随机解释变量的后果37页PPT

合集下载

3章-随机数与随机变量PPT

3章-随机数与随机变量PPT
1
第三章 随机数与随机变量
2
①设置仿真钟=0 ②初始化系统状态与统计计数器 ③初始化事件列表
开始
主程序 (0)激活初始化程序
(0) (1)激活时间推进程序 (2)激活事件发生程序i
重复
(1) ①确定下一事件类型,如i ②推进仿真钟
i
(1)更新系统状态 (2)更新统计计数器 (3)产生将来事件并添加到事件列表中
设具有独立同分布的随机变量 X1 , X 2 ,…, X m ,令
Y X1 X2 L Xm
m
Y Y 则 的分布函数与 Xi 的分布函数相同,此时称 的 i1
分布为 X i 的 m 折卷积。为了生成 Y ,可先独立地
从相应分布函数产生随机变量 X1 , X 2 ,…, X m ,然后
利用上式得到 Y ,这就是卷积法。
14
例:特定供应商提供的发动机次品率为10%,求 批量为5的发动机中每批的次品数
❖binomial(0.1,5)
分布列如表
15
3.3 随机数发生器
❖ 对不同的系统或者过程进行仿真时,如果系 统或过程本身包含固有的随机组成成分,就 需要一定的方法来生成或者获得随机的数值。 例如,排队系统中的时间间隔,服务时间, 库存系统中的需求量等。在计算机仿真中, 能否产生具有一定性能要求的随机数是决定 仿真是否可信的重要因素之一。
逆变换法生成随机变量。
5
❖ 随机实验:一个可观察结果的人工或自然 过程,所产生的结果可能不止一个,但事 先不能确定会产生什么结果。例:骰子
❖ 样本空间:一个随机实验的全部可能出现 的结果的集合,记为Ω 。
❖ 随机事件:一个随机实验的一些可能的结 果,是样本空间的一个子集
❖ 概率分布:如果样本空间上的所有随机事 件都确定了概率,这些概率构成样本空间 的一个概率分布

第七章随机变量及其分布小结PPT课件(人教版)

第七章随机变量及其分布小结PPT课件(人教版)
,进一步体会概率模型的作用及概率思想和方法的特点.
第1课时 条件概率、乘法公式及全概率公式
条件概率公式:PA|B=
PAB

PB
加法公式:如事件 B,C 互斥,则有 P( B
C | A) P( B | A) P(C | A).
乘法公式:PAB=PBPA|B,
PAB

.
P ( A)
P ( A)
P ( B)
P ( B) 2
A产生,则B一定产生
P ( A)
由此可得, 若A B,则P ( B | A) 1,P ( A | B )
.
P ( B)
课本48页
夯实概念
2.下列说法正确的是(
)
P(B)
是可能的
P(A)
A.P(B|A)=P(AB)
B.P(B|A)=
C.0<P(B|A)<1
D.P(A|A)=0
P(AB)
1
解析:∵ P(B|A)=

≥1,
P(A) P(A)
∴P(B|A)≥P(AB),故 A 不正确;
当 P(A)=1 时,P(B)=P(AB),
P(B)
则 P(B|A)=P(B)=
,所以 B 正确;
P(A)
而 0≤P(B|A)≤1,P(A|A)=1,∴ C、D 不正确.
击落,求飞机被击落的概率.
解:设 A={飞机被击落},Bi={飞机被 i 人击中},i=1,2,3,则
P(A|B1)=0.2,P(A|B2)=0.6,P(A|B3)=1.
P(B1)=0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7=0.36,
P(B2)=0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7=0.41,

第四章-特殊变量 ppt课件

第四章-特殊变量  ppt课件

为了在模型中反映这类因素的影响,并提高模型 的精度,需要将这类变量“量化”。为此,根据这类 变量的属性类型,人们构造仅取“0”或“1”的人工 变量,通常称这类变量为虚拟变量(dummy variables
),用符号 D表示。例如,
1城镇居民 1销售旺季 D0农村居民D0销售淡季
1政策紧缩 1男性 D0政策宽松D0女性
例如,设某行业职工收入主要受教育年数、 性别和地理位置(东部、西部)的影响,考虑到 两个定性因素之间可能存在交互影响,以及各自 对行业职工收入的影响,采用混合方式引入虚拟 变量建立如下回归模型:
Y i 0 1 X i 2 D 1 i 3 D 2 i 4 ( D 1 i D 2 i ) u i(4.1.7)
1第 i个职工为男 1第 性 i个职工位 D1i 0第 i个职工为 D2i 女 0第 性 i个职工位
D1i 0 1第 第 ii个 个职 职工 工为 为 D2i 女 男 0 1第 第 性 性 ii个 个职 职工 工位 位
Y i 0 1 X i 2 D 1 i 3 D 2 i 4 ( D 1 i D 2 i ) u i (5-7)
当(4.1.7)式中的 u i 服从经典假定条件时,则由
(4.1.7)式可得不同性别职工的平均收入函数分别为:
女职工: E ( Y iX i,D 2 i,D 1 i 0 ) (0 3 D 2 i)1 X i
男职工:
E ( Y iX i ,D 2 i ,D 1 i 1 ) [0 2 ( 3 4 ) D 2 i ] 1 X i
例如,考虑以下模型:
Y t0 1 X i2 D 1 i3 D 2 i u i
(4.1.10)
其中,Yi为年医疗保健费用支出, Xi为居民的年可 支配收入,D1i 、D2i 为虚拟变量:

第七章 随机解释变量问题

第七章   随机解释变量问题
= β 0 (1 − λ ) + β 1 (1 − λ )Yt + λC t −1 + µ t − λµ t −1
Ct-1是一随机解释变量,且与 (µt-λµt-1)高度相关 (Why?)。
三、随机解释变量的后果
计量经济学模型一旦出现随机解释变量,如果仍采用 OLS法估计模型参数,不同性质的随机解释变量会产生 不同的后果。 以下分三种情况讨论: 1、x是随机变量但与u互相独立,则OLSE仍然无偏。 2、x是随机变量,与u不独立但不相关,则OLSE在小样 本下有偏、大样本下具有一致性,即在大样本下OLSE 会逐渐逼近真值。 3、 x是随机变量,且与u相关,则OLSE在小样本下有偏、 大样本下也不具有一致性,即在OLS失效。
ˆ β1 =
∑x y ∑x
i 2 i
i
不具有一致性。 在大样本下也不成立,OLS估计量不具有一致性 不具有一致性
如果选择Z为X的工具变量 工具变量,那么在上述估计 工具变量 过程可改为:
∑z y
i
i
= β 1 ∑ z i xi + ∑ z i µ i
利用E(ziµi)=0,在大样本下可得到:
β1
~
四、解决随机解释变量的方法: 解决随机解释变量的方法: 工具变量法
模型中出现随机解释变量且与随机误差项相 关时,OLS估计量是有偏的。 如果随机解释变量与随机误差项不相关,则 可以通过增大样本容量的办法来得到一致的估计 量; 但如果相关,即使增大样本容量也无济于事。 这时,最常用的估计方法是工具变量法 工具变量法 (Instrument variables)。
二、实际经济问题中的随机解释变量问题 随机解释变量出现的原因: (1)在实际经济问题中,经济变量往往都无 法控制,所以其取值无法确定,必然表现出 随机性。 (2)滞后被解释变量作为解释变量时必然是 随机变量。

《随机解释变量》PPT课件_OK

《随机解释变量》PPT课件_OK

1 n
1 n
zi i
zi xi
基于工具变量Z选取要求,有:
Plim 1 n
zi i cov(Zi , i ) 0
P lim 1 n
zi xi cov(Zi , X i ) 0
则有:P lim( ~1 ) 1 即在大样本下IV参数估计量具有一致性
2021/8/31
22
5、对工具变量法的说明
(3)在实际应用过程中,一方面,寻求到一个既与X高度相关,又与μ 无关的工具变量并非易事。一般可以用Xt-1作为原随机解释变量 Xt的工具变量。
另一方面,也有可能对同一个X找到多个符合要求的工具变量。此 时选择的工具变量不同,参数估计值不一定一致,具有随意性。 选择哪一个工具变量是一个技巧。解决的策略之一是广义矩估计 (GMM)。
1. 随机解释变量与随机误差项独立(Independence)
cov( X2t , t ) E( X2t X2 )(t ) E( x2t t ) 0 (t 1, 2, ..., n)
2. 随机解释变量与随机误差项同期无关(contemporaneously uncorrelated),但异期相关。
lim
n
E(ˆn
)
则称 ˆn 为θ的渐进无偏估计量
2、一致性
对上述
ˆn
如果满足: p lim n
ˆ
n
(plim表示概率极限)
则称 ˆn 为θ的一致估计量
2021/8/31
9
可以证明:
ˆn

的一致估量
lim
n
E
(ˆn
)
AND
lim
n
var(ˆn
)
0
即:一致估计量一定是渐进无偏的,并且在真实值附近离散的程度随样 本容量的增加而逐渐趋于0

随机变量的概念与离散型随机变量.pptx

随机变量的概念与离散型随机变量.pptx
{X k} (k 0,1, 2, )
X 1
第10页/共61页
什么是随机变量X的概率分布?
一般地,随机变量X取值的概率 称为该随机变量X的概率分布.
第11页/共61页
例 设箱中有10个球,其中有2个红球,8个白 球;从中任意抽取2个,观察 抽球结果。
取球结果为 两个红球
X表示取得
2
的红球数
P
2.1 随机变量的概念与 离散型随机变量
Random Variable and Distribution
第2页/共61页
如何引入随机变量
基本思想
将样本空间数量化,即用数值来表示试验的结果
例:E:掷一颗骰子 ,观察点数.
出现 出现 出现 出现 出现 出现
1点 2点 3点 4点 5点 6点
X
1
2
3
4
5
验 A=“一次实验中抽到次品”,P(A)=3/12,
n=5 p=1/4
记X为共抽到的次品数,则
X ~ B(5, 1 )
4
P{ X
2}
C52
1 2 4
1
1 52 4
第35页/共61页

一大批种子发芽率为90%,今从中任取10粒.求播种后, 求(1)恰有
8粒发芽的概率;(2)不小于8粒发芽的概率。
放回抽样直到抽到次品为止。 求抽到次品时,已抽取的次数X的分布律。
解 记Ai=“第i次取到正品”,i=1,2,3,… 则 Ai , i=1,2,3,… 是相互独立的!
{X=k }= A1 A2 Ak1 Ak
X的所有可能取值为 1,2,3,… ,k,… P(X=k)= P( A1A2 Ak1 Ak ) (1-p)k-1p ,k=1,2,…

随机事件与概率随机变量与概率分布PPT教学课件

随机事件与概率随机变量与概率分布PPT教学课件
天气系统,如高压、冷锋等
⑵锋是影响天气的重要天气系统,
冷暖空气的交界面叫锋面。
向 东 南 移 动
大风 降温 降雨
向东北移动
升温 降雨
如何从锋的图例 上知道它是向哪 个方向移动呢?
三角形或半圆凸 所指的方向
过境前 过境时 过境后
冷锋
气温高,气压低
出现较大风 雨雪天气
气温下降,气压 上升,天气转好
问题的引伸
随机事件的数量化—随机变量 多个事件的概率描述—概率分布
随机变量及其概率分布
随机变量的分类
离散变量(疗效分级、受教育程度) 计数变量(如单位时间或空间内检出细菌的
数量、发生某事件的数量)
连续变量 如血压、血脂、血糖等
判断:白色的程度越浓,表明云层越厚, 这种云区下面下雨往往就越大。
问题:
古代劳动人民并没有现代科技手段, 他们是如何预知未来的天气形势呢?
燕子低飞要下雨
天气谚语
一场秋雨凉一阵 •东虹日头西虹雨1
暖锋 气温低气压高
多连续性降水
气温上升,气压 下降,天气转晴
常见天气系统
高压 低压 冷锋 暖锋 台风
探 1、请分析当天的天气形势,并说明理由。 究 2、预测北京、上海、广州未来24小时天气形势,并说明理由


1012.5
1017.5
1007.5

1017.5

1007.5 1002.5

* *
1017.5 1012.5
定小概率事件选择大概率事件
多个随机事件的关系
任一事件发生:和事件 几个事件同时发生:积事件 一事件发生则另一事件不发生:互斥 当只有两种事件时,互斥即对立

4计量经济学-违背基本假定问题

4计量经济学-违背基本假定问题

Gleiser
选择关于变量X的不同的函数形式,对方程进行估计并 进行显著性检验,如果存在某一种函数形式,使得方程 显著成立,则说明原模型存在异方差性。
• 帕克检验常用的函数形式:
i f ( X ji ) 2 X e ji
~ 2 ) ln 2 ln X ln(e i ji i
在同方差假设下
辅助回归 可决系数 渐近服从
辅助回归解释变量 的个数
36
• 说明: • 辅助回归仍是检验与解释变量可能的组合的显 著性,因此,辅助回归方程中还可引入解释变 量的更高次方。 • 如果存在异方差性,则表明确与解释变量的某 种组合有显著的相关性,这时往往显示出有较 高的可决系数以及某一参数的t检验值较大。 • 在多元回归中,由于辅助回归方程中可能有太 多解释变量,从而使自由度减少,有时可去掉 交叉项。
例4.1.3: 以某一行业的企业为样本建立企业生产函 数模型 Yi=Ai1 Ki2 Li3eI 被解释变量:产出量Y,解释变量:资本K、劳动L、 技术A。 • 每个企业所处的外部环境对产出量的影响被包含 在随机误差项中。 对于不同的企业,它们对产出量的影响程度不同, 造成了随机误差项的异方差性。 随机误差项的方差并不随某一个解释变量观测值 的变化而呈规律性变化,呈现复杂型。
35
4、布罗施-帕甘(Breusch-Pagan)检验
5、怀特(White)检验
Yi 0 1 X 1i 2 X 2i i
建立辅助 回归模型
以二元模型为例
2 2 2 ~ ei 0 1 X1i 2 X 2i 3 X1i 4 X 2i 5 X1i X 2i i
如果在 OLS 法下, R2 与 F 值较大,但 t 检验值较小,说明

计量经济学随机解释变量的问题

计量经济学随机解释变量的问题

• 2.分析 • 由于两个变量均含有可以解释被解释量的 信息,而且这些信息不完全相同(二者不 完全相关),那么显然,如果仅用一个, 估计就不会是有效的(注意,利用越多的 信息进行估计,估计就越是有效的) • 于是,一个问题就是,我们应如何综合的 利用这两个变量的信息呢?
• 3.方法 • 我们将以X2i为被解释变量,z1i和z2i为解释变量, 作如下OLS回归: • X2i=α+β1z1i+β2z2i+εi (2 )
Yt e (1 )Yt Yt e 1
该式是由合理预期理论给出的。
容易推得:
C t 0 1 (1 )Yt 1 Yt e 1 t
= 0 1 (1 )Yt (Ct 1 0 t 1 ) t
如果工具变量 z 选取恰当,即有
1 P lim z i i cov( z i , i ) 0 , n 1 P lim z i xi cov( z i , xi ) 0 n ˆ ) P lim( 则有: 1 1
4、几点注解
• 工具变量并没有替代模型中的解释变量,只是 在估计过程中作为“工具”被使用。
合理预期的消费函数模型
合理预期理论认为消费是由对收入的预期所决定 的,或者说消费是有计划的,而这个计划是根据对 收入的预期制定的。于是有:
Ct 0 1Yt e t
C t 1 0 1Yt e 1 t 1
e Y 其中 t 表示 t 期收入预期值。
而预期收入与实际收入之间存在差距,表现为:
四.工具变量法的一种——二阶段最 小二乘法
• • • • 1.方法提出 先看如下一个模型: Yi=a+b1X1i+b2X2i+ui 假定其中的X2变量是随机的,且与u同期 (或对于同一个样本)相关。 • 现在,在用工具变量法时,我们不仅可找 到一个工具变量z1i,而且还可找到另一个 工具变量z2i,且这两个变量不完全相关, 此时我们到底应选哪一个呢?

随机变量及其分布复习课件.ppt

随机变量及其分布复习课件.ppt

F(x) x f(t)dt,
则称X为连续型随机变量,其中f(x)称为X的概率 密度函数,简称概率密度。
(II)概率密度的性质
( 1 ) 非 负 性 : f( x ) 0 , x R .
(2)规 范 性 :f(x)dx1. 4
( 3 )对 于 任 意 实 数 a b, 有
P{aXb}abf(x)dx . F(b)F(a)
求这个区间的端点,分二种情形讨论之:
17
(1)区间的一个端点是无穷大,即已知P(X < x) = p1 或P(X > x) = p2,求x .
利用 或
然后反查标准正态分布表,即可求出x (2)区间关于μ对称,不妨设为(μ−a,μ+a),而 P(μ−a<X<μ+a) = p,求a
18
四.随机变量的函数的分布 1.离散型随机变量函数的分布
几种重要的 离散型分布
均指 正 匀数 态 分分 分 布布 布
二项分布的 正态近似
二项分布的 泊松近似
二项 分布
泊几
松何
分分 布 布 21
例题选讲
例1 甲、乙、丙3人进行独立射击 每人的命中率依 次为03 04 06 设每人射击一次 试求3人命中总 数之概率分布律 分析 求离散型随机变量的概率分布的步骤为:(1) 写
23
例2 投掷一个均匀骰子n 次,求(1)恰好得到一个6点的概 率;(2)至少得到一个6点的概率;(3)为了以0.5的概率保 证至少得到一个6点,则至少要投掷几次?
所以至少要投掷4次.
24
例3 设 X 的分布律为 X 1012 1111 p 4444
求 Y X 2 的分布律 .
解 Y 的可能值为 (1)2, 02,12, 22; 即 0, 1, 4.

随机解释变量

随机解释变量
随着统计学和其他相关领域的 发展,可以探索新的研究方法 和技术来处理随机解释变量, 以提高回归分析的准确性和可 靠性。
加强应用研究
将随机解释变量的研究应用于 实际问题中,如经济、生物、 医学等领域,以解决实际问题 并促进相关领域的发展。
促进跨学科合作与交流
加强与其他相关学科的合作与 交流,如数学、计算机科学、 物理学等,以促进对随机解释 变量的更深入理解和应用。
THANKS
感谢观看
考虑其他影响因素
样本选择偏差
在处理随机解释变量时,需要考虑样 本选择偏差对模型的影响。可以通过 采用合适的样本选择方法(如 Heckman选择模型等)来纠正偏差 。
多重共线性
在处理随机解释变量时,需要考虑多 重共线性对模型的影响。可以通过采 用特征选择、降维等方法来降低多重 共线性的影响。
04
CATALOGUE
随机解释变量与固定解释变量的区别
固定解释变量是指其值在回归模型中保持不变的变量,而随机解释变量则是指其 值会变动的变量。
固定解释变量通常是可以直接控制的变量,例如实验中的自变量,而随机解释变 量则是无法或不易控制的变量,例如时间、气温等。
随机解释变量的应用场景
01
在经济学中,许多因素都可以作为随机解释变量,例如GDP、利率、 汇率等。
随机解释变量
目录
• 随机解释变量的定义 • 随机解释变量的影响 • 如何处理随机解释变量 • 随机解释变量的实例分析 • 总结与展望
01
CATALOGUE
随机解释变量的定义
什么是随机解释变量
随机解释变量是指在回归分析中,用 来预测因变量的解释变量,其值是随 机的,会受到多种因素的影响。
与固定解释变量不同,随机解释变量 的值是不确定的,可能会随着时间和 外部条件的变化而变化。

计量经济学多重共线性

计量经济学多重共线性

Xji=1X1i+2X2i+LXLi
的判定系数较大,说明Xj与其他X间存在共线性。
数学附录
(2)逐步回归法
以Y为被解释变量,逐个引入解释变量,构 成回归模型,进行模型估计。 根据拟合优度的变化决定新引入的变量是否 独立。
如果拟合优度变化显著,则说明新引入的变 量是一个独立解释变量;
如果拟合优度变化很不显著,则说明新引入 的变量与其它变量之间存在共线性关系。
(2)滞后变量的引入
在经济计量模型中,往往需要引入滞 后经济变量来反映真实的经济关系。 例如,消费=f(当期收入, 前期收入) 显然,两期收入间有较强的线性相关性。
(3)样本资料的限制
由于完全符合理论模型所要求的样本数据较难 收集,特定样本可能存在某种程度的多重共线性。 一般经验:
时间序列数据样本:简单线性模型,往往存在 多重共线性。
(2)对多个解释变量的模型,采用综合统计检验法 若 在OLS法下:R2与F值较大,但t检验值较小, 说明各解释变量对Y的联合线性作用显著,但各解 释变量间存在共线性而使得它们对Y的独立作用不 能分辨,故t检验不显著。
2、判明存在多重共线性的范围
如果存在多重共线性,需进一步确定究竟由哪 些变量引起。 (1) 判定系数检验法 使模型中每一个解释变量分别以其余解释变量 为解释变量进行回归,并计算相应的拟合优度。 如果某一种回归
六、案例——中国粮食生产函数
根据理论和经验分析,影响粮食生产(Y)的 主要因素有: 农业化肥施用量(X1);粮食播种面积(X2) 成灾面积(X3); 农业机械总动力(X4); 农业劳动力(X5) 已知中国粮食生产的相关数据,建立中国粮食 生产函数: Y=0+1 X1 +2 X2 +3 X3 +4 X4 +4 X5 +

随机解释变量的后果39页PPT

随机解释变量的后果39页PPT
随机解释变量的后果
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳Байду номын сангаас,是充满思想的劳动。——乌申斯基
谢谢!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档