF =45°,FN =5,则线段BC 的长为_____.15.如图,长方形纸片ABCD 中,AB =6 cm,BC =8 cm 点E 是BC 边上一点,连接AE 并将△AEB 沿AE 折叠, 得到△AEB′,以C ,E ,B′为顶点的三角形是直角三角形时,BE 的长为___________cm.16.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.OABC 的顶点A ,C 分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.17.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .18.如图,正方形ABCD 的边长为4,点E 为AD 的延长线上一点,且DE =DC ,点P 为边AD 上一动点,且PC ⊥PG ,PG =PC ,点F 为EG 的中点.当点P 从D 点运动到A 点时,则CF 的最小值为___________19.如图,矩形ABCD 中,CE CB BE ==,延长BE 交AD 于点M ,延长CE 交AD 于点F ,过点E 作EN BE ⊥,交BA 的延长线于点N ,23FE AN ==,,则BC =_________.20.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.三、解答题21.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.22.在ABCD 中,以AD 为边在ABCD 内作等边ADE ∆,连接BE .(1)如图1,若点E 在对角线BD 上,过点A 作AH BD ⊥于点H ,且75DAB ∠=︒,AB 6=,求AH 的长度; (2)如图2,若点F 是BE 的中点,且CF BE ⊥,过点E 作MNCF ,分别交AB ,CD 于点,M N ,在DC 上取DG CN =,连接CE ,EG .求证:①CEN DEG ∆∆≌;②ENG ∆是等边三角形.23.已知正方形ABCD .(1)点P 为正方形ABCD 外一点,且点P 在AB 的左侧,45APB ∠=︒.①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平行四边形.②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.(2)如图(3),点F 在正方形ABCD 内且满足BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当13AE CF =时.请直接写出HC 的长________.24.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,AE =AD ,作DF ⊥AE 于点F . (1)求证:AB =AF ;(2)连BF 并延长交DE 于G .①EG =DG ;②若EG =1,求矩形ABCD 的面积.25.如图1,已知四边形ABCD 是正方形,E 是对角线BD 上的一点,连接AE ,CE .(1)求证:AE =CE ;(2)如图2,点P 是边CD 上的一点,且PE ⊥BD 于E ,连接BP ,O 为BP 的中点,连接EO .若∠PBC =30°,求∠POE 的度数;(3)在(2)的条件下,若OE =2,求CE 的长.26.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B ∠=︒,3AB =,6=BC ,求OAC 的面积;(3)如果30B ∠=︒,23AB =,当AED 是直角三角形时,求BC 的长.27.如图.正方形ABCD 的边长为4,点E 从点A 出发,以每秒1个单位长度的速度沿射线AD 运动,运动时间为t 秒(t >0),以AE 为一条边,在正方形ABCD 左侧作正方形AEFG ,连接BF .(1)当t =1时,求BF 的长度;(2)在点E 运动的过程中,求D 、F 两点之间距离的最小值;(3)连接AF 、DF ,当△ADF 是等腰三角形时,求t 的值.28.如图,锐角ABC ∆,AB AC =,点D 是边BC 上的一点,以AD 为边作ADE ∆,使AE AD =,EAD BAC ∠=∠.(1)过点E 作//EF DC 交AB 于点F ,连接CF (如图①)①请直接写出EAB ∠与DAC ∠的数量关系;②试判断四边形CDEF 的形状,并证明;(2)若60BAC ∠=,过点C 作//CF DE 交AB 于点F ,连接EF (如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.29.如图,四边形ABCD 为矩形,C 点在x 轴上,A 点在y 轴上,D(0,0),B(3,4),矩形ABCD 沿直线EF 折叠,点B 落在AD 边上的G 处,E 、F 分别在BC 、AB 边上且F(1,4).(1)求G 点坐标(2)求直线EF 解析式(3)点N 在坐标轴上,直线EF 上是否存在点M ,使以M 、N 、F 、G 为顶点的四边形是平行四边形?若存在,直接写出M 点坐标;若不存在,请说明理由30.阅读下列材料,并解决问题:如图1,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点D 为AC 边上的动点(不与A 、C 重合),以AD ,BD 为边构造ADBE ,求对角线DE 的最小值及此时AD AC的值是多少.在解决这个问题时,小红画出了一个以AD ,BD 为边的ADBE (如图2),设平行四边形对角线的交点为O ,则有AO BO =.于是得出当OD AC ⊥时,OD 最短,此时DE 取最小值,得出DE 的最小值为6.参考小红的做法,解决以下问题:(1)继续完成阅读材料中的问题:当DE 的长度最小时,AD AC=_______; (2)如图3,延长DA 到点F ,使AF DA =.以DF ,DB 为边作FDBE ,求对角线DE 的最小值及此时AD AC 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】通过小正方形的边长表示出大正方形的边长,再利用a 、b 为正整数的条件分析求解.【详解】 解:由题意可知,222212a a AD b b=⨯+⨯= ∴(42)(422a a b ---=∵a 、b 都是正整数∴4a - =0,4a-2=2b∴a=4,b=7∴a+b=11故选:B.【点睛】本题考查了正方形的性质以及有理数、无理数的性质,表示出大正方形的边长利用有理数、无理数的性质求出a 、b 是关键.2.A解析:A【解析】【分析】由于点B 与D 关于AC 对称,所以连接BE ,与AC 的交点即为P 点.此时PE+PD=BE 最小,而BE 是直角△CBE 的斜边,利用勾股定理即可得出结果.【详解】解:如图,连接BE ,设BE 与AC 交于点P',∵四边形ABCD 是正方形,∴点B 与D 关于AC 对称,∴P'D=P'B ,∴P'D+P'E=P'B+P'E=BE 最小.即P 在AC 与BE 的交点上时,PD+PE 最小,即为BE 的长度.∴直角△CBE 中,∠BCE=90°,BC=4,CE=12CD=2, ∴224225BE =+=故选:A.【点睛】本题题考查了轴对称中的最短路线问题,要灵活运用正方形的性质、对称性是解决此类问题的重要方法,找出P 点位置是解题的关键 3.B解析:B【解析】【分析】根据正方形的性质可得AB AD =,再根据同角的余角相等求出BAE DAF ∠∠=,再根据等角的余角相等求出ABE ADF ∠∠=,然后利用“角边角”证明ABE ≌ADF ;根据全等三角形对应边相等可得AE AF =,判断出AEF 是等腰直角三角形,过点A 作AM EF ⊥于M ,根据等腰直角三角形点的性质可得AM MF =,再根据点P 是AB 的中点得到AP BP =,然后利用“角角边”证明APM 和BPE 全等,根据全等三角形对应边相等可得BE AM =,EP MP =,然后求出PF EP EB =+;根据全等三角形对应边相等求出DF BE AM ==,再根据同角的余角相等求出DAM CDF ∠∠=,然后利用“边角边”证明ADM 和DCF 全等,根据全等三角形对应角相等可得ADF DCF ∠∠=,CFD DMA 90∠∠==;再求出CD CF ≠,判定BCF 不是等边三角形;求出CF FP >,AM DF =,然后求出APF CDF SS <.【详解】在正方形ABCD 中,AB AD =,DAF BAF 90∠∠+=, FA AE ⊥,BAE BAF 90∠∠∴+=,BAE DAF ∠∠∴=,BE DP ⊥,ABE BPE 90∠∠∴+=,又ADF APD 90∠∠+=,BPE APD(∠∠=对顶角相等),ABE ADF ∠∠∴=,在ABE 和ADF 中, BAE DAF AB ADABE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ABE ∴≌()ADF ASA ,故①正确;AE AF ∴=,BE DF =,AEF ∴是等腰直角三角形,过点A 作AM EF ⊥于M ,则AM MF =,点P 是AB 的中点,AP BP ∴=,在APM 和BPE 中,90BPE APD BEP AMP AP BP ∠=∠⎧⎪∠=∠=⎨⎪=⎩,APM ∴≌()BPE AAS ,BE AM ∴=,EP MP =,PF MF PM BE EP ∴=+=+,故②正确;BE DF =,FM AM BE ==,AM DF ∴=,又ADM DAM 90∠∠+=,ADM CDF 90∠∠+=,DAM CDF ∠∠∴=,在ADM 和DCF , AD DC DAM CDF AM DF =⎧⎪∠=∠⎨⎪=⎩,ADM ∴≌()DCF SAS ,CF DM ∴=,ADF DCF ∠∠=,CFD DMA 90∠∠==,故④正确; 在Rt CDF 中,CD CF >,BC CD =,CF BC ∴≠,BCF ∴不是等边三角形,故③错误;CF DM DF FM EM FM EF FP ==+=+=≠,又AM DF =,APF CDF S S ∴<,故⑤错误;综上所述,正确的有①②④,故选B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,同角或等角度余角相等的性质,三角形的面积,综合性较强,难度较大,熟练掌握正方形的性质是解题的关键,作辅助线利用等腰直角三角形的性质并构造出全等三角形是本题的难点.4.C解析:C【分析】①直接利用角边角判定定理判断即可;②证明ODH OCG ∆≅∆即可;③在Rt CGH ∆中求解即可判断此答案错误.【详解】解:①∵四边形ABCD 是正方形,,AC BD 是对角线,∴OD OC =,45ODF OCE ∠=∠=︒,90DOC ∠=︒,∵90EOF ∠=︒,∴DOC DOE EOF DOE ∠-∠=∠-∠,即:EOC DOF ∠=∠,在ODF ∆和OCE ∆中,∵ODF OCE OD OC DOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ODF OCE ∆≅∆,故①正确;②∵45ODF OCE ∠=∠=︒,∴90=90=135ODF OCE ∠+︒∠+︒︒,即:ODH OCG ∠=∠,在ODH ∆和OCG ∆中,∵GOC DOH OD OC ODH OCG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ODH OCG ∆≅∆,∴OH OG =,故②正确;③过点O 作OM CD ⊥于点M ,∵OM CD ⊥,∴在等腰Rt OCD ∆中,118422OM CD ==⨯=, 在Rt ECG ∆和Rt EMO ∆中 ∵OME GCE OEM GEC OE GE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴4CG OM ==,由②中知:ODH OCG ∆≅∆,∴DH CG =,∴=4DH CG =,∴8412CH CD DH =+=+=,∴在Rt CGH ∆中,由勾股定理得:2222412410GH CG CH =+=+=,故③错误;综上所述:只有两个正确,故选:C .【点睛】本题主要考查正方形的性质,全等三角形的判定与性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分每组对角.5.A解析:A【分析】过F作AB的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的度数,由此得解.【详解】解:过F作FG∥AB交BC于G,连接EG,∵在平行四边形ABCD中,AB∥CD,AD∥BC,∴FG∥AB∥CD,∵FG∥AB,AD∥BC,∴四边形ABGF是平行四边形,∴AF=BG,又∵F为AD中点∴G是BC的中点;∵BC=2AB,F为AD的中点,∴BG=AB=FG=AF,∵在Rt△BEC中,EG是斜边上的中线,∴BG=GE=FG=12 BC;∴∠BEG=∠B=72°,∴∠AEG=∠AEF+∠FEG=180°﹣∠BEG=108°,∵AE∥FG,∴∠EFG=∠AEF,∵GE=FG,∴∠EFG=∠FEG,∴∠AEF=∠FEG=12∠AEG=54°,故选:A.【点睛】此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出辅助线是解决问题的关键.6.B解析:B【分析】①③利用正方形的性质、翻折不变性即可解决问题;②构造全等三角形即可解决问题;④如图2,过B作BQ⊥PH,垂足为Q.证明△ABP≌△QBP(AAS),以及△BCH≌△BQH 即可判断;⑤利用特殊位置,判定结论即可;【详解】解:根据翻折不变性可知:PE=BE,故①正确;∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH−∠EPB=∠EBC−∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.,故③正确;∴∠APB=∠BPH,即PB平分APG如图1中,作FK⊥AB于K.设EF交BP于O.∵∠FKB=∠KBC=∠C=90°,∴四边形BCFK是矩形,∴KF=BC=AB,∵EF⊥PB,∴∠BOE=90°,∵∠ABP+∠BEO=90°,∠BEO+∠EFK=90°,∴∠ABP=∠EFK,∵∠A=∠EKF=90°,∴△ABP≌△KFE(ASA),∴EF=BP,故②正确,如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,在△ABP和△QBP中,∠APB=∠BPH,∠A=∠BQP,BP=BP,∴△ABP≌△QBP(AAS).∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH(HL)∴QH=HC,∴PH=PQ+QH=AP+HC,故④正确;当点P与A重合时,显然MH>MF,故⑤错误,故选:B.【点睛】本题考查正方形的性质、翻折变换、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题属于中考选择题中的压轴题.7.B解析:B【分析】根据平行四边形的性质可得AD//BC,AD=BC,根据平行线的性质可得∠BEA=∠EAD,根据等腰三角形的性质可得∠ABE=∠BEA,即可证明∠EAD=∠ABE,利用SAS可证明△ABC≌△EAD;可得①正确;由角平分线的定义可得∠BAE=∠EAD,即可证明∠ABE=∠BEA=∠BAE,可得AB=BE=AE,得出②正确;由S△AEC=S△DEC,S△ABE=S△CEF得出⑤正确;题中③和④不正确.综上即可得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠BEA=∠EAD,∵AB=AE,∴∠ABE=∠BEA,∴∠EAD=∠ABE,在△ABC和△EAD中,AB AEABE EAD BC AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△EAD(SAS);故①正确;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠ABE=∠BEA=∠BAE,∴∠BAE=∠BEA,∴AB=BE=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;⑤正确.若AD=BF,则BF=BC,题中未限定这一条件,∴③不一定正确;如图,过点E作EH⊥AB于H,过点A作AG⊥BC于G,∵△ABE是等边三角形,∴AG=EH,若S△BEF=S△ABC,则BF=BC,题中未限定这一条件,∴④不一定正确;综上所述:正确的有①②⑤.故选:B.【点睛】本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,熟练掌握等底、等高的三角形面积相等的性质是解题关键.8.B解析:B【分析】作CE∥BD,交AB的延长线于点E,根据平行四边形的性质得到△ACE中,AE=2AB=24,再根据三角形的三边关系即可得到答案.【详解】解:如图,作CE∥BD,交AB的延长线于点E,∵AB=CD,DC∥AB∴四边形BECD是平行四边形,∴CE=BD,BE=CD=AB,∴在△ACE中,AE=2AB=24<AC+CE,∴四个选项中只有A,B符合条件,但是10,34,24不符合三边关系,故选:B.【点睛】此题考查平行四边形的性质,三角形的三边关系,利用平行线将对角线及边转化为三角形是解题的关键.9.D解析:D【分析】根据题意并结合图形,我们可以得出当C为AB的中点时,可判断所给结论正确与否.【详解】解:当C为AB中点时,有图如下,∵ACM 与BCN 为等边三角形,∵C 为AB 中点,∴AM=AC=MC=NC=BC=NB,MD=ND ,∵MCN 60∠=︒∴CMN CNM 60∠∠==︒∴CMN 为等边三角形,③正确;∵AMD BND 120∠∠==︒∴AMD BND ≅∴AD=BD,△ABD 此时为等腰三角形,②正确;当C 为AB 中点时,AD+BD 值最小,∵D 为MN 的中点,∴CD 为MN 的垂直平分线, ∴1MD 4AB =,∵AB=6, ∴22333CD 322⎛⎫=-= ⎪⎝⎭∴223337AD 32⎛⎫=+= ⎪ ⎪⎝⎭∵AD=BD ∴AD+BD=37若△ABD 可能为直角三角形,则ADB 90∠=︒,∴CD 为AB 的垂直平分线∴ADC 45∠=︒∴AC=CD,与所求结论不符,①错误.故选:D .【点睛】本题考查的知识点是等边三角形的性质以及全等三角形的判定定理及性质,弄清题意,画出当C 为AB 中点时的图形是解题的关键. 10.B解析:B【分析】①连接CF,证明△ADF≌△CEF,得到△EDF是等腰直角三角形;②根据中点的性质和直角三角形的性质得到四边形CDFE是菱形,利用正方形的判定定理进行判断;③当DE最小时,DF也最小,利用垂线段的性质求出DF的最小值,进行计算即可;④根据△ADF≌△CEF,得到S四边形CEFD=S△AFC;⑤由③的结论进行计算即可.【详解】①连接CF,∵△ABC是等腰直角三角形,且F是AB边上的中点,∴∠FCB=∠A=∠B =45°,CF=AF=FB,∵AD=CE,∴△ADF≌△CEF,∴EF=DF,∠AFD=∠CFE,∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形,①正确;②当D、E分别为AC、BC中点,即DF、EF分别为Rt△AFC和Rt△BFC斜边上的中线,∴CD=DF=12AC,FE=EC=12BC,∴CD=DF=FE=EC,四边形CDFE是菱形,又∠C=90°,∴四边形CDFE是正方形,②错误;③由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小,当DF⊥AC时,DE最小,此时EF=DF=12BC=4.∴22224442DF EF+=+=④∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四边形CEFD=S△AFC,∴四边形CDFE的面积保持不变,④正确;⑤由③可知当DE最小时,DF也最小,DF的最小值是4,则DE的最小值为42当△CEF面积最大时,此时△DEF的面积最小.此时S△CEF=S四边形CEFD-S△DEF=S△AFC-S△DEF=16-8=8,⑤正确;综上,正确的是:①④⑤,故选:B.【点睛】本题考查了正方形的判定、等腰直角三角形的性质、全等三角形的判定和性质,掌握正方形的判定定理、全等三角形的判定定理和性质定理、理解点到直线的距离的概念是解题的关键.二、填空题11.43或4【解析】分析:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.详解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,.∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2-AC2,∴AB=2284=43;②当∠A'FE=90°时,如图2,.∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;.综上所述,AB的长为43或4;故答案为43或4.点睛:本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.12.42【分析】首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC 和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.【详解】解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,∵AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴∠ADF=∠ABE,∵两纸条宽度相同,∴AF=AE ,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE ,∴AD=AB ,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD=22242AB AO -=故本题答案为:42【点睛】本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.13.42【分析】作P 点关于线段AE 的对称点P ',根据轴对称将DQ PQ +转换成DP ',然后当DP AC '⊥的时候DP '是最小的,得到DP '长,最后求出正方形边长DC .【详解】∵AE 是DAC ∠的角平分线,∴P 点关于线段AE 的对称点一定在线段AC 上,记为P '由轴对称可以得到PQ P Q '=,∴DQ PQ DQ P Q DP ''+=+=,如图,当DP AC '⊥的时候DP '是最小的,也就是DQ PQ +取最小值4,∴4DP '=,由正方形的性质P '是AC 的中点,且DP P C ''=,在Rt DCP '中,2222443242DC DP P C ''=+=+==.故答案是:42.【点睛】本题考查轴对称的最短路径问题,解题的关键是能够分析出DQ PQ +取最小值的状态,并将它转换成DP '去求解.14.45【分析】设EF =x ,根据三角形的中位线定理表示AD =2x ,AD ∥EF ,可得∠CAD =∠CEF =45°,证明△EMC 是等腰直角三角形,则∠CEM =45°,证明△ENF ≌△MNB ,则EN =MN =12x ,BN =FN =5,最后利用勾股定理计算x 的值,可得BC 的长.【详解】解:设EF =x ,∵点E 、点F 分别是OA 、OD 的中点, ∴EF 是△OAD 的中位线,∴AD =2x ,AD ∥EF ,∴∠CAD =∠CEF =45°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =2x ,∴∠ACB =∠CAD =45°,∵EM ⊥BC ,∴∠EMC =90°,∴△EMC 是等腰直角三角形,∴∠CEM =45°,连接BE ,∵AB =OB ,AE =OE∴BE ⊥AO∴∠BEM =45°,∴BM =EM =MC =x ,∴BM =FE ,易得△ENF ≌△MNB ,∴EN =MN =12x ,BN =FN =5, Rt △BNM 中,由勾股定理得:BN2=BM2+MN2, 即22215()2x x =+解得,x =5∴BC=2x=45.故答案为:45.【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.15.3或6【详解】①∠B′EC=90°时,如图1,∠BEB′=90°,由翻折的性质得∠AEB=∠AEB′=12×90°=45°,∴△ABE是等腰直角三角形,∴BE=AB=6cm;②∠EB′C=90°时,如图2,由翻折的性质∠AB′E=∠B=90°,∴A、B′、C在同一直线上,AB′=AB,BE=B′E,由勾股定理得,222268AB BC+=+,∴B′C=10-6=4cm,设BE=B′E=x,则EC=8-x,在Rt△B′EC中,B′E2+B′C2=EC2,即x2+42=(8-x)2,解得x=3,即BE=3cm,综上所述,BE的长为3或6cm.故答案为3或6.16.5【分析】过点B作BD⊥l2,交直线l2于点D,过点B作BE⊥x轴,交x轴于点E.则22OE BE+OABC是平行四边形,所以OA=BC,又由平行四边形的性质可推得∠OAF=∠BCD,则可证明△OAF≌△BCD,所以OE的长固定不变,当BE最小时,OB取得最小值,从而可求.【详解】解:过点B 作BD ⊥l 2,交直线x=4于点D ,过点B 作BE ⊥x 轴,交x 轴于点E ,直线l 1与OC 交于点M ,与x 轴交于点F ,直线l 2与AB 交于点N .∵四边形OABC 是平行四边形,∴∠OAB=∠BCO ,OC ∥AB ,OA=BC ,∵直线l 1与直线l 2均垂直于x 轴,∴AM ∥CN ,∴四边形ANCM 是平行四边形,∴∠MAN=∠NCM ,∴∠OAF=∠BCD ,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC ,在△OAF 和△BCD 中,FOA DBC OA BCOAF BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAF ≌△BCD (ASA ),∴BD=OF=1,∴OE=4+1=5,∴OB=22OE BE +.由于OE 的长不变,所以当BE 最小时(即B 点在x 轴上),OB 取得最小值,最小值为OB=OE=5.故答案为:5.【点睛】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质,以及勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.17.2或14【分析】利用当AB=10cm,AD=6cm ,由于平行四边形的两组对边互相平行,又AE 平分∠BAD ,由此可以推出所以∠BAE=∠DAE ,则DE=AD=6cm ;同理可得:CF=CB=6cm ,而EF=CF+DE-DC ,由此可以求出EF 长;同理可得:当AD=10cm,AB=6cm 时,可以求出EF 长【详解】解:如图1,当AB=10cm,AD=6cm∵AE平分∠BAD∴∠BAE=∠DAE,又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED,则AD=DE=6cm同理可得:CF=CB=6cm∵EF=DE+CF-DC=6+6-10=2(cm)如图2,当AD=10cm,AB=6cm,∵AE平分∠BAD,∴∠BAE=∠DAE又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED则AD=DE=10cm同理可得,CF=CB=10cm EF=DE+CF-DC=10+10-6=14(cm)故答案为:2或14.图1 图2【点睛】本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.18.2【分析】由正方形ABCD的边长为4,得出AB=BC=4,∠B=90°,得出AC=42P与D重合时,PC=ED=PA,即G与A重合,则EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的路径为DF,由D是AE的中点,F是EG的中点,得出DF是△EAG 的中位线,证得∠FDA=45°,则F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=12AG=2【详解】解:连接FD∵正方形ABCD的边长为4,∴AB=BC=4,∠B=90°,∴AC=2,当P与D重合时,PC=ED=PA,即G与A重合,∴EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的轨迹为DF,∵D是AE的中点,F是EG的中点,∴DF是△EAG的中位线,∴DF∥AG,∵∠CAG=90°,∠CAB=45°,∴∠BAG=45°,∴∠EAG=135°,∴∠EDF=135°,∴∠FDA=45°,∴F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=12AG=22故答案为:2【点睛】本题主要考查了正方形的性质,掌握正方形的性质是解题的关键.19.663【分析】通过四边形ABCD是矩形以及CE CB BE==,得到△FEM是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM,NK,KE的值,进而得到NE的值,再利用30°直角三角形的性质及勾股定理得到BN,BE即可.【详解】解:如图,设NE交AD于点K,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠MFE=∠FCB,∠FME=∠EBC∵CE CB BE ==,∴△BCE 为等边三角形,∴∠BEC=∠ECB=∠EBC=60°,∵∠FEM=∠BEC ,∴∠FEM=∠MFE=∠FME=60°,∴△FEM 是等边三角形,FM=FE=EM=2,∵EN ⊥BE ,∴∠NEM=∠NEB=90°,∴∠NKA=∠MKE=30°,∴KM=2EM=4,NK=2AN=6,∴在Rt △KME 中,KE=2223KM EM -=,∴NE=NK+KE=6+23,∵∠ABC=90°,∴∠ABE=30°,∴BN=2NE=12+43,∴BE=22663BN NE -=+,∴BC=BE=663, 故答案为:663【点睛】本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.20.7【分析】①若m n =,则AF EC =,先根据平行四边形的性质得出//,AD BC AD BC =,再根据平行四边形的判定(一组对边平行且相等或两组对边分别平行)即可得;②先根据平行四边形的性质与判定得出四边形ABEF 、四边形CDFE 都是平行四边形,从而可得11,44EFG ABEF EFH CDFE S S S S ∆∆==,再根据28ABCD ABEF CDFE S S S =+= 和1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆=+=+四边形即可得出答案.【详解】四边形ABCD 是平行四边形//,AD BC AD BC ∴= ,,AF EC n m BC BC m n === AF EC ∴=AD AF BC EC ∴-=-,即DF BE =∴四边形AECF 、四边形BEDF 都是平行四边形//,//AE CF BF DE ∴∴四边形EGFH 是平行四边形综上,图中共有4个平行四边形如图,连接EF1,,AF EC n m BC B n Cm ==+= AF EC BC AD ∴+==AF DF AD +=EC DF ∴=AF BE ∴=∴四边形ABEF 、四边形CDFE 都是平行四边形11,44EFG ABEF EFH CDFE S S S S ∆∆∴== 28ABCD ABEF CDFE S S S =+=1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆∴=+=+四边形 1()4ABEF CDFE S S =+12874=⨯= 故答案为:4;7.【点睛】本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题关键.三、解答题21.(1)AG2=GE2+GF2,理由见解析;(2【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(x)2,解得,推出BG=BN÷cos30°即可解决问题.【详解】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(x)2,解得∴BN=,4∴BG=BN÷cos30°.【点睛】本题考查正方形的性质,矩形的判定和性质,勾股定理,直角三角形30度的性质.22.(1)3AH 2)①证明见解析;②证明见解析【分析】(1)根据等边三角形的性质得到∠DAE =60°,根据等腰三角形的性质得到∠DAH =∠EAH ,求出∠HAB =45°,根据等腰直角三角形的性质计算,得到答案;(2)①根据线段垂直平分线的性质得到CB =CE ,根据平行四边形的性质得到AD =BC ,得到DE =CE ,利用SAS 定理证明结论;②根据全等三角形的性质得到EN =EG ,根据等边三角形的判定定理证明即可.【详解】(l )∵ADE ∆是等边三角形,∴60DAE ∠=︒.∵AH BD ⊥,∴1302DAH HAE DAE ︒∠=∠=∠=. ∵75DAB ∠=︒,∴753045BAH BAD DAH ︒︒︒∠=∠-∠=-=. ∴232AB AH BH === (2)①∵点F 是BE 的中点,且CF BE ⊥,∴线段CF 是线段BE 的垂直平分线.∴CE CB =,ECF BCF ∠=∠.∵ADE ∆是等边三角形,∴DE AD =.∵四边形ABCD 是平行四边形,∴AD BC =,∴DE CE =.∴EDC ECD ∠=∠.在DEG ∆和CEN ∆中,DG CN GDE NCE DE CE =⎧⎪∠=∠⎨⎪=⎩,∴()CEN DEG SAS ∆∆≌.②由①知:CEN DEG ∆∆≌,∴EN EG =.∵AD BC ∥,∴180ADC BCD ︒∠+∠=.∵60ADE ∠=︒,∴120EDC BCD ︒∠+∠=.∵ECF BCF ∠=∠,EDC ECD ∠=∠,∴60DCF ∠=︒.。

人教版八年级初二数学下学期平行四边形单元达标测试提优卷试卷

人教版八年级初二数学下学期平行四边形单元达标测试提优卷试卷

人教版八年级初二数学下学期平行四边形单元达标测试提优卷试卷一、解答题1.如下图1,在平面直角坐标系中xoy 中,将一个含30的直角三角板如图放置,直角顶点与原点重合,若点A 的坐标为()1,0-,30ABO ∠=︒.(1)旋转操作:如下图2,将此直角三角板绕点O 顺时针旋转30时,则点B 的坐标为 .(2)问题探究:在图2的基础上继续将直角三角板绕点O 顺时针60︒,如图3,在AB 边上的上方以AB 为边作等边ABC ,问:是否存在这样的点D ,使得以点A 、B 、C 、D 四点为顶点的四边形构成为菱形,若存在,请直接写出点D 所有可能的坐标;若不存在,请说明理由.(3)动点分析:在图3的基础上,过点O 作OP AB ⊥于点P ,如图4,若点F 是边OB 的中点,点M 是射线PF 上的一个动点,当OMB △为直角三角形时,求OM 的长.2.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC . (1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+3.已知正方形,ABCD 点F 是射线DC 上一动点(不与,C D 重合).连接AF 并延长交直线BC 于点E ,交BD 于,H 连接CH .在EF 上取一点,G 使ECG DAH ∠=∠. (1)若点F 在边CD 上,如图1,①求证:CH CG ⊥. ②求证:GFC 是等腰三角形.(2)取DF 中点,M 连接MG .若3MG =,正方形边长为4,则BE = . 4.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动. (1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.5.如图①,已知正方形ABCD 中,E ,F 分别是边AD ,CD 上的点(点E ,F 不与端点重合),且AE=DF ,BE ,AF 交于点P ,过点C 作CH ⊥BE 交BE 于点H .(1)求证:AF ∥CH ;(2)若3,AE=2,试求线段PH 的长;(3)如图②,连结CP 并延长交AD 于点Q ,若点H 是BP 的中点,试求 CPPQ的值. 6.如图平行四边形ABCD ,E ,F 分别是AD ,BC 上的点,且AE =CF ,EF 与AC 交于点O . (1)如图①.求证:OE =OF ;(2)如图②,将平行四边形ABCD (纸片沿直线EF 折叠,点A 落在A 1处,点B 落在点B 1处,设FB交CD于点G.A1B分别交CD,DE于点H,P.请在折叠后的图形中找一条线段,使它与EP相等,并加以证明;(3)如图③,若△ABO是等边三角形,AB=4,点F在BC边上,且BF=4.则CF OF=(直接填结果).7.如图,矩形ABCD中,AB=4,AD=3,∠A的角平分线交边CD于点E.点P从点A出发沿射线AE以每秒2个单位长度的速度运动,Q为AP的中点,过点Q作QH⊥AB于点H,在射线AE的下方作平行四边形PQHM(点M在点H的右侧),设P点运动时间为t秒.(1)直接写出AQH的面积(用含t的代数式表示).(2)当点M落在BC边上时,求t的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t的值;若不存在请说明理由(不能添加辅助线).8.如图①,已知正方形ABCD的边长为3,点Q是AD边上的一个动点,点A关于直线BQ的对称点是点P,连接QP、DP、CP、BP,设AQ=x.(1)BP+DP的最小值是_______,此时x的值是_______;(2)如图②,若QP的延长线交CD边于点M,并且∠CPD=90°.①求证:点M是CD的中点;②求x的值.(3)若点Q是射线AD上的一个动点,请直接写出当△CDP为等腰三角形时x的值.9.已知:在矩形ABCD中,点F为AD中点,点E为AB边上一点,连接CE、EF、CF,EF平分∠AEC.(1)如图1,求证:CF⊥EF;(2)如图2,延长CE、DA交于点K, 过点F作FG∥AB交CE于点G若,点H为FG上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;(3)如图3, 过点H作HN⊥CH交AB于点N,若EN=11,FH-GH=1,求GK长.10.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形单元测试提优卷试卷一、选择题1.在正方形 ABCD 中, P 为 AB 的中点,BE PD ⊥的延长线于点 E ,连接 AE 、 BE ,FA AE ⊥ 交 DP 于点 F ,连接 BF 、FC ,下列结论:① ABE ADF ≅ ;② FB = AB ;③ CF PD ⊥ ;④ FC = EF . 其中正确的是( )A .①②④B .①③④C .①②③D .①②③④2.点E 是正方形ABCD 对角线AC 上,且EC=2AE ,Rt △FEG 的两条直角边EF 、EG 分别交BC 、DC 于M 、N 两点,若正方形ABCD 的边长为a ,则四边形EMCN 的面积( )A .23a 2B .14a 2C .59a 2D .49a 2 3.如图,正方形ABCD 内有两条相交线段MN ,EF ,M ,N ,E ,F 分别在边AB ,CD ,AD ,BC 上.小明认为:若MN =EF ,则MN ⊥EF ;小亮认为:若MN ⊥EF ,则MN =EF ,你认为( )A .仅小明对B .仅小亮对C .两人都对D .两人都不对 4.如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点且AE CF =,下列说法中正确的是( ) ①BE DF =;②//BE DF ;③AB DE =;④四边形EBFD 为平行四边形;⑤ADE ABE S S ∆∆=;⑥AF CE =.A .①⑥B .①②④⑥C .①②③④D .①②④⑤⑥5.如图,在正方形ABCD 中,M 是对角线BD 上的一点,点E 在AD 的延长线上,连接AM 、EM 、CM ,延长EM 交AB 于点F ,若AM =EM ,30E ∠=︒,则下列结论:①MF ME =;②BFDE =;③MC EF ⊥;④2BF MD BC +=,其中正确的结论序号是( )A .①②③B .①②④C .②③④D .①②③④6.如图,在△ABC 中,∠ABC 和∠ACB 的角平分线相交于点O .过点O 作EF ∥BC 交AB 于E .交AC 于F .过点O 作OD ⊥AC 于D .下列五个结论:其中正确的有( )(1) EF=BE+CF ; (2)∠BOC=90°+12∠A ;(3)点O 到△ABC 各边的距离都相等;(4)设OD=m .若AE 十AF =n ,则S △AEF = mn ;(5)S △AEF=S △FOC .A .2个B .3个C .4个D .5个7.如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AD =12AC ,M 、N 、P 分别是OA 、OB 、CD 的中点,下列结论:①CN ⊥BD ;②MN =NP ;③四边形MNCP 是菱形;④ND 平分∠PNM .其中正确的有( )A .1 个B .2 个C .3 个D .4 个8.如图,在ABCD 中,2,AB AD F =是CD 的中点,作BE AD ⊥于点E ,连接EF BF 、,下列结论:①CBF ABF ∠=∠;②FE FB =;③2EFB S S ∆=四边形DEBC ;④3BFE DEF ∠=∠;其中正确的个数是( )A .1B .2C .3D .49.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =185.其中正确结论的个数是( )A .1B .2C .3D .410.如图,矩形ABCD 的面积为20cm 2,对角线相交于点O .以AB 、AO 为邻边画平行四边形AOC 1B ,对角线相交于点O ;以AB 、AO 为邻边画平行四边形AO 1C 2B ,对角线相交于点O 2 :……以此类推,则平行四边形AO 4C 5B 的面积为( )A .58cm 2 B .54cm 2 C .516cm 2 D . 5 32cm 2 二、填空题 11.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC =,则平行四边形ABCD 的周长等于______________ .12.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为_____.13.如图所示,菱形ABCD ,在边AB 上有一动点E ,过菱形对角线交点O 作射线EO 与CD 边交于点F ,线段EF 的垂直平分线分别交BC 、AD 边于点G 、H ,得到四边形EGFH ,点E 在运动过程中,有如下结论:①可以得到无数个平行四边形EGFH ;②可以得到无数个矩形EGFH ;③可以得到无数个菱形EGFH ;④至少得到一个正方形EGFH .所有正确结论的序号是__.14.如图,长方形纸片ABCD 中,AB =6 cm,BC =8 cm 点E 是BC 边上一点,连接AE 并将△AEB 沿AE 折叠, 得到△AEB′,以C ,E ,B′为顶点的三角形是直角三角形时,BE 的长为___________cm.15.菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (23,0),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,-1),则EP 十BP 的最小值为__________.16.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.17.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .18.如图,正方形ABCD 的边长为4,点E 为AD 的延长线上一点,且DE =DC ,点P 为边AD 上一动点,且PC ⊥PG ,PG =PC ,点F 为EG 的中点.当点P 从D 点运动到A 点时,则CF 的最小值为___________19.如图,在ABC 中,D 是AB 上任意一点,E 是BC 的中点,过C 作//CF AB ,交DE 的延长线于F ,连BF ,CD ,若30FDB ∠=︒,45ABC ∠=︒,22BC =,则DF =_________.20.如图,长方形ABCD 中,26AD =,12AB =,点Q 是BC 的中点,点P 在AD 边上运动,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为______,三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.如图,在四边形ABCD 中,AB ∥DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AE =,3OE =,求线段CE 的长.23.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .①求证:BF AB DF =+. ②若3AD AB =,试探索线段DF 与FC 的数量关系.24.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.25.直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,.①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.26.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点E 是AC 的一点,连接EB ,过点A 做AM ⊥BE ,垂足为M ,AM 与BD 相交于点F .(1)猜想:如图(1)线段OE 与线段OF 的数量关系为 ;(2)拓展:如图(2),若点E 在AC 的延长线上,AM ⊥BE 于点M ,AM 、DB 的延长线相交于点F ,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由.27.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.(1)当1x =时,点M 的坐标为( , )(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围.(3)在x 轴正半轴上存在点Q ,使得QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用x 的式子表示)28.如图,ABCD 中,60ABC ∠=︒,连结BD ,E 是BC 边上一点,连结AE 交BD 于点F .(1)如图1,连结AC ,若6AB AE ==,:5:2BC CE =,求ACE △的面积; (2)如图2,延长AE 至点G ,连结AG 、DG ,点H 在BD 上,且BF DH =,AF AH =,过A 作AM DG ⊥于点M .若180ABG ADG ∠+∠=︒,求证:3BG GD AG +=.29.问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,EB EC =,45EBC ∠=︒,DBC △为等边三角形.①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由.实践操作(2)在长方形ABCD 中,8AB =,10AD =.①如图3,点E 在AB 边上,点F 在AD 边上,请用圆规和无刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点E 是直线AB 上的动点,点P 是平面内一点,点E 与点C 关于BP 互为勾股顶针点,直线CP 与直线AD 交于点F .在点E 运动过程中,线段BE 与线段AF 的长度是否会相等?若相等,请直接写出AE 的长;若不相等,请说明理由.30.阅读下列材料,并解决问题:如图1,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点D 为AC 边上的动点(不与A 、C 重合),以AD ,BD 为边构造ADBE ,求对角线DE 的最小值及此时AD AC的值是多少.在解决这个问题时,小红画出了一个以AD ,BD 为边的ADBE (如图2),设平行四边形对角线的交点为O ,则有AO BO =.于是得出当OD AC ⊥时,OD 最短,此时DE 取最小值,得出DE 的最小值为6.参考小红的做法,解决以下问题:(1)继续完成阅读材料中的问题:当DE 的长度最小时,AD AC=_______;(2)如图3,延长DA到点F,使AF DA.以DF,DB为边作FDBE,求对角线DE的最小值及此时ADAC的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据已知和正方形的性质推出∠EAB=∠DAF,∠EBA=∠ADP,AB=AD,证△ABE≌△ADF即可;取EF的中点M,连接AM,推出AM=MF=EM=DF,证∠AMB=∠FMB,BM=BM,AM=MF,推出△ABM≌△FBM即可;求出∠FDC=∠EBF,推出△BEF≌△DFC即可.【详解】解:∵正方形ABCD,BE⊥ED,EA⊥FA,∴AB=AD=CD=BC,∠BAD=∠EAF=90°=∠BEF,∵∠APD=∠EPB,∴∠EAB=∠DAF,∠EBA=∠ADP,∵AB=AD,∴△ABE≌△ADF,∴①正确;∴AE=AF,BE=DF,∴∠AEF=∠AFE=45°,取EF的中点M,连接AM,∴AM⊥EF,AM=EM=FM,∴BE∥AM,∵AP=BP,∴AM=BE=DF,∴∠EMB=∠EBM=45°,∴∠AMB=90°+45°=135°=∠FMB ,∵BM=BM ,AM=MF ,∴△ABM ≌△FBM ,∴AB=BF ,∴②正确;∴∠BAM=∠BFM ,∵∠BEF=90°,AM ⊥EF ,∴∠BAM+∠APM=90°,∠EBF+∠EFB=90°,∴∠APF=∠EBF ,∵AB ∥CD ,∴∠APD=∠FDC ,∴∠EBF=∠FDC ,∵BE=DF ,BF=CD ,∴△BEF ≌△DFC ,∴CF=EF ,∠DFC=∠FEB=90°,∴③正确;④正确;故选D .【点睛】本题主要考查对正方形的性质,等腰直角三角形,直角三角形斜边上的中线性质,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.2.D解析:D【解析】【分析】根据题意过E 作EK 垂直于直线CD ,垂足为K ,再过E 作EL 垂直于直线BC ,垂足为L ,只要证明ENK ELM ∆≅∆,则可计算EKCL ENCM S S =四边形.【详解】解:根据题意过E 作EK 垂直于直线CD ,垂足为K ,再过E 作EL 垂直于直线BC ,垂足为L.四边形ABCD 为正方形∴EL=EK,EK CD EL BC ⊥⊥∴90ELM EKN ︒∠=∠=90BCD ︒∠=90KEL ︒∴∠= FEG 为直角三角形90KEM LEM KEM NEK ︒∴∠+∠=∠+∠=LEM NEK ∴∠=∠ENK ELM ∴∆≅∆2224()39EKCL ENCM S Sa a ∴===四边形 故选D.【点睛】本题主要考查正方形的性质,关键在于根据题意做辅助线. 3.C解析:C【分析】分别过点E 作EG ⊥BC 于点G ,过点M 作MP ⊥CD 于点P ,设EF 与MN 相交于点O ,MP 与EF 相交于点Q ,根据正方形的性质可得EG=MP ;对于小明的说法,先利用“HL ”证明Rt △EFG ≌Rt △MNP ,根据全等三角形对应角相等可得∠MNP=∠EFG ,再根据角的关系推出∠EQM=∠MNP ,然后根据∠MNP+∠NMP=90°得到∠NMP+∠EQM=90°,从而得到∠MOQ=90°,根据垂直的定义即可证得MN ⊥EF ;对于小亮的说法,先推出∠EQM=∠EFG ,∠EQM=∠MNP ,然后得到∠EFG=∠MNP ,然后利用“角角边”证明△EFG ≌△MNP ,根据全等三角形对应边相等可得EF=MN .【详解】如图,过点E 作EG ⊥BC 于点G ,过点M 作MP ⊥CD 于点P ,设EF 与MN 相交于点O ,MP 与EF 相交于点Q ,∵四边形ABCD 是正方形,∴EG=MP ,对于小明的说法:在Rt △EFG 和Rt △MNP 中,MN EF EG MP ⎧⎨⎩==, ∴Rt △EFG ≌Rt △MNP (HL ),∴∠MNP=∠EFG ,∵MP ⊥CD ,∠C=90°,∴MP ∥BC ,∴∠EQM=∠EFG=∠MNP ,又∵∠MNP+∠NMP=90°,∴∠EQM+∠NMP=90°,在△MOQ 中,∠MOQ=180°-(∠EQM+∠NMP )=180°-90°=90°,∴MN ⊥EF ,故甲正确.对小亮的说法:∵MP ⊥CD ,∠C=90°,∴MP ∥BC ,∴∠EQM=∠EFG ,∵MN ⊥EF ,∴∠NMP+∠EQM=90°,又∵MP ⊥CD ,∴∠NMP+∠MNP=90°,∴∠EQM=∠MNP ,∴∠EFG=∠MNP ,在△EFG 和△MNP 中,90EFG MNP EGF MPN EG MP ∠∠⎧⎪∠∠︒⎨⎪⎩==== , ∴△EFG ≌△MNP (AAS ),∴MN=EF ,故小亮的说法正确,综上所述,两个人的说法都正确.故选C .【点睛】本题考查了正方形的性质、全等三角形的判定与性质、同角的余角相等的性质,作出辅助线,构造出全等三角形是解题的关键,通常情况下,求两边相等,或已知两边相等,都是想法把这两条线段转化为全等三角形的对应边进行求解.4.D解析:D【分析】先根据全等三角形进行证明,即可判断①和②,然后作辅助线,推出OD=OF ,得出四边形BEDF 是平行四边形,求出BM=DM 即可判断④和⑤,最后根据AE=CF ,即可判断⑥.【详解】①∵四边形ABCD 是平行四边形,∴AB ∥DC,AB=DC,∴∠BAC=∠ADC,在△ABE 和△DFC 中BAC ADC AB A F C E D C ∠=∠=⎧=⎪⎨⎪⎩∴△ABE≌△DFC(SAS ),∴BE=DF,故①正确.②∵△ABE≌△DFC,∴∠AEB=∠DFC,∴∠BEF=∠DFE,∴BE∥DF,故②正确.③根据已知的条件不能推AB=DE ,故③错误.④连接BD 交AC 于O ,过D 作DM⊥AC 于M ,过B 作BN⊥AC 于N,∵四边形ABCD 是平行四边形,∴DO=BO,OA=OC,∵AE=CF,∴OE=OF,∴四边形BEDF 是平行四边形,故④正确.⑤∵BN⊥AC,DM⊥AC,∴∠BNO=∠DMO=90°,在△BNO 和△DMO 中∠BNO=∠DMO ∠BON=∠DOM OB=OD ⎧⎪⎨⎪⎩△ADE △ABE ∴△BNO ≌△DMO (AAS )∴BN=DM11∵S =AE DM ,S =AE BN 22⨯⨯⨯⨯∴△ADE △ABE S =S ,故⑤正确.⑥∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,故⑥正确.故答案是D.【点睛】本题主要考查了全等三角形的判定和平行四边形的判定以及性质,熟练掌握相关的性质是解题的关键.5.A解析:A【分析】①证明△AFM 是等边三角形,可判断; ②③证明△CBF ≌△CDE (ASA ),可作判断; ④设MN=x ,分别表示BF 、MD 、BC 的长,可作判断.【详解】解:①∵AM=EM ,∠AEM=30°, ∴∠MAE=∠AEM=30°,∴∠AMF=∠MAE+∠AEM=60°,∵四边形ABCD 是正方形, ∴∠FAD=90°,∴∠FAM=90°-30°=60°,∴△AFM 是等边三角形,∴FM=AM=EM , 故①正确;②连接CE 、CF , ∵四边形ABCD 是正方形, ∴∠ADB=∠CDM ,AD=CD ,在△ADM 和△CDM 中,∵ AD CD ADM CDM DM DM ⎧⎪∠∠⎨⎪⎩===,∴△ADM ≌△CDM (SAS ), ∴AM=CM ,∴FM=EM=CM , ∴∠MFC=∠MCF ,∠MEC=∠ECM ,∵∠ECF+∠CFE+∠FEC=180°, ∴∠ECF=90°,∵∠BCD=90°, ∴∠DCE=∠BCF ,在△CBF 和△CDE 中,∵ 90CBF CDE BC CD BCF DCE ∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△CBF ≌△CDE (ASA ), ∴BF=DE ; 故②正确;③∵△CBF ≌△CDE , ∴CF=CE , ∵FM=EM , ∴CM ⊥EF , 故③正确;④过M 作MN ⊥AD 于N , 设MN=x ,则AM=AF=2x ,3AN x =,DN=MN=x , ∴331)x x x +=,∴DE=BF=AB-AF=31)231)x x x -=,∴22(31)26BF MD x x x +==,∵BC=AD= 31)6x x ≠, 故④错误; 所以本题正确的有①②③;故选:A .【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质和判定,熟记正方形的性质确定出△AFM 是等边三角形是解题的关键.6.B解析:B【分析】由在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得②1902BOC A ∠=+∠︒正确;由平行线的性质和角平分线的定义得出BEO ∆和CFO ∆是等腰三角形得出EF BE CF =+故①正确;由角平分线定理与三角形面积的求解方法,即可求得③设OD m =,AE AF n +=,则12AEF S mn ∆=,故③错误;E 、F 不可能是三角形ABC 的中点,则EF 不能为中位线故④正确.【详解】解:在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O , 12OBC ABC ∴∠=∠,12OCB ACB ∠=∠,180A ABC ACB ∠+∠+∠=︒, 1902OBC OCB A ∴∠+∠=︒-∠, 1180()902BOC OBC OCB A ∴∠=︒-∠+∠=︒+∠;故(2)正确; 在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,OBC OBE ∴∠=∠,OCB OCF ∠=∠,//EF BC ,OBC EOB ∴∠=∠,OCB FOC ∠=∠,EOB OBE ∴∠=∠,FOC OCF ∠=∠,BE OE ∴=,CF OF =,EF OE OF BE CF ∴=+=+,故(1)正确;过点O 作OM AB ⊥于M ,作ON BC ⊥于N ,连接OA ,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,ON OD OM m ∴===,1111()2222AEF AOE AOF S S S AE OM AF OD OD AE AF mn ∆∆∆∴=+=+=+=;故(3)正确,(4)错误;12EOB S BE OM ∆=,12OCF S FC OD ∆=, OM OD =,BE 不一定等于CF ,EOB S ∆∴不一定等于FOC S .故(5)错误,综上可知其中正确的结论是(1)(2)(3),故选:B .【点睛】此题考查了三角形中位线定理的运用,以及平行线的性质、等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.7.C解析:C【分析】证出OC =BC ,由等腰三角形的性质得CN ⊥BD ,①正确;证出MN 是△AOB 的中位线,得MN ∥AB ,MN =12AB ,由直角三角形的性质得NP =12CD ,则MN =NP ,②正确;周长四边形MNCP 是平行四边形,无法证明四边形MNCP 是菱形;③错误;由平行线的性质和等腰三角形的性质证出∠MND =∠PND ,则ND 平分∠PNM ,④正确;即可得出结论.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,BC =AD ,OA =OC =12AC , ∵AD =12AC , ∴OC =BC ,∵N 是OB 的中点,∴CN ⊥BD ,①正确;∵M 、N 分别是OA 、OB 的中点,∴MN 是△AOB 的中位线,∴MN ∥AB ,MN =12AB , ∵CN ⊥BD ,∴∠CND =90°,∵P 是CD 的中点,∴NP =12CD =PD =PC , ∴MN =NP ,②正确;∵MN ∥AB ,AB ∥CD ,∴MN ∥CD ,又∵NP =PC ,MN =NP ,∴MN =PC ,∴四边形MNCP 是平行四边形,无法证明四边形MNCP 是菱形;③错误;∵MN ∥CD ,∴∠PDN =∠MND ,∵NP =PD ,∴∠PDN =∠PND ,∴∠MND =∠PND ,∴ND 平分∠PNM ,④正确;正确的个数有3个,故选:C .【点睛】本题考查了平行四边形性质和判定,三角形中位线定理,直角三角形斜边上的中线性质,等腰三角形的性质等;熟练掌握三角形中位线定理、等腰三角形的性质、直角三角形斜边上的中线性质是解题的关键.8.C解析:C【分析】由平行四边形的性质结合AB=2AD ,CD=2CF 可得CF=CB ,从而可得∠CBF=∠CFB ,再根据CD ∥AB ,得∠CFB=∠ABF ,继而可得CBF ABF ∠=∠,可以判断①正确;延长EF 交BC 的延长线与M ,证明△DFE 与△CFM(AAS),继而得EF=FM=12EM ,证明∠CBE=∠AEB=90°,然后根据直角三角形斜边中线的性质即可判断②正确;由上可得S △BEF =S △BMF ,S △DFE =S △CFM ,继而可得S △EBF =S △BMF =S △EDF +S △FBC ,继而可得2EFB S S ∆=四边形DEBC ,可判断③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,则可得AD//FN ,则有∠DEF=∠EFN ,根据等腰三角形的性质可得∠BFE=2∠EFN ,继而得∠BFE=2∠DEF ,判断④错误.【详解】∵四边形ABCD 是平行四边形,∴AD=BC ,AB=CD ,AD//BC ,∵AB=2AD ,CD=2CF ,∴CF=CB ,∴∠CBF=∠CFB ,∵CD ∥AB ,∴∠CFB=∠ABF ,∴CBF ABF ∠=∠,故①正确;延长EF 交BC 的延长线与M ,∵AD//BC ,∴∠DEF=∠M ,又∵∠DFE=∠CFM ,DF=CF ,∴△DFE 与△CFM(AAS),∴EF=FM=12EM , ∵BF ⊥AD ,∴∠AEB=90°,∵在平行四边形ABCD 中,AD ∥BC ,∴∠CBE=∠AEB=90°,∴BF=12EM , ∴BF=EF ,故②正确;∵EF=FM ,∴S △BEF =S △BMF ,∵△DFE ≌△CFM ,∴S △DFE =S △CFM ,∴S △EBF =S △BMF =S △EDF +S △FBC ,∴2EFB S S ∆=四边形DEBC ,故③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,∴∠AEB=∠FEN ,∴AD//EF ,∴∠DEF=∠EFN ,又∵EF=FB ,∴∠BFE=2∠EFN ,∴∠BFE=2∠DEF ,故④错误,所以正确的有3个,故选C.【点睛】本题考查了平行四边形的性质,直角三角形斜边中线的性质,等腰三角形的判断与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.9.D解析:D【分析】由正方形和折叠的性质得出AF =AB ,∠B =∠AFG =90°,由HL 即可证明Rt △ABG ≌Rt △AFG ,得出①正确;设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,由勾股定理求出x =3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB =∠FCG ,证出平行线,得出③正确;根据三角形的特点及面积公式求出△FGC 的面积=185,得出④正确. 【详解】∵四边形ABCD 是正方形,∴AB =AD =DC =6,∠B =D =90°,∵CD =3DE ,∴DE =2,∵△ADE 沿AE 折叠得到△AFE , ∴DE =EF =2,AD =AF ,∠D =∠AFE =∠AFG =90°,∴AF =AB ,∵在Rt △ABG 和Rt △AFG 中,AG AG AB AF =⎧⎨=⎩, ∴Rt △ABG ≌Rt △AFG (HL ),∴①正确;∵Rt △ABG ≌Rt △AFG ,∴BG =FG ,∠AGB =∠AGF ,设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,在Rt △ECG 中,由勾股定理得:CG 2+CE 2=EG 2,∵CG =6−x ,CE =4,EG =x +2∴(6−x )2+42=(x +2)2解得:x =3,∴BG =GF =CG =3,∴②正确;∵CG =GF ,∴∠CFG =∠FCG ,∵∠BGF =∠CFG +∠FCG ,又∵∠BGF =∠AGB +∠AGF ,∴∠CFG +∠FCG =∠AGB +∠AGF ,∵∠AGB =∠AGF ,∠CFG =∠FCG ,∴∠AGB =∠FCG ,∴AG ∥CF ,∴③正确;∵△CFG 和△CEG 中,分别把FG 和GE 看作底边,则这两个三角形的高相同. ∴35CFG CEG S FG S GE ==, ∵S △GCE =12×3×4=6,∴S △CFG =35×6=185, ∴④正确;正确的结论有4个,故选:D .【点睛】 本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.10.A解析:A【分析】设矩形ABCD 的面积为S=20cm 2,由O 为矩形ABCD 的对角线的交点,可得平行四边形AOC 1B 底边AB 上的高等于BC 的12,依此类推可得下一个图形的面积是上一个图形的面积的12,然后求解即可. 【详解】 设矩形ABCD 的面积为S=20cm 2,∵O 为矩形ABCD 的对角线的交点,∴平行四边形AOC 1B 底边AB 上的高等于BC 的12, ∴平行四边形AOC 1B 的面积=12S , ∵平行四边形AOC 1B 的对角线交于点O 1,∴平行四边形AO 1C 2B 的边AB 上的高等于平行四边形AOC 1B 底边AB 上的高的12, ∴平行四边形AO 1C 2B 的面积=12×12S=22S , ……依此类推,平行四边形AO 4C 5B 的面积=52S =5202=58(cm 2), 故选:A .【点睛】本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的12是解题的关键.二、填空题11.12或20【分析】根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【详解】解:情况一:当BC边上的高在平行四边形的内部时,如图1所示:在平行四边形ABCD中,BC边上的高为4,AB=5,AC=25,在Rt△ACE中,由勾股定理可知:2222CE AC AE,(25)42在Rt△ABE中,由勾股定理可知:2222BE AB AE543=-=-=,∴BC=BE+CE=3+2=5,此时平行四边形ABCD的周长等于2×(AB+BC)=2×(5+5)=20;情况二:当BC边上的高在平行四边形的外部时,如图2所示:在平行四边形ABCD中,BC边上的高为AE=4,AB=5,AC=25在Rt△ACE中,由勾股定理可知:2222CE AC AE,(25)42在Rt△ABE中,由勾股定理可知:2222-=-,BE AB AE543∴BC=BE-CE=3-2=1,∴平行四边形ABCD的周长为2×(AB+BC)=2×(5+1)=12,综上所述,平行四边形ABCD的周长等于12或20.故答案为:12或20.【点睛】此题主要考查了平行四边形的性质以及勾股定理等知识,分高在平行四边形内部还是外部讨论是解题关键.12.43 4【解析】分析:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.详解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,.∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2-AC2,∴AB=22;84=43②当∠A'FE=90°时,如图2,.∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;.综上所述,AB的长为4;故答案为 4.点睛:本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.13.①③④【分析】由“AAS”可证△AOE≌△COF,△AHO≌△CGO,可得OE=OF,HO=GO,可证四边形EGFH 是平行四边形,由EF⊥GH,可得四边形EGFH是菱形,可判断①③正确,若四边形ABCD 是正方形,由“ASA”可证△BOG≌△COF,可得OG=OF,可证四边形EGFH是正方形,可判断④正确,即可求解.【详解】解:如图,∵四边形ABCD是菱形,∴AO=CO,AD∥BC,AB∥CD,∴∠BAO=∠DCO,∠AEO=∠CFO,∴△AOE≌△COF(AAS),∴OE=OF,∵线段EF的垂直平分线分别交BC、AD边于点G、H,∴GH过点O,GH⊥EF,∵AD∥BC,∴∠DAO=∠BCO,∠AHO=∠CGO,∴△AHO≌△CGO(AAS),∴HO=GO,∴四边形EGFH是平行四边形,∵EF⊥GH,∴四边形EGFH是菱形,∵点E是AB上的一个动点,∴随着点E的移动可以得到无数个平行四边形EGFH,随着点E的移动可以得到无数个菱形EGFH,故①③正确;若四边形ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∠BOG+∠BOF=∠COF+∠BOF=90°,∴∠BOG=∠COF;在△BOG和△COF中,∵BOG COF BO COGBO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOG≌△COF(ASA);∴OG=OF,同理可得:EO=OH,∴GH=EF;∴四边形EGFH是正方形,∵点E是AB上的一个动点,∴至少得到一个正方形EGFH,故④正确,故答案为:①③④.【点睛】本题考查了菱形的判定和性质,平行四边形的判定,正方形的判定,全等三角形的判定和性质等知识,灵活运用这些性质进行推理是关键.14.3或6【详解】①∠B′EC=90°时,如图1,∠BEB′=90°,由翻折的性质得∠AEB=∠AEB′=12×90°=45°,∴△ABE是等腰直角三角形,∴BE=AB=6cm;②∠EB′C=90°时,如图2,由翻折的性质∠AB′E=∠B=90°,∴A 、B′、C 在同一直线上,AB′=AB ,BE=B′E ,由勾股定理得,=,∴B′C=10-6=4cm ,设BE=B′E=x ,则EC=8-x ,在Rt △B′EC 中,B′E 2+B′C 2=EC 2,即x 2+42=(8-x )2,解得x=3,即BE=3cm ,综上所述,BE 的长为3或6cm .故答案为3或6.15【分析】先根据菱形的性质可得OC 垂直平分BD ,从而可得=DP BP ,再根据两点之间线段最短可得EP BP +的最小值为DE ,然后利用等边三角形的判定与性质求出点D 的坐标,最后利用两点之间的距离公式即可得.【详解】如图,连接BP 、DP 、EP 、DE 、BD ,过点D 作DA OB ⊥于点A , (23,0)B ,OB ∴=四边形ABCD 是菱形,OC ∴垂直平分BD ,OB OD ==点P 是对角线OC 上的点,DP BP ∴=,EP BP EP DP ∴+=+,由两点之间线段最短可知,EP DP +的最小值为DE ,即EP BP +的最小值为DE , ,60OB OD DOB =∠=︒,BOD ∴是等边三角形, DA OB ⊥,12OA OB ∴==3AD ===,D ∴,又(0,1)E -,DE ∴==即EP BP +【点睛】本题考查了菱形的性质、等边三角形的判定与性质、两点之间的距离公式等知识点,根据+的最小值为DE是解题关键.两点之间线段最短得出EP BP16.8或12【分析】根据平行四边形的性质得到BC=AD=5,∠BAE=∠DEA,∠ABF=∠BFC,根据角平分线的性质得到DE=AD=5,CF=BC=5,即可求出答案.【详解】在ABCD中,AB∥CD,BC=AD=5,∴∠BAE=∠DEA,∠ABF=∠BFC,∠的平分线交CD于点E,∵BAD∴∠BAE=∠DAE,∴∠DAE=∠DEA,∴DE=AD=5,同理:CF=BC=5,∴AB=CD=DE+CF-EF=5+5-2=8或AB=DE+CF+EF=5+5+2=12,故答案为:8或12.【点睛】此题考查平行四边形的性质,角平分线的性质,等腰三角形的等角对等边的判定,解题中注意分类思想的运用,避免漏解.17.2或14【分析】利用当AB=10cm,AD=6cm,由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长【详解】解:如图1,当AB=10cm,AD=6cm∵AE平分∠BAD∴∠BAE=∠DAE,又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED,则AD=DE=6cm同理可得:CF=CB=6cm∵EF=DE+CF-DC=6+6-10=2(cm)如图2,当AD=10cm,AB=6cm,∵AE平分∠BAD,∴∠BAE=∠DAE又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED则AD=DE=10cm同理可得,CF=CB=10cm EF=DE+CF-DC=10+10-6=14(cm)故答案为:2或14.图1 图2【点睛】本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.18.2【分析】由正方形ABCD的边长为4,得出AB=BC=4,∠B=90°,得出AC=42P与D重合时,PC=ED=PA,即G与A重合,则EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的路径为DF,由D是AE的中点,F是EG的中点,得出DF是△EAG 的中位线,证得∠FDA=45°,则F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=12AG=2【详解】解:连接FD∵正方形ABCD的边长为4,∴AB=BC=4,∠B=90°,∴AC=2,当P与D重合时,PC=ED=PA,即G与A重合,∴EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的轨迹为DF,∵D是AE的中点,F是EG的中点,∴DF是△EAG的中位线,∴DF∥AG,∵∠CAG=90°,∠CAB=45°,∴∠BAG=45°,∴∠EAG=135°,∴∠EDF=135°,∴∠FDA=45°,∴F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=12AG=22故答案为:2【点睛】本题主要考查了正方形的性质,掌握正方形的性质是解题的关键.19.4【分析】证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.【详解】解:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF ≌△BED (ASA ).∴CF=BD .∴四边形CDBF 是平行四边形.作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,22BC =,∴BE=122BC =,DF=2DE , 在Rt △EMB 中,EM 2+BM 2=BE 2且EM=BM∴EM=1,在Rt △EMD 中,∵∠EDM=30°,∴DE=2EM=2,∴DF=2DE=4.故答案为:4.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,20.6.5或8或18【分析】根据题意分BP QP =、BQ QP =两种情况分别讨论,再结合勾股定理求解即可.【详解】解:∵四边形ABCD 是矩形,26AD =,点Q 是BC 的中点∴13BQ =∴①当BP QP =时,过点P 作PM BQ ⊥交BQ 于点M ,如图,则 6.5BM MQ ==,且四边形ABMP 为矩形∴ 6.5AP BM ==②当BQ QP =时,以点Q 为圆心,BQ 为半径作圆,与AD 交于P '、P ''两点,如图,过Q 作QN P P '''⊥,交P P '''于点N ,则可知P N P N '''=∵在Rt P NQ ',13P Q '=,12NQ AB == ∴222213125P N P Q NQ ''=-=-=同理,在Rt P NQ ''中,5P N ''= ∴2655822AD P N P N AP '''----'===,85518AP AP P N P N ''''''=++=++= 即P '、P ''为满足条件的P 点的位置∴8AP =或18∴综上所述,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为6.5或8或18. 故答案是:6.5或8或18【点睛】本题考查了矩形的性质、等腰三角形的性质以及勾股定理等知识,根据等腰三角形的性质进行分类讨论是一个难点,也是解题的关键.三、解答题21.(1)见解析(2)10【分析】(1)先证明AFE DBE ∆≅∆,得到AF DB =,AF CD =,再证明四边形ADCF 是平行四边形,再根据“直角三角形斜边上的中线等于斜边的一半”得到12AD DC BC ==,即可证明四边形ADCF 是菱形。

相关文档
最新文档