双曲线高考题

合集下载

专题22 双曲线(解答题压轴题)(原卷版)-【挑战压轴题】备战2023年高考数学高分必刷必过题

专题22  双曲线(解答题压轴题)(原卷版)-【挑战压轴题】备战2023年高考数学高分必刷必过题

x2 a2
y2 4
1 a
0 的中心为原点 O ,左、右
焦点分别为
F1 、
F2
,离心率为
35 5
,点
P
是直线
x
a2 3
上任意一点,点 Q
在双曲线
E
上,
且满足 PF2 QF2 0 .
(1)求实数 a 的值;
(2)证明:直线 PQ 与直线 OQ 的斜率之积是定值;
(3)若点 P 的纵坐标为1,过点 P 作动直线 l 与双曲线右支交于不同的两点 M 、N ,在线段
(2)是否存在直线 l,使得 l 与 M 交于 A,B 两点,且弦 AB 的中点为 P 4, 6 ?若存在,求 l
的斜率;若不存在,请说明理由.
②双曲线中的最值问题
1.(2022·全国·高三阶段练习)在一张纸上有一圆 C : (x 2 3)2 y2 36 ,定点 M 2 3, 0 ,
折叠纸片 C 上的某一点 M1 恰好与点 M 重合,这样每次折叠都会留下一条直线折痕 KQ ,设 折痕 KQ 与直线 M1C 的交点T .
专题 22 双曲线(解答题压轴题)
双曲线(解答题压轴题)
①双曲线的中点弦问题 ②双曲线中的最值问题 ③双曲线中定点、定值、定直线问题
④双曲线中向量问题 ⑤双曲线综合问题 ①双曲线的中点弦问题 1.(2022·四川·树德中学高三期中(文))已知抛物线 C : x2 2 py ( p 0 )的焦点为 F , P 为 C 上的动点,Q 为 P 在动直线 y t ( t 0 )上的投影.当 △PQF 为等边三角形时,其面
曲线 C 的实轴长为 2,焦距为 2 3 ,且点 P(0,-1)到渐近线的距离为 3 . 3
(1)求双曲线 C 的方程;

高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)本文存在大量的格式错误和段落问题,需要进行修正和删减。

修正后的文章如下:研究目标:1.理解双曲线的定义、几何图形、标准方程以及简单几何性质。

2.理解数形结合的思想。

3.了解双曲线的实际背景及其简单应用。

一、单选题1.设 $F_1,F_2$ 分别是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,点 $P$ 在双曲线 $C$ 的右支上,且 $F_1P=F_2P=c$,则 $\frac{c^2}{a^2-b^2}$ 的值为:A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{3}$D。

$\frac{1}{4}$答案】B解析】根据双曲线的性质求出 $c$ 的值,结合向量垂直和向量和的几何意义进行转化求解即可。

点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键。

2.设 $F_1(-1,0),F_2(1,0)$ 是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,$A(0,b)$ 为左顶点,点$P$ 为双曲线右支上一点,且 $AP=\frac{a}{2}$,则$\frac{b^2}{a^2}$ 的值为:A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{3}$D。

$\frac{1}{4}$答案】D解析】先求出双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,再求出点 $P$ 的坐标,最后求$\frac{b^2}{a^2}$。

点睛】本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力。

双曲线的通径为 $2a$。

3.已知直线$l$ 的倾斜角为$\theta$,且$l: y=x\tan\theta$,直线 $l$ 与双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左、右两支分别交于 $A,B$ 两点,$OA\perp$轴,$OB\perp$轴(其中 $O$、$F_1,F_2$ 分别为双曲线的坐标原点、左、右焦点),则该双曲线的离心率为:A。

高考双曲线及标准方程经典题型

高考双曲线及标准方程经典题型

一、单选题1.双曲线224121x y -=上的点P 到左焦点的距离为6,则P 到右焦点的距离为( )A .2B .10C .2或10D .122.在平面直角坐标系xOy 中,已知点()()125,0,5,0F F -,动点P 满足128PF PF -=,则动点P 的轨迹是( ) A .椭圆B .抛物线C .双曲线D .圆3.已知双曲线2213x y m +=的焦距为4,则m 的值为( )A .1B .1-C .7D .7-4.若方程222141x y m m-=-+表示焦点在y 轴上的双曲线,则实数m 的取值范围为( )A .()2-∞-,B .()21--,C .()22-,D .()11-,5.当0ab <时,方程22ax ay b -=所表示的曲线是( ) A .焦点在x 轴的椭圆 B .焦点在x 轴的双曲线 C .焦点在y 轴的椭圆D .焦点在y 轴的双曲线6.已知12,F F 为双曲线22:1169x yC -=的左、右焦点,点P 在双曲线C 上,且122PF PF =,则12cos F F P ∠=( ) A .2340-B .35C .5564 D .457.已知()0,4A ,双曲线22145x y -=的左、右焦点分别为12,F F ,点P 是双曲线右支上一点,则1PA PF +的最小值为( ) A .5B .7C .9D .118.已知12,F F 是双曲线2222:1(0,0)x yE a b a b-=>>的左,右焦点,点P 在E 上,D 是线段12F F 上点,若1212,:1:2,43F PF F D F D PD π∠===,则当12PF F △面积最大时,双曲线E 的方程是( ) A .221129x y -=B .221912x y -=C .22136x y -=D .22163x y -=二、多选题9.已知方程221mx ny +=,其中220m n +≠,则( ) A .0mn >时,方程表示椭圆 B .0mn <时,方程表示双曲线 C .0n =时,方程表示抛物线D .0n m >>时,方程表示焦点在x 轴上的椭圆 10.过点(11),且2ba= ) A .2221x y -= B .2221x y -= C .2221y x -=D .2221y x -=11.若()15,0F -,()25,0F ,动点P 满足122PF PF a -=,当3a =和5a =时,点P 轨迹( ) A .双曲线B .双曲线的一支C .一条射线D .一条直线12.已知2a =,4c =,则双曲线的标准方程为( ) A .221412x y -=B .221124x y -=C .221412y x -=D .221124y x -=三、填空题13.两定点()15,0F -,()25,0F ,动点(),M x y 满足128MF MF -=,则动点M 的轨迹方程为______.14.已知双曲线2211648x y -=的左右两个焦点分别是12,F F ,双曲线上一点P 满足110PF =,则2PF =_____.15.已知方程221410x y k k+=--表示双曲线,则实数k 的取值范围为___________.16.已知1F 、2F 分别是双曲线22:14x C y -=的左、右焦点,动点P 在双曲线的左支上,点Q为圆22:(2)1G x y ++=上一动点,则2||||PQ PF +的最小值为________. 四、解答题17.已知双曲线22:166x y C k k -=-+的焦距长为8.(1)求C 的方程;(2)若0k >,过点()4,0的直线l 交C 于,A B 两点,若142AB =l 的方程.18.已知焦点在x 轴上的双曲线Γ经过点(6,2,23,6M N --.(1)求双曲线Γ的标准方程;(2)若直线3:1l y x =-与双曲线Γ交于,A B 两点,求弦长AB . 19.在①左顶点为3,0,①双曲线过点()32,4,①离心率53e =这三个条件中任选一个,补充在下面问题中并作答.问题:已知双曲线与椭圆2214924x y +=共焦点,且______. (1)求双曲线的方程;(2)若点P 在双曲线上,且18PF =,求2PF . 注:如果选择多个条件分别解答,按第一个解答计分. 20.已知曲线22:(2)(2),C mx m y m m m +-=-∈R . (1)若曲线C 是椭圆,求m 的取值范围; (2)若曲线C 是双曲线,求m 的取值范围21.在平面直角坐标系xOy 中,已知()1,0A -,()10B ,,动点C 满足直线AC 与直线BC 的斜率乘积为3.(1)求动点C 的轨迹方程E .(2)过点()2,0作直线l 交曲线E 于P ,Q 两点(P ,Q 在y 轴两侧),过原点O 作直线1l 的平行线2l 交曲线E 于M ,N 两点(M ,N 在y 轴两侧),试问2MN PQ是否为定值?若是,求出该定值;若不是,请说明理由.22.已知1(2,0)F -,2(2,0)F ,点P 满足12||||2PF PF -=,记点P 的轨迹为E , (1)求轨迹E 的方程;(2)若直线l 过点2F 且法向量为(),1n a =,直线与轨迹E 交于P 、Q 两点.①过P 、Q 作y 轴的垂线PA 、QB ,垂足分别为A 、B ,记PQ AB λ=,试确定λ的取值范围;①在x 轴上是否存在定点M ,无论直线l 绕点2F 怎样转动,使0MP MQ ⋅=恒成立?如果存在,求出定点M ;如果不存在,请说明理由。

2024年新高考版数学专题1_9.3 双曲线及其性质(分层集训)

2024年新高考版数学专题1_9.3 双曲线及其性质(分层集训)

A. 22
2
B. 4 10
5
答案 D
C. 7
D. 10
4.(2017课标Ⅲ理,5,5分)已知双曲线C:
x a
2 2
-
y2 b2
=1(a>0,b>0)的一条渐近线方
程为y= 5 x,且与椭圆 x2 + y2 =1有公共焦点,则C的方程为 ( )
2
12 3
A. x2 - y2 =1
8 10
B. x2 - y2 =1
C.互为共轭的双曲线的离心率为e1、e2,则e1e2≥2
D.互为共轭的双曲线的4个焦点在同一圆上
答案 CD
7.(多选)(2021广东揭阳4月联考,9)已知一组直线x±2y=0,则以该组直线为
渐近线的双曲线的方程可能是 ( )
A.x2-4y2=1 B.4y2-x2=1
C.x2- y2 =1
4
答案 ABD
y
k1
x2 y2 16
x
1 2
m,
1(x 1),

(16-
k12
)x2+(
k12
-2k1m)x-
1 4
k12
+k1m-m2-16=0,
设A(x1,y1),B(x2,y2),
则x1+x2=
k12 2k1m k12 16
,x1x2=
1 4
k12
m2 k1m k12 16
16
,
则|TA|=
设其方程为 x2 - y2 =1(a>0,b>0,x≥a),
a2 b2
则2a=2,2c=2 17 ,解得a=1,c= 17 ,
则b2=c2-a2=( 17 )2-12=16,

2020新高考数学压轴题 高中数学《双曲线》大题50道,word版,含答案解析

2020新高考数学压轴题 高中数学《双曲线》大题50道,word版,含答案解析

高中数学《双曲线》大题50题高中数学《双曲线》大题50题及答案解析1.在①m>0,且C的左支上任意一点到右焦点的距离的最小值为3+,②C的焦距为6,③C上一点到两焦点距离之差的绝对值为4.这三个条件中任选一个,补充在下面的问题中.问题:已知双曲线C:﹣=1,_____,求C的方程.2.已知双曲线C的右焦点F,半焦距c=2,点F到直线的距离为,过点F作双曲线C的两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N.(1)求双曲线C的标准方程;(2)证明:直线MN必过定点,并求出此定点的坐标.3.设双曲线Γ的方程为:x2﹣=1.(1)设1是经过点M(1,1)的直线,且和Γ有且仅有一个公共点,求l的方程;(2)设11是Γ的一条渐近线,A、B是11上相异的两点.若点P是Γ上的一点,P关于点A的对称点记为Q,Q关于点B的对称点记为R.试判断点R是否可能在Γ上,并说明理由.4.在平面直角坐标系中,已知双曲线I:,A,B分别为I的左,右顶点.(1)以A为圆心的圆与I恰有三个不同的公共点,写出此圆的方程;(2)直线L过点A,与I在第一象限有公共点P,线段AP的垂直平分线过点B,求直线L的方程;(3)I上是否存在异于A、B点M、N,使+2=成立,若存在,求出所有M、N的坐标,若不存在说明理由.5.(Ⅰ)已知中心在原点的双曲线C的焦点坐标为,,且渐近线方程为,求双曲线C的标准方程;(Ⅱ)在圆x2+y2=3上任取一点P,过点P作y轴的垂线段PD,D为垂足,当点P在该圆上运动时,求线段PD的中点M的轨迹方程.6.设离心率为3,实轴长为1的双曲线E:(a>b>0)的左焦点为F,顶点在原点的抛物线C的准线经过点F,且抛物线C的焦点在x轴上.(I)求抛物线C的方程;(Ⅱ)若直线l与抛物线C交于不同的两点M,N,且满足OM⊥ON,求|MN|的最小值.7.2018年世界人工智能大会已于2018年9月在上海徐汇西岸举行,某高校的志愿者服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏,如图:A、B两个信号源相距10米,O是AB的中点,过O点的直线l与直线AB的夹角为45°,机器猫在直线l上运动,机器鼠的运动轨迹始终满足:接收到A点的信号比接收到B点的信号晚秒(注:信号每秒传播v0米).在时刻t0时,测得机器鼠距离O点为4米.(1)以O为原点,直线AB为x轴建立平面直角坐标系(如图),求时刻t0时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线l不超过1.5米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?8.已知离心率为2的双曲线C的一个焦点F(c,0)到一条渐近线的距离为.(1)求双曲线C的方程;(2)设A1,A2分别为C的左右顶点,P为C异于A1,A2一点,直线A1P与A2P分别交y 轴于M,N两点,求证:以线段MN为直径的圆D经过两个定点.9.已知F1,F2为双曲线的左、右焦点,过F2作垂直于x轴的垂线,在x轴上方交双曲线C于点M,且∠MF1F2=30°.(1)求双曲线C的两条渐近线的夹角θ;(2)过点F2的直线l和双曲线C的右支交于A,B两点,求△AF1B的面积最小值;(3)过双曲线C上任意一点Q分别作该双曲线两条渐近线的平行线,它们分别交两条渐近线于Q1,Q2两点,求平行四边形OQ1QQ2的面积.10.已知双曲线的一条渐近线方程为,点在双曲线上,抛物线y2=2px(p>0)的焦点F与双曲线的右焦点重合.(Ⅰ)求双曲线和抛物线的标准方程;(Ⅱ)过点F做互相垂直的直线l1,l2,设l1与抛物线的交点为A,B,l2与抛物线的交点为D,E,求|AB|+|DE|的最小值.高中数学资料共享群734924357每天都有更新!11.已知椭圆=1(a>b>0}),点A、点B分别是椭圆上关于原点对称的两点,点P是椭圆上不同于点A和点B的任意一点.(1)求证:直线PA的斜率与直线PB的斜率之积为定值,并求出定值;(2)试对双曲线=1写出具有类似特点的正确结论,并加以证明.12.如图,若F1,F2是双曲线﹣=1的两个焦点.(1)若双曲线上一点M到它的一个焦点的距离等于16,求点M到另一个焦点的距离;(2)若P是双曲线左支上的点,且|PF1|•|PF2|=32,试求△F1PF2的面积.13.已知双曲线过点(3,﹣2)且与椭圆4x2+9y2=36有相同的焦点.(1)求双曲线标准方程;(2)若点M在双曲线上,F1,F2分别是双曲线的左、右焦点,且|MF1|=2|MF2|,求△MF1F2的面积.14.设双曲线=1,其虚轴长为2,且离心率为.(1)求双曲线C的方程;(2)过点P(3,1)的动直线与双曲线的左右两只曲线分别交于点A、B,在线段AB上取点M使得=,证明:点M落在某一定直线上;(3)在(2)的条件下,且点M不在直线OP上,求△OPM面积的取值范围.15.在平面直角坐标系中,点F1、F2分别为双曲线C:的左、右焦点,双曲线C的离心率为2,点(1,)在双曲线C上.不在x轴上的动点P与动点Q关于原点O对称,且四边形PF1QF2的周长为.(1)求动点P的轨迹方程;高中数学资料共享群734924357每天都有更新!(2)在动点P的轨迹上有两个不同的点M(x1,y1)、N(x2,y2),线段MN的中点为G,已知点(x1,x2)在圆x2+y2=2上,求|OG|•|MN|的最大值,并判断此时△OMN的形状.16.已知双曲线=1(b>a>0)渐近线方程为y=±x,O为坐标原点,点在双曲线上.(Ⅰ)求双曲线的方程;(Ⅱ)已知P,Q为双曲线上不同两点,点O在以PQ为直径的圆上,求的值.17.设双曲线﹣=1的两个焦点分别为F1、F2,离心率为2.(1)若A、B分别为此双曲线的渐近线l1、l2上的动点,且2|AB|=5|F1F2|,求线段AB 的中点M的轨迹方程,并说明轨迹是什么曲线;(2)过点N(1,0)能否作出直线l,使l交双曲线于P、Q两点,且•=0,若存在,求出直线l的方程;若不存在,说明理由.18.已知双曲线,(1)求以双曲线的顶点为焦点,焦点为顶点的椭圆E的方程.(2)点P在椭圆E上,点C(2,1)关于坐标原点的对称点为D,直线CP和DP的斜率都存在且不为0,试问直线CP和DP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由.19.已知双曲线C:﹣=1(a>0,b>0)的两个焦点分别为(﹣2,0)和(2,0),点P(3,)在双曲线C上.(Ⅰ)求双曲线C的方程;高中数学资料共享群734924357每天都有更新!(Ⅱ)过点A(0,2)的直线与双曲线C交于不同的两点E、F,若坐标原点O与E、F构成的三角形面积为2,求直线l的方程.20.已知双曲线的左右两个顶点是A1,A2,曲线C上的动点P,Q关于x轴对称,直线A1P与A2Q交于点M,(1)求动点M的轨迹D的方程;(2)点E(0,2),轨迹D上的点A,B满足,求实数λ的取值范围.21.已知圆M:(x+1)2+y2=,圆N:(x﹣1)2+y2=,动圆D与圆M外切并与圆N内切,圆心D的轨迹为曲线E.(1)求曲线E的方程;(2)若双曲线C的右焦点即为曲线E的右顶点,直线y=x为C的一条渐近线.①求双曲线C的方程;②过点P(0,4)的直线l,交双曲线C于A,B两点,交x轴于Q点(Q点与C的顶点不重合),当,且λ1+λ2=﹣时,求Q点的坐标.22.已知双曲线的离心率为e,经过第一、三象限的渐近线的斜率为k,且e≥k.(1)求m的取值范围;高中数学资料共享群734924357每天都有更新!(2)设条件p:e≥k;条件q:m2﹣(2a+2)m+a(a+2)≤0.若p是q的必要不充分条件,求a的取值范围.23.已知F1,F2分别是双曲线的左右焦点,点P是双曲线上任一点,且||PF1|﹣|PF2||=2,顶点在原点且以双曲线的右顶点为焦点的抛物线为L.(Ⅰ)求双曲线C的渐近线方程和抛物线L的标准方程;(Ⅱ)过抛物线L的准线与x轴的交点作直线,交抛物线于M、N两点,问直线的斜率等于多少时,以线段MN为直径的圆经过抛物线L的焦点?24.若抛物线的顶点是双曲线x2﹣y2=1的中心,焦点是双曲线的右顶点(1)求抛物线的标准方程;(2)若直线l过点C(2,1)交抛物线于M,N两点,是否存在直线l,使得C恰为弦MN 的中点?若存在,求出直线l方程;若不存在,请说明理由.25.已知双曲线过点A(1,1),它的焦点F在其渐近线上的射影记为M,且△OFM(O为原点)的面积为.(Ⅰ)求双曲线的方程;(Ⅱ)过点A作双曲线的两条动弦AB,AC,设直线AB,直线AC的斜率分别为k1,k2,且(k1+1)(k2+1)=﹣1恒成立,证明:直线BC的斜率为定值.26.已知双曲线C:﹣=1(a>0,b>0)的一条渐近线与直线x=交于点M,双曲线C的离心率e=,F是其右焦点,且|MF|=1.(Ⅰ)求双曲线C的方程;(Ⅱ)过点A(0,1)的直线l与双曲线C的右支交于不同两点P、Q,且P在A、Q之间,若=λ且,求直线l斜率k的取值范围.27.已知双曲线C:﹣=1 的离心率是,其一条准线方程为x=.(Ⅰ)求双曲线C的方程;(Ⅱ)设双曲线C的左右焦点分别为A,B,点D为该双曲线右支上一点,直线AD与其左支交于点E,若=λ,求实数λ的取值范围.28.双曲线=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为,其中A(a,0),B(0,﹣b).(1)求双曲线的方程;高中数学资料共享群734924357每天都有更新!(2)若B1是双曲线虚轴在y轴正半轴上的端点,过B作直线与双曲线交于M,N两点,求B1M⊥B1N时,直线MN的方程.29.已知椭圆C与双曲线﹣=1有公共焦点,且离心率e=,(1)求椭圆的标准方程;(2)已知点P是椭圆C上的一动点,过点P作x轴的垂线段PD,D为垂足,当点P在椭圆上运动时,线段PD的中点M的轨迹是什么?30.已知两点A(0,﹣1),B(0,1),P(x,y)是曲线C上一动点,直线PA、PB斜率的平方差为1.(1)求曲线C的方程;(2)E(x1,y1),F(x2,y2)是曲线C上不同的两点,Q(2,3)是线段EF的中点,线段EF的垂直平分线交曲线C于G,H两点,问E,F,G,H是否共圆?若共圆,求圆的标准方程;若不共圆,说明理由.31.双曲线S的中心在原点,焦点在x轴上,离心率e=,直线x﹣3y+5=0上的点与双曲线S的右焦点的距离的最小值等于.(1)求双曲线S的方程;(2)设经过点(﹣2,0),斜率等于k的直线与双曲线S交于A,B两点,且以A,B,P (0,1)为顶点的三角形ABP是以AB为底的等腰三角形,求k的值.32.已知双曲线=1(a>0,b>0)的两条渐近线与抛物线C:y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为(1)求抛物线C的方程;(2)过点D(﹣1,0)的直线l与抛物线C交于不同的两点E,F,若在x轴上存在一点P(x0,0)使得△PEF是等边三角形,求x0的值.33.在平面直角坐标系xoy中,已知双曲线﹣y2=1的左、右顶点分别为A1,A2,点P(x0,y0),Q(x0,﹣y0)是双曲线上不同的两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;(2)过坐标原点O作一条直线交轨迹E于A,B两点,过点B作x轴的垂线,垂足为点C,连AC交轨迹E于点D,求证:AB⊥BD.34.已知双曲线C:=1(a>0,b>0)的离心率为,实轴长为2 (Ⅰ)求双曲线C的方程;(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C 交于不同的两点A,B,证明∠AOB的大小为定值.35.已知曲线Γ上的点到F(1,0)的距离比它到直线x=﹣3的距离小2,过F的直线交曲线Γ于A,B两点.(1)求曲线Γ的方程;(2)若,求直线AB的斜率;(3)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.36.已知点在双曲线上,且双曲线的一条渐近线的方程是.(1)求双曲线C的方程;(2)过点(0,1)且斜率为k的直线l与双曲线C交于A、B两个不同点,若以线段AB 为直径的圆恰好经过坐标原点,求实数k的值.37.已知点是椭圆C:的一个顶点,椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)已知点P(x0,y0)是定点,直线交椭圆C于不同的两点A、B,记直线PA、PB的斜率分别为k1、k2,求点P的坐标,使得k1+k2=0恒成立.38.已知双曲线C:的离心率为,点(4,2)在C上.(Ⅰ)求双曲线C的方程;(Ⅱ)直线l不过原点O且不平行于坐标轴,且直线l与双曲线C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.39.已知命题P“双曲线﹣=1上任意一点Q到直线l1:bx+ay=0,l2:bx﹣ay=0的距离分别记作d1,d2则d1,d2为定值”是真命题(1)求出d1•d2的值(2)已知直线l1,l2关于y轴对称且使得椭圆C:+=1上任意点到l1,l2的距离d1,d2满足为定值,求l1,l2的方程(3)已知直线m与(2)中某一条直线平行(或重合)且与椭圆C交于M,N两点,求|OM|+|ON|的最大值.40.椭圆与双曲线有许多优美的对称性质.对于椭圆+=1(a>b>0)有如下命题:AB是椭圆+=1(a>b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则k OM•k AB=﹣,为定值.那么对于双曲线﹣=1(a>0,b>0)则有命题:AB 是双曲线﹣=1(a>0,b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则k OM•k AB=定值.(在横线上填上正确的结论)并证明你的结论.41.如图,已知双曲线,过点P(0,﹣1)的直线l分别交双曲线C的左、右两支于点A,B,交双曲线C的两条渐近线于点D,E(点D在y轴的左侧).(1)若,求直线l的方程;(2)求的取值范围.42.已知双曲线C1:x2﹣=1(b>0),A(x A,b2)是C1上位于第二象限内的一点,曲线C2是以点C(0,b2+1)为圆心过点A的圆上满足y>b2的部分.曲线Γ由C1上满足y≤b2的部分和C2组成.记F1,F2为C1的左、右焦点.(1)若△CF1F2为等边三角形,求x A;(2)若直线AC与Γ恰有两个公共点,求b的最小值;(3)设b=1,过A的直线l与Γ相交于另外两点P、Q,求l的倾斜角的取值范围.43.如图,在平面直角坐标系xOy中,已知等轴双曲线E:(a>0,b>0)的左顶点A,过右焦点F且垂直于x轴的直线与E交于B,C两点,若△ABC的面积为.(1)求双曲线E的方程;(2)若直线l:y=kx﹣1与双曲线E的左,右两支分别交于M,N两点,与双曲线E的两条渐近线分别交于P,Q两点,求的取值范围.44.已知曲线,Q为曲线C上一动点,过Q作两条渐近线的垂线,垂足分别是P1和P2.(1)当Q运动到时,求的值;(2)设直线l(不与x轴垂直)与曲线C交于M、N两点,与x轴正半轴交于T点,与y 轴交于S点,若,,且λ+μ=1,求证T为定点.45.设双曲线的左顶点为D,且以点D为圆心的圆D:(x+2)2+y2=r2(r>0)与双曲线C分别相交于点A,B,如图所示.(1)求双曲线C的方程;(2)求的最小值,并求出此时圆D的方程;(3)设点P为双曲线C上异于点A,B的任意一点,且直线PA,PB分别与x轴相交于点M,N,求证:|OM|•|ON|为定值(其中O为坐标原点).46.设双曲线Γ的方程为:x2﹣=1.(1)设1是经过点M(1,1)的直线,且和Γ有且仅有一个公共点,求l的方程;(2)设11是Γ的一条渐近线,A、B是11上相异的两点.若点P是Γ上的一点,P关于点A的对称点记为Q,Q关于点B的对称点记为R.试判断点R是否可能在Γ上,并说明理由.47.已知双曲线C的一个焦点为,且过点.如图,F1,F2为双曲线的左、右焦点,动点P(x0,y0)(y0≥1)在C的右支上,且∠F1PF2的平分线与x轴、y 轴分别交于点M(m,0)(﹣<m<)、N,设过点F1,N的直线l与C交于D,E两点.(Ⅰ)求C的标准方程;(Ⅱ)求△F2DE的面积最大值.48.直线上的动点P到点T1(9,0)的距离是它到点T(1,0)的距离的3倍.(1)求点P的坐标;(2)设双曲线的右焦点是F,双曲线经过动点P,且,求双曲线的方程;(3)点T(1,0)关于直线x+y=0的对称点为Q,试问能否找到一条斜率为k(k≠0)的直线L与(2)中的双曲线交于不同的两点M、N,且满足|QM|=|QN|,若存在,求出斜率k的取值范围,若不存在,请说明理由.49.已知双曲线C1:的渐近线方程为y=±x,且过点,其离心率为e,抛物线C2的顶点为坐标原点,焦点为.(I)求抛物线C2的方程;(II)O为坐标原点,设A,B是抛物线上分别位于x轴两侧的两个动点,且=12.(i)求证:直线AB必过定点,并求出该定点P的坐标;(ii)过点P作AB的垂线与抛物线交于C,D两点,求四边形ACBD面积的最小值.50.火电厂、核电站的循环水自然通风冷却塔是一种大型薄壳型建筑物.建在水源不十分充分的地区的电厂,为了节约用水,需建造一个循环冷却水系统,以使得冷却器中排出的热水在其中冷却后可重复使用,大型电厂采用的冷却构筑物多为双曲线型冷却塔.此类冷却塔多用于内陆缺水电站,其高度一般为75~150米,底边直径65~120米.双曲线型冷却塔比水池式冷却构筑物占地面积小,布置紧凑,水量损失小,且冷却效果不受风力影响;它比机力通风冷却塔维护简便,节约电能;但体形高大,施工复杂,造价较高(以上知识来自百度,下面题设条件只是为了适合高中知识水平,其中不符合实际处请忽略.图1)(1)图2为一座高100米的双曲线冷却塔外壳的简化三视图(忽略壁厚),其底面直径大于上底直径.已知其外壳主视图与左视图中的曲线均为双曲线,高度为100m,俯视图为三个同心圆,其半径分别为40m,m,30m,试根据上述尺寸计算主视图中该双曲线的标准方程(m为长度单位米).(2)试利用课本中推导球体积的方法,利用圆柱和一个倒放的圆锥,计算封闭曲线:,y=0,y=h,绕y轴旋转形成的旋转体的体积为(用a,b,h表示)(用积分计算不得分,图3、图4)现已知双曲线冷却塔是一个薄壳结构,为计算方便设其内壁所在曲线也为双曲线,其壁最厚为0.4m(底部),最薄处厚度为0.3m(喉部,即左右顶点处).试计算该冷却塔内壳所在的双曲线标准方程是,并计算本题中的双曲线冷却塔的建筑体积(内外壳之间)大约是m3(计算时π取3.14159,保留到个位即可)(3)冷却塔体型巨大,造价相应高昂,本题只考虑地面以上部分的施工费用(建筑人工和辅助机械)的计算,钢筋土石等建筑材料费用和和其它设备等施工费用不在本题计算范围内.超高建筑的施工(含人工辅助机械等)费用随着高度的增加而增加.现已知:距离地面高度30米(含30米)内的建筑,每立方米的施工费用平均为:400元/立方米;30米到40米(含40米)每立方米的施工费用为800元/立方米;40米以上,平均高度每增加1米,每立方米的施工费用增加100元.试计算建造本题中冷却塔的施工费用(精确到万元)高中数学《双曲线》大题50题答案解析1.在①m>0,且C的左支上任意一点到右焦点的距离的最小值为3+,②C的焦距为6,③C上一点到两焦点距离之差的绝对值为4.这三个条件中任选一个,补充在下面的问题中.问题:已知双曲线C:﹣=1,_____,求C的方程.【解析】选①.因为m>0,所以a2=m,b2=2m,c2=3m,所以a=,c=,因为C的左支上任意一点到右焦点的距离的最小值为a+c,所以a+c=+=3+,解得m=3,故C的方程为﹣=1;选②.若m>0,则a2=m,b2=2m,c2=3m,所以a=,c=,所以C的焦距为2c=2=6,解得m=3,则故C的方程为﹣=1;若m<0,则a2=﹣2m,b2=﹣m,c2=﹣3m,所以c=,所以C的焦距为2c=2=6,解得m=﹣3,则C的方程为﹣=1;选③.若m>0,则a2=m,所以a=,因为C上一点到两个焦点的距离之差的绝对值为4,所以2a=2=4,解得m=4,则C的方程为﹣=1;若m<0,则a2=﹣2m,所以a=,因为C上一点到两个焦点的距离之差的绝对值为4,所以2a=2=4,解得m=﹣2,则C的方程为﹣=1.2.已知双曲线C的右焦点F,半焦距c=2,点F到直线的距离为,过点F作双曲线C的两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N.(1)求双曲线C的标准方程;(2)证明:直线MN必过定点,并求出此定点的坐标.【解析】(1)由题意可得c=2,c﹣=,b2=c2﹣a2,解得:a2=3,b2=1,所以双曲线的方程为:﹣y2=1;(2)证明:设F(2,0)设过F的弦AB所在的直线方程为:x=ky+2,A(x1,y1),B(x2,y2),则有中点M(+2,),联立直线AB与双曲线的方程:整理可得:(k2﹣3)y2+4ky+1=0,因为弦AB与双曲线有两个交点,所以k2﹣3≠0,y1+y2=,所以x1+x2=k(y1+y2)+4=,所以M(,);(i)当k=0时,M点即是F,此时直线MN为x轴;(ii)当k≠0时,将M的坐标中的k换成﹣,同理可得N的坐标(,﹣),①当直线MN不垂直于x轴时,直线MN的斜率k MN==,将M代入方程可得直线MN:y﹣=(x﹣),化简可得y=(x﹣3),所以直线MN恒过定点P(3,0);②当直线MN垂直于x轴时,=可得k=±1,直线也过定点P(3,0);综上所述直线MN恒过定点P(3,0).3.设双曲线Γ的方程为:x2﹣=1.(1)设1是经过点M(1,1)的直线,且和Γ有且仅有一个公共点,求l的方程;(2)设11是Γ的一条渐近线,A、B是11上相异的两点.若点P是Γ上的一点,P关于点A的对称点记为Q,Q关于点B的对称点记为R.试判断点R是否可能在Γ上,并说明理由.【解析】(1)①当直线l斜率不存在时,方程为x=1,显然与双曲线Γ相切,只有一个交点,符合题意,②当直线l的斜率存在且与双曲线Γ相切时,设斜率为k,则直线l的方程为y﹣1=k(x﹣1),即y=kx﹣k+1联立方程,消去y得:(4﹣k2)x2﹣2k(1﹣k)x﹣[(1﹣k)2+4]=0,∵直线l和双曲线Γ有且仅有一个公共点,∴△=4k2(1﹣k)2+4(4﹣k2)[(1﹣k)2+4]=0,化简得:80﹣32k=0,∴,∴直线l的方程为:y=,即5x﹣2y﹣3=0,③当直线l与双曲线Γ的渐近线平行时,也与双曲线Γ有且仅有一个公共点,∵双曲线Γ的渐近线方程为:y=±2x,∴直线l的斜率为±2,∴直线l的方程为y﹣1=2(x﹣1)或y﹣1=﹣2(x﹣1),即2x﹣y﹣1=0或2x+y﹣3=0,综上所述,直线l的方程为:x=1或5x﹣2y﹣3=0或2x﹣y﹣1=0或2x+y﹣3=0;(2)假设点R在双曲线Γ上,不妨设直线l1方程为:y=2x,设点A(x1,2x1),B(x2,2x2),点P(x0,y0),∵P关于点A的对称点记为Q,∴点Q(2x1﹣x0,4x1﹣y0),∵Q关于点B的对称点记为R.∴点R(2x2﹣2x1+x0,4x2﹣4x1+y0),∵点R在双曲线Γ上,∴,∴﹣=1,∴,又∵点P(x0,y0)在双曲线Γ:x2﹣=1上,∴x02﹣=1,∴上式化为:4(x2﹣x1)•x0﹣2(x2﹣x1)•y0=0,又∵x1≠x2,∴4x0=2y0,∴y0=2x0,又∵x02﹣=1,∴,∴0=1,此式显然不成立,故假设不成立,所以点R不可能在双曲线Γ上.4.在平面直角坐标系中,已知双曲线I:,A,B分别为I的左,右顶点.(1)以A为圆心的圆与I恰有三个不同的公共点,写出此圆的方程;(2)直线L过点A,与I在第一象限有公共点P,线段AP的垂直平分线过点B,求直线L的方程;(3)I上是否存在异于A、B点M、N,使+2=成立,若存在,求出所有M、N的坐标,若不存在说明理由.【解析】(1)双曲线I:,A(﹣2,0),B(2,0),由题意可得以A为圆心的圆经过B,则圆的半径r=4,圆的方程为(x+2)2+y2=16;(2)直线L过点A(﹣2,0),且直线的斜率存在,设直线L的方程为y=k(x+2),(k >0),联立双曲线方程消去y,可得(5﹣4k2)x2﹣16k2x﹣16k2﹣20=0,可得x A+x P=,可得x P=,y P=k(x+2)=,可得AP的中点T坐标为(,),由题意可得k TB=﹣,即为=﹣,解得k=(负的舍去),则直线L的方程为y=(x+2);(3)假设I上存在异于A、B点M、N,使+2=成立.设M(x1,y1),N(x2,y2),由+2=,可得x2=2﹣2x1,y2=﹣2y1,将M,N的坐标代入双曲线的方程可得﹣=1,即﹣=1,又﹣=1,解得x1=2,y1=0,与B重合,故不存在.5.(Ⅰ)已知中心在原点的双曲线C的焦点坐标为,,且渐近线方程为,求双曲线C的标准方程;(Ⅱ)在圆x2+y2=3上任取一点P,过点P作y轴的垂线段PD,D为垂足,当点P在该圆上运动时,求线段PD的中点M的轨迹方程.【解析】(Ⅰ)依题可知双曲线的焦点在y轴上,设其方程为:,且①,双曲线的渐近线方程为,即②.又∵a2+b2=c2…③,由①②③可得.得双曲线方程为:;(Ⅱ)设轨迹上任一点M的坐标为(x,y),点P的坐标为(x0,y0),则依题意可知D点坐标为(0,y0),∵PD的中点为M,∴,即,∵点P在圆x2+y2=3上运动,,得4x2+y2=3,经检验所求方程符合题意,∴点M的轨迹方程为.6.设离心率为3,实轴长为1的双曲线E:(a>b>0)的左焦点为F,顶点在原点的抛物线C的准线经过点F,且抛物线C的焦点在x轴上.(I)求抛物线C的方程;(Ⅱ)若直线l与抛物线C交于不同的两点M,N,且满足OM⊥ON,求|MN|的最小值.【解析】(I)离心率为3,实轴长为1,即e==3,a=,可得c=,F(﹣,0),可设抛物线的方程为y2=2px,p>0,可得=,即p=3,可得抛物线的方程为y2=6x;(Ⅱ)设直线l的方程为x=my+t,设点M(x1,y1)、N(x2,y2),则x1=,x2=,将直线l的方程与抛物线C的方程联立,得y2﹣6my﹣6t=0,由韦达定理得y1+y2=6m,y1y2=﹣6t,∵OM⊥ON,∴k OM•k ON=•=﹣=﹣1,即t=6,由△=36m2+24×6>0恒成立,则|MN|==•=6≥12,当且仅当m=0时,|MN|取得最小值12.7.2018年世界人工智能大会已于2018年9月在上海徐汇西岸举行,某高校的志愿者服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏,如图:A、B两个信号源相距10米,O是AB的中点,过O点的直线l与直线AB的夹角为45°,机器猫在直线l上运动,机器鼠的运动轨迹始终满足:接收到A点的信号比接收到B点的信号晚秒(注:信号每秒传播v0米).在时刻t0时,测得机器鼠距离O点为4米.(1)以O为原点,直线AB为x轴建立平面直角坐标系(如图),求时刻t0时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线l不超过1.5米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?【解析】(1)设机器鼠位置为点P,由题意可得﹣=,即|PA|﹣|PB|=8<10,可得P的轨迹为双曲线的右支,且2c=10,2a=8,即有c=5,a=4,b=3,则P的轨迹方程为﹣=1(x≥4),时刻t0时,|OP|=4,即P(4,0),可得机器鼠所在位置的坐标为(4,0);(2)设直线l的平行线l1的方程为y=x+m,联立双曲线方程﹣=1(x≥4),可得7x2+32mx+16m2+144=0,即有△=(32m)2﹣28(16m2+144)=0,且x1+x2=﹣>0,可得m=﹣,即l1:y=x﹣与双曲线的右支相切,切点即为双曲线右支上距离l最近的点,此时l与l1的距离为d==,即机器鼠距离l最小的距离为>1.5,则机器鼠保持目前运动轨迹不变,没有“被抓”的风险.8.已知离心率为2的双曲线C的一个焦点F(c,0)到一条渐近线的距离为.(1)求双曲线C的方程;(2)设A1,A2分别为C的左右顶点,P为C异于A1,A2一点,直线A1P与A2P分别交y 轴于M,N两点,求证:以线段MN为直径的圆D经过两个定点.【解析】(1)设C:,因为离心率为2,所以c=2a,.所以C的渐近线为,由,得c=2.于是a=1,,故C的方程为.(2)方法一、设P(x0,y0)(x0≠±1),因为A1(﹣1,0),A2(1,0),可得直线A1P与A2P方程为,.由题设,所以,,,MN中点坐标,于是圆D的方程为.因为,所以圆D的方程可化为.当y=0时,,因此D经过两个定点和.方法二、设P(x0,y0)(x0≠±1),因为A1(﹣1,0),A2(1,0),可得直线A1P与A2P方程为,,由题设,所以,.设P(x,y)是圆D上点,则,即,于是圆D的方程为.因为,所以圆D的方程可化为.当y=0时,,因此D经过两个定点和.9.已知F1,F2为双曲线的左、右焦点,过F2作垂直于x轴的垂线,在x轴上方交双曲线C于点M,且∠MF1F2=30°.(1)求双曲线C的两条渐近线的夹角θ;(2)过点F2的直线l和双曲线C的右支交于A,B两点,求△AF1B的面积最小值;(3)过双曲线C上任意一点Q分别作该双曲线两条渐近线的平行线,它们分别交两条渐近线于Q1,Q2两点,求平行四边形OQ1QQ2的面积.【解析】(1)双曲线的a=1,c=,可令x=c,解得y=b=b2,设M(c,b2),由∠MF1F2=30°,可得b2=2c tan30°=,解得b=,则双曲线的方程为x2﹣=1,可得双曲线的方程为y=±x,即有tanθ=||=2,可得夹角θ=arctan2;(2)当直线AB的斜率不存在,可得A(,2),B(,﹣2),可得△AF1B的面积为×2×4=4;直线AB的斜率存在,设过点F2的直线l设为y=k(x﹣),联立双曲线方程2x2﹣y2=2,可得(2﹣k2)x2+2k2x﹣3k2﹣2=0,设A(x1,y1),B(x2,y2),又x1+x2=﹣>0,x1x2=﹣>0,可得k2>2,可得△AF1B的面积为S=•2c•|y1﹣y2|=•|k(x1﹣x2)|=•|k|•=|k|•,设t=k2﹣2(t>0),可得S=4•=4•>4,综上可得△AF1B的面积的最小值为4;(3)设Q(m,n),可得2m2﹣n2=2,双曲线的渐近线方程为y=±x,Q到直线y=x的距离为d=,由平行于直线y=﹣x的直线y=﹣(x﹣m)+n,联立直线y=x,可得Q2(,),|OQ2|=|n+m|,。

高考数学双曲线性质典型例题

高考数学双曲线性质典型例题

(二)双曲线性质典型例题例1 求与双曲线191622=-y x 共渐近线且过()332-,A 点的双曲线方程及离心率. .例2 求以曲线0104222=--+x y x 和222-=x y 的交点与原点的连线为渐近线,且实轴长为12的双曲线的标准方程.例3 已知双曲线的渐近线方程为023=±y x ,两条准线间的距离为131316,求双曲线标准方程. 例4 中心在原点,一个焦点为()01,F 的双曲线,其实轴长与虚轴长之比为m ,求双曲线标准方程.例5 求中心在原点,对称轴为坐标轴经过点()31-,P 且离心率为2的双曲线标准方程.例6 已知点()03,A ,()02,F ,在双曲线1322=-y x 上求一点P ,使PF PA 21+的值最小. 例7 已知:()11y x M ,是双曲线12222=-by a x 上一点.求:点M 到双曲线两焦点1F 、2F 的距离.例9 如图所示,已知梯形ABCD 中,CD AB 2=,点E 满足EC AE λ=,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当4332≤≤λ时,求双曲线离心率的取值范围. 例10 设双曲线12222=-by a x )0(b a <<的半焦距为c ,直线l 过)0,(a 、),0(b 两点, 且原点到直线l 的距离为c 43,求双曲线的离心率.例11 在双曲线1131222=-x y 的一支上有三个点),(11y x A 、)6,(2x B 、),(33y x C 与焦点)5,0(F 的距离成等差. (1)求31y y +; (2)求证线段AC 的垂直平分线经过某个定点,并求出定点的坐标.例12 根据以下条件,分别求出双曲线的标准方程. (1)过点)2,3(-P ,离心率25=e . (2)已知双曲线的右准线为4=x ,右焦点为)0,10(F ,离心率2=e .(3)1F 、2F 是双曲线的左、右焦点,P 是双曲线上一点,且︒=∠6021PF F ,31221=∆F PF S ,又离心率为2. 例13 已知双曲线12222=-by a x 的离心率21+>e ,左、右焦点分别为1F 、2F ,左准线为l ,能否在双曲线的左支上找到一点P ,使得1PF 是P 到l 的距离d 与2PF 的等比中项?例14 直线1+=kx y 与双曲线122=-y x 的左支相交于A ,B 两点,设过点)0,2(-和AB 中点的直线l 在y 轴上的截距为b ,求b 的取值范围.例15 已知1l ,2l 是过点)0,2(-P 的两条互相垂直的直线,且1l ,2l 与双曲线122=-x y 各有1A ,1B 和2A ,2B 两个交点. (1)求1l 的斜率1k 的取值范围;(2)若22115B A B A =,求1l ,2l 的方程; (3)若1A 恰是双曲线的一个顶点,求22B A 的值. 例16 已知双曲线的渐近线方程是043=+y x ,043=-y x ,求双曲线的离心率.例17 已知双曲线S 的两条渐近线过坐标原点,且与以)0,2(A 为圆心,1为半径的圆相切,双曲线S 的一个顶点'A 和A 关于直线x y =对称,设直线l 过点A ,斜率为k .(1)求双曲线S 的方程;(2)当1=k 时,在双曲线S 的上支求点B ,使其与直线l 的距离为2;(3)当10<≤k 时,若双曲线S 的上支上有且只有一个点B 到直线l 的距离为2,求斜率k 的值及点B 的坐标. 例18 如右图,给出定点)0,(a A )0(>a 和直线1-=x l :, B 是直线l 上的动点,BOA ∠的角平分线交AB 于C ,求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系\例19 已知双曲线C 的实轴在直线2=x 上,由点)4,4(-A 发出的三束光线射到x 轴上的点P 、Q 及坐标原点O 被x 轴反射,反射线恰好分别通过双曲线的左、右焦点1F 、2F 和双曲线的中心M .若4=PQ ,过右焦点的反射光线与右准线交点的纵坐标为98,求双曲线C 的方程和入射光线AP 、AQ 所在直线的方程.。

高考数学一轮复习双曲线的综合问题

高考数学一轮复习双曲线的综合问题
3
3
<y0< .
3
3
答案 (1)A
2 2
(2)设P是双曲线 - =1上一点,M,N分别是两圆(x-5)2+y2=4和(x
9
16
+5)2+y2=1上的点,则|PM|-|PN|的最大值为
A.6
B.9
C.12
D.14


解析
2 2
(2)如图所示,设双曲线 - =1的左、右焦点分别为F1,F2,则点F1
2 2
曲线 2- 2 =1上,依题意得a=680,c=1 020,∴b2=c2-a2=1 0202-6802=


2
2


5×3402,故双曲线方程为 2 -
=1,将y=-x 代入上式,得x=
680
5×3402
±680 5,∵|PB|>|PA|,∴x=-680 5,y=680 5,即P(-680 5,
+
=2k+
1 −2 2 −2
1 −2
2 −2
1 −2
2 −2
(2−2)(1 +2 −4)
(2−2)×2(2−3)(+2)
=2k+
=3.
1 2 −2(1 +2 )+4
−4(−1)(+2)
|解题技法|
直线与双曲线位置关系的判断方法
将直线方程与双曲线方程联立消去一个未知数,得到一个一元二次方程,以ax2
故选B.
答案 (2)B
|解题技法|
与双曲线有关最值(范围)问题的解题方法
(1)几何法:若题目中的待求量有明显的几何特征,则考虑利用双曲线的定
义、几何性质以及平面几何中的定理等知识确定极端位置后数形结合求解;

秒杀题型 双曲线的渐近线(双曲线)(详细解析版)

秒杀题型 双曲线的渐近线(双曲线)(详细解析版)
双曲线方程
秒杀题型一:由双曲线的方程求渐近线:
秒杀思路: 已知双曲线方程求渐近线方程: ;
若焦点在x轴上,渐近线为 ;
若焦点在y轴上,渐近线为 。
1.(高考题)双曲线 的渐近线方程是( )
A. B. C. D.
【解析】:选C。
2.(2013年新课标全国卷 4)已知双曲线 : ( )的离心率为 ,则 的渐近线方程为( )
12.(2018年新课标全国卷I11)已知双曲线 , 为坐标原点, 为 的右焦点,过 的直线
与 的两条渐近线的交点分别为 .若 为直角三角形,则 = ( )
A. B.3C. D.4
【解析】:渐近线方程为 ,∵ 为直角三角形,假设 , ,
∴ ,∴ ,选B。
13.(2018年新课标全国卷 11)设 是双曲线 的左,右焦点, 是坐标原
A. B. C. D.
【解析】:由上题,选C。
7.(2009年新课标全国卷4)双曲线 - =1的焦点到渐近线的距离为( )
A. B.2 C. D.1
【解析】:由秒杀公式得 ,选A。
8.(2014年新课标全国卷I4)已知 是双曲线 : 的一个焦点,则点 到 的一条渐近线的距离为( )
A. B.3 C. D.
【解析】:由秒杀公式得 ,选A。
9.(高考题)已知双曲线 的右焦点与抛物线 的焦点重合,则该双曲线的焦点到其渐近线
的距离等于( )
A. B. C.3 D.5
【解析】:抛物线与双曲线的焦点为 ,则b= ,所以双曲线的焦点到其渐近线的距离等于 ,选
A。
10.(2018年江苏卷)在平面直角坐标系 中,若双曲线 的右焦点 到一条渐近线的距离为 ,则其离心率的值是.
秒杀思路: 。

双曲线历年高考真题100题 解析版

双曲线历年高考真题100题  解析版

高考真题一、单选题A .221913x y -=B .221139x y -=C .2213x y -=D .2213y x -=【答案】D 【解析】试题分析:依题意有222{3bac c a b ===+,解得1,a b ==2213y x -=.考点:双曲线的概念与性质. A .2 B .C .D .1【答案】D 【解析】试题分析:由离心率e =ca 可得:e 2=a 2+3a2=22,解得:a =1.考点:复数的运算 A .B .3C .D .【答案】A 【解析】试题分析:由已知得,双曲线C 的标准方程为x 23m −y 23=1.则c 2=3m +3,c =√3m +3,设一个焦点F(√3m +3,0),一条渐近线l 的方程为y =√3√3m=√m,即x −√my =0,所以焦点F 到渐近线l 的距离为d =√3m+3√m+1=√3,选A .【考点定位】1、双曲线的标准方程和简单几何性质;2、点到直线的距离公式.A .B .C .D .【答案】A 【解析】2=,所以,b a ,双曲线的渐近线方程为y x =,即0x ±=,选A. 考点:椭圆、双曲线的几何性质. A .B .C .D .3【答案】B 【解析】试题分析:因为P 是双曲线x 2a2−y 2b 2=1(a >0,b >0)上一点,所以||PF 1|−|PF 2||=2a ,又|PF 1|+|PF 2|=3b所以,(|PF 1|+|PF 2|)2−(|PF 1|−|PF 2|)2=9b 2−4a 2,所以4|PF 1|⋅|PF 2|=9b 2−4a 2 又因为|PF 1|⋅|PF 2|=94ab ,所以有,9ab =9b 2−4a 2,即9(ba )2−9(ba )−4=0 解得:ba =−13(舍去),或ba =43; 所以e 2=c 2a 2=a 2+b 2a 2=1+(b a )2=1+(43)2=259,所以e =53故选B.考点:1、双曲线的定义和标准方程;2、双曲线的简单几何性质. A .(1,3) B .(]1,3C .(3,+∞)D .[)3,+∞ 【答案】B 【详解】可用三角形的两边和大于第三边,及两边差小于第三边,但要注意前者可以取到等号成立,因为可以三点一线.也可用焦半径公式确定a 与c 的关系.A.B.C.D.【答案】B【解析】由题意,所以,由双曲线的定义,有,∴.A.(√2,2)B.(√2,√5)C.(2,5)D.(2,√5)【答案】B【详解】由题意得,双曲线的离心率e2=(ca )2=a2+(a+1)2a2=1+(1+1a)2,因为1a 是减函数,所以当a>1时,0<1a<1,所以2<e2<5,所以√2<e<√5,故选B.考点:双曲线的几何性质.【方法点晴】本题主要考查了双曲线的几何性质及其应用,其中解答中涉及到双曲线的标准方程及简单的几何性质的应用,函数的单调性及函数的最值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算、转化与化归思想的应用,本题的解得中把双曲线的离心率转化为1a的函数,利用函数的单调性是解答的关键,试题有一定的难度,属于中档题.A .3B .C .D .【答案】C 【解析】可得双曲线的准线为21a x c =±=±,又因为椭圆焦点为(1=.即b 2=3故b=故C.A .B .2C .3D .6【答案】A 【解析】试题分析:先根据双曲线得到其渐近线的方程,再利用圆心到渐近线的距离等于半径,就可求出r 的值.22163x y -=的渐近线方程是2y =±20y ±=,又圆心是(3,0),所以由点到直线的距离公式可得r =A .考点:1、双曲线;2、双曲线的渐近线;3、直线与圆相切;4、点到直线的距离.A .2 BC .32D .1【答案】D 【详解】由222123x y c b e a a 可知虚轴-=====,解得a=1,应选D. A .B .5C .D .【答案】D 【解析】由题意知:双曲线的一条渐近线为,由方程组2{1b y x a y x ==+,消去y,得210bx x a-+=有唯一解,所以△=2()40ba-=,所以2b a =,2c e a a ====故选D. 【考点定位】本小题考查双曲线与抛物线的基本知识,求离心率、直线与抛物线的位置关系等.A .22124x y -=B .22142-=x yC .22146x y -= D .221410x y -= 【答案】B 【解析】由2e =得222222331,1,222c b b a a a =+==,选B.A .221090x y x +-+=B .2210160x y x +-+=C .2210160x y x +++=D .221090x y x +++=【答案】A 【详解】圆心为(5,0),渐近线方程为430x y ±=,所以半径为4545⨯=,所以圆的方程是22(5)16x y -+=,即221090x y x +-+=,选A.A .B .12C .D .24【答案】B 【解析】试题分析:由已知可得121212|:|3:2,26,4,PF PF PF PF PF PF =-=⇒==又22212121212||||F F PF PF F F PF F =+=⇒∆是直角三角形146122S =⨯⨯=,故选B .考点:双曲线标准方程及其性质. A.2B.2CD【答案】B 【解析】本小题主要考查双曲线的几何性质、第二定义、余弦定理,以及转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000[()]1a PF e x a ex c =--=+=+,22000[)]1aPF e x ex a c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||2PF PF F F PF PF +-,即cos60222=,解得2052x =,所以2200312y x =-=,故P 到x轴的距离为0y =.A .√2B .√3C .√3+12D .√5+12【答案】D 【解析】试题分析:设该双曲线方程为x 2a 2−y 2b 2=1(a >0,b >0),得点B (0,b ),焦点为F (c ,0),直线FB 的斜率为−bc 由垂直直线的斜率之积等于-1,建立关于a 、b 、c 的等式,变形整理为关于离心率e 的方程,解之即可得到该双曲线的离心率;设该双曲线方程为x 2a 2−y 2b 2=1(a >0,b >0),可得它的渐近线方程为y =±ba x ,焦点为F (c ,0),点B (0,b )是虚轴的一个端点,∴直线FB 的斜率为k FB =0−b c−0=−b c ,∵直线FB 与直线y =ba x 互相垂直,∴−bc ×ba =−1,∴b 2=ac,∵b 2=c 2−a 2,∴c 2−a 2=ac ,∴e 2−e −1=0,∴e =1±√52∵双曲线的离心率e >1,∴e=√5+12,故选:D考点:双曲线的简单性质A .By=0 C .="0" D±y=0【答案】D 【解析】不妨设12(,0),(,0)F c F c -,则11221222OF F P OF F P F P F POP ++++==因为1260F PF ∠=,所以121212cos602F P F PF P F P F P F P ⋅⋅=⋅=,22212121212||||1cos 22PF PF F F F PF PF PF +-∠==⋅ 所以2221212||4PF PF PF PF c +=⋅+ 因为P 在双曲线上,所以122PF PF a -=则2222212121212()||244PF PF PF PF PF PF c PF PF a -=+-⋅=-⋅= 所以221244PF PF c a ⋅=-,故122212222F P F PF P F P c a ⋅⋅==-222221212||484PF PF PF PF c c a +=⋅+=-因为OP =,所以1272F P F POP +==故22121212||274F P F P F P F Pa ++⋅=,即222327ca a -=故22237b a a +=,解得b =所以双曲线的渐近线方程为0x a =0y ±=,故选DA .3B .3C .D .【答案】A 【详解】由点P 到双曲线右焦点的距离是2知P 在双曲线右支上.又由双曲线的第二定义知点P 到双曲线,双曲线的右准线方程是3x =,故点P 到y 轴的距离是3.A .12m >B .1m ≥C .1m >D .2m >【答案】C 【解析】试题分析:由题可知1a =,b =c =ce a==>1m >,故选C . 考点:双曲线的离心率.A .12B .2C .1 D【答案】B 【解析】由于对称性,我们不妨取顶点(1,0)A ,取渐近线为0x y -=,所以由点到直线的距离公式可得d ==450得到. 【考点定位】 本题考查了双曲线的渐近线及点到直线的距离公式,如果能画图可简化计算,属于简单题.A .22182x y +=B .221126x y +=C .221164x y +=D .221205x y +=【答案】D 【详解】由题意,双曲线221x y -=的渐近线方程为y x =±,∵以这四个交点为顶点的四边形为正方形,其面积为16,故边长为4,∴(2,2)在椭圆C :()222210x y a b a b+=>>上,∴22441a b +=,∵e =∴22234a b a -=,∴224b a =, ∴22205a b ==,∴椭圆方程为:221205x y +=.故选D.考点:椭圆的标准方程及几何性质;双曲线的几何性质. A .12或32B .23或2 C .12或2 D .23或32【答案】A 【分析】设1122432PF t F F t PF t ===,,,讨论两种情况,分别利用椭圆与双曲线的定义求出,a c 的值,再利用离心率公式可得结果. 【详解】因为1122::PF F F PF 4:3:2=,所以可设1122432PF t F F t PF t ===,,, 若曲线为椭圆则123262a PF PF t c t =+==,,则12c e a ==; 若曲线为双曲线则,324222a t t t a t c t ,,=-===,∴32c e a ==,故选A . 【点睛】本题主要考查椭圆的定义及离心率以及双曲线的定义及离心率,属于中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解. A .2B .C .4D .【答案】C 【解析】2228x y -=可变形为22148x y -=,则24a =,2a =,24a =.故选C.A .4B .3C .2D .1【答案】C 【分析】先根据双曲线()222109x y a a -=>求出渐近线方程,再与320x y ±=比较即可求出a 的值. 【详解】由双曲线的几何性质可得,双曲线()222109x y a a -=>的渐近线方程为3y x a=±,又因为渐近线方程为320x y ±=,即32y x =±,故2a =,选C .【点睛】本题主要考查双曲线的渐近线方程的求法,属基础题.ABC .2D .3【答案】B 【分析】先设2(,),0aP t t c>,由两直线垂直,结合直线的斜率公式可得221tta a c c c c⋅=-+-,再结合三角形的面积公式可得24ct ab =,然后由双曲线离心率的求法求解即可. 【详解】解: 由P 是准线上一点,设2(,),0a P t t c>,又1(,0)F c -,2(,0)F c ,由12PF PF ⊥,可得221tt aa cc cc⋅=-+-,解得t =因为12·4PF PF ab =, 由三角形的面积公式有24ct ab =,2a =, 即223c a =,即==ce a, 故选:B. 【点睛】本题考查了直线的斜率公式及三角形的面积公式,重点考查了双曲线离心率的求法,属中档题.A.ab B .22b a + C .a D .b 【答案】B 【解析】略A .221520x y -=B .221205x y -=C .D .【解析】试题分析:由已知得2,2,bb a a=∴=在方程210y x =+中令0y =,得2222225,5,525,5,20,x c c a b a a b =-∴=-∴=+====∴所求双曲线的方程为221520x y -=,故选A . 考点:1.双曲线的几何性质;2.双曲线方程的求法. A .(0,)B .(1,)C .(,1)D .(,+∞)【答案】B 【解析】试题分析:求出渐近线方程及准线方程;求得它们的交点A ,B 的坐标;利用圆内的点到圆心距离小于半径,列出参数a ,b ,c 满足的不等式,求出离心率的范围. 解:渐近线y=±x . 准线x=±,求得A ().B (),左焦点为在以AB 为直径的圆内, 得出,,b <a ,c 2<2a 2 ∴,故选B .点评:本题考查双曲线的准线、渐近线方程形式、考查园内的点满足的不等条件、注意双曲线离心率本身要大于1. A .2B .2C .4D .4【答案】B试题分析:根据题意,点(﹣2,﹣1)在抛物线的准线上,结合抛物线的性质,可得p=4,进而可得抛物线的焦点坐标,依据题意,可得双曲线的左顶点的坐标,即可得a的值,由点(﹣2,﹣1)在双曲线的渐近线上,可得渐近线方程,进而可得b的值,由双曲线的性质,可得c的值,进而可得答案.解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(﹣2,0),即a=2;点(﹣2,﹣1)在双曲线的渐近线上,则其渐近线方程为y=±x,由双曲线的性质,可得b=1;则c=,则焦距为2c=2;故选B.点评:本题考查双曲线与抛物线的性质,注意题目“双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1)”这一条件的运用,另外注意题目中要求的焦距即2c,容易只计算到c,就得到结论.A.B.C.D.【答案】A【解析】由双曲线的基本性质对称轴是坐标轴,这时只须考虑双曲线的焦点在x轴的情形.因为有且只有一对相较于点O、所成的角为60°的直线A1B1和A2B2,所以直线A1B1和A2B2,关于x轴对称,并且直线A1B1和A2B2,与x轴的夹角为30°,双曲线的渐近线与x轴的夹角大于30°且小于等于60°,否则不满足题意.可得,即,,所以e>.同样地,当,即,所以e≤2.所以双曲线的离心率的范围是.故选A.A .a 2=B .a 2=3C .b 2=D .b 2=2【答案】C 【解析】由题意,C 2的焦点为(±,0),一条渐近线方程为y=2x ,根据对称性易知AB 为圆的直径且AB=2a∴C 1的半焦距c=,于是得a 2﹣b 2=5 ①设C 1与y=2x 在第一象限的交点的坐标为(x ,2x ),代入C 1的方程得:②,由对称性知直线y=2x 被C 1截得的弦长=2x ,由题得:2x=,所以③由②③得a 2=11b 2④ 由①④得a 2=5.5,b 2=0.5 故选CA .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等【答案】D 【解析】 双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同. 故选D .A .14y x =±B .13y x =±C .12y x =±D .y x =±【答案】C 【详解】c e a ===2214b a =,即12b a =,故渐近线方程为12b y x x a =±=±.本题考查双曲线的基本性质,考查学生的化归与转化能力.A .y=±2xB .y=C .12y x =±D .2y x =±【答案】B 【解析】双曲线的离心率为a=渐进性方程为b y x a =±,计算得b a =故渐进性方程为y =. 【考点定位】本小题考查了离心率和渐近线等双曲线的性质. A .B .C .D .【答案】C 【解析】由于对称性,我们不妨取顶点(2,0)A ,取渐近线为20x y -=,所以由点到直线的距离公式可得5d ==【考点定位】本题考查了双曲线的渐近线及点到直线的距离公式,属于简单题.A BC .2D .3【答案】B 【详解】通径|AB|=2222b a a =⋅得2222222222233b a c a a c aa c e =⇒-===⇒⇒⇒= BA .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -=【答案】A试题分析:双曲线的渐近线为b y x a=,所以0bx ay -=,22650x y x +-+=变形为()2234x y -+=,所以圆心为()3,0,2r =()222222329435,4b c c a c c a b =∴=∴-==∴==,所以双曲线方程为22154x y -=考点:双曲线方程及性质 A .1 B .2C .3D .4【答案】D 【解析】 由已知,取顶点,渐近线,则顶点到渐近线的距离为,解得.A .B .2C D .1【答案】A 【解析】试题分析:双曲线焦点到渐近线的距离为b ,所以距离为b =考点:双曲线与渐近线. A .B .C .D .【答案】A试题分析:由题意,得c=√5,ba =12,又a2+b2=c2,所以a=2,b=1,所以双曲线的方程为x24−y21=1,选A.【考点】双曲线【名师点睛】求双曲线的标准方程的关注点:(1)确定双曲线的标准方程需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a,b的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.①若双曲线的焦点不能确定时,可设其方程为Ax2+By2=1(AB<0).②若已知渐近线方程为mx+ny=0,则双曲线方程可设为m2x2-n2y2=λ(λ≠0).A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【答案】C【解析】试题分析:利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.故选C.点评:本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.A B.54C.43D.53【答案】D 【解析】因为双曲线22221x y a b-=的一条渐近线经过点(3,-4),2225349163c b a c a a e a ∴=∴-=∴==,(),. 故选D.考点:双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线22221x y a b -=共渐近线的可设为2222(0)x y a bλλ-=≠;(2)若渐近线方程为b y x a =±,则可设为2222(0)x y a bλλ-=≠;(3) 双曲线的焦点到渐近线的距离等于虚半轴长b ;(4) 22221(0.0)x y a b a b -=>>的一条渐近线的斜率为b a ==可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 【答案】D 【解析】 依题意,,,因为,由于,,,所以当时,,,,,所以12e e <;当时,,,而,所以,所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >. 考点:双曲线的性质,离心率.A .22=14y x -B .22=14x y -C .22=14y x -D .22=14x y -【答案】C 【解析】试题分析:焦点在y 轴上的是C 和D ,渐近线方程为ay x b=±,故选C . 考点:1.双曲线的标准方程;2.双曲线的简单几何性质.A B .2C D【答案】D 【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,,过点M 作MN x⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,3MN a =,故点M 的坐标为(2,3)M a a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以2e =,故选D .考点:双曲线的标准方程和简单几何性质.A .2 B.C .4D.【答案】C 【解析】试题分析:设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .考点:双曲线的方程与几何性质 A .14B .13C.4D.3【答案】A 【解析】试题分析:由已知设21,2,F A m F A m ==则由定义得12122,2,4,2.F A F A a m a F A a F A a -=∴===122,24.ce F F c a a====在12AF F ∆中,由余弦定理得()()2222222121212124441cos 22244a a a AF F F AF AF F AF F F a a+-+-∠===⋅⨯⨯,故选A . 考点:1.双曲线的几何性质(焦点三角形问题);2.余弦定理.A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=【答案】B 【解析】由题意得224,14,188x y a b c a b c ==-⇒===-=- ,选B. 【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b-=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.A .13B .1 2C .2 3D .32【答案】D 【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3=±y ,所以||3PF =,又点A 的坐标是(1,3),故△APF 的面积为133(21)22⨯⨯-=,选D . 点睛:本题考查圆锥曲线中双曲线的简单运算,属容易题.由双曲线方程得(2,0)F ,结合PF 与x 轴垂直,可得||3PF =,最后由点A 的坐标是(1,3),计算△APF 的面积.得的弦长为2,则C 的离心率为 ( ) A .2 BCD【答案】A 【解析】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d ==,则点()2,0到直线0bx ay +=的距离为2bd c===即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.故选A . 点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).A .223=144x y -B .224=143x y -C .22=144x y -D .22=1412x y -【答案】D 【解析】试题分析:根据对称性,不妨设(,)A x y 在第一象限,则,∴221612422b b xy b b =⋅=⇒=+,故双曲线的方程为221412x y -=,故选D. 【考点】双曲线的渐近线【名师点睛】求双曲线的标准方程时注意:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论. ①若双曲线的焦点不能确定时,可设其方程为Ax 2+By 2=1(AB <0).②若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0).A .y =B .y =C .y x =D .y x = 【答案】A 【解析】分析:根据离心率得a,c 关系,进而得a,b 关系,再根据双曲线方程求渐近线方程,得结果.详解:2222221312,c b c a b e e a a a a-==∴==-=-=∴=因为渐近线方程为by x a=±,所以渐近线方程为y =,选A. 点睛:已知双曲线方程22221(,0)x y a b a b-=>求渐近线方程:22220x y by x a b a -=⇒=±.A .32B .3C .D .4【答案】B 【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得3(,2M N ,利用两点间距离公式求得MN 的值.详解:根据题意,可知其渐近线的斜率为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线y =和y x =联立,求得3(,2M N,所以3MN==,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线MN的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.A.22139x y-=B.22193x y-=C.221412x y-=D.221124x y-=【答案】A【详解】分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后利用离心率求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(),0F c(c>0),则A Bx x c==,由22221c ya b-=可得:2bya=±,不妨设:22,,,b bA cB ca a⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为0bx ay-=,据此可得:21bc bdc-==,22bc bdc+==,则12226bcd d bc+===,则23,9b b==,双曲线的离心率:2cea====,据此可得:23a=,则双曲线的方程为22139x y-=.本题选择A选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()22220x y a bλλ-=≠,再由条件求出λ的值即可.A .(√2,+∞)B .(√2,2)C .(1,√2)D .(1,2)【答案】C 【解析】 c 2=a 2+1,e 2=c 2a2=a 2+1a 2=1+1a 2,∵a >1,∴0<1a 2<1 ,1<e 2<2 ,则0<e <√2,选C.A .221412x y -=B .221124x y -=C .2213x y -=D .2213y x -=【答案】D 【解析】由题意结合双曲线的渐近线方程可得:2222tan 603c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=. 本题选择D 选项.【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b -=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.A .221412x y -=B .22179x y -=C .22188x y -=D .221124x y -=【答案】A 【详解】 可得渐近线方程为,将x=a 代入求得.由条件知,半焦距,所以由得,.又因,所以解得,.双曲线C 的方程为221412x y -=故选A .A .220x -25y =1B .25x -220y =1C .280x -220y =1D .220x -280y =1【答案】A 【详解】由题意得,双曲线的焦距为10,即22225a b c +==, 又双曲线的渐近线方程为by x a=0bx ay ⇒-=,点1(2)P ,在C 的渐近线上, 所以2a b =,联立方程组可得,所以双曲线的方程为22=1205x y -.考点:双曲线的标准方程及简单的几何性质.A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(⋃D .(,(2,)-∞+∞【答案】A 【详解】 由题意,根据双曲线的对称性知D 在x 轴上,设,0)Dx (,则由 BD AB ⊥得:,因为D 到直线BC 的距离小于a,即01b a<<,所以双曲线渐近线斜率1,0)(0,1)bk a =±∈-⋃(,故选A .A .2B .C .4D .【答案】C 【解析】试题分析:双曲线方程变形为22148x y -=,所以28b b =∴=2b =考点:双曲线方程及性质A.3 B.2 CD【答案】B【详解】M N,是双曲线的两顶点,M O N,,将椭圆长轴四等分∴椭圆的长轴长是双曲线实轴长的2倍双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故答案选BA.14B.35C.34D.45【答案】C【解析】由x2-y2=2知,a2=2,b2=2,c2=a2+b2=4,∴,c=2.又∵|PF1|-|PF2|=2a,|PF1|=2|PF2|,∴|PF1,|PF2.又∵|F1F2|=2c=4,∴由余弦定理得cos∠F1PF22224+-34. 故选C.二、填空题 【答案】,.【解析】 由题意得:,,,∴焦距为,渐近线方程为.考点:双曲线的标准方程及其性质 【答案】【解析】 因为的方程为,所以的一条渐近线的斜率,所以的一条渐近线的斜率,因为双曲线、的顶点重合,即焦点都在轴上,设的方程为,所以,所以的方程为.考点:双曲线的性质,直线的斜率.【答案】y x = 【解析】由题意得:1C :223,(0)x y λλ-=≠,设(,)Q x y ,则(,2)P x y ,所以2234x y λ-=,即2C 的渐近线方程为y x = 考点:双曲线渐近线【答案】22x y 1412-=【解析】 解:由已知得,22,4221412b c c e a a a x y==∴===∴=∴-=双曲线的方程为【答案】16 【分析】根据双曲线的焦点坐标,判断出双曲线焦点所在的坐标轴,再根据222c a b =+列方程,求得m 的值. 【详解】双曲线的焦点坐标为()0,5F ,故焦点在y 轴上,由222c a b =+得259,16m m =+=. 【点睛】本小题主要考查根据双曲线的焦点坐标求双曲线的方程,属于基础题.【答案】44 【详解】由题意因为PQ 过双曲线的右焦点(5,0), 所以P ,Q 都在双曲线的右支上, 则有6,6FP PA PQ QA -=-=,两式相加,利用双曲线的定义得28FP FQ +=,所以△PQF 的周长为284FP FQ PQ b ++=+=28+16=44. 故答案为44.【答案】1) 【详解】因为在12PF F ∆中,由正弦定理得211221sin sin PF PF PF F PF F =∠∠,则由已知,得21a c PF PF =,即12aPF cPF =,12c PF PF a=, 由双曲线的定义知212222222c a PF PF a PF PF a PF a c a-=-=⇒=-,, 由双曲线的几何性质知22222,20,a PF c a c a c ac a c a>->-⇒--<-所以2210,e e --<解得11e <<,又1()e ∈+∞,,故双曲线的离心率1)e ∈【答案】2【解析】设(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以点到直线的距离恒大于直线10x y -+=与渐近线0x y -=之间距离,因此c 的最大值为直线10x y -+=与渐近线0x y -=之间距离,为2.2=考点:双曲线渐近线,恒成立转化【答案】【分析】根据题意,根据1,,P A F 三点共线,求出直线1AF 的方程,联立双曲线方程,即可求得P 点坐标,则由11APF AFF PFF S S S ∆∆∆=-即可容易求得.【详解】设双曲线的左焦点为1F ,由双曲线定义知,12PF a PF =+,∴△APF 的周长为|P A|+|PF|+|AF|=|P A|+12a PF ++|AF|=|P A|+1PF +|AF|+2a ,由于2||a AF +是定值,要使△APF 的周长最小,则|P A|+1PF 最小,即P 、A 、1F 共线,∵(A ,()13,0F -∴直线1AF的方程为13x +=-,即3x =-代入2218y x -=整理得2960y +-=,解得y =y =-舍),所以P 点的纵坐标为∴11116622APF AFF PFF S S S ∆∆∆=-⨯⨯⨯⨯=故答案为:【点睛】本题考查双曲线中三角形面积的求解,涉及双曲线的定义,属综合中档题.【答案】2+【详解】双曲线22221x y a b-=的右焦点为(,0)c .不妨设所作直线与双曲线的渐近线b y x a =平行,其方程为()b y x c a =-,代入22221x y a b -=求得点P 的横坐标为222a c x c+=,由2222a c ac +=,得2()410c c a a -+=,解之得2c a =+2c a =1ca>),故双曲线的离心率为2+考点:1.双曲线的几何性质;2.直线方程.【答案】2214x y -=【详解】依题意,设所求的双曲线的方程为224x y λ-=.点M 为该双曲线上的点,16124λ∴=-=.∴该双曲线的方程为:2244x y -=,即2214x y -=.故本题正确答案是2214x y -=.【答案】2y x =± 【解析】||||=4222A B A B p p pAF BF y y y y p ++++=⨯⇒+= , 因为22222222221202x y a y pb y a b a bx py⎧-=⎪⇒-+=⇒⎨⎪=⎩,所以222A B pb y y p a a +==⇒=⇒渐近线方程为2y x =±. 【名师点睛】1.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为221Ax By +=的形式,当0A >,0B >,A B ≠时为椭圆,当0AB <时为双曲线.2.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.【答案】2 【解析】222222221,,13c a b a b m e m a a +=====+=,2m =.渐近线方程是y ==.P ,Q ,其焦点是F 1 ,F 2 ,则四边形F 1 P F 2 Q 的面积是________.【答案】【解析】右准线方程为10x ==,渐近线方程为3y x =±,设(,1010P ,则Q ,1(F ,2F ,则S == 点睛:(1)已知双曲线方程22221x y a b -=求渐近线:22220x y b y x a b a-=⇒=±;(2)已知渐近线y mx =可设双曲线方程为222m x y λ-=;(3)双曲线的焦点到渐近线的距离为b ,垂足为对应准线与渐近线的交点.【答案】48 【解析】根据双曲线方程2222y x a b -=1知a 2=16,b 2=m ,并在双曲线中有a 2+b 2=c 2,∴离心率e =c a =2,22c a=4=1616m+,m =48.【答案】 【解析】试题分析:222227,3,7310,2a b c a b c c ==∴=+=+=∴==【考点】双曲线性质【名师点睛】本题重点考查双曲线几何性质,而双曲线的几何性质与双曲线的标准方程息息相关,明确双曲线标准方程中各个量的对应关系是解题的关键,22221(0,0)x y a b a b-=>>揭示焦点在x 轴,实轴长为2a ,虚轴长为2b ,焦距为2c =b y x a =±,离心率为c a =【解析】试题分析:根据对称性,不妨设,短轴端点为,从而可知点在双曲线上,∴.考点:双曲线的标准方程及其性质.【名师点睛】本题主要考查了双曲线的标准方程及其性质,属于容易题,根据对称性将条件中的信息进行 等价的转化是解题的关键,在求解双曲线的方程时,主要利用,焦点坐标,渐近线方程等性质,也会与三角形的中位线,相似三角形,勾股定理等平面几何知识联系起来. 【答案】11 【详解】由双曲线的方程2221(0)9x y b b-=>,可得3a =,根据双曲线的定义可知1226PF PF a -=±=±, 又因为15PF =,所以2||11PF =.【答案】5【解析】由双曲线的标准方程可得渐近线方程为3y x a=±,结合题意可得5a =. 【名师点睛】1.已知双曲线方程22221(0,0)x y a b a b -=>>求渐近线:22220x y b y x a b a-=⇒=±.2.已知渐近线y mx =设双曲线的标准方程为222m x y λ-=.3.双曲线的焦点到渐近线的距离为b ,垂足为对应准线与渐近线的交点.【答案】3【解析】 如图所示,由题意可得|OA|=a ,|AN|=|AM|=b , ∵∠MAN=60°, ∴, ∴=设双曲线C 的一条渐近线y=bax 的倾斜角为θ,则tanθ=||||AP OP =. 又tan θ=b a,b a =,解得a 2=3b 2,∴3==.答案:3点睛:求双曲线的离心率的值(或范围)时,可将条件中提供的双曲线的几何关系转化为关于双曲线基本量,,a b c的方程或不等式,再根据222b c a=-和cea=转化为关于离心率e的方程或不等式,通过解方程或不等式求得离心率的值(或取值范围).【答案】12 y x =±【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【详解】∵双曲线2214xy-=的a=2,b=1,焦点在x轴上而双曲线22221x ya b-=的渐近线方程为y=±bxa∴双曲线2214xy-=的渐近线方程为y=±12x故答案为y=±1 2 x【点睛】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想【答案】4【详解】分析:根据离心率公式cea=,及双曲线中,,a b c的关系可联立方程组,进而求解参数a的值.。

高考数学专题《双曲线》习题含答案解析

高考数学专题《双曲线》习题含答案解析

专题9.4 双曲线1.(2021·江苏高考真题)已知双曲线()222210,0x ya ba b-=>>的一条渐近线与直线230x y-+=平行,则该双曲线的离心率是()A B C.2D【答案】D【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为by xa=±,易知by xa=与直线230x y-+=平行,所以=2bea⇒=故选:D.2.(2021·北京高考真题)若双曲线2222:1x yCa b-=离心率为2,过点,则该双曲线的程为()A.2221x y-=B.2213yx-=C.22531x y-=D.22126x y-=【答案】B【分析】分析可得b,再将点代入双曲线的方程,求出a的值,即可得出双曲线的标准方程.【详解】2cea==,则2c a=,b=,则双曲线的方程为222213x ya a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a=,故b=因此,双曲线的方程为2213yx-=.故选:B3.(2021·山东高考真题)已知1F是双曲线22221x ya b-=(0a>,0b>)的左焦点,点P在双曲线上,直线1PF与x轴垂直,且1PF a=,那么双曲线的离心率是()练基础AB C .2 D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20b y a =,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可. 【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =, 因为直线1PF 与x 轴垂直,且1PF a =, 所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e = 故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( )A B C .2 D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0) 则a =( )A B .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c =,=,解得12a = , 故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点到渐近线的C 的焦距等于( ).A.2B.C.4D.【答案】C 【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .7.(2017·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A.221412x y -=B.221124x y -=C.2213x y -=D.2213y x -=【答案】D 【解析】由题意结合双曲线的渐近线方程可得:2222tan 603c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=.本题选择D 选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)x C y m m -=>0my +=,则C 的焦距为_________. 【答案】4 【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】0my +=化简得y =,即b a ,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是_____. 【答案】y =.【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.10.(2020·全国高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y =x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ===1.(2018·全国高考真题(理))设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A B C .2D【答案】B 【解析】由题可知22,PF b OF c ==PO a ∴=在2Rt PO F 中,222cos P O PF bF OF c∠==在12PF F △中,22221212212cos P O 2PF F F PF b F PF F F c+-∠==)222224322b c bc a b cc+-∴=⇒=⋅ e ∴=故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心率为( )练提升A B .3CD .3【答案】D 【解析】由已知得M 为APQ 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==. 故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为( )A .2BCD 【答案】A 【解析】因为OPQ △为等边三角形, 所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴= 所以2222223,4,4,2c a a c a e e -=∴=∴=∴=. 故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213x y -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为( )A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)P x ,根据圆的性质有120F P F P ⋅=,利用向量垂直的坐标表示,列方程求0x 即可. 【详解】由题设,渐近线为y =,可令00(,)P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)F P x x =+,200(2,)F P x =-,又220120403x F P F P x ⋅=-+=,∴0x = 故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,)42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1, 所以圆心()0,5到0bx ay -=的距离d 的范围为24d << 即24<<,而222+=a b c 所以524a c <<,即5542e << 故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a =D .若M 为直线2a x c =(c 上纵坐标不为0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确; 由正弦定理得到2MAF 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确. 【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确; 对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,F F F P F P 分别切于点1,,A B C ,设切点1A (,0)x , 当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=, 在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=, 又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t--∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=≤-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是( ) A .点P 的轨迹是椭圆 B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN 的面积6PMNS =【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项. 【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =, 当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩, 所以132PMN S PM PN ==△,故C 对; 选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩, 所以162PMN S PM MN ==△,故D 对, 故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b -=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案. 【详解】因为双曲线()22122:10,0x y C a b a b -=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3 【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案. 【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-. 当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯=. 当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=. 故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1 【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案; 【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||AC =,1(||||)2a AC BC =-=1==c e a .11. (2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )A B C D 【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案. 【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==, 所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e =故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =|OP |=( ) A B C D【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数y =练真题由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) ABC .2 D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C .D .【答案】A 【解析】由2,,,a b c ====.,2P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在y x =上,11224PFO P S OF y ∴=⋅==△,故选A . 5. (2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,3c ,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2. 【解析】 如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==所以该双曲线的离心率为2c e a ====.。

高考数学《双曲线》专题检测试卷(含答案)

高考数学《双曲线》专题检测试卷(含答案)

高考数学《双曲线》专题检测试卷一、单项选择题(共8小题,每小题5分,共40分)1.过点()1,2P -的直线与双曲线2214x y -=的公共点只有1个,则满足条件的直线有()A .2条B .3条C .4条D .5条2.双曲线E :2213y x -=的左,右顶点分别为,A B ,曲线E 上的一点C 关于x 轴的对称点为D ,若直线AC 的斜率为m ,直线BD 的斜率为n ,则mn =()A .3B .3-C .13D .13-3.双曲线222:1(0)y C x a a-=>的上焦点2F 到双曲线一条渐近线的距离为2a ,则双曲线两条渐近线的斜率之积为()A .4-B .4C .2-D .24.若双曲线2222:1(0,0)x y C a b a b-=>>,右焦点为F ,点E 的坐标为(,b c a b ,则直线OE (O 为坐标原点)与双曲线的交点个数为()A .0个B .1个C .2个D .不确定5.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,过焦点2F 且垂直于x 轴的弦为AB ,若190AF B ∠= ,则双曲线的离心率为()A .522B 1-C 1D .2226.已知双曲线C :221169x y -=的左,右焦点分别为1F ,2F ,过2F 的直线与双曲线C 的右支交于A ,B 两点,且6AB =,则1F AB 的周长为()A .20B .22C .28D .367.已知点P 是双曲线2211620x y -=右支上的一点,点A B 、分别是圆22(6)4x y ++=和圆22(6)1x y -+=上的点.则PA PB -的最小值为()A .3B .5C .7D .98.双曲线2222:1(0,0)y x a b a bΓ-=>>的两焦点分别为12,F F ,过2F 的直线与其一支交于A ,B两点,点B 在第四象限.以1F 为圆心,Γ的实轴长为半径的圆与线段11,AF BF 分别交于M ,N 两点,且12||3||,AM BN F B F B =⊥,则Γ的渐近线方程是()A.y =B.y x =C.y x =D.y x=二、多项选择题(共3小题,每小题6分,共18分)9.已知双曲线C :()2220mx y m -=>,左右焦点分别为12,F F ,若圆()2248x y -+=与双曲线C 的渐近线相切,则下列说法正确的是()A .双曲线C的离心率e =B .若1PF x ⊥轴,则1PF =C .若双曲线C 上一点P 满足122PF PF =,则12PF F的周长为4+D .存在双曲线C 上一点P ,使得点P 到C10.已知双曲线2222 :1(0)x y M a b a b-=>>的焦距为4,两条渐近线的夹角为60︒,则下列说法正确的是()A .MB .M 的标准方程为2212x y -=C .M的渐近线方程为y =D .直线20x y +-=经过M 的一个焦点11.已知椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为1e ,椭圆1C 的上顶点为M ,且12π6MF F =∠,双曲线2C 和椭圆1C 有相同的焦点,且双曲线2C 的离心率为2e ,P 为曲线1C 与2C 的一个公共点.若12π2F PF ∠=,则()A.21e e =B.12e e =C .221294e e +=D .22211e e -=三、填空题(共3小题,每小题5分,共15分)12.双曲线C :()222210,0x y a b a b-=>>的两个焦点为1F 、2F,点)A在双曲线C 上,且满足120AF AF ⋅=,则双曲线C 的标准方程为__________.13.已知双曲线1C :()22210y x b b-=>与椭圆2C:(2221x y a a +=>有公共的焦点1F ,2F ,且1C 与2C 在第一象限的交点为M ,若12MF F △的面积为1,则a 的值为__________.14.设1F 、2F 为双曲线Γ:()222109x ya a -=>左、右焦点,且Γ,若点M 在Γ的右支上,直线1F M 与Γ的左支相交于点N ,且2MF MN =,则1F N =__________.四、解答题(共5小题,共77分)15.设双曲线2222:1(0,0)x y a b a bΓ-=>>,斜率为1的直线l 与Γ交于,A B 两点,当l 过Γ的右焦点F 时,l 与Γ的一条渐近线交于点(P -.(1)求Γ的方程;(2)若l 过点(1,0)-,求||AB .16.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为2(1)求双曲线C 的方程;(2)直线():1,0l y k x k =+>与双曲线C 有唯一的公共点,求k 的值.17.已知双曲线C :22221x y a b-=(0a >,0b >)的右顶点()1,0E ,斜率为1的直线交C 于M 、N 两点,且MN 中点()1,3Q .(1)求双曲线C 的方程;(2)证明:MEN 为直角三角形;(3)若过曲线C 上一点P 作直线与两条渐近线相交,交点为A ,B ,且分别在第一象限和第四象限,若AP PB λ= ,1,23λ⎡⎤∈⎢⎥⎣⎦,求AOB V 面积的取值范围.18.某高校的志愿者服务小组受“进博会”上人工智能展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏.如下图:A 、B 两个信号源相距10米,O 是AB 的中点,过O 点的直线l 与直线AB 的夹角为45︒.机器猫在直线l 上运动,机器鼠的运动轨迹始终满足;接收到A 点的信号比接收到B 点的信号晚08v 秒(注:信号每秒传播0v 米).在时刻0t 时,测得机器鼠距离O 点为4米.(1)以O 为原点,直线AB 为x 轴建立平面直角坐标系(如图),求时刻0t 时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线l 不超过1.5米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?19.已知离心率为72的双曲线1C :()222210,0x y a b a b -=>>过椭圆2C :22143x y +=的左,右顶点A ,B .(1)求双曲线1C 的方程;(2)()()0000,0,0P x y x y >>是双曲线1C 上一点,直线AP ,BP 与椭圆2C 分别交于D ,E ,设直线DE 与x 轴交于(),0Q Q x ,且20102Q x x λλ⎛⎫=<< ⎪⎝⎭,记BDP △与ABD △的外接圆的面积分别为1S ,2S参考答案15.(1)2214y x -=(2)82316.(1)22124x y -=(2)k =2.17.(1)2213y x -=(2)证明略(3)⎦18.(1)(4,0)(2)没有“被抓”风险19.(1)22143x y -=(2)⎫+∞⎪⎪⎝⎭。

高考数学真题:双曲线含答案

高考数学真题:双曲线含答案

专题九 解析几何第二十七讲 双曲线2019年1.(2019全国III 理10)双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A B C . D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .3.(2019全国I 理16)已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.4.(2019年全国II 理11)设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为ABC .2D 5.(2019浙江2)渐近线方程为x ±y =0的双曲线的离心率是A B .1CD .26.(2019天津理5)已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为C.22010-2018年一、选择题1.(2018浙江)双曲线2213x y -=的焦点坐标是A .(,B .(2,0)-,(2,0)C .(0,,D .(0,2)-,(0,2)2.(2018全国卷Ⅰ)已知双曲线C :2213-=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若∆OMN 为直角三角形,则||MN =A .32B .3C .D .43.(2018全国卷Ⅱ)双曲线22221(0,0)-=>>x y a b a bA .=yB .=yC .2=±y x D .2=±y x 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为AB .2CD5.(2018天津)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d , 且126d d +=,则双曲线的方程为A .221412x y -= B .221124x y -= C .22139x y -= D .22193x y -=6.(2017新课标Ⅱ)若双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线被圆22(2)4x y -+=所截得的弦长为2,则C 的离心率为A .2BCD .37.(2017新课标Ⅲ)已知双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -=8.(2017天津)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F .若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -= 9.(2016天津)已知双曲线222=1(0)4x y b b->,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为A .22443=1y x -B .22344=1y x -C .2224=1x y b -D .2224=11x y - 10.(2016年全国I)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是A .(–1,3)B .(–1,3)C .(0,3)D .(0,3)11.(2016全国II)已知1F ,2F 是双曲线E :22221x y a b-=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为A B .32C D .2 12.(2015四川)过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则AB =A B . C .6 D .13.(2015福建)若双曲线22:1916x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于A .11B .9C .5D .314.(2015湖北)将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 15.(2015安徽)下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是A .2214y x -= B .2214x y -= C .2214y x -= D .2214x y -= 16.(2015新课标1)已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是A .(B .(C .(,33-D .(33- 17.(2015重庆)设双曲线22221x y a b-=(0,0a b >>)的右焦点为F ,右顶点为A ,过F作AF 的垂线与双曲线交于,B C 两点,过,B C 分别作,AC AB 的垂线,两垂线交于点D .若D 到直线BC 的距离小于a 则该双曲线的渐近线斜率的取值范围是A .(1,0)(0,1)-∪B .(,1)(1,)-∞-+∞∪C .∪D .(,1))-∞-∞∪18.(2014新课标1)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C的一条渐近线的距离为A B .3 C D .3m19.(2014广东)若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等20.(2014天津)已知双曲线22221x y a b 0,0a b 的一条渐近线平行于直线l :210y x ,双曲线的一个焦点在直线l 上,则双曲线的方程为 A .221520x y B .221205x yC .2233125100x y D .2233110025x y21.(2014重庆)设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为 A .34 B .35 C .49D .322.(2013新课标1)已知双曲线C :22221x y a b-=(0,0a b >>C的渐近线方程为A .14y x =± B .13y x =± C .12y x =± D .y x =± 23.(2013湖北)已知04πθ<<,则双曲线1C :22221cos sin x y θθ-=与2C :22sin y θ2221sin tan y θθ-=的 A .实轴长相等 B .虚轴长相等 C .焦距相等 D . 离心率相等 24.(2013重庆)设双曲线C 的中心为点O ,若有且只有一对相较于点O 、所成的角为060的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是A .(2]3 B .[,2)3 C .()3+∞ D .[)3+∞ 25.(2012福建)已知双曲线22215x y a -=的右焦点为(3,0),则该双曲线的离心率等于A .14B .4 C .32D .4326.(2012湖南)已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为A .220x -25y =1B .25x -220y =1C .280x -220y =1 D .220x -280y =1 27.(2011安徽)双曲线x y 222-=8的实轴长是A .2B .C .4D .28.(2011山东)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -= 29.(2011湖南)设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为 A .4 B .3 C .2 D .130.(2011天津)已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1)--,则双曲线的焦距为A .B .C .D .31.(2010新课标)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为A .22136x y -= B .22145x y -= C .22163x y -= D .22154x y -= 32.(2010新课标)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2)-,则它的离心率为A B C .2 D .233.(2010福建)若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为A .2B .3C .6D .8 二、填空题34.(2018上海)双曲线2214x y -=的渐近线方程为 . 35.(2018江苏)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线的距离为2c ,则其离心率的值是 . 36.(2017江苏)在平面直角坐标系xOy 中 ,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是1F ,2F ,则四边形12F PF Q 的面积是 .37.(2017新课标Ⅰ)已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若MAN ∠=60°,则C 的离心率为________.38.(2017山东)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若||||4||AF BF OF +=,则该双曲线的渐近线方程为 .39.(2017北京)若双曲线221y x m-=m =_________.40.(2016年北京)双曲线22221(0,0)x y a b a b-=>>的渐近线为正方形OABC 的边,OA OC所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =______.41.(2016山东)已知双曲线E :22221x y a b-=(0,0)a b >>,若矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是 .42.(2015北京)已知双曲线()22210x y a a-=>0y +=,则a = .43.(2015江苏)在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点.若点P 到直线01=+-y x 的距离大于c 恒成立,则是实数c 的最大值为 .44.(2015山东)平面直角坐标系xOy 中,双曲线1C :22221x y a b-=(0,0)a b >>的渐近线与抛物线2C :22x py =(0p >)交于,,O A B ,若△OAB 的垂心为2C 的焦点,则1C 的离心率为_______.45.(2014山东)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为 .46.(2014浙江)设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是____.47.(2014北京)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.48.(2013陕西)双曲线221169x y -=的离心率为 .49.(2014湖南)设F 1,F 2是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为_________.50.(2013辽宁)已知F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长的2倍,点(5,0)A 在线段PQ ,则PQF ∆的周长为 .51.(2012辽宁)已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为 .52.(2012天津)已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为F ,则a = b = .53.(2012江苏)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+则m 的值为 .54.(2011山东)已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .55.(2011北京)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b = .三、解答题56.(2014江西)如图,已知双曲线C :2221x y a-=(0a >)的右焦点F ,点B A ,分别在C的两条渐近线上,x AF ⊥轴,BF OB AB ,⊥∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点)0)((00,0≠y y x P 的直线1:020=-y y axx l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NFMF 恒为定值,并求此定值.57.(2011广东)设圆C 与两圆2222(5)4,(5)4x y x y ++=+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程; (2)已知点M 3545(,5,0)55F ,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.专题九 解析几何第二十七讲 双曲线答案部分2019年1. 解析 双曲线22:142x y C -=的右焦点为6,0)F ,渐近线方程为:22y x =±,不妨设点P 在第一象限,可得2tan POF ∠=63P ,所以PFO △的面积为: 133262=.故选A .2. 解析 因为双曲线2221(0)y x b b-=>经过点(3,4),所以221631b-=,解得22b =,即2b =. 又1a =,所以该双曲线的渐近线方程是2y x =±. 3.解析 如图所示,因为1F A AB =,所以A 为1F B 的中点. 又O 为12F F 的中点,所以212AOBF ,212AO BF =. 因为120F B F B ⋅=,所以1290F BF ∠=︒, 且O 为12F F 的中点,所以12212OB F F OF c ===. 由212AOBF 得2121BOF AOF BF F ∠=∠=∠,所以2OB BF =, 因此2OPF △为等边三角形,260BOF ∠=︒,即渐近线的斜率为3,也即3ba=, 所以2212b e a=+=.4.A 解析:解法一:由题意,把2c x =代入222x y a +=,得2224c PQ a =-,再由PQ OF =,得2224ca c -=,即222a c =,所以222c a=,解得2c e a ==.故选A .解法二:如图所示,由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,所以,22c c P ⎛⎫± ⎪⎝⎭,代入222x y a +=得222a c =, 所以222c a=,解得2c e a ==.故选A .解法三:由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,则1222OP a OF ===,2c e a ==故选A . 5.解析 根据渐进线方程为0x y ±=的双曲线,可得a b =,所以2c a =,则该双曲线的离心率为2ce a==C . 6.解析 因为抛物线24y x =的焦点为F ,准线为l ,所以()1,0F ,准线l 的方程为1x =-.因为与双曲线()222210,0x y a b a b=>>的两条渐近线分别交于点A 和点B ,且4AB OF =(为原点),所以2b AB a =,1OF =,所以24b a=,即2b a =, 所以225c a b a +=,所以双曲线的离心率为5ca==.故选D .2010-2018年1.B 【解析】由题可知双曲线的焦点在x 轴上,因为222314c a b =+=+=,所以2c =,故焦点坐标为(2,0)-,(2,0).故选B .2.B 【解析】因为双曲线2213-=x y 的渐近线方程为33=±y x ,所以60∠=MON .不妨设过点F 的直线与直线3=y 交于点M ,由∆OMN 为直角三角形,不妨设90∠=OMN ,则60∠=MFO ,又直线MN 过点(2,0)F ,所以直线MN 的方程为3(2)=-y x ,由2)⎧=-⎪⎨=⎪⎩y x y x,得32⎧=⎪⎪⎨⎪=⎪⎩x y3(,22M ,所以||==OM所以|||3==MN OM .故选B . 3.A 【解析】解法一由题意知,==ce a,所以=c,所以=b ,所以=b a=±=by x a,故选A .解法二由===c e a,得=ba,所以该双曲线的渐近线方程为=±=by x a.故选A . 4.C 【解析】不妨设一条渐近线的方程为by x a=, 则2F 到by x a =的距离d b ==, 在2Rt F PO ∆中,2||F O c =,所以||PO a =,所以1||PF =,又1||F O c =,所以在1F PO ∆与2Rt F PO ∆中,根据余弦定理得22212)cos cos 2a c aPOF POF ac c+-∠==-∠=-,即2223)0a c +-=,得223a c =.所以ce a==.故选C . 5.C 【解析】通解 因为直线AB 经过双曲线的右焦点,所以不妨取2(,)b A c a,2(,)b B c a -,取双曲线的一条渐近线为直线0bx ay -=,由点到直线的距离公式可得221bc b d c -==,222bc b d c +==, 因为126d d +=,所以226bc b bc b c c-++=,所以26b =,得3b =.因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 优解 由126d d +=,得双曲线的右焦点到渐近线的距离为3,所以3b =.因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 6.A 【解析】双曲线C 的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线的距离为2bd c==,圆心(2,0)到弦的距离也为d ==所以2b c =222c a b =+,所以得2c a =,所以离心率2ce a==,选A . 7.B【解析】由题意可得:b a =,3c =,又222a b c +=,解得24a =,25b =, 则C 的方程为2145x y 2-=.选B . 8.B 【解析】设(,0)F c -,双曲线的渐近线方程为b y x a =±,由44PF k c c-==-,由题意有4bc a=,又c a =222c a b =+,得b =,a =.选B .9.D 【解析】不妨设A 在第一象限,(,)A x y ,所以2242x y b y x ⎧+=⎪⎨=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩, 故四边形ABCD的面积为2324424bxy b b ===+,解得212b =.故所求的双曲线方程为2224=11x y -,选D . 10.A 【解析】由题意得22()(3)0m n m n +->,解得223m n m -<<,又由该双曲线两焦点间的距离为4,得M 2234m n m n ++-=,即21m =,所以13n -<<.11.A 【解析】设1(,0)F c -,将x c =-代入双曲线方程,得22221c y a b -=,化简得2by a=±,因为211sin 3MF F ∠=,所以222212112||tan ||222b MF b c a a MF F F F c ac ac -∠=====,12222c a e a c e -=-=210e --=,所以e =A . 12.D 【解析】由双曲线的标准方程2213y x -=得,右焦点(2,0)F ,两条渐近线方程为y =,直线AB :2x =,所以不妨设取(2,A,(2,B -,则||AB =,选D .13.B 【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B .14.D【解析】由题意1e ==2e ==∵()()b b m m b a a a m a a m +--=++,由于0m ,0a ,0b , 所以当a b 时,01b a <<,01b m a m +<<+,b b m a a m +<+,22()()b b m a a m+<+, 所以12e e <;当a b <时,1ba>,1b m a m +>+,而b b m a a m +>+,22()()b b m a a m +>+, 所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >.15.C 【解析】由题意,选项,A B 的焦点在x 轴,故排除,A B ,C 项的渐近线方程为2204y x -=,即2y x =±,故选C . 16.A 【解析】由题意知22a,21b ,所以23c,不妨设1(F,2F ,所以100(,)=--MF x y ,200(3,)=-MF x y ,又∵00(,)M x y 在双曲线上,所以220012x y -=,即220022x y =+,222120003310MF MF x y y ⋅=-+=-<,所以033-<<y ,故选A . 17.A 【解析】 由题意22(,0),(,),(,)b b A a B c C c a a-,由双曲线的对称性知D 在x 轴上,设(,0)D x ,由BD AC ⊥得221b b a a c x a c-⋅=---,解得42()b c x a c a -=-,所以42()b c x a a c a c a -=<=+-,所以42222b c a b a <-=221b a⇒<01b a ⇒<<,而双曲线的渐近性斜率为ba±,所以双曲线的渐近线的斜率取值范围是(1,0)(0,1)-,选A .18.A 【解析】双曲线方程为22133x y m -=,焦点F 到一条渐近线的距离为b =A . 19.A 【解析】∵09k <<,∴90,250k k ->->,本题两条曲线都是双曲线,又25(9)(25)9k k +-=-+,∴两双曲线的焦距相等,选A .20.A 【解析】 依题意得22225ba cc a b ,所以25a,220b ,双曲线的方程为221520x y .21.B 【解析】由双曲线的定义得12||||||2PF PF a -=,又12||||3PF PF b +=,所以22221212(||||)(||||)94PF PF PF PF b a +--=-,即124||||9PF PF ab =,因此22949b a ab -=,即299()40b b aa --=,则(31b a +)(34ba-)=0,解得41(33b b a a ==-舍去),则双曲线的离心率53e ==.22.C 【解析】由题知,2c a =,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C . 23.D 【解析】双曲线1C 的离心率是11cos e θ=,双曲线2C 的离心率是21cos e θ==,故选D . 24.A 【解析】设双曲线的焦点在x 轴上,则由作图易知双曲线的渐近线的离心率ba必须满足3b a <,所以21()33b a <≤,241()43b a<+≤,2<,又双曲线的离心率为c e a ==23e <≤. 25.C 【解析】∵双曲线22215x y a -=的右焦点为(3,0),∴2a +5=9,∴2a =4,∴a =2∵c =3,∴32c e a ==,故选C . 26.A 【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又C 的渐近线为b y x a =±,点P(2,1)在C 的渐近线上,12ba∴=,即2a b =.又222c a b =+,a ∴==,∴C 的方程为220x -25y =1.27.C 【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C . 28.A 【解析】圆22:(3)4C x y -+=,3,c =而32bc =,则22,5b a ==,应选A . 29.C 【解析】由双曲线方程可知渐近线方程为3y x a=±,故可知2a =.30.B 【解析】双曲线22221(0,0)x y a b a b -=>>的渐近线为by x a=±,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得22p-=-,即4p =, 又∵42p a +=,∴2a =,将(-2,-1)代入by x a=得1b =,∴c ==2c =31.B 【解析】由双曲线E 的中心为原点,(3,0)P 是E 的焦点可设双曲线的方程为2222221(9)x y a b a b -=+=,设1122(,),(,)A x y B x y ,即 2222112222221,1x y x y a b a b -=-= 则22121222121212015115312y y x x b b x x a y y a -+-+=⋅=⋅==-+-+,则22225,5,44b b a a ===,故E 的方程式为22145x y -=.应选B . 32.D 【解析】设双曲线的方程为22221(0,0)x y a b a b -=>>,其渐近线为x aby ±=,∵点(4,2)-在渐近线上,所以12b a =,由2e ==. 33.C 【解析】由题意,F (-1,0),设点P 00(,)x y ,则有2200143x y +=, 解得22003(1)4x y =-, 因为00(1,)FP x y =+,00(,)OP x y =,所以2000(1)OP FP x x y ⋅=++=00(1)OP FP x x ⋅=++203(1)4x -=20034x x ++, 此二次函数对应的抛物线的对称轴为02x =-,因为022x -≤≤,所以当02x =时,OP FP ⋅取得最大值222364++=,选C . 34.12y x =±【解析】由题意2a =,1b =,∴12b y x x a =±=±.35.2【解析】不妨设双曲线的一条渐近线方程为b y x a =2b ==,所以222234b c a c =-=,得2c a =,所以双曲线的离心率2ce a==. 36.232a x c ==,渐近线的方程为3y x =±,设3(,22P,则3(,22Q -,1(2,0)F -,2(2,0)F , 所以四边形12F PF Q的面积为1211||||422F F PQ =⨯=. 37.3【解析】如图所示,AH MN ⊥,AM AN b ==,MAN ∠=60°, x所以30HAN ∠=,又MN 所在直线的方程为by x a=, (,0)A a 到MN的距离AH =,在Rt HAN ∆中,有cos HA HAN NA =,所以2==因为222c a b =+a c =,所以c e a ==.38.y x =【解析】设11(,)A x y ,22(,)B x y ,由抛物线的定义有1212||||22p p AF BF y y y y p +=+++=++,而||2p OF =, 所以1242py y p ++=⨯,即12y y p +=,由2222212x y a b x py⎧-=⎪⎨⎪=⎩得2222220a y pb y a b -+=,所以21222pb y y a +=, 所以222pb p a=,即a =,所以渐近性方程为2y x =±. 39.2【解析】221,a b m ==,所以1c a ==,解得2m =. 40.2【解析】不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线图象如图∵OABC 为正方形,2=OA∴==c OB ,π4∠=AOB ∵直线OA 是渐近线,方程为=b y x a ,∴tan 1=∠=bAOB a又∵2228+==a b c ∴2=a41.2【解析】由题意||2BC c =,所以||3AB c =,于是点3(,)2cc 在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==,应填2. 42.3【解析】因为双曲线()22210x y a a -=>的一条渐近线为y =,所以1a=故3a =. 43.2(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以c 的最大值为直线10x y -+=与渐近线0x y -== 44.32【解析】22122:1(0,0)x y C a b a b -=>>的渐近线为b y x a =±,则2222(,)pb pb A a a ,2222(,)pb pb B a a -,22:2(0)C x py p =>的焦点(0,)2p F , 则22222AFpb pa a k pb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==. 45.y x =±【解析】抛物线的准线2p y =-,与双曲线的方程联立得2222(1)4p x a b =+,根据已知得2222(1)4p a c b+= ①,由||AF c =得2224p a c += ②,由①②得22a b =,即a b =,所以所求双曲线的渐近线方程为y x =±.46.2【解析】联立直线方程与双曲线渐近线方程by x a=±可解得交点为(,)33am bm A b a b a --,(,)33am bm B b a b a -++,而13AB k =,由||||PA PB =,可得AB 的中点3333(,)22am am bm bmb a b a b a b a -+-+-+与点)0,(m P 连线的斜率为-3,可得224b a =,所以e =47.221312x y -= 2y x =±【解析】设与2214y x -=具有相同渐近线的双曲线C 的方程为224y x k -=,将点()2,2代入C 的方程中,得3k =-.∴双曲线的方程为221312x y -=,渐近线方程为2y x =±.48.45【解析】。

2021年高考数学一轮精选练习:51《双曲线》(含解析)

2021年高考数学一轮精选练习:51《双曲线》(含解析)

2021年高考数学一轮精选练习:51《双曲线》一、选择题1.已知F 为双曲线C :x 2-my 2=3m(m >0)的一个焦点,则点F 到C 的一条渐近线距离为( )A. 3B.3C.3mD.3m2.设F 1、F 2分别为双曲线x 29-y 216=1的左、右焦点,过F 1引圆x 2+y 2=9的切线F 1P 交双曲线的右支于点P ,T 为切点,M 为线段F 1P 的中点,O 为坐标原点,则|MO|-|MT|等于( ) A.4 B.3 C.2 D.1 3.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y=52x ,且与椭圆x 212+y23=1有公共焦点,则C 的方程为( ) A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 4.已知离心率为52的双曲线C :x 2a 2-y2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若S △OMF 2=16,则双曲线实轴长是( ) A.32 B.16 C.84 D.45.已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( )A.3B.2C.-3D.-26.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0),圆C 2:x 2+y 2-2ax +34a 2=0,若双曲线C 1的一条渐近线与圆C 2有两个不同的交点,则双曲线C 1的离心率的范围是( ) A.⎝ ⎛⎭⎪⎫1,233 B.⎝ ⎛⎭⎪⎫233,+∞ C.(1,2) D.(2,+∞)7.焦点在x 轴上的双曲线C 1的离心率为e 1,焦点在y 轴上的双曲线C 2的离心率为e 2,已知C 1与C 2具有相同的渐近线,当e 21+4e 22取最小值时,e 1的值为( )A.1B.62C. 3D.28.已知F 1、F 2是双曲线x 2a 2-y2b 2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左支交于点A ,与右支交于点B ,若|AF 1|=2a ,∠F 1AF 2=2π3,则S△AF 1F 2S△ABF2=( ) A.1 B.12 C.13 D.23二、填空题9.已知焦点在x 轴上的双曲线x 28-m +y24-m=1,它的焦点到渐近线的距离取值范围是 .10.在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a>0,b>0)的右支与焦点为F 的抛物线x 2=2py(p>0)交于A ,B 两点.若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为 .11.已知F 1、F 2分别是双曲线x 2-y 2b2=1(b >0)的左、右焦点,A 是双曲线上在第一象限内的点,若|AF 2|=2且∠F 1AF 2=45°,延长AF 2交双曲线的右支于点B ,则△F 1AB 的面积等 .12.已知F 1(-c,0)、F 2(c,0)为双曲线C :x 2a 2-y2b2=1(a >0,b >0)的左、右焦点,过双曲线C 的左焦点的直线与双曲线C 的左支交于Q ,R 两点(Q 在第二象限内),连接RO(O 为坐标原点)并延长交C 的右支于点P ,若|F 1P|=|F 1Q|,∠F 1PF 2=23π,则双曲线C 的离心率为 .13.已知双曲线x 2a 2-y2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为 .三、解答题14.已知双曲线C :x 2-y 2=1及直线l :y=kx -1.(1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值.15.已知双曲线x 2a 2-y2b2=1(a >0,b >0)的右焦点为F(c,0).(1)若双曲线的一条渐近线方程为y=x且c=2,求双曲线的方程;(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为-3,求双曲线的离心率.16.已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2 3.(1)求双曲线C的方程;(2)若直线l:y=kx+2与双曲线C的左支交于A,B两点,求k的取值范围;(3)在(2)的条件下,线段AB的垂直平分线l0与y轴交于M(0,m),求m的取值范围.答案解析1.答案为:A ;解析:由题意知,双曲线的标准方程为x 23m -y 23=1,其中a 2=3m ,b 2=3,故c=a 2+b 2=3m +3,不妨取F(3m +3,0),一条渐近线为y=1mx ,化成一般式即为x -my=0, 由点到直线的距离公式可得d=|3·m +1|1+-m2=3,故选A.2.答案为:D ;解析:连接PF 2,OT ,则有|MO|=12|PF 2|=12(|PF 1|-2a)=12(|PF 1|-6)=12|PF 1|-3,|MT|=12·|PF 1|-|F 1T|=12|PF 1|-c 2-32=12|PF 1|-4, 于是有|MO|-|MT|=⎝ ⎛⎭⎪⎫12|PF 1|-3-⎝ ⎛⎭⎪⎫12|PF 1|-4=1,故选D.3.答案为:B ;解析:由双曲线的渐近线方程可设双曲线方程为x 24-y 25=k(k >0),即x 24k -y25k=1,∵双曲线与椭圆x 212+y23=1有公共焦点,∴4k +5k=12-3,解得k=1,故双曲线C 的方程为x 24-y25=1,故选B.4.答案为:B ;解析:由题意知F 2(c,0),不妨令点M 在渐近线y=bax 上,由题意可知|F 2M|=bc a 2+b2=b ,所以|OM|=c 2-b 2=a. 由S △OMF 2=16,可得12ab=16,即ab=32,又a 2+b 2=c 2,c a =52,所以a=8,b=4,c=45,所以双曲线C 的实轴长为16.故选B.5.答案为:B ;解析:由题意及正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=e=2,∴|PF 1|=2|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2,∴|PF 1|=4,|PF 2|=2. 又|F 1F 2|=4,由余弦定理可知cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=4+16-162×2×4=14,∴F 2P →·F 2F 1→=|F 2P →|·|F 2F 1→|cos ∠PF 2F 1=2×4×14=2.故选B.6.答案为:A ;解析:由双曲线方程可得其渐近线方程为y=±bax ,即bx ±ay=0,圆C 2:x 2+y2-2ax +34a 2=0可化为(x -a)2+y 2=14a 2,圆心C 2的坐标为(a,0),半径r=12a ,由双曲线C 1的一条渐近线与圆C 2有两个不同的交点,得|ab|a 2+b 2<12a ,即c >2b ,即c 2>4b 2,又知b 2=c 2-a 2,所以c 2>4(c 2-a 2),即c 2<43a 2,所以e=c a <233,又知e >1,所以双曲线C 1的离心率的取值范围为⎝⎛⎭⎪⎫1,233,故选A.7.答案为:C ;解析:设双曲线的方程分别为C 1:x 2a 21-y 2b 21=1,C 2:y 2a 22-x2b 22=1,由题设b 1a 1=a 2b 2,则e 1=1+b 21a 21,e 2=1+b 22a 22,由此可得(e 21-1)(e 22-1)=1, 即e 21e 22=e 21+e 22,故e 22=e 21e 21-1,所以e 21+4e 22=e 21+4e 21e 21-1=5+e 21-1+4e 21-1≥9(当且仅当e 21-1=4e 21-1时取等号),e 21-1=2⇒e 1=3时取等号.8.答案为:B ;解析:如图所示,由双曲线定义可知|AF 2|-|AF 1|=2a.又|AF 1|=2a ,所以|AF 2|=4a ,因为∠F 1AF 2=23π,所以S △AF 1F 2=12|AF 1|·|AF 2|·sin ∠F 1AF 2=12×2a ×4a ×32=23a 2.设|BF 2|=m ,由双曲线定义可知|BF 1|-|BF 2|=2a ,所以|BF 1|=2a +|BF 2|, 又知|BF 1|=2a +|BA|,所以|BA|=|BF 2|.又知∠BAF 2=π3,所以△BAF 2为等边三角形,边长为4a ,所以S △ABF 2=34|AB|2=34×(4a)2=43a 2, 所以S △AF 1F 2S △ABF2=23a 243a 2=12,故选B.一、填空题9.答案为:(0,2);解析:对于焦点在x 轴上的双曲线x 2a 2-y2b2=1(a >0,b >0),它的焦点(c,0)到渐近线bx -ay=0的距离为|bc|b 2+a2=b.本题中,双曲线x 28-m +y 24-m =1即x 28-m -y2m -4=1,其焦点在x 轴上,则⎩⎪⎨⎪⎧8-m >0,m -4>0,解得4<m <8,则焦点到渐近线的距离d=m -4∈(0,2).10.答案为:y=±22x ; 解析:设A(x 1,y 1),B(x 2,y 2).因为4|OF|=|AF|+|BF|,所以4×p 2=y 1+p 2+y 2+p2,即y 1+y 2=p.①由⎩⎪⎨⎪⎧x 2=2py ,x 2a 2-y2b2=1消去x ,得a 2y 2-2pb 2y +a 2b 2=0,所以y 1+y 2=2pb2a2.②由①②可得b a =22,故双曲线的渐近线方程为y=±22x.11.答案为:4;解析:由题意知a=1,如图,由双曲线定义知|AF 1|-|AF 2|=2a=2,|BF 1|-|BF 2|=2a=2, ∴|AF 1|=2+|AF 2|=4,|BF 1|=2+|BF 2|. 由题意知|AB|=|AF 2|+|BF 2|=2+|BF 2|, ∴|BA|=|BF 1|,∴△BAF 1为等腰三角形,∵∠F 1AF 2=45°,∴∠ABF 1=90°,∴△BAF 1为等腰直角三角形.∴|BA|=|BF 1|=22|AF 1|=22×4=2 2.∴S △F 1AB=12|BA|·|BF 1|=12×22×22=4.12.答案为:576; 解析:设|PF 1|=x ,则|PF 2|=x -2a ,作Q 关于原点对称的点S ,如图,连接PS ,RS ,SF 1.因为双曲线关于原点中心对称,所以|PO|=|OR|,S 在双曲线上, 所以四边形PSRQ 是平行四边形,根据对称性知,F 2在线段PS 上,|F 2S|=|QF 1|=x ,则∠F 1PS=2π3,根据双曲线的定义,有|F 1S|=x +2a ,所以在△PF 1S 中,由余弦定理得(x +2a)2=x 2+(2x -2a)2-2·x(2x -2a)·⎝ ⎛⎭⎪⎫-12,解得x=73a ,所以|PF 2|=13a ,所以在△PF 1F 2中,由余弦定理得4c 2=⎝ ⎛⎭⎪⎫73a 2+⎝ ⎛⎭⎪⎫13a 2-2×⎝ ⎛⎭⎪⎫-12×73a ×13a ,整理可得e=c a =576.13.答案为:53;解析:由定义,知|PF 1|-|PF 2|=2a.又|PF 1|=4|PF 2|,∴|PF 1|=83a ,|PF 2|=23a.当P ,F 1,F 2三点不共线时,在△PF 1F 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22·|PF 1|·|PF 2|=649a 2+49a 2-4c 22·83a ·23a =178-98e 2,即e 2=179-89cos ∠F 1PF 2.∵cos ∠F 1PF 2∈(-1,1),∴e ∈⎝ ⎛⎭⎪⎫1,53.当P ,F 1,F 2三点共线时, ∵|PF 1|=4|PF 2|,∴e=c a =53,综上,e 的最大值为53.二、解答题14.解:(1)若双曲线C 与直线l 有两个不同的交点,则方程组⎩⎪⎨⎪⎧x 2-y 2=1,y =kx -1有两个不同的实数根,整理得(1-k 2)x 2+2kx -2=0,所以⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+81-k 2>0,解得-2<k <2且k ≠±1. 即双曲线C 与直线l 有两个不同的交点时,k 的取值范围是(-2,-1)∪(-1,1)∪(1,2).(2)设交点A(x 1,y 1),B(x 2,y 2),直线l 与y 轴交于点D(0,-1),由(1)知,C 与l 联立的方程为(1-k 2)x 2+2kx -2=0,所以⎩⎪⎨⎪⎧x 1+x 2=-2k1-k 2,x 1x 2=-21-k 2.当A ,B 在双曲线的一支上且|x 1|>|x 2|时,S △OAB =S △OAD -S △OBD =12(|x 1|-|x 2|)=12|x 1-x 2|;当A ,B 在双曲线的两支上且x 1>x 2时,S △OAB =S △ODA +S △OBD =12(|x 1|+|x 2|)=12|x 1-x 2|.所以S △OAB =12|x 1-x 2|=2,所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(22)2, 即⎝ ⎛⎭⎪⎫-2k 1-k 22+81-k 2=8,解得k=0或k=±62. 又因为-2<k <2,且k ≠±1,所以当k=0或k=±62时,△AOB 的面积为 2.15.解:(1)∵双曲线的渐近线方程为y=±bax ,∴a=b ,∴c 2=a 2+b 2=2a 2=4,∴a 2=b 2=2,∴双曲线方程为x 22-y22=1.(2)设点A 的坐标为(x 0,y 0),∴直线AO 的斜率满足y 0x 0·(-3)=-1,∴x 0=3y 0,①依题意,圆的方程为x 2+y 2=c 2,将①代入圆的方程得3y 20+y 20=c 2,即y 0=12c ,∴x 0=32c ,∴点A 的坐标为⎝ ⎛⎭⎪⎫32c ,12c , 代入双曲线方程得34c 2a 2-14c 2b 2=1,即34b 2c 2-14a 2c 2=a 2b 2,②又∵a 2+b 2=c 2,∴将b 2=c 2-a 2代入②式,整理得34c 4-2a 2c 2+a 4=0,∴3⎝ ⎛⎭⎪⎫c a 4-8⎝ ⎛⎭⎪⎫c a 2+4=0,∴(3e 2-2)(e 2-2)=0, ∵e >1,∴e=2,∴双曲线的离心率为 2.16.解:(1)设双曲线C 的方程为x 2a 2-y2b2=1(a >0,b >0).由已知得a=3,c=2,再由a 2+b 2=c 2,得b 2=1,所以双曲线C 的方程为x 23-y 2=1.(2)设A(x A ,y A ),B(x B ,y B ),将y=kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由题意知⎩⎪⎨⎪⎧1-3k 2≠0,Δ=361-k 2>0,x A+x B=62k1-3k 2<0,x A x B=-91-3k 2>0,解得33<k <1. 所以当l 与双曲线左支有两个交点时,k 的取值范围为⎝ ⎛⎭⎪⎫33,1. (3)由(2)得x A +x B =62k1-3k2,所以y A +y B =(kx A +2)+(kx B +2)=k(x A +x B )+22=221-3k 2.所以AB 的中点P 的坐标为⎝ ⎛⎭⎪⎫32k1-3k 2,21-3k 2.设直线l 0的方程为y=-1k x +m ,将P 点坐标代入直线l 0的方程,得m=421-3k 2.因为33<k <1,所以-2<1-3k 2<0.所以m <-2 2. 所以m 的取值范围为(-∞,-22).。

双曲线历年高考真题100题 原卷版

双曲线历年高考真题100题  原卷版

1高考真题一、单选题A .221913x y -=B .221139x y -=C .2213x y -=D .2213y x -=A .2B .C .D .1A .B .3C .D .A .B .C .D .A .B .C .D .3A .(1,3)B .(]1,3 C .(3,+∞)D .[)3,+∞ A . B . C . D .A .(√2,2)B .(√2,√5)C .(2,5)D .(2,√5)A .3B .C .D .A .B .2C .3D .6A .2 BC .32D .12 A . B .5 C . D .A .22124x y -=B .22142-=x yC .22146x y -=D .221410x y -=A .221090x y x +-+=B .2210160x y x +-+=C .2210160x y x +++=D .221090x y x +++=A.B .12 C.D .24ABCDA .√2B .√3C .√3+12D .√5+12A .By=0 C .="0" D±y=0ABC.D. A .12m > B .1m ≥ C .1m > D .2m >A .12B.2C .1 DA .22182x y +=B .221126x y +=3C .221164x y +=D .221205x y +=A .12或32B .23或2 C .12或2 D .23或32A .2 B.C .4 D. A .4 B .3C .2D .1ABC .2D .3A.ab B .22b a + C .a D .bA .221520x y -=B .221205x y -=C .D .A .(0,)B .(1,)C .(,1)D .(,+∞)A .2B .2C .4D .4A .B .C .D .A .a 2=B .a 2=3C .b 2=D .b 2=2A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等A.14y x=±B.13y x=±C.12y x=±D.y x=±A.y=±2x B.y=C.12y x=±D.y=A.B.C.D.ABC.2 D.3A.22154x y-=B.22145x y-=C.22136x y-=D.22163x y-=A.1 B.2 C.3 D.4A.B.2CD.1A.B.C.D.A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=145AB .54C .43D .53A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >A .22=14y x -B .22=14x y -C .22=14y x -D .22=14x y -AB .2CDA .2 B.C .4D.A .14B .13C.4D.3A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=A .13 B .1 2C .2 3D .3 2得的弦长为2,则C 的离心率为 ( ) A .2 BCDA.223=1 44x y-B.224=1 43x y-C.22=1 44x y-D.22=1 412x y-A.y=B.y=C.2y x=±D.2y x=±A.32B.3 C.D.4A.22139x y-=B.22193x y-=C.221412x y-=D.221124x y-=A.(√2,+∞)B.(√2,2)C.(1,√2)D.(1,2)A.221412x y-=B.221124x y-=C.2213xy-=D.2213yx-=A.221412x y-=B.22179x y-=C.22188x y-=D.221124x y-=A.220x-25y=1 B.25x-220y=1 C.280x-220y=1 D.220x-280y=1A.(1,0)(0,1)-6B.(,1)(1,) -∞-+∞C.(⋃D.(,(2,) -∞+∞A.2B.C.4D.A.3 B.2CDA.14B.35C.34D.45二、填空题7P,Q,其焦点是F1,F2,则四边形F1P F2Q的面积是________.三、解答题已知双曲线的两条渐近线分别为.(1)求双曲线的离心率;89(1)求12,C C 的方程;已知中心在原点的双曲线C 的一个焦点是,一条渐近线的方程是.(Ⅰ)求双曲线C 的方程; (Ⅱ)若以为斜率的直线与双曲线C 相交于两个不同的点M ,N ,线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.(Ⅰ)求点P 的轨迹方程; (Ⅱ)设d 为点P 到直线l : 12x =的距离,若22PM PN =,求PM d的值.(Ⅰ)求双曲线C 的标准方程及其渐近线方程;(Ⅱ)如题(21)图,已知过点()11,M x y 的直线1l : 1144x x y y +=与过点()22,N x y (其中21x x ≠)的直线2l :的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求·OG OH 的值.10(1)求双曲线C 的方程;(2)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF的面积为求直线l 的方程第3小题满分7分.已知双曲线2212x C y -=:.(1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(01),.设P 是双曲线C 上的点,Q 是点P 关于原点的对称点. 记·MP MQ λ=.求λ的取值范围;(3)已知点D E M ,,的坐标分别为(21)(21)(01)---,,,,,,P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为DEM 截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数.(1)设F 是C 的左焦点,M 是C 右支上一点. 若|MF|=2,求过M 点的坐标;(2)过C 的左顶点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的 面积; (3)设斜率为的直线l2交C 于P 、Q 两点,若l 与圆相切,求证:OP ⊥OQ ;(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.11(Ⅰ)求该双曲线的方程;(Ⅱ)如图,点A的坐标为(0),B是圆22(1x y +=上的点,点M 在双曲线右支上,求MA MB +的最小值,并求此时M 点的坐标(Ⅰ)若2322,,2a a a +成等差数列,求数列{a n }的通项公式;(Ⅱ)设双曲线2221n y x a -=的离心率为n e ,且253e =,证明:121433n nn n e e e --++⋅⋅⋅+>.(Ⅰ)求E 的方程;(Ⅱ)试判断以线段MN 为直径的圆是否过点F ,并说明理由.四、双空题。

高考数学必考点专项第31练 双曲线(B)(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第31练 双曲线(B)(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第31练双曲线(B(一、单选题1. 设O 为坐标原点,直线x a =与双曲线C :22221(0,0)x y a b a b-=>>的两条渐近线分别交于D ,E 两点.若ODE 的面积为8,则C 的焦距的最小值为( )A. 4B. 8C. 16D. 322.2=表示的曲线方程为( )A. 221(1)x y x -=-B. 221(1)x y x -=-C. 221(1)y x y -=-D. 221(1)y x y -=3. 若实数k 满足09k <<,则曲线221259x y k -=- 与曲线221259x y k -=- 的( ) A. 焦距相等B. 半实轴长相等C. 半虚轴长相等D. 离心率相等4. 公元前6世纪,古希腊的毕达哥拉斯学派研究发现了黄金分割数,简称黄金数.离心率等于黄金数的倒数的双曲线称为黄金双曲线.若双曲线221x y a -=是黄金双曲线,则a =( )A.B.12C.D.12+ 5. 已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( )A.221412x y -= B.221124x y -= C. 22139x y -= D. 22193x y -= 6. 设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为.l 若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A. 22144x y -= B. 2214y x -=C. 2214x y -= D. 221x y -=7. 已知点(0,0)O ,(2,0)A -,(2,0).B 设点P 满足||||2PA PB -=,且P 为函数y =图象上的点,则||OP 等于 ( )A.2B.5C. D. 8. 由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品.若将如图所示的大教堂外形弧线的一段近似看成双曲线22221(0,0)y x a b a b-=>>下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的渐近线方程为( )A. y =B. 3y x =±C. y x =±D. 2y x =±9. 若椭圆221(1)x y m m+=>与双曲线221(0)x y n n -=>有相同的焦点1F ,2F ,P 是两曲线的一个交点,则12F PF 的面积是 ( )A. 4B. 2C. 1D.1210. 过双曲线2212y x -=的右焦点F 作直线l 交双曲线于A ,B 两点,若||4AB =,则这样的直线l 有( )A. 1条B. 2条C. 3条D. 4条11. 已知双曲线C :2221(0)2x y b b-=>的离心率为e ,若e ∈,则C 的焦点到一条渐近线的距离的取值范围为( )A.B. )+∞C.D.12. 已知点F 是双曲线22221(0,0)x y a b a b-=>>的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若ABE 是钝角三角形,则该双曲线的离心率e 的取值范围是( )A. (1,)+∞B. (1,2)C. [1,1+D. (2,)+∞13. 双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况:如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里.现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线22(27)13664x y --=的左支上,若船P 上接到A 台发射的电磁波比B 台电磁波早185.2(s μ已知电磁波在空气中的传播速度约为0.3/km s μ,1海里 1.852)km =,则点P 的坐标(单位:海里)为( )A.B. C.D. (45,162)±二、多选题14. 已知曲线22:1C mx ny +=,则( ) A. 若0m n >>,则C 是椭圆,其焦点在y 轴上B. 若0m n =>,则CC. 若0mn <,则C 是双曲线,其渐近线方程为y =D. 若0m =,0n >,则C 是两条直线 15. 下列关于圆锥曲线的命题中,正确的是( )A. 设A 、B 为两个定点,k 为非零常数,||||PA PB k -=,则动点P 的轨迹为双曲线B. 设定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆C. 方程22520x x -+=的两根可分别作为椭圆和双曲线的离心率D. 双曲线221259x y -=与椭圆22135x y +=有相同的焦点三、填空题16. 若直线1y kx =-与双曲线224x y -=始终有公共点,则k 取值范围是__________ .17. 已知双曲线2218y x -=,12,F F 是双曲线的左右两个焦点,P 在双曲线上且在第一象限,圆M 是12F PF ∆的内切圆.则M 的横坐标为__________.18. 已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,斜率大于0的直线l 经过点2F 与C 的右支交于A ,B 两点,若12AF F 与12BF F 的内切圆面积之比为9,则直线l 的斜率为__________.19. 已知椭圆22:13x E y +=的左右顶点分别为1A ,2A ,且B ,C 为E 上不同两点(,B C位于y 轴右侧),B ,C 关于x 轴的对称点分别为为1B ,1C ,直线1BA 、12B A 相交于点P ,直线1CA 、12C A 相交于点Q ,已知点(2,0)M -,则的最小值为__________. 四、解答题20. 平面直角坐标系中,点(2,0)A -、(2,0)B ,平面内任意一点P 满足:直线PA 的斜率1k ,直线PB 的斜率2k ,1234k k =-,点P 的轨迹为曲线1.C 双曲线2C 以曲线1C 的上下两顶点M ,N 为顶点,Q 是双曲线2C 上不同于顶点的任意一点,直线QM 的斜率3k ,直线QN 的斜率4.k(1)求曲线1C 的方程;(2)如果12340k k k k +,求双曲线2C 的焦距的取值范围.21. 已知直线:1l y kx=+与双曲线22:14xC y-=交于M、N两个不同的点.(1)求k的取值范围;(2)若A为双曲线C的左顶点,点M在双曲线C的左支上,点N在双曲线C的右支上,且直线MA、NA分别与y轴交于P、Q两点,当时,求k的值.答案和解析1.【答案】B解:由题意可得双曲线的渐近线方程为by x a=±, 分别将x a =,代入可得y b =±, 即(,)D a b ,(,)E a b -, 则1282ODESa b ab =⨯==,222216c a b ab ∴=+=,当且仅当a b ==C ∴的焦距的最小值为248⨯=,故选:.B2.【答案】C2=所表示的意义是点(,)x y 到点和(0,的距离之差为2,由双曲线的定义可得,该图形为双曲线的一支,且c =1a =,则1b =,曲线方程:221(1).y x y -=- 故选:.C3.【答案】A解:当09k <<,则099k <-<,162525k <-<,即曲线221259x y k-=-表示焦点在x 轴上的双曲线, 其中225a =,29b k =-,234c k =-,曲线221259x y k -=-表示焦点在x 轴上的双曲线, 其中225a k =-,29b =,234c k =-,故而虚半轴长和实半轴长都不相等,离心率不同, 两个双曲线的焦距相等, 故选.A4.【答案】B=a = 故选.B5.【答案】C解:由题意可得图象如图,CD 是双曲线的一条渐近线,其方程为by x a=,即0bx ay -=,(,0)F c , AC CD ⊥,BD CD ⊥,作FE CD ⊥交CD 于点E ,显然ACDB 是直角梯形,又F 是AB 的中点,1232d d EF +==, 22bc EF b a b==+,所以3b =,双曲线22221(0,0)x y a b a b -=>>的离心率为2,可得2ca =,可得:2224a b a +=,解得 3.a = 则双曲线的方程为:221.39x y -= 故选.C6.【答案】D解:抛物线24y x =的焦点坐标为(1,0),则直线l 的方程为(1)y b x =--,双曲线C 的方程为22221(0,0)x y a b a b -=>>的渐近线方程为by x a=±,C 的一条渐近线与l 平行,另一条渐近线与l 垂直,b b a ∴-=-,()1bb a⋅-=-, 1a ∴=,1b =,∴双曲线C 的方程为221x y -=,故选:.D7.【答案】D解:点(0,0)O ,(2,0)A -,(2,0).B 点P 满足||||2PA PB -=, 所以点P 的轨迹为双曲线的右半支,设双曲线方程为,其中2222,221,3c a a b c a ==⇒==-=,即点P 是双曲线22113x y -=的右支上的点, 又P 为函数234y x =-图象上的点,即,则0,0P P x y >,联立两个方程,解得1333(,)22P , 所以1327||10.44OP =+= 故选:.D8.【答案】B解:双曲线22221(0,0)y x a b a b-=>>下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,可得:,解得233a =,433c =,2b =, 22221(0,0)x y a b a b-=>>所以双曲线的渐近线方程为:.a y x x b =±= 故选.B9.【答案】C解:由题意设两个圆锥曲线的焦距为2c ,椭圆的长轴长为,双曲线的实轴长为,由它们有相同的焦点,得到 2.m n -= 不妨设5m =,3n =,则椭圆的长轴长, 不妨令P 在双曲线的右支上,由双曲线的定义得12PF PF -=①由椭圆的定义得12PF PF +=②①2+②2得221216.PF PF +=又124F F =,2221212PF PF F F ∴+=,则12F PF 的形状是直角三角形,且122F PF π∠=,12F PF ∴的面积为1211122PF PF ⋅⋅==,故选.C10.【答案】C解:双曲线的两个顶点之间的距离是2,小于4,∴当直线与双曲线左右两支各有一个交点时,过双曲线的焦点一定有两条直线使得两交点之间的距离等于4,当直线与实轴垂直时,有2312y -=,解得2y =±, ∴此时直线AB 的长度是4,即只与右支有交点的弦长为4的线仅有一条.综上可知有三条直线满足||4AB =, 故选.C11.【答案】C解:因为e ===,所以b ∈,不妨设双曲线C 的一个焦点为,一条渐近线方程为0bx =,所以C b =∈,故选.C12.【答案】D解:直线AB :x c =-,代入双曲线方程得422b y a=,取点2(,)b A c a -,则2||b AF a=,||EF a c =+,由双曲线的对称性可得AEB ∠是钝角,只要||||AF EF >就能使04BAE π<∠<,故2b ac a>+,即22b a ac >+, 即2220c ac a -->,所以220e e -->, 解得2e >或1e <-, 又双曲线1e >,故 2.e > 故选.D13.【答案】B解:设由船P 到B 台和到A 台的距离差确定的双曲线方程为22221()x y x a a b-=>,因为船P 上接到A 台发射的电磁波比B 台电磁波早185.2s μ, 则船P 到B 台和到A 台的距离差为185.20.3||||2301.852PB PA a ⨯-===海里,故15a =,又17c =,故8b ==,故由船P 到B 台和到A 台的距离差所确定的双曲线为21(15)22564x x y x -=>,联立解得,故选.B14.【答案】ACD解:当,0m n ≠时,221mx ny +=可化为22111x y m n+=, 若0m n >>,则11m n<,故22111x y m n+=表示焦点在y 轴的椭圆,故A 正确; 若0m n =>,221mx ny +=可化为221x y n+=的圆,故B 错误;若0mn <,则C 是双曲线,令220,mx ny +=故其渐近线方程为y =,故C 正确; 若0m =,0n >,221mx ny +=可化为21y n=,即y =,表示两条直线,故D 正确.故选.ACD15.【答案】CD解:A 中,若 P 的轨迹是双曲线,则要||||PA PB k -=,且,故A 错误;B 中,过定圆C 上一定点A 作圆的动弦AB ,1()2OP OA OB =+,则P 为AB 中点, 则,CP AP ⊥所以P 在以AC 为直径的圆上,故P 点的轨迹为圆,B 错误; C 中,22520x x -+=的两根是2,12,椭圆的离心率范围是(0,1),双曲线的离心率范围是(1,)+∞,故两根可分别作为椭圆和双曲线的离心率, C 正确;D 中,双曲线的焦点是(34,0)±,椭圆的焦点(34,0)±,故D 正确. 故选.CD16.【答案】[]22-解:由题意令,得22(1)4x kx --=,整理得22(1)250k x kx -+-=,当210k -=,1k =±时,显然符合条件;当210k -≠时,有220160k=-,解得5522k -且1k ≠±, 综上,k 取值范围是5522k -, 故答案为55[,].22-17.【答案】1解:设内切圆M 切1PF 于A 点,切2PF 于B 点,切12F F 于C 点,所以有1MA PF ⊥,2MB PF ⊥,12MC F F ⊥,且||||PA PB =,11||||AF FC =,22||||.BF CF =因为12MC F F ⊥,故只要求出C 点的横坐标,就等于求出了M 点的横坐标, 由双曲线的定义可知12||||2PF PF a -=,11||||||PF PA AF =+,22||||||PF PB BF =+,12121212||||(||||)(||||)||||||||2PF PF PA AF PB BF AF BF CF CF a ∴-=+-+=-=-=,又12||||2CF CF c +=,联立可得2||CF c a =-,2(,0)F c , (,0).C a ∴又1a =,M ∴点横坐标就为1,故答案为1.18.解:设12AF F 与12BF F 的内切圆圆心分别为G ,H ,连接HG ,2HF ,2GF ,12AF F 的内切圆与三边分别切于点D ,E ,F ,如图,则12121212||||||||(||||)||||||||AF AF AD DF AE EF DF EF F F FF -=+-+=-=-, 所以2()G G a c x c x =+--,即G x a =; 同理H x a =,所以12.HG F F ⊥ 设直线AB 的倾斜角为θ,则(0,)2πθ∈,在2Rt F FG 中,,在2Rt F FH 中,2||||tan ()tan22FH FF c a θθ==-,由题得||3||FG FH =, 所以,解得3tan23θ=,所以22tan2tan 3.1tan 2θθθ==- 故答案为 3.19.【答案】解:设点,则1A B :,,则,2213m n +=, 22133n m ∴=-, ∴点P 的轨迹方程为,即点P 的轨迹方程为,同理可得,点Q 也在双曲线上,点恰为双曲线2213x y -=的左焦点, 设双曲线2213x y -=的右焦点为,∴根据双曲线定义可得:,的最小值为4 3.故答案为4 3.20.【答案】解:(1)设(,)P x y ,则123224y y k k x x =⋅=-+-, ∴曲线1C 的方程为221(2)43x y x +=≠±; (2)设双曲线2C 方程为2221(0)3y x b b-=>, 00(,)Q x y 在双曲线上,所以220021(0)3y x b b-=>, (2,0)M -200342200033y y k k x b-===, 23304b∴-+,02b ∴<,由双曲线2C 的焦距为,故双曲线2C 的焦距的取值范围为21.【答案】解:(1)联立方程组消y 整理得,依题意可得,解得2222k -<<且1.2k ≠± 故k 的取值范围为22{|22k k -<<且1}.2k ≠± (2)设M 、N 坐标分别为,,,由(1)知,直线MA 的方程为, 令0x =可得点P 坐标为,同理点Q 坐标为,由,所以,所以,所以,整理得220470k k --=,即,解得1(2k =-舍去)或710k =,7.10k ∴= 11(,)M x y 22(,)N x y。

新课标双曲线历年高考题精选(精)

新课标双曲线历年高考题精选(精)

新课标双曲线历年高考题精选1.(05上海理5假设双曲线的渐近线方程为y=±3x, 它的一个焦点是(10,0, 那么双曲线的方程为————2.(07福建理6以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是 3.(07上海理8以双曲线15422=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是4.(07天津理4设双曲线22221(00x y a b a b-=>>,抛物线24y x =的准线重合,那么此双曲线的方程为(A.2211224x y -=B.2214896x y -=C.222133x y -= D.22136x y -= 5.(04北京春理3双曲线x y 22 491-=的渐近线方程是( A.y x =±32B.y x =±23 C. y x =±94D.y x =±496.(2021安徽卷理以下曲线中离心率为的是A .22124x y -=B .22142x y -=C .22146x y -=D .221410x y -=7.(2021宁夏海南卷理双曲线24x -212y =1的焦点到渐近线的距离为(8.(2021天津卷文设双曲线0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,那么双曲线的渐近线方程为(9.(2021湖北卷文双曲线1412222222=+=-by x y x 的准线经过椭圆(b >0的焦点,那么b =(10. (2021重庆文假设双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,那么p 的值为(C (A2 (B3 (C411.(2021江西文双曲线22221(0,0x y a b a b -=>>的两条渐近线方程为3y x =±,假设顶点到渐近线的距离为1,那么双曲线方程为 223144x y -= .112.(2021山东文圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,那么适合上述条件的双曲线的标准方程为221412x y -=13.(2021安徽文双曲线22112x y n n -=-n = 414、(2021海南、宁夏文双曲线221102x y -=的焦距为( DD. 15. (2021重庆理双曲线22221x y a b-=(a >0,b >0的一条渐近线为y =kx (k >0,离心率e ,那么双曲线方程为 (C(A 22x a-224y a =1 (B222215x y a a -= (C222214x y b b -= (D222215x y b b -=16.(2021辽宁卷理以知F 是双曲线的左焦点,是双曲线右支上的动点,那么的最小值为17.(2021辽宁文双曲线22291(0y m x m -=>的一个顶点到它的一条渐近线的距离为15,那么m =( D A .1B .2C .3 D .4 18.(04湖南文4如果双曲线1121322=-y x 上一点P 到右焦点的距离为13, 那么点P 到右准线的距离是(17.(2021四川文双曲线22:1916x y C -=的左右焦点分别为12,F F ,P 为C 的右支上一点,且212PF FF =,那么12PFF ∆的面积等于( C (A24 (B36 (C48 (D9619.(04天津理4设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,假设3||1=PF ,那么=||2PFA. 1或5B. 6C. 7D. 920.(05全国Ⅱ理6双曲线136=-的焦点为F 1、F 2,点M 在双曲线上且MF 1⊥x 轴,那么F 1到直线F 2M 的距离为21(05全国Ⅲ理9双曲线2212y x -=的焦点为12F F 、,点M 在双曲线上且120MF MF ⋅= ,那么点M 到x 轴的距离为( 22.(05湖南理7双曲线22a x -22b y =1(a >0,b >0的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点,那么两渐近线的夹角为(A 、30º B 、45º C 、60º D 、90º23.(07福建理6以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( A .221090x y x +-+= B .2210160x y x +-+= C .2210160x y x +++= D .221090x y x +++=30.(07辽宁理11设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,假设12||:||3:2PF PF =,那么12PFF △的面积为(A .B .12C .D .2424.(07四川理5如果双曲线12422=-y x 上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是25(07陕西理7双曲线C :12222=-by c a (a >0,b >0,以C 的右焦点为圆心且与C 的浙近线相切的圆的半径是 A.ab B.22b a + C.a D.b26.(07重庆理16过双曲线224x y -=的右焦点F 作倾斜角为105 的直线,交双曲线于P Q ,两点,那么FP FQ 的值为______.27.(2021山东卷理设双曲线122=-ba 的一条渐近线与抛物线y=x 2+1 只有一个公共点,那么双曲线的离心率为( .28.(2021四川卷文、理双曲线0(12222>=-b by x 的左、右焦点分别是1F 、2F ,其一条渐近线方程为x y =,点,3( 0y P 在双曲线上.那么1PF ·2PF =(29.(2021全国卷Ⅱ理双曲线(222210,0x y C a b a b-=>>:的右焦点为F ,过F 且斜率C 于A B 、两点,假设4AF FB =,那么C 的离心率为 (30.(2021江西卷文设1F 和2F 为双曲线22221x y a b-=(0,0a b >>的两个焦点, 假设12F F ,,(0,2P b 是正三角形的三个顶点,那么双曲线的离心率为31.(2021湖北卷理双曲线22122x y -=的准线过椭圆22214x y b+=的焦点,那么直线2y kx =+与椭圆至多有一个交点的充要条件是( A.11,22K ⎡⎤∈-⎢⎥⎣⎦B.11,,22K ⎛⎤⎡⎫∈-∞-+∞⎪⎥⎢⎝⎦⎣⎭ C. K ⎡∈⎢⎣⎦ D. ,K ⎛⎫∈-∞+∞⎪⎪⎝⎦⎣⎭32.(2021全国卷Ⅰ理设双曲线22221x y a b-=(a >0,b >0的渐近线与抛物线y=x 2 +1相切,那么该双曲线的离心率等于( 33.(2021全国卷Ⅱ文双曲线13622=-y x 的渐近线与圆0(3(222>=+-r r y x 相切,那么r = (34.(2021福建卷文假设双曲线(222213x y a o a -=>的离心率为2,那么a 等于(35.(2021全国卷Ⅰ文设双曲线(222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,那么该双曲线的离心率等于(36.(2021重庆卷理双曲线的左、右焦点分别为,假设双曲线上存在一点使,那么该双曲线的离心率的取值范围是 .37.(2021湖南卷文过双曲线C :的一个焦点作圆的两条切线, 切点分别为A ,B ,假设(O 是坐标原点,那么双曲线线C 的离心率为 2 .38.(2021湖南卷理以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,那么双曲线C 的离心率为39.(2021湖南文双曲线0,0(12222>>=-b a b y ax 的右支上存在一点,它到右焦点及左准线的距离相等,那么双曲线离心率的取值范围是( CA .(1B .+∞C .(11]D .1,+∞ 40.(2021浙江文、理假设双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,那么双曲线的离心率是(41. (2021湖南理假设双曲线22221x y a b-=(a >0,b >0上横坐标为32a的点到右焦点的距离大于它到左准线的距离,那么双曲线离心率的取值范围是( B.A.(1,2B.(2,+∞C.(1,5D. (5,+∞(2021海南、宁夏理过双曲线221916x y -=的右顶点为A ,右焦点为F 。

专题23 双曲线(解答题压轴题)(学生版)-2024年高考数学压轴专题复习

专题23 双曲线(解答题压轴题)(学生版)-2024年高考数学压轴专题复习

专题23 双曲线(解答题压轴题)
目录
①双曲线的弦长问题 (1)
②双曲线的中点弦问题 (2)
③双曲线中的参数及范围问题 (4)
④双曲线中的最值问题 (6)
⑤双曲线中面积问题 (8)
⑥双曲线中定点、定值、定直线问题 (10)
⑦双曲线中向量问题 (12)
⑧双曲线综合问题 (13)
①双曲线的弦长问题
②双曲线的中点弦问题
1.(2023·全国·高三专题练习)已知()()2,0,2,0A B -,直线,AM BM 相交于点M ,且它们的斜率之积是3.(1)求点M 的轨迹C 的方程;
(2)过点()2,3N 能否作一条直线m 与轨迹C 交于两点P ,Q ,且点N 是线段PQ 的中点?若能,求出直线m 的方程;若不能,说明理由.
(1)求点N的轨迹方程;
(2)记点N的轨迹为曲线Γ,过点
31
,
22
P⎛⎫

⎝⎭
是否存在一条直线l,
线段CD中点.
③双曲线中的参数及范围问题
(1)求双曲线E 的方程;
(2)若直线:1l y kx =-与双曲线P ,Q 两点,求
MN
PQ
的取值范围.
④双曲线中的最值问题
⑤双曲线中面积问题
⑥双曲线中定点、定值、定直线问题
(1)求双曲线C的标准方程;
(2)设直线AP,AQ的斜率分别为
(3)证明:直线MN过定点.
⑦双曲线中向量问题
⑧双曲线综合问题
(1)求双曲线E的离心率;
(2)如图,O为坐标原点,动直线
积恒为8,试探究:是否存在总与直线若不存在,说明理由.。

高考题(双曲线)liti

高考题(双曲线)liti

例题1、已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1. (Ⅰ)求椭圆C 的方程;(Ⅱ)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,OPOM =λ,求点M 的轨迹方程,并说明轨迹是什么曲线。

解:(Ⅰ)设椭圆长半轴长及半焦距分别为a c ,,由已知得1,4,37a c a c a c -=⎧==⎨+=⎩解得, 所以椭圆C 的标准方程为221167x y += (Ⅱ)设(,)M x y ,其中[]4,4x ∈-。

由已知222OP OMλ=及点P 在椭圆C 上可得2222911216()x x y λ+=+。

整理得2222(169)16112x y λλ-+=,其中[]4,4x ∈-。

(i )34λ=时。

化简得29112y =所以点M 的轨迹方程为47(44)3y x =±-≤≤,轨迹是两条平行于x 轴的线段。

(ii )34λ≠时,方程变形为2222111211216916x y λλ+=-,其中[]4,4x ∈-当304λ<<时,点M 的轨迹为中心在原点、实轴在y 轴上的双曲线满足44x -≤≤的部分。

当314λ<<时,点M 的轨迹为中心在原点、长轴在x 轴上的椭圆满足44x -≤≤的部分;当1λ≥时,点M 的轨迹为中心在原点、长轴在x 轴上的椭圆;例题2已知两定点()()122,0,2,0F F -,满足条件212PF PF -=的点P 的轨迹是曲线E ,直线1y kx =-与曲线E 交于,A B 两点。

(I) 求实数 k 的取值范围;(II) 如果63AB =,且曲线E 上存在点C ,使OA OB mOC +=,求m 的值和ABC ∆的面积S 。

解:由双曲线的定义可知,曲线E 是以()()122,0,2,0F F -为焦点的双曲线的左支,且2,1c a ==,易知1b =,故曲线E 的方程为()2210x y x -=<设()()1122,,,A x y B x y ,由题意建立方程组2211y kx x y =-⎧⎨-=⎩ 消去y ,得()221220k x kx -+-=又已知直线与双曲线左支交于两点,A B ,有()()222122122102810201201k k k k x x k x x k ⎧-≠⎪∆=+->⎪⎪-⎨+=<⎪-⎪-⎪=>-⎩解得21k -<<-又∵2121AB k x x =+⋅-()22121214k x x x x =+⋅+-2222221411k k k k --⎛⎫=+⋅-⨯ ⎪--⎝⎭()()()22221221k k k +-=-依题意得 ()()()2222122631k k k +-=-整理后得422855250k k -+= ∴257k =或254k = 但21k -<<-∴52k =-故直线AB 的方程为5102x y ++=设(),c c C x y ,由已知OA OB mOC+=,得()()()1122,,,c c x y x y mx my +=∴()1212,,c c x x y y mx my mm ++⎛⎫= ⎪⎝⎭,()0m ≠又1222451kx x k +==--,()21212222222811k y y k x x k k +=+-=-==--∴点458,C m m ⎛⎫- ⎪⎪⎝⎭将点C 的坐标代入曲线E 的方程,得2280641m m-=得4m =±,但当4m =-时,所得的点在双曲线的右支上,不合题意 ∴4m =,C 点的坐标为()5,2-C 到AB 的距离为()225521213512⨯-++=⎛⎫+ ⎪⎝⎭ ∴ABC ∆的面积1163323S =⨯⨯=例题3、双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 解:(Ⅰ)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠==由倍角公式∴22431b a b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率52e =. (Ⅱ)过F 直线方程为()a y x c b =--,与双曲线方程22221x y a b-=联立将2a b =,5c b =代入,化简有2215852104x x b b -+=222121212411()4a a x x x x x x b b ⎡⎤⎛⎫⎛⎫⎡⎤=+-=++-⎢⎥ ⎪⎪⎣⎦⎝⎭⎝⎭⎢⎥⎣⎦将数值代入,有2232528454155b b⎡⎤⎛⎫⎢⎥=- ⎪⎢⎥⎝⎭⎣⎦,解得3b = 故所求的双曲线方程为221369x y-=。

2022年高考数学真题:解析几何(解析版)

2022年高考数学真题:解析几何(解析版)

第7讲解析几何一、单选题1.(2022·全国·高考真题(理))双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 的两支交于M ,N 两点,且123cos 5F NF ,则C 的离心率为()AB .32C .132D .172【答案】C 【解析】【分析】依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,可判断N 在双曲线的右支,设12F NF ,21F F N ,即可求出sin ,sin ,cos ,在21F F N 中由12sin sin F F N 求出12sin F F N ,再由正弦定理求出1NF ,2NF ,最后根据双曲线的定义得到23b a ,即可得解;【详解】解:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,所以1OG NF ,因为123cos 05F NF,所以N 在双曲线的右支,所以OG a ,1OF c ,1GF b ,设12F NF ,21F F N ,由123cos 5F NF,即3cos 5 ,则4sin 5=,sin a c ,cos b c ,在21F F N 中,12sin sin sin F F N 4334sin cos cos sin 555b a a bc c c,由正弦定理得211225sin sin sin 2NF NF c c F F N ,所以112553434sin 2252c c a b a b NF F F N c,2555sin 222c c a a NF c 又12345422222a b a b aNF NF a,所以23b a ,即32b a ,所以双曲线的离心率132c e a故选:C2.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()AB .22C .12D .13【答案】A 【解析】【分析】设 11,P x y ,则 11,Q x y ,根据斜率公式结合题意可得2122114y x a ,再根据2211221x y a b,将1y 用1x 表示,整理,再结合离心率公式即可得解.【详解】解: ,0A a ,设 11,P x y ,则 11,Q x y ,则1111,AP AQ y y k k x a x a,故21112211114AP AQy y y k k x a x a x a ,又2211221x y a b ,则2221212b a x y a,所以2221222114b a x a x a ,即2214b a ,所以椭圆C的离心率c e a 故选:A.3.(2022·全国·高考真题(文))设F 为抛物线2:4C y x 的焦点,点A 在C 上,点(3,0)B ,若AF BF ,则AB ()A .2B.C .3D.【答案】B 【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A 的横坐标,进而求得点A 坐标,即可得到答案.【详解】由题意得, 1,0F ,则2AF BF ,即点A 到准线1x 的距离为2,所以点A 的横坐标为121 ,不妨设点A 在x 轴上方,代入得, 1,2A ,所以AB .故选:B4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA,则C 的方程为()A .2211816x y B .22198x y +=C .22132x y D .2212x y 【答案】B 【解析】【分析】根据离心率及12=1BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率13c e a ,解得2289b a ,2289 b a ,12,A A 分别为C 的左右顶点,则 12,0,,0A a A a ,B 为上顶点,所以(0,)B b .所以12(,),(,) BA a b BA a b ,因为121BA BA所以221 a b ,将2289b a 代入,解得229,8a b ,故椭圆的方程为22198x y +=.故选:B.二、多选题5.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p 焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM ,则()A .直线AB 的斜率为B .||||OB OF C .||4||AB OF D .180OAM OBM【答案】ACD 【解析】【分析】由AF AM 及抛物线方程求得3(4p A ,再由斜率公式即可判断A 选项;表示出直线AB 的方程,联立抛物线求得(,3p B ,即可求出OB 判断B 选项;由抛物线的定义求出2512pAB即可判断C 选项;由0OA OB ,0MA MB 求得AOB ,AMB 为钝角即可判断D 选项.【详解】对于A ,易得(,0)2pF ,由AF AM 可得点A 在FM 的垂直平分线上,则A 点横坐标为3224p pp ,代入抛物线可得2233242p y p p ,则36(,)42p p A ,则直线AB的斜率为2342p p A 正确;对于B,由斜率为AB的方程为2p x y,联立抛物线方程得220y py p ,设11(,)B x y1p y p,则1y,代入抛物线得2123p x,解得13p x,则6(,)33p B ,则32p OB OF ,B 错误;对于C ,由抛物线定义知:325244312p p pAB p p OF,C 正确;对于D,2333(,)(,)0423343234p p p p p OA OB,则AOB 为钝角,又2225((,)043436p p p p p MA MB,则AMB 为钝角,又360AOB AMB OAM OBM ,则180OAM OBM ,D 正确.故选:ACD.6.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p 上,过点(0,1)B 的直线交C 于P ,Q 两点,则()A .C 的准线为1yB .直线AB 与C 相切C .2|OP OQ OA D .2||||||BP BQ BA 【答案】BCD 【解析】【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C 、D.【详解】将点A 的代入抛物线方程得12p ,所以抛物线方程为2x y ,故准线方程为14y ,A 错误;1(1)210AB k,所以直线AB 的方程为21y x ,联立221y x x y,可得2210x x ,解得1x ,故B 正确;设过B 的直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点,所以,直线l 的斜率存在,设其方程为1y kx ,1122(,),(,)P x y Q x y ,联立21y kx x y,得210x kx ,所以21212Δ401k x x k x x,所以2k 或2k ,21212()1y y x x ,又||OP,||OQ所以2||||||2||OP OQ k OA ,故C 正确;因为1|||BP x,2||||BQ x ,所以2212||||(1)||15BP BQ k x x k ,而2||5BA ,故D 正确.故选:BCD 三、填空题7.(2022·全国·高考真题)已知椭圆2222:1(0)x y C a b a b,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE ,则ADE的周长是________________.【答案】13【解析】【分析】利用离心率得到椭圆的方程为222222213412043x y x y c c c ,即,根据离心率得到直线2AF 的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE的方程:x c ,代入椭圆方程22234120x y c,整理化简得到:221390y c ,利用弦长公式求得138c,得1324a c ,根据对称性将ADE 的周长转化为2F DE △的周长,利用椭圆的定义得到周长为413a .【详解】∵椭圆的离心率为12c e a,∴2a c ,∴22223b a c c ,∴椭圆的方程为222222213412043x y x y c c c,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ,,,∴23AF O,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE直线DE 的方程:x c ,代入椭圆方程22234120x y c ,整理化简得到:221390y c ,判别式22224139616c c ,∴12226461313cCD y,∴138c,得1324a c ,∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ,,∴ADE 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为222211*********DF EF DE DF EF DF EF DF DF EF EF a a a .故答案为:13.8.(2022·全国·高考真题)设点(2,3),(0,)A B a ,若直线AB 关于y a 对称的直线与圆22(3)(2)1x y 有公共点,则a 的取值范围是________.【答案】13,32【解析】【分析】首先求出点A 关于y a 对称点A 的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【详解】解: 2,3A 关于y a 对称的点的坐标为 2,23A a , 0,B a 在直线y a 上,所以A B 所在直线即为直线l ,所以直线l 为32a y x a,即 3220a x y a ;圆 22:321C x y ,圆心 3,2C ,半径1r ,依题意圆心到直线l 的距离1d,即 2225532a a ,解得1332a ,即13,32a;故答案为:13,329.(2022·全国·高考真题)已知直线l 与椭圆22163x y 在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||MA NB MNl 的方程为___________.【答案】0x 【解析】【分析】令AB 的中点为E ,设 11,A x y , 22,B x y ,利用点差法得到12OE AB k k ,设直线:AB y kx m ,0k ,0m ,求出M 、N 的坐标,再根据MN 求出k 、m ,即可得解;【详解】解:令AB 的中点为E ,因为MA NB ,所以ME NE ,设 11,A x y , 22,B x y ,则2211163x y ,2222631x y ,所以2222121206633x x y y ,即 12121212063x x x x y y y y 所以1212121212y y y y x x x x ,即12OE AB k k ,设直线:AB y kx m ,0k ,0m ,令0x 得y m ,令0y 得m x k,即,0m M k , 0,N m ,所以,22m m E k,即1222mk m k,解得k 22k (舍去),又MNMN 2m 或2m (舍去),所以直线2:22AB y x,即0x;故答案为:0x 10.(2022·全国·高考真题)写出与圆221x y 和22(3)(4)16x y 都相切的一条直线的方程________________.【答案】3544y x 或7252424y x 或1x 【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y 的圆心为 0,0O ,半径为1,圆22(3)(4)16x y 的圆心1O 为(3,4),半径为4,5 ,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k ,所以34l k ,设方程为3(0)4y x t t O 到l的距离1d,解得54t,所以l 的方程为3544y x ,当切线为m 时,设直线方程为0kx y p ,其中0p ,0k ,由题意14,解得7242524k p,7252424y x 当切线为n 时,易知切线方程为1x ,故答案为:3544y x 或7252424y x 或1x.11.(2022·全国·高考真题(理))若双曲线2221(0)x y m m的渐近线与圆22430x y y 相切,则m _________.【解析】【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.【详解】解:双曲线 22210x y m m的渐近线为y x m ,即0x my ,不妨取0x my ,圆22430x y y ,即 2221x y ,所以圆心为 0,2,半径1r ,依题意圆心 0,2到渐近线0x my 的距离1d ,解得3m或33m (舍去).12.(2022·全国·高考真题(文))记双曲线2222:1(0,0)x y C a b a b的离心率为e ,写出满足条件“直线2y x 与C 无公共点”的e 的一个值______________.【答案】2(满足1e 【解析】【分析】根据题干信息,只需双曲线渐近线by x a 中02b a即可求得满足要求的e 值.【详解】解:2222:1(0,0)x y C a b a b ,所以C 的渐近线方程为b y x a,结合渐近线的特点,只需02b a ,即224b a,可满足条件“直线2y x 与C 无公共点”所以 c e a又因为1e ,所以1e故答案为:2(满足1e 13.(2022·全国·高考真题(文))设点M 在直线210x y 上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.【答案】22(1)(1)5x y 【解析】【分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M 在直线210x y 上,∴设点M 为(,12) a a ,又因为点(3,0)和(0,1)均在M 上,∴点M 到两点的距离相等且为半径R ,R ,222694415 a a a a a ,解得1a ,∴(1,1)M,R M 的方程为22(1)(1)5x y .故答案为:22(1)(1)5x y 14.(2022·全国·高考真题(文))过四点(0,0),(4,0),(1,1),(4,2) 中的三点的一个圆的方程为____________.【答案】 222313x y 或 22215x y 或224765339x y或2281691525x y;【解析】【分析】设圆的方程为220x y Dx Ey F ,根据所选点的坐标,得到方程组,解得即可;【详解】解:依题意设圆的方程为220x y Dx Ey F ,若过 0,0, 4,0, 1,1 ,则01640110F D F D E F ,解得046F D E,所以圆的方程为22460x y x y ,即 222313x y ;若过 0,0, 4,0, 4,2,则01640164420F D F D E F ,解得042F D E,所以圆的方程为22420x y x y ,即 22215x y ;若过 0,0, 4,2, 1,1 ,则0110164420F D E F D E F ,解得083143F D E,所以圆的方程为22814033x y x y ,即224765339x y;若过 1,1 , 4,0, 4,2,则1101640164420D E F D F D E F ,解得1651652F D E,所以圆的方程为2216162055x y x y ,即 2281691525x y;故答案为: 222313x y 或 22215x y 或224765339x y或2281691525x y;四、解答题15.(2022·全国·高考真题)已知双曲线2222:1(0,0)x y C a b a b的右焦点为(2,0)F ,渐近线方程为y .(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点 1122,,,P x y Q x y 在C 上,且1210,0x x y .过P且斜率为QM .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB .注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)2213y x (2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k ;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y,由②//PQ AB 等价转化为003ky x ,由①M 在直线AB 上等价于 2002ky k x ,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c ,∵渐近线方程为y,∴bab ,∴222244c a b a ,∴1a,∴b .∴C 的方程为:2213y x ;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x ,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为 2y k x ,则条件①M 在AB 上,等价于 2000022y k x ky k x ;两渐近线的方程合并为2230x y ,联立消去y 并化简整理得: 22223440k x k x k 设 3334,,,A x y B x y ,线段中点为 ,N N N x y ,则 2342226,2233N N N x x k kx y k x k k ,设 00,M x y ,则条件③AM BM 等价于 222203030404x x y y x x y y ,移项并利用平方差公式整理得:3403434034220x x x x x y y y y y ,3403403434220y y x x x y y y x x ,即 000N N x x k y y ,即200283k x ky k ;由题意知直线PM的斜率为直线QM∴由10102020,y y x x y y x x ,∴ 121202y y x x x ,所以直线PQ的斜率 1201212122x x x y y m x x x x,直线 00:PM y x x y ,即00y y ,代入双曲线的方程22330x y ,即3yy 中,得:00003y y ,解得P的横坐标:100x y x,同理:200x y x,∴0012012002222000033,2,33y x x x y x x x x y x y x∴03x m y,∴条件②//PQ AB 等价于003m k ky x ,综上所述:条件①M 在AB 上,等价于 2002ky k x ;条件②//PQ AB 等价于003ky x ;条件③AM BM 等价于200283k x ky k ;选①②推③:由①②解得:2200002228,433k k x x ky x k k ,∴③成立;选①③推②:由①③解得:20223k x k ,20263k ky k ,∴003ky x ,∴②成立;选②③推①:由②③解得:20223k x k ,20263k ky k ,∴02623x k ,∴ 2002ky k x ,∴①成立.16.(2022·全国·高考真题)已知点(2,1)A 在双曲线2222:1(1)1x yC a a a 上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ,求PAQ △的面积.【答案】(1)1 ;(2)1629.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m ,1122,,,P x y Q x y ,再根据0AP BP k k ,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ 即可求出直线,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x y C a a a 上,所以224111a a ,解得22a ,即双曲线22:12x C y 易知直线l 的斜率存在,设:l y kx m , 1122,,,P x y Q x y ,联立2212y kx mx y 可得, 222124220k x mkx m ,所以,2121222422,2121mk m x x x x k k ,22222216422210120m k m k m k .所以由0AP BP k k 可得,212111022y y x x ,即 122121210x kx m x kx m ,即 1212212410kx x m k x x m ,所以 2222242124102121m mk k m k m k k,化简得, 2844410k k m k ,即 1210k k m ,所以1k 或12m k ,当12m k 时,直线 :21l y kx m k x 过点 2,1A ,与题意不符,舍去,故1k .(2)不妨设直线,PA PB 的倾斜角为 , ,因为0AP BP k k ,所以π ,因为tan PAQtantan 2 ,2tan 0,解得tan ,于是,直线 :21PA y x,直线 :21PB y x ,联立 222112y x x y可得,23211002x x ,因为方程有一个根为2,所以103P x ,P y53,同理可得,10423Q x,Q y 4253.所以5:03PQ x y ,163PQ,点A 到直线PQ的距离223d,故PAQ △的面积为1162317.(2022·全国·高考真题(理))设抛物线2:2(0)C y px p 的焦点为F ,点 ,0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF .(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为, .当 取得最大值时,求直线AB 的方程.【答案】(1)24y x ;(2):4AB x .【解析】【分析】(1)由抛物线的定义可得=2pMF p,即可得解;(2)设点的坐标及直线:1MN x my ,由韦达定理及斜率公式可得2MN AB k k ,再由差角的正切公式及基本不等式可得22AB k,设直线:AB x n ,结合韦达定理可解.(1)抛物线的准线为2px ,当MD 与x 轴垂直时,点M 的横坐标为p ,此时=32pMF p,所以2p ,所以抛物线C 的方程为24y x ;(2)设222231241234,,,,,,,4444y y y y M y N y A y B y,直线:1MN x my ,由214x my y x可得2440y my ,120,4y y ,由斜率公式可得12221212444MN y y k y y y y,34223434444AB y y k y y y y ,直线112:2x MD x y y,代入抛物线方程可得 1214280x y y y ,130,8y y ,所以322y y ,同理可得412y y ,所以 34124422MNAB k k y y y y又因为直线MN 、AB 的倾斜角分别为, ,所以tan tan 22MN AB k k,若要使 最大,则0,2,设220MN AB k k k ,则2tan tan 12tan 11tan tan 1242k k k k,当且仅当12k k即2k 时,等号成立,所以当 最大时,22AB k,设直线:AB x n ,代入抛物线方程可得240y n ,34120,4416y y n y y ,所以4n ,所以直线:4AB x .【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.18.(2022·全国·高考真题(文))已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过 30,2,,12A B两点.(1)求E 的方程;(2)设过点 1,2P 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH.证明:直线HN 过定点.【答案】(1)22143y x (2)(0,2) 【解析】【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解.(1)解:设椭圆E 的方程为221mx ny ,过 30,2,,12A B,则41914n m n ,解得13m ,14n ,所以椭圆E 的方程为:22143y x .(2)3(0,2),(,1)2A B ,所以2:23AB y x ,①若过点(1,2)P 的直线斜率不存在,直线1x .代入22134x y,可得(1,3M,(1,N ,代入AB 方程223y x,可得3,)3T ,由MT TH得到H .求得HN方程:(22y x ,过点(0,2) .②若过点(1,2)P 的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y .联立22(2)0,134kx y k x y得22(34)6(2)3(4)0k x k k x k k ,可得1221226(2)343(4)34k k x x k k k x x k ,12222228(2)344(442)34k y y k k k y y k,且1221224(*)34kx y x y k联立1,223y y y x可得111113(3,),(36,).2y T y H y x y 可求得此时1222112:()36y y HN y y x x y x x,将(0,2) ,代入整理得12121221122()6()3120x x y y x y x y y y ,将(*)代入,得222241296482448482436480,k k k k k k k 显然成立,综上,可得直线HN 过定点(0,2). 【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 圆锥曲线方程——双曲线
【考试要求】
(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.
【考题】
1、 (全国Ⅰ卷文8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,
∠1F P 2F =060,则12||||PF PF =g
( )
A .2
B .4
C . 6
D . 8
2、 (全国Ⅰ新卷文5)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为( )
A B
3、 (天津卷理5)已知双曲线()22
2210,0x y a b a b
-=>>的一条渐近线方程是y =,它的
一个焦点在抛物线2
24y x =的准线上,则双曲线的方程为(

A .22136108x y -=
B .22
1927x y -=
C .22110836x y -=
D .22
1279
x y -=
4、 (安徽卷理5)双曲线方程为2221x y -=,则它的右焦点坐标为(

A .⎫
⎪⎪⎝⎭
B .⎫
⎪⎪⎝⎭
C .⎫
⎪⎪⎝⎭
D .
)
5、 (福建卷理7)若点O 和点(2,0)F -分别是双曲线2
221(a>0)a
x y -=的中心和左焦点,点P
为双曲线右支上的任意一点,则OP FP ⋅u u u r u u u r
的取值范围为( )
A .)+∞
B .[3)++∞
C .7
[-,)4+∞ D .7[,)4
+∞
6、 (浙江卷理8)设1F 、2F 分别为双曲线22
221(0,0)x y a b a b
-=>>的左、右焦点.若在双曲
线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )
A .340x y ±=
B .350x y ±=
C .430x y ±=
D .540x y ±=
7、 (辽宁卷理9文9)设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双
曲线的一条渐近线垂直,那么此双曲线的离心率为( )
A B .
12 D .1
2
8、 (全国Ⅰ卷理9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则P 到x 轴的距离为(

A .
2 B .2
C .. 9、 (浙江卷文10)设O 为坐标原点,1F ,2F 是双曲线22
22x y 1a b
-=(a >0,b >0)的焦点,若
在双曲线上存在点P ,满足∠1F P 2F =60°
,∣OP ∣,则该双曲线的渐近线方程为( )
A .x
B x ±y=0
C .x =0
D ±y=0
10、(全国Ⅰ新卷理12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(

A . 22
136x y -=
B . 22
145x y -=
C . 22163x y -=
D . 22
154
x y -=
11、(江苏卷6)在平面直角坐标系xOy 中,双曲线112
42
2=-y x 上一点M ,点M 的横坐标是3,
则M 到双曲线右焦点的距离是__________
12、(北京卷理13文13)已知双曲线22
221x y a b
-=的离心率为2,焦点与椭圆221259x y +=的焦
点相同,那么双曲线的焦点坐标为 ;渐近线方程为 。

13、(上海卷理13)如图所示,直线x=2与双曲线
2
2:
14
y λΓ-=的渐近线交于1E ,2E 两点,记
1122,OE e OE e ==u u u u r u u u u r u v u u v
,任取双曲线Γ上的点P ,若
12,()OP ae be a b R =+∈u u u r u u u v u u u v
、,则a 、b 满足的一个等式是
14、(天津卷文13)已知双曲线22
221(0,0)x y a b a b
-=>>的一条渐近线方程是3y x =,它的
一个焦点与抛物线2
16y x =的焦点相同。

则双曲线的方程为 。

15、(江西卷理15文15)点00()A x y ,在双曲线22
1432
x y -=的右支上,若点A 到右焦点的距
离等于02x ,则0x =
16、(广东卷理20)一条双曲线2
212
x y -=的左、
右顶点分别为A 1,A 2,点11(,)P x y ,11(,)Q x y -是双曲线上不同的两个动点。

(1)求直线A 1P 与A 2Q 交点的轨迹E 的方程式;
(2)若过点H (0, h )(h>1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且12l l ⊥ ,求h 的值。

17、(全国Ⅱ卷理21文22)己知斜率为1的直线l 与双曲线C :()22
22100x y a b a b
-=>,>相
交于B 、D 两点,且BD 的中点为()1,3M . (Ⅰ)求C 的离心率;
(Ⅱ)设C 的右顶点为A ,右焦点为F ,17DF BF =g ,证明:过A 、B 、D 三点的圆与x 轴相切.
18、(重庆卷理20)已知以原点O 为中心,(5,0)F 为右焦点的双曲线C 的离心率5e =(Ⅰ)求双曲线C 的标准方程及其渐近线方程;
(Ⅱ)如题(20)图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求△OGH 的面积.
【答案】1-10 BDBCB CDBDB
11、4
12、()4,0±,3y x =
13、4ab=1
14、22
1412
x y -=
15、2
16、2
212
x y +=3h =
17、2;略
18、2
21;20;24
x y x y -=±=。

相关文档
最新文档