电催化综述知识分享
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电催化综述
电催化的应用和存在问题1引言
电催化法是使电极、电解质界面上的电荷转移加速从而加快电极反应的方法。电催化技术涉及到的催化剂的选择至关重要,要加速电极反应,必须选用合适的电极材料,所选用的电极材料在通电过程中具有催化剂的作用,从而改变电极反应速率或反应方向,而其本身并不发生质的变化。
现在随着世界各国现代工业的迅猛发展,能源的需求量也随之急剧增加,但二十世纪末以来,我们却面临着燃料煤炭,化石能源日益枯竭,新能源的开发缓慢、能源费用上涨等各种挑战,因而节约有限能源、降低工业生产中的能耗是当务之急。电化学科学的研究恰好适应了这种要求,电化学科学是以研究如何加速电极上电催化反应速度。降低电极电位为研究内容,与节能降耗密切相关,特别是在强电流电解过程中的节能,采用电催化电极更是起了巨大的作用。1电催化技术主要应用于有机污水的电催化处理;含铬废水的电催化降解;烟道气及原料煤的电解脱硫;电催化同时脱除NOx和S02;二氧化碳的电解还原等。目前对能源利用、燃料电池和某些化学反应(如丙烯腈二聚、分子氧还原)的电催化作用研究得较深入,今后在开拓精细有机合成方面可能会得到较大的进展,特别是对那些与电子得失有关的氧化还原反应。本文从污水的电催化处理、电催化活化碳的氧化物、电催化法脱硫脱硝、电催化与燃料电池四个大的方面介绍电催化技术的发展及研究应用现状,以及今后研究的发展趋势。
2污水的电催化处理
电化学水处理技术2,3因其具有多功能性、高度的灵活性、易于自动化、无二次污染等其它水处理技术无法比拟的优点,正成为国内外水处理技术研究的热点课题,尤其对那些难于生化降解、对人类健康危害极大“三致”致癌、致畸、致突变有机污染物的去除具有很高的效率,并且又能节省大量的能源。因而,电化学水处理技术近年来已成为世界水处理技术相当活跃的研究领域,受到国内外的广泛关注。4相比传统的生物废水处理方法,电催化废水处理技术有更潜在的应用前景。在比如电催化还原技术是现阶段水处理技术领域的研究热点之一,可将废水中高毒性污染物通过选择性电催化还原转化为低毒性的污染物,对含硝基苯5、氯酚6等的废水取得了良好的处理效果,具有药剂用量少、操作简易、污染物降解选择性强等优点。7,8
2.1电催化水处理的机理
电化学水处理技术的基本原理是使污染物在电极上发生直接电化学反应或间接电化学转化,即直接电解和间接电解。直接电解是指污染物在电极上直接被氧化或还原而从废水中去除。直接电解可分为阳极过程和阴极过程。阳极过程就是污染物在阳极表面氧化而转化成毒性较小的物质易生物降解的物质,甚至发生有机物无机化,从而达到削减、去除污染物的目的。间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性更小的物质。间接电解分为可逆过程和不可逆过程。可逆过程媒介电化学氧化是指氧化还原物在电解过程中可电化学再生和循环使用电催化电极材料。不可逆过程是指利用不可逆电化学反应产生的物质,如具有强氧化性的氯酸盐、次氯酸盐等氧化有机物的过程,还可以利用电化学反应产生的短寿命的、强氧化性的中间体,包括溶剂化电子、自由基等,它们可以氧化降解污染物。
2.2电催化电极材料
常规电极:碳电极和石墨电极,是电化学工业中应用最普遍的电极材料。钛基涂层电极:以金属钛作为电极基态,表面涂敷以铂族金属氧化物为主要组分的活性
涂层,如Ti/ MnO
2、Ti/ PbO
2
、Ti/ Pt等。掺硼钻石(BDD)电极:BDD 薄膜是在
导电p- Si 基上用热丝化学气相沉积法(HFCVD)合成的。
2.3前景及展望
电催化氧化技术虽具有处理效率高、操作简便易实现自动化、环境兼容性好等优点,但是目前该技术在国内外仍处于开拓阶段 , 反应机理及影响降解效率的因素研究还比较粗浅 , 要实现电催化氧化的工业化,还有许多工作要做,主要集中在以下几方面 : (1)研制新型电极材料,提高电流效率和催化活性,使有机污染物低成本去除。(2)开发新型反应器,最大限度地提高电解反应速度,增大单位电解槽的反应量。(3)与其他环境处理方法联用,使其发挥各自的优
势,形成协同效应,降低处理成本,提高工艺的经济性和实用性。(4)提高智能化水平,以突出电化学方法易于控制的优点,稳定处理效果,实现自动化运行。9
3电催化活化碳的氧化物
3.1二氧化碳的催化活化
随着工农业的发展,二氧化碳在大气中的含量越来越高,对环境的影响越来越严重,因此研究二氧化碳的处理也显得日益紧迫。10前人已采取了许多方法企图攻克这一问题 , 但是不太成功。电化学还原 CO
2
是11一个比较好的方
法,它可以把 CO
2转化为有用的化合物。最初对 CO
2
电化学还原的许多研究
主要在各种各样的金属电极上, 在水溶液中,CH 4、C 2H 6、CO、H 2 和 HCOO H 等是主要还原产物 , 然而金属的中毒性及对 CO 2还原具有较高的氢超电势,使得对 CO 2还原的法拉第效率比较低且还原产物的选择性差。人们发现用化学和电化学方法修饰金属电极比较在同一条件下在金属电极上的 CO 2电化学还原,可提高产物的选择性和效率以及降低还原过电位。文献12,13报道了某些单核或多核过渡金属的配合物对 CO2有催化活化作用。文献中以 N , N-二甲基甲酰胺 ( DMF ) 为溶剂,以四乙基溴化铵( TEABr) 为支持电解质,以
Ni( bpy)3 Cl2为催化剂,在-116的电解电位下使 CO2还原生成了 CO2•- ;CO2• -作为强碱再与苯胺及碘乙烷反应合成了苯氨基甲酸乙酯。14
3.2一氧化碳的催化活化
以固体离子导体为电解质, 进行一氧化碳电催化还原反应的研究较少。利用固态离子导体为电解质进行电催化反应,可以通过调控电解池电极的材料、电位、电流等,实现电极表面氧化还原反应,同时利用固体电解质膜片分隔出不同的区域, 使产物的分离得到简化.
Cu/ZrP电极电催化表面反应可将一氧化碳还原为甲醛,Fe/ZrP电极电催化表面反应可将一氧化碳还原为乙烯。15CO2电化学还原生成 CH4、C2H6、CO、CH3OH和 HCOOH 等主要还原产物,还可以将CO2电化学还原生成酯。