自动控制原理总复习资料(完美)
自动控制原理复习资料
一、单选题(共20题,40分)1、在伯德图中反映系统抗高频干扰能力的是( )(2.0)A、低频段B、中频段C、高频段D、无法反应正确答案: C2、设单位负反馈控制系统的开环传递函数G(s)=,其中K>0,a>0,则闭环控制系统的稳定性与()o(2.0)A、K值的大小有关B、a值的大小有关C、a和K值的大小有关D、a和K值的大小无关正确答案: D3、关于线性系统稳态误差,正确的说法是:( )(2.0)A、一型系统在跟踪斜坡输入信号时无误差B、C、增大系统开环增益K可以减小稳态误差D、增加积分环节可以消除稳态误差,而且不会影响系统稳定性正确答案: C4、传递函数定义线性定常系统在零初始状态下系统输出拉氏变换与输入拉氏变换之()。
(2.0)A、积B、比C、和D、差正确答案: B5、下列系统中属于不稳定的系统是( )。
(2.0)A、闭环极点为的系统B、闭环特征方程为的系统C、阶跃响应为的系统D、脉冲响应为的系统正确答案: D6、系统开环对数幅频特性L(ω)中频段主要参数的大小对系统的()性能无影响。
(2.0)A、动态B、稳态C、相对稳定性D、响应的快速性正确答案: D7、设控制系统的开环传递函数为,该系统为( )(2.0)A、 0型系统B、Ⅰ型系统C、Ⅱ型系统D、Ⅲ型系统正确答案: B8、确定系统根轨迹的充要条件是()。
(2.0)A、根轨迹的模方程B、根轨迹的相方程C、根轨迹增益D、根轨迹方程的阶次正确答案: C9、高阶系统的主导闭环极点越靠近虚轴,则系统的 ( )(2.0)A、准确度越高B、准确度越低C、响应速度越快D、响应速度越慢正确答案: D10、闭环系统的动态性能主要取决于开环对数幅频特性的( )(2.0)A、低频段B、开环增益C、高频段D、中频段正确答案: D11、Z变换中复变量z的物理含义是什么?(2.0)A、滞后一个采样周期。
B、超前一个采样周期。
C、跟复变量s一样。
D、没有什么物理含义,就是为了计算方便。
自动控制原理总复习
3.化简结构图求传递函数 ①结构图化简的方法有:
第二章
1、串联方框的简化 2、并联方框的简化 3、反馈连接方框的简化 4、比较点的移动 5、引出点移动
结构图化简原则
❖多个方框串联原则:总传递函数等于各方框传递函数之积。 ❖多个方框并联原则:总传递函数等于各方框传递函数之代数和。
有源校 正装置
无相移校正装置 相位超前校正装置 相位滞后校正装置 相位滞后—超前校正装置
4. 常用校正装置的特性
无源校正网络:电阻电容元件电路 有源校正网络:电阻电容元件电路+线性集成运算放大器
5. 串联校正的分类
1.串联超前校正:
利用超前网络的相角超前特性进行校正
2.串联滞后校正:
利用滞后网络的高频衰减特性进行校正
3.串联超前—滞后校正
第七章
1.为了从采样信号中不失真地复现原连续信号,采样周期T与频率
分量ωm的关系是:
2
T
2m
2.闭环系统脉冲传递函数形式的证明
闭环脉冲传递函数是闭环离散系统输出信号的Z变换与输入信
号的Z变换之比,即
(z) C(z) R(z)
P.276表7-3列出了典型的闭环离散系统及其输出的Z变换函数
G(s) 2(s 2) (s 1)(s 4)
G(s) (0.5s 1) (s 1)(0.25s 1)
第二章
2.传递函数的相关内容
③ 模态与闭环特征根的关系:e pit
④ 根据给定的零初条件下的系统阶跃响应形式,求得系统的 单位脉冲响应 第一步:根据给定的零初条件下的系统阶跃响应形式,写出闭 环传递函数的表达式; 第二步:得到系统输出s域的表达式; 第三步:对系统输出进行拉式反变换。
自动控制原理复习
自动控制原理复-习复习题问题1:电能变换电路的有什么特点?机械式开关为什么不适于做电能变换电路中的开关?解答:电能变换电路在输入与输出之间将电压、电流、频率、相位、相数中的一项加以变换。
电能变换电路中理想开关应满足切换时开关时间为零,使用寿命长,而机械开关不能满足这些要求。
问题2:电力电子变换电路包括哪几大类?解答:交流变直流——整流;直流变交流——逆变;直流变直流——斩波;交流变交流——交流调压、变频。
问题3:电力电子器件是如何定义和分类的?解答:电力电子器件是指可直接用于处理电能的主电路中,实现电能变换或控制的电子器件。
按照控制程度分类:不控型器件,半控型器件,全控型器件。
按驱动电路分类:电流驱动型,电压驱动型。
问题4:同处理信息的电子器件相比,电力电子器件的特点是什么?解答:特点:处理的功率大,器件处于开关状态,需要信息电子电路来控制,需要安装散热片。
问题5:使晶闸管导通的条件是什么?解答:两个条件缺一不可:(1)晶闸管阳极与阴极之间施加正向阳极电压。
(2)晶闸管门极和阴极之间必须加上适当的正向脉冲电压和电流。
问题6:维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?解答:维持晶闸管导通的条件是流过晶闸管的电流大于维持电流。
欲使之关断,只需将流过晶间管的电流减小到其维持电流以下,可采用阳极电压反向、减小阳极电压或增大回路阻抗等方式。
问题7:GTO和普通晶闸管同为PNPN结构,为什么GTO能够自关断,而普通晶闸管不能?解答:GTO能够通过门极关断的原因是其与普通晶闸管有如下区别:设计α2较大,使晶体管V2控制灵敏,易于关断GTO。
导通时α1+α2更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。
多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。
问题8:试说明IGBT、GTR、GTO和电力MOSFET各自的优缺点。
解答:GTR的容量中等,工作频率一般在10kHz以下,所需驱动功率较大,耐压高,电流大,开关特性好,。
自动控制原理知识点复习资料整理
自动控制原理知识点总结第一章1、自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2、被控制量:在控制系统中.按规定的任务需要加以控制的物理量。
3、控制量:作为被控制量的控制指令而加给系统的输入星.也称控制输入。
4、扰动量:干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。
5、反馈:通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。
反送到输入端的信号称为反馈信号。
6、负反馈:反馈信号与输人信号相减,其差为偏差信号。
7、负反馈控制原理:检测偏差用以消除偏差。
将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。
然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。
8、自动控制系统的两种常用控制方式是开环控制和闭环控制。
9、开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
10、闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
11、控制系统的性能指标主要表现在:(1)、稳定性:系统的工作基础。
(2)、快速性:动态过程时间要短,振荡要轻。
(3)、准确性:稳态精度要高,误差要小。
12、实现自动控制的主要原则有:主反馈原则、补偿原则、复合控制原则。
第二章1、控制系统的数学模型有:微分方程、传递函数、动态结构图、频率特性。
2、传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比3、求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图。
对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。
4、结构图的变换与化简化简方框图是求传递函数的常用方法。
自动控制原理
《自动控制原理》综合复习资料一、简答题1、常见的建立数学模型的方法有哪几种?各有什么特点?2、自动控制原理中,对线性控制系统进行分析的方法有哪些?3、给出梅逊公式,及其中各参数意义。
4、举例说明什么是闭环系统?它具有什么特点?5、系统的性能指标有哪些?6、幅值裕度,相位裕度各是如何定义的?7、画出自动控制系统基本组成方框结构图?8、减小稳态误差的措施主要有?9、闭环控制系统由哪几个基本单元组成? 10、增加开环零、极点对根轨迹有什么影响?二、计算题1、已知系统输入为i u ,输出为o u ,求出传递函数)(/)()(s U s U s G i o =。
2、试简化下图所示系统方框图求其传递函数:3、已知某二阶系统的单位阶跃响应为()t te et c 10602.12.01---+=,试求:(1)系统传递函数()()s R s C (5分)(2)确定系统阻尼比ξ、无阻尼振荡频率n ω。
4、设某系统的特征方程式为0161620128223456=++++++s s s s s s判断闭环系统的稳定性,若不稳定求其不稳定特征根个数。
(利用劳斯判据)5、RC 无源网络电路图如下图所示,试列写该系统的微分方程,并求传递函数Uc(s)/Ui(s)。
6、试简化下图所示系统方框图求其传递函数:7、已知系统的结构图如所示:当0=f K 、10=a K 时,试确定系统的阻尼比ξ、固有频率n ω和单位斜坡输 入时系统的稳态误差;8、已知系统如下图所示,求系统的单位阶跃响应,并判断系统的稳定性。
9、RC 无源网络电路图如下图所示,试列写该系统的微分方程,并求传递函数Uc(s)/Uc(s)。
i uc u 1C1R2R2CX rX c10S(S+1)0.5S+1G 1G 2 G 3 H 1H 210、系统方框图如图示,试用方框图变换求取传递函数)(/)(s X s Y ;11、已知单位反馈系统的开环传递函数)3s(s 2G (s)+=且初始条件为c(0)=-1,•)0(c =0。
自动控制原理复习资料
《自动控制原理》复习提纲(电气工程和自动化11级)第1章基本概念1.什么是自动控制?控制器?被控对象?自动控制系统?答:自动控制:在没有人的直接参与的情况下,利用控制装置使某种设备、工作机械或生产过程的某些物理量或工作状态能自动地按照预定的规律或数值运行或变化。
控制器:通常把控制的装置称为控制器。
被控对象:被控制的设备或工作机械。
自动控制系统:控制器和被控对象的总体。
2.什么是开环、闭环、复合控制?答:开环控制:指系统输出端与输入端之间不存在反馈回路,或者说系统的输出量不对系统的控制产生任何作用的控制过程。
闭环控制:指系统输出端与输入端之间存在反馈回路,或者说系统输出量直接或间接地参与了系统的控制。
复合控制:指开环和闭环控制相结合的一种控制方式,它是在闭环控制基础上再引入一条给定输入信号或扰动作用所构成的顺馈通路。
3.闭环控制是按什么原理,按什么进行控制的?答:闭环控制实际上是根据负反馈原理,按偏差量进行控制的。
4.对控制系统的基本要求是什么?答:(1)稳定性;(2)动态特性(快速);(3)稳态特性(准确)5.控制系统的分类。
答:一,按使用的数学模型分:(1)线性系统和非线性系统;(2)连续系统和离散系统;二,按给定输入信号特征分:(1)恒值系统;(2)随动系统;(3)程序控制系统第2章数学模型1.列写简单电路的微分方程。
例2-1,例2-4。
2.什么是系统的传递函数?有什么特点?答:在初始条件为零时,系统(或环节)输出量的拉氏变换与输入量的拉氏变换(象函数)之比,称为系统(或环节)的传递函数。
特点:(1)传递函数是一种数学模型,与系统的微分方程相对应。
(2)是系统本身的一种属性,与输入量的大小和性质无关。
(3)只适用于线性定常系统。
(4)传递函数是单变量系统描述,外部描述。
(5)传递函数是在零初始条件下定义的,不能反映在非零初始条件下系统的运动情况。
(6)一般为复变量S 的有理分式,即n ≧m。
自动控制原理复习资料
第二章 控制系统的数学模型1、传递函数(线性系统在零初始状态,脉冲输入下的响应)2、计算系统的传递函数1)列写常微分方程,得到输入r(t)与c(t)的常微分方程,再使用拉普拉斯变换为频域形式(记得系统初始状态为零),求取)()(s R s C 。
2)一些最基本的拉普拉斯变换公式as A Ae s A At s A At sA A s R s dtt r d s Y s dtt y d atnnnn+⇔⇔⇔⇔⇔⇔-,21,,),()(),()(322 3)进行反拉普拉斯变换时,即将系统的频域表达式转换成为时域表达式,一般采用部分分式分解的方法,求其中的系数时用到了留数法,见p63例2-35。
4)系统的开环传递函数与闭环传递函数的异同,注意开环传递函数和单位负反馈系统闭环传递函数之间的数学关系。
对单位负反馈系统,即H(s)=1,开环和闭环传递函数关系)()(1)(,)(11)(s s s G s G s ΦΦ-=+=Φ。
3、结构图化简和梅逊增益公式 1)理解一些基本概念比较点,引出点,前向通路,回路2)结构图化简的基本原则:保持前向通路传递函数不变,保持回路传递函数不变3)化简规则包括:引出点的前(后)移动,比较点的前(后)移动,并联相加,串联相减,回路等效(见下图)。
4)根据信号流图使用梅逊增益公式计算传递函数步骤:(a )找出所有回路,并列写回路传递函数i L ;(b)找出所有前向通路,并列写前向通路的传递函数k P ;(c )判断是否存在互不接触的独立回路,并根据公式 (11)-⎪⎪⎭⎫⎝⎛+-=∆∑∑=≠ni n j i j i i L L L 计算分母∆,其中第i 个和第j 个回路互不接触;(d )利用相同的原理计算(a )中与第k 条前向通路不接触的回路的k ∆;(e )根据梅逊增益公式∆∆∑=mk kkP 1计算系统输入到输出的传递函数)()(s R s C 。
第二章 典型习题答案课本的以下典型例题,要认真看一下,最好能试做一下。
(完整版)自动控制原理知识点汇总
自动控制原理总结第一章 绪 论技术术语1. 被控对象:是指要求实现自动控制的机器、设备或生产过程。
2. 被控量:表征被控对象工作状态的物理参量(或状态参量),如转速、压力、温度、电压、位移等。
3. 控制器:又称调节器、控制装置,由控制元件组成,它接受指令信号,输出控制作用信号于被控对象。
4. 给定值或指令信号r(t):要求控制系统按一定规律变化的信号,是系统的输入信号。
5. 干扰信号n(t):又称扰动值,是一种对系统的被控量起破坏作用的信号。
6. 反馈信号b(t):是指被控量经测量元件检测后回馈送到系统输入端的信号。
7. 偏差信号e(t):是指给定值与被控量的差值,或指令信号与反馈信号的差值。
闭环控制的主要优点:控制精度高,抗干扰能力强。
缺点:使用的元件多,线路复杂,系统的分析和设计都比较麻烦。
对控制系统的性能要求 :稳定性 快速性 准确性稳定性和快速性反映了系统的过渡过程的性能。
准确性是衡量系统稳态精度的指标,反映了动态过程后期的性能。
第二章 控制系统的数学模型拉氏变换的定义:-0()()e d st F s f t t+∞=⎰几种典型函数的拉氏变换1.单位阶跃函数1(t)2.单位斜坡函数3.等加速函数4.指数函数e -at5.正弦函数sin ωt6.余弦函数cos ωt7.单位脉冲函数(δ函数)拉氏变换的基本法则1.线性法则2.微分法则3.积分法则1()d ()f t t F s s⎡⎤=⎣⎦⎰L4.终值定理()lim ()lim ()t s e e t sE s →∞→∞==5.位移定理00()e()sf t F s ττ--=⎡⎤⎣⎦L e ()()atf t F s a ⎡⎤=-⎣⎦L 传递函数:线性定常系统在零初始条件下,输出信号的拉氏变换与输入信号的拉氏变换之比称为系统(或元部件)的传递函数。
动态结构图及其等效变换 1.串联变换法则2.并联变换法则3.反馈变换法则4.比较点前移“加倒数”;比较点后移“加本身”。
自动控制原理总复习资料(完美)
总复习第一章的概念1、典型的反馈控制系统基本组成框图:2、自动控制系统基本控制方式:(1)、反馈控制方式;(2)、开环控制方式;(3)、复合控制方式。
3、基本要求的提法:可以归结为稳定性(长期稳定性)、准确性(精度)和快速性(相对稳定性)。
第二章要求:1、掌握运用拉氏变换解微分方程的方法;2、牢固掌握传递函数的概念、定义和性质;3、明确传递函数与微分方程之间的关系;4、能熟练地进行结构图等效变换;5、明确结构图与信号流图之间的关系;6、熟练运用梅逊公式求系统的传递函数;例1 某一个控制系统动态结构图如下,试分别求系统的传递函数:)()(,)()(1211s R s C s R s C ,)()(,)()(2122S R S C s R s C 。
43213211243211111)()(,1)()()(G G G G G G G s R s C G G G G s G s R s C --=-=例2 某一个控制系统动态结构图如下,试分别求系统的传递函数:)()(,)()(,)()(,)()(s N S E s R s E s N s C s R s C 。
例例4、一个控制系统动态结构图如下,试求系统的传递函数。
X r5214323211)()(W W W W W W S X S X r c ++=例5 如图RLC 电路,试列写网络传递函数 U c (s)/U r (s).解: 零初始条件下取拉氏变换:例6某一个控制系统的单位阶跃响应为:t te et C --+-=221)(,试求系统的传递函数、微分方程和脉冲响应。
解:传递函数: )1)(2(23)(+++=s s s s G ,微分方程:)(2)(3)(2)(3)(22t r dt t dr t c dt t dc dtt c d +=++ 脉冲响应:t te et c 24)(--+-=例7一个控制系统的单位脉冲响应为t te et C ---=24)(,试求系统的传递函数、微分方程、单位阶跃响应。
(完整word版)自动控制原理复习提纲(整理版)
(完整word版)自动控制原理复习提纲(整理版)《自动控制原理》课程概念性知识复习提纲详细版第一章:1.自动控制的任务(背):是在没有人直接参与下,利用控制装置操纵被控对象,使被控量等于给定值。
2.自动控制基本方式一.按给定值操纵的开环控制二.按干扰补偿的开环控制三.按偏差调节的闭环控制3.性能要求:稳快准第二章:4.微分方程的建立:课后2.55.传递函数定义(背)线性定常系统(或元件)的传递函数为在零初始条件下,系统(或元件)的输出变量拉氏变换与输入变量拉氏变换之比。
这里的零初始条件包含两方面的意思,一是指输入作用是在t=0以后才加于系统,因此输入量及其各阶导数,在t=0-时的值为零。
二是指输入信号作用于系统之间系统是静止的,即t=0-时,系统的输出量及其各阶导数为零。
这是反映控制系统的实际工作情况的,因为式(2-38)表示的是平衡工作点附近的增量方程,许多情况下传递函数是能完全反映系统的动态性能的。
6.结构图化简:课后2.14(结构图化简一道大题,梅森公式化简一道大题)复习要点7.几种传递函数(要求:懂得原理)一.输入信号r(t)作用下的系统闭环传递函数二.干扰信号n(t)作用下的系统闭环传递函数三.闭环系统的误差传递函数8.阶跃响应,脉冲响应,传递函数之间的关系阶跃响应:H(s)=1s 单位斜坡响应:t C (s )=21s 单位脉冲响应:K(s)=Φ(s) 11()()()H s s K s s s =Φ?=? 211()()()t C s s H s s s=Φ?=? 综合可得 K(s)=sH(s) H(s)=s t C第三章:9.阶跃响应的性能指标有哪些,各个性能指标的意义是什么。
10.从平稳性,快速性和稳态精度三个方面,简述典型二阶欠阻尼系统结构参数,n对阶跃相应的影响。
由于欠阻尼二阶系统具有一对实部为负的共轭复特征根,时间响应呈衰减振荡特性,故又称为振荡环节。
系统闭环传递函数的一般形式为222()()2n n nC s R s s s ωζωω=++ 由于0<ζ<1,所以一对共轭复根为1,2n s j ζωω=-±d j σω-±式中,n σζω=,为特征根实部之模值,具有角频率量纲。
自动控制原理各章知识精选全文完整版
(s), (t) E(s), e(t) cdesired (t) c(t)
E(s) 1 (s)
H
G (s)
1
H
H
⑵ e(t) ets (t) ess (t)
暂态 稳态
单位负反馈系统开环传函
r(t)
1 2
t2
时稳态误差
Ts 1 E(s) Ts 1 s3
e(t)
T
2. 运动方程式
确定输入量、输出量 列写各元件运动方程 消除中间变量 化为标准形式
RL
u1
C u2
Fi
K
m
f
y
L
C
u1
u2
R
R1
u1
C
R2 u2
LC
d 2u2 dt 2
RC
du2 dt
u2
u1
m
d2y dt 2
f
dy dt
Ky
Fi
LC
d 2u2 dt 2
RC
du2 dt
u2
RC
du1 dt
tg1 1 2 cos1
p e 1 2 100 %
d. c(t) c() c() t ts
2%或5%
4 ts n
2%
3 ts n
5%
d. N : 振荡次数
N ts Td
Td
2 d
d n 1 2
tr , t p 评价响应速度
p , N 评价阻尼程度
ts
以分析,并将分析结果应用于工程系统的综合和自然界 系统的改善。 自动控制
毋需人直接参与,而是被控制量自动的按预定规律变 化的控制过程。
4. 开环控制、闭环控制、反馈控制原理
自动控制原理总经典总结
自动控制原理总经典总结《自动控制原理》总复习控制线性非线连续离散描述函相平面建模-时域法串联(频率法)建模-求稳定性负倒描述函数曲线自振点振幅、频绘制相求奇点和极限环求运动校正第一章 自动控制的基本概念一、学习要点1. 自动控制基本术语:自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对象、控制器、反馈、负反馈控制原理等。
2. 控制系统的基本方式:①开环控制系统;②闭环控制系统;③复合控制系统。
3. 自动控制系统的组成:由受控对象和控制器组成。
4. 自动控制系统的类型:从不同的角度可以有不同的分法,常有:恒值系统与随动系统;线性系统与非线性系统;连续系统与离散系统;定常系统与时变系统等。
5. 对自动控制系统的基本要求:稳、快、准。
6. 典型输入信号:脉冲、阶跃、斜坡、抛物线、正弦。
二、基本要求1. 对反馈控制系统的基本控制和方法有一个全面的、整体的了解。
2. 掌握自动控制系统的基本概念、术语,了解自动控制系统的组成、分类,理解对自动控制系统稳、准、快三方面的基本要求。
3. 了解控制系统的典型输入信号。
4. 掌握由系统工作原理图画方框图的方法。
三、内容结构图自动控制的由系统工作原对控制系统常用术语、基本控反馈控制系控制系控制系四、知识结构图第二章 控制系统的数学模型一、学习要点1.数学模型的数学表达式形式(1)物理系统的微分方程描述;(2)数学工具—拉氏变换及反变换; (3)传递函数及典型环节的传递函数;(4)脉冲响应函数及应用。
2.数学模型的图形表示(1)结构图及其等效变换,梅逊公式的应用;(2)信号流图及梅逊公式的应用。
二、基本要求1、正确理解数学模型的特点,对系统的相似性、简化性、动态模型、静态模型、输入变 量、输出变量、中间变量等概念,要准确掌握。
2、了解动态微分方程建立的一般方法及小偏差线性化的方法。
3、掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入 响应、零状态响应等概念有清楚的理解。
自动控制原理复习资料
∑∆∆=i i i s s Q s H )()(1)(第一章:1 闭环系统(或反馈系统)的特征:采用负反馈,系统的被控变量对控制作用有直接影响,即被控变量对自己有控制作用 。
2 典型闭环系统的功能框图。
自动控制 在没有人直接参与的情况下,通过控制器使被控对象或过程按照预定的规律运行。
自动控制系统 由控制器和被控对象组成,能够实现自动控制任务的系统。
被控制量 在控制系统中.按规定的任务需要加以控制的物理量。
控制量 作为被控制量的控制指令而加给系统的输入星.也称控制输入。
扰动量 干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。
反馈 通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。
反送到输入端的信号称为反馈信号。
负反馈 反馈信号与输人信号相减,其差为偏差信号。
负反馈控制原理 检测偏差用以消除偏差。
将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。
然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。
开环控制系统 系统的输入和输出之间不存在反馈回路,输出量对系统的控制作用没有影响,这样的系统称为开环控制系统。
开环控制又分为无扰动补偿和有扰动补偿两种。
闭环控制系统 凡是系统输出端与输入端存在反馈回路,即输出量对控制作用有直接影响的系统,叫作闭环控制系统。
自动控制原理课程中所讨论的主要是闭环负反馈控制系统。
复合控制系统 复合控制系统是一种将开环控制和闭环控制结合在一起的控制系统。
它在闭环控制的基础上,用开环方式提供一个控制输入信号或扰动输入信号的顺馈通道,用以提高系统的精度。
自动控制系统组成 闭环负反馈控制系统的典型结构如图1.2所示。
组成一个自动控制系统通常包括以下基本元件1.给定元件 给出与被控制量希望位相对应的控制输入信号(给定信号),这个控制输入信号的量纲要与主反馈信号的量纲相同。
给定元件通常不在闭环回路中。
2.测量元件 测量元件也叫传感器,用于测量被控制量,产生与被控制量有一定函数关系的信号。
自动控制原理期末考试复习资料
《自动控制原理》课程综合复习资料一、单选题1.关于自动控制系统的组成,下列说法正确的是()。
A.自动控制系统包括比较环节、控制器、执行器、被控对象和传感器五部分。
B.自动控制系统包括控制器、被控对象和传感器三部分。
C.自动控制系统包括控制器、执行器、被控对象和传感器四部分。
D.自动控制系统包括控制系统的输入、控制器、执行器、被控对象和传感器和控制系统输出等。
答案:C2.关于传递函数,下面说法正确的是()。
A.传递函数与微分方程的相互转化可以不用满足零初始条件。
B.传递函数能反映系统的物理结构。
C.系统传递函数分母的阶次n与分子的阶次m满足关系m>n。
D.传递函数只适合单输入单输出系统,不适合多输入多输出系统。
答案:D3.对复杂的结构图或信号流通图,系统的传递函数可以采用()直接求出。
A.终值定理B.初值定理C.方框图变换D.梅森增益公式答案:D4.一阶系统的单位阶跃响应曲线中,误差带选2%时,调节时间为()。
A.TB.2TC.3TD.4T答案:D5.一阶微分环节属于()类型的校正环节。
A.超前校正B.滞后校正C.先超前后滞后D.先滞后后超前 答案:A6.图中有几条回路()。
A.2条B.3条C.4条D.5条 答案:B7.信号流图特征式的计算公式为()。
A. B.C. D.答案:D8.图中有几条前向通道()。
A.2条B.3条C.4条D.5条 答案:C9.已知系统的闭环特征方程为32310330+++=s s s ,则系统实部为正的特征根个数有()。
A.0个1a b c d e f a bc defΔL L L L L L =---+∑∑∑1+a b c d e f abc defΔL L L L L L =++∑∑∑1+a b c d e f abcdefΔL L L L L L =-++∑∑∑1a b c d e f abc defΔL L L L L L =-+-+∑∑∑B.1个C.2个D.3个 答案:C10.已知系统的开环传递函数为()(1)(2)=++KG s s s s ,则闭环系统稳定的参数取值范围是()。
自动控制原理考试复习资料
一、单选题1.控制系统的稳态误差反映了系统的()A、稳态控制精度B、相对稳定性C、快速性D、平稳性答案: A2.一阶系统的单位阶跃响应曲线随时间的推移()。
A、上升B、下降C、不变D、无规律变化答案: A3.信号流图中,()的支路称为阱节点。
A、只有信号输入B、只有信号输出C、既有信号输入又有信号输出D、任意答案: B4.小型开关电源中的变压器中传递的交流电流,其频率一般为()A、几十HzB、几百HzC、几千HzD、几万Hz答案: D5.设惯性环节的频率特性为G(jω)=10/(jω+1),当频率ω从0变化至∞时,其幅相频率特性曲线是一个半圆,位于极坐标平面的()A、第一象限B、第二象限C、第三象限D、第四象限答案: D6.适合于应用传递函数描述的系统是()。
A、线性定常系统B、线性时变系统C、非线性时变系统D、非线性定常系统答案: A7.奈奎斯特稳定判据中,Z = P - R,其中R是指()A、对-1+j0点顺时针包围的次数B、对-1+j0点逆时针包围的次数C、对1+j0点顺时针包围的次数D、对1+j0点逆时针包围的次数答案: B8.单相交流调压电路,电源为220V/50Hz正弦交流电,控制角为90°时,输出交流电压有效值为()A、110VB、220VC、156VD、314V答案: C9.系统特征方程式的所有根均在复平面的左半部分是系统稳定的()A、充分条件B、必要条件C、充分必要条件D、以上都不是答案: C10.有一个IGBT,当施加栅极电压时,得到以下结果:UGS=2V时ID=0;UGS=2V时ID=0;UGS=4.5V时ID=2A;UGS=5V时ID=8A。
可以判断其开启电压为()A、>4.5VB、<4.5VC、=2VD、=5V答案: B11.传递函数的零初始条件是指t<0时系统的()。
A、输入为零B、输入、输出及各阶导数为零C、输入、输出为零D、输出及各阶导数为零答案: B12.适合应用传递函数描述的系统是()A、单输入,单输出的线性定常系统B、单输入,单输出的线性时变系统C、单输入,单输出的定常系统D、非线性系统答案: A13.若二阶系统的单位阶跃响应为非周期的趋于稳定,则系统的阻尼比应为()。
《自动控制原理》知识点资料整理总结
第一章绪论1.机械系统:以实现一定的机械运动、输出一定的机械能和承受一定的机械载荷为目的。
激励(输入):外界与系统的作用,如作用力(载荷)。
分为控制输入和扰动输入。
响应(输出):系统由于激励作用而产生的变形或位移。
2.机械工程控制论的研究对象和任务是什么?机械工程控制论实质上是研究机械工程中广义系统的动力学问题。
具体地说,是广义系统在一定的外界条件作用下,从系统的一定的初始状态出发,所经历的由其内部的固有特性所决定的整个动态历程,研究系统与其输入、输出三者之间的动态关系。
从系统、输入、输出三者之间的关系出发,根据已知条件与求解问题的不同,机械控制工程论的任务可以分为以下五个方面:(系统分析问题)已知系统和输入,求系统的输出。
(最优控制问题)已知系统和理想输出,设计输入。
(最优设计问题)已知输入和理想输出,设计系统(滤波与预测问题)已知输出,确定系统,以识别输入或输出中的有关信息。
(系统辨识问题)已知输入和输出,求系统的结构与参数。
3.控制系统的基本要求(稳、准、快)稳定性:动态过程的振荡倾向和系统能够恢复平衡状态的能力。
稳定性是系统工作的首要条件。
准确性:在调整过程结束后输出量与给定的输入量之间的偏差。
衡量系统工作性能的重要指标。
快速性:系统输出量与希望值之间产生偏差时,消除这种偏差的快速程度。
控制的三要素:控制对象、控制目标、控制手段。
控制论的两个核心:信息和反馈需要解决的两大基本问题:控制系统的分析和控制系统的设计。
4.反馈:将系统的输出以一定的方式返回到系统的输入端并共同作用于系统的过程。
内反馈:系统或过程中存在的各种自然形成的反馈。
内反馈是造成机械系统存在动态特性的根本原因。
外反馈:在自动控制系统中,为达到某种控制目的而人为加入的反馈。
正反馈:能使系统的绝对值增大的反馈。
负反馈:能使系统的绝对值减小的反馈。
5.自动控制的本质:闭环自动控制系统的工作过程就是一个“检测偏差并纠正偏差”的过程。
自动控制原理总复习资料(完美)
自动控制原理总复习资料(完美)总复第一章的概念典型的反馈控制系统基本组成框图如下:输出量串连补偿放大执行元被控对元件元件件象--反馈补偿元件测量元件自动控制系统有三种基本控制方式:反馈控制方式、开环控制方式和复合控制方式。
基本要求可以归结为稳定性(长期稳定性)、准确性(精度)和快速性(相对稳定性)。
第二章要求:1.掌握运用拉普拉斯变换解微分方程的方法。
2.牢固掌握传递函数的概念、定义和性质。
3.明确传递函数与微分方程之间的关系。
4.能熟练地进行结构图等效变换。
5.明确结构图与信号流图之间的关系。
6.熟练运用梅森公式求系统的传递函数。
例1:某一个控制系统动态结构图如下,求系统的传递函数。
C1(s)C2(s)C(s)C1(s)G1(s)G2(s)G3(s)R1(s)R2(s)R1(s)R2(s)传递函数为:C(s) = G1(s)C1(s) / [1 -G1(s)G2(s)G3(s)R1(s)R2(s)]例2:某一个控制系统动态结构图如下,求系统的传递函数。
C(s)C(s)E(s)E(s)R(s)N(s)R(s)N(s)C(s)G1(s)G2(s)-G2(s)传递函数为:C(s) = G1(s)C(s) / [1 + G1(s)G2(s)H(s)N(s)]例3:i1(t)R1 i2(t)R2R(s)+u1(t) c1(t)C1 C2 r(t)I1(s)+U1(s)112+I2(s)将上图汇总得到:R1I1(s)U1(s)C1s r(t)-u(t) = i(t) R U1(s)u(t) = [i(t) - i(t)]dt Cu(t) - c(t) = i(t)Rc(t) = i(t)dtCI2(s)R2KaC(s)1C2s(b)C(s) R(s)+R1C1sR2C2s1Ui(s)1/R11/C1sIC(s)1/R21/C2s10rad/s,试求系统的传递函数、特征方程、极点位置以及阻尼比和固有频率的物理意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总复习第一章的概念1、典型的反馈控制系统基本组成框图:2、自动控制系统基本控制方式:(1)、反馈控制方式;(2)、开环控制方式;(3)、复合控制方式。
3、基本要求的提法:可以归结为稳定性(长期稳定性)、准确性(精度)和快速性(相对稳定性)。
第二章要求:1、掌握运用拉氏变换解微分方程的方法;2、牢固掌握传递函数的概念、定义和性质;3、明确传递函数与微分方程之间的关系;4、能熟练地进行结构图等效变换;5、明确结构图与信号流图之间的关系;6、熟练运用梅逊公式求系统的传递函数;例1 某一个控制系统动态结构图如下,试分别求系统的传递函数:)()(,)()(1211s R s C s R s C ,)()(,)()(2122S R S C s R s C 。
串连补偿元件放大元件执行元件被控对象反馈补偿元件测量元件输出量主反馈局部反馈输入量--43213211243211111)()(,1)()()(G G G G G G G s R s C G G G G s G s R s C --=-=例2 某一个控制系统动态结构图如下,试分别求系统的传递函数:)()(,)()(,)()(,)()(s N S E s R s E s N s C s R s C 。
例将上图汇总得到:1()i t 2()i t 1()u t ()c t ()r t 1R 2R 1C 2C +_+_+_Ka11C s21C s 21R 1R()R s ()C s 1()U s 1()U s 1()U s 1()I s 1()I s 2()I s 2()I s 2()I s ()C s (b)(t)i R(t)u r(t)111=-⎰-=(t)]dt i (t)[i C1(t)u 2111(t)i R c(t)(t)u 221=-⎰=(t)dt i C1c(t)22+_+_+-11C s21R 21C s11R ()R s ()C s (s)H(s)(s)G G 1(s)(s)G G R(s)C(s)2121+=(s)H(s)(s)G G 1(s)G -N(s)C(s)212+=例4、一个控制系统动态结构图如下,试求系统的传递函数。
X r5214323211)()(W W W W W W S X S X r c ++=例5 如图RLC 电路,试列写网络传递函数 U c (s)/U r (s).解: 零初始条件下取拉氏变换:例6某一个控制系统的单位阶跃响应为:t te et C --+-=221)(,试求系统的传递函数、微分方程和脉冲响应。
解:传递函数: )1)(2(23)(+++=s s s s G ,微分方程:)(2)(3)(2)(3)(22t r dt t dr t c dt t dc dtt c d +=++ 脉冲响应:t te et c 24)(--+-=例7一个控制系统的单位脉冲响应为t te et C ---=24)(,试求系统的传递函数、微分方程、单位阶跃响应。
(t))()()()(22t u t u dtt du RC dt t u d LC r c c c =++11)()()(2++==RCs LCs s U s U s G r c )()()()(2s U s U s RCsU s U LCs r cc c =++=∆k K K P 1解:传递函数: )1)(2(23)(+++=s s s s G ,微分方程:)(2)(3)(2)(3)(22t r dt t dr t c dt t dc dt t c d +=++ 单位阶跃响应为:t te et C --+-=221)(第三章 本章要求:1、稳定性判断1)正确理解系统稳定性概念及稳定的充要条件。
闭环系统特征方程的所有根均具有负实部;或者说,闭环传递函数的极点均分布在平面的左半部。
2)熟练运用代数稳定判据判定系统稳定性,并进行分析计算。
2、稳态误差计算1)正确理解系统稳态误差的概念及终值定理应用的限制条件。
2)牢固掌握计算稳态误差的一般方法。
3)牢固掌握静态误差系数法及其应用的限制条件。
3、动态性能指标计算1)掌握一阶、二阶系统的数学模型和典型响应的特点。
2)牢固掌握一阶、二阶系统特征参数及欠阻尼系统动态性能计算。
3)掌握典型欠阻尼二阶系统特征参数、极点位置与动态性能的关系。
:., )/(40.5, ,1.n 解性能指标试求系统的动态信号时当输入信号为单位阶跃秒弧度其中二阶系统如图所示例==ωξ %3.16%100%100 )(91.0 t)(60.0 t 46.35.0141 )(05.16025.015.0212222p 46.31p 46.305.11r 22d 5.05.011=⨯=⨯========-=-=====----------πξξπσξωωβπξωππξωβπξξe e arctgarctgn n n 秒秒弧度 0.02 )(14.245.05.45.4 t 0.05 )(57.145.05.35.3 t s s =∆=⨯===∆=⨯==秒秒nnξωξω.K , 1 %3.16 c(t) , 2p 之值及内反馈系数益试确定前置放大器的增秒峰值时间和调量有超具阶跃响应要求该系统的单位如图所示已知某控制系统方框图例τσ==p trad/s 3.63n21p t 0.5%3.16%10021/p p )1(:=-===⨯--=ωξωπξξξπσωξσ得又得由及参数计算出二阶系统和由已知解n e np t0.263 32.1 102101n 2 222s2R(s)C(s)(3) 10)101(2s 10KR(s)C(s), (2) ===+=++=+++=τωτξωωξωωτK K n ns n nK s 解得与标准形式比较并化成标准形式求闭环传递函数例3 已知图中T m =0.2,K =5,求系统单位阶跃响应指标。
解3:系统闭环传递函数为 化为标准形式即有 2ζωn =1/T m =5, ωn2=K /T m =25 解得 ωn =5, ζ=0.5例4某控制系统动态结构图如下,要求系统阻尼比ξ=0.6,确定K 值;并计算单位阶跃函数输入时闭环系统响应的σ%、t s (5%)。
闭环传递函数:10)51(10)(2+++=Φs K s s ,由K n n 512,,,10+==ζωω 得K=0.56;例5:设控制系统的开环传递函数系统为 )32(54)(22+++=s s s s s G ,试用劳斯判据判别系统的稳定性,并确定在复平面的右半平面上特征根的数目。
解:特征方程:0542234=++++s s s s劳斯表)1(+s T s K m R (s )(-)C (s )Ks T s Ks G s G s m ++=+=Φ)1()(1)()(22222///)(n n n m m m s s T K T s s T K s ωζωω++=++=Φ%3.16%100%21=⨯=--ζπζσe 秒4.15.3==n s t ςω秒73.012=-==ςωπωπn d pt 秒486.0=-=drt ωβπ%5.9%100%21=⨯=--ζπζσe 秒4.25.3==ns t ςω控制系统不稳定,右半平面有两个特征根。
例6:一个单位负反馈控制系统的开环传递函数为:G (S )=)125.0)(11.0(++S S S K,要求系统闭环稳定。
试确定K 的范围(用劳斯判据)。
解:特征方程:0035025.023=+++K s s s劳斯表系统稳定的K 值范围(0,14)例6:系统的特征方程:解:列出劳斯表:因为劳斯表中第一列元素无符号变化,说明该系统特征方程没有正实部根,所以:系统稳定。
0617177234=++++s s s s 型 别 静态误差系数阶跃输入 )(1)(t R t r ⋅=斜坡输入Rt t r =)( 加速度输入2)(2Rt t r =ν p K v K a K )1(P ss K R e +=V ss K R e =a ss K R e =K0 0 )1(K R +∞∞ Ⅰ ∞ K 0 0 K R∞Ⅱ ∞ ∞ K 0 0 K RⅢ ∞∞∞第四章 根轨迹 1、根轨迹方程2、根轨迹绘制的基本法则3、广义根轨迹(1)参数根轨迹 (2)零度根轨迹例1: 某单位反馈系统,)2)(1()(*++=s s s Ks G ),2,1,0(1)()()12(11* ± ± = =-=--+==∏∏k e p s z s K k j n i i m j j π,1||||11* =--∏∏==ni i mj j p s z s K π)12()()(11+=-∠--∠∑∑==k p s z s n i i m j j(1)3条根轨迹的起点为;2,1,0321-=-==p p p(2) 实轴根轨迹 (0,-1);(-2,-∞) (3)渐近线:3条。
渐近线的夹角:渐近线与实轴的交点:(4)分离点:得: , (5)与虚轴的交点 系统的特征方程:实部方程: 虚部方程: 解得: (舍去) 临界稳定时的K =6例2已知负反馈系统闭环特征方程025.025.0)(23=+++=K s s s s D ,试绘制以K 为可变参数的根轨迹图; 由根轨迹图确定系统临界稳定时的K 值;解 特征方程025.025.0)(23=+++=K s s s s D 得根轨迹方程为1)5.0(25.02-=+s s K; (1)根轨迹的起点为∞-===终点为;5.0,0321p p p (无开环有限零点);10321011-=--+-+=--=∑∑==)()(m n z p σm i in i i aπ ,3π,3πm n 1)π(2k a- =-+=ϕ021111=++++d d d )(58.1,42.021舍去 -= -=d d 03*2=+-K ω023=+-ωω⎩⎨⎧==00*K ω⎩⎨⎧=±=62*K ω0230)23(0)()(1*23*23=++--→=+++=+=K j j K s s s s H s G j s ωωωω即(2) 根轨迹共有3支,连续且对称于实轴; (3) 根轨迹的渐近线有条3=-m n ,33.031;180,60)12(11-≈-=--=±=-+=∑∑==mn zp mn k n i mj ji a a σπϕ ;(4) 实轴上的根轨迹为]5.0,(]5.0,0[-∞⋃-;(5)分离点,其中分离角为2/π±,分离点满足下列方程∑==++=-ni id d p d 105.0211; 解方程得 17.061-≈-=d ; (7) 根轨迹与虚轴的交点:将ωj s =代入特征方程,可得实部方程为025.02=K +-ω;虚部方程为 025.03=+-ωω;1,5.02,1=±=∴K ω 由根轨迹图可得系统临界稳定时1=K ;由上述分析可得系统概略根轨迹如右图所示:例3已知负反馈系统闭环特征方程02410)(23=+++=K s s s s D , 试绘制以K 为可变参数的根轨迹图; 由根轨迹图确定系统临界稳定时的K 值.解 特征方程02410)(23=+++=K s s s s D 得根轨迹方程为1)6)(4(-=++s s s K;(1)3条根轨迹的起点为;6,4,0321-=-==p p p(2) 渐近线:3条。