化学结构与药物代谢

合集下载

药物化学结构与代谢

药物化学结构与代谢

质、体内代谢情况以及排泄器官的功能状态等。
03
药物化学结构与代谢的关系
药物的结构决定其代谢特性
01
药物的化学结构决定了其理化 性质和生物活性,进而影响其 在体内的吸收、分布、代谢和 排泄过程。
02
药物的化学结构中的官能团、 空间构型和分子量等特征,决 定了其与酶的结合能力和代谢 速率。
03
药物的化学结构中的某些基团 ,如芳香环、羟基、羧基等, 能够与酶的活性位点结合,影 响药物的代谢过程。
学习和预测化合物与靶点的相互作用模式,加速药物设计和发现的过程。
05
药物代谢中的酶系统
肝药酶
定义
肝药酶是指主要在肝脏中表达的代谢酶 类,它们参与药物的代谢和转化。
功能
肝药酶能够将药物分子氧化、还原、 水解和结合,从而使其失去活性或改
变其药理作用。
种类
肝药酶主要包括细胞色素P450酶系、 醇脱氢酶、醛脱氢酶等。
,反应速率越快。
一级动力学
1
一级动力学是指反应速率与反应物浓度的一次方 成正比的动力学过程。
2
一级动力学是描述大多数化学和生物反应的简单 模型,适用于低浓度的反应体系。
3
一级动力学方程可以用来描述反应速率随时间的 变化,以及反应物的消耗或产物的生成情况。
米氏方程和酶促反应动力学
01
02
03
米氏方程是描述酶促反应动力学 的重要方程,它是由德国生物化 学家米切尔提出的。
药物代谢的研究方法
体外实验
通过使用酶或细胞模型来研究药 物的代谢过程,可以了解药物与 酶的相互作用和代谢产物的性质。
体内实验
通过动物或人体试验,可以研究药 物在体内的吸收、分布、代谢和排 泄过程,以及其疗效和副作用。

药物化学结构与药效的关系

药物化学结构与药效的关系

药物化学结构与药效的关系药物化学结构与药效之间存在密切的关系。

药物化学结构决定了药物的物理化学性质、代谢途径和药效特点等。

药物的化学结构特点直接影响了药物在体内的吸收、分布、代谢和排泄等方面的药代动力学过程,进而影响药物在生物体内产生的药效。

首先,药物化学结构影响药物的吸收。

药物分子的溶解度、离子性以及脂溶性等因素可以影响药物在胃肠道内的解离、溶解和吸收。

药物分子的大小、电荷等特点也决定了药物是否能够穿透细胞膜,进而进入细胞内发挥药效。

其次,药物化学结构影响药物在体内的分布。

药物分子的极性和非极性部分、药物分子的离子性以及蛋白结合性等特点决定了药物在体内组织和细胞内的分布情况。

药物分子的极性可影响药物通过血脑屏障或胎盘屏障的能力,从而影响药物对中枢神经系统或胎儿的影响程度。

此外,药物化学结构还影响药物的代谢途径和代谢产物。

药物分子含有特定的官能团和化学键,决定了药物在体内的代谢途径,如氧化、还原、羟基化、脱甲基化等。

药物的代谢产物可能具有不同的活性和药理效应,药物化学结构对药物代谢过程的选择性和速度也有一定影响。

最后,药物化学结构决定药物的药效特点。

药物分子的化学结构与药物与靶点之间的相互作用密切相关。

药物分子与靶点之间的相互作用方式包括非共价作用和共价作用。

药物分子的大小、形状、电荷分布等特点决定了药物与靶点之间的空间匹配程度,进而影响药物与靶点的亲和力和选择性。

药物与靶点的结合对药物的治疗效果起到关键作用,药物化学结构对药物的药效和副作用具有重要影响。

总之,药物化学结构与药效之间存在紧密的关系。

药物化学结构可以影响药物的吸收、分布、代谢和药效特点,对药物的药效产生直接影响。

因此,在药物研究与开发过程中,药物化学结构设计是重要的策略之一,通过合理设计药物分子的化学结构,可以调控药物的药代动力学过程和药效特点,以达到更好的药物治疗效果。

第三章+化学结构与药物代谢Ⅱ相(四)(五)

第三章+化学结构与药物代谢Ⅱ相(四)(五)

谷胱甘肽和酰卤的反应是体内的解毒反应。 当多卤代烃如氯仿在体内代谢生成酰卤或光气时会对体
内生物大分子进行酰化产生毒性。谷胱甘肽通过和酰卤 代谢物反应后生成酰化谷胱甘肽,解除了这些代谢物对 人体的毒害。
五、乙酰化轭合
乙酰化反应是含伯胺基(包括脂肪胺和芳香胺),氨基酸, 磺酰胺,肼,酰肼等基团药物或代谢物的一条重要的代 谢途径,前面讨论的几类结合反应,都是使亲水性增加, 极性增加,而乙酰化反应是将体内亲水性的氨基结合形 成水溶性小的酰胺。
二甲氧嘧啶
硫吡腙
磺酰胺类抗菌药物磺胺二甲氧嘧啶(Sulfadimethoxine,3-96)经轭合 反应后生成水溶性较高的代谢物,不会出现在肾脏中结晶的危险。 C-葡萄糖醛酸苷化反应通常是发生在含有1,3-二羰基结构活性碳原 子上,如:保泰松及硫吡腙(Sulfinpyrazone,3-97)。
一、葡萄糖醛酸的轭合
和葡萄糖醛酸的轭合反应是药物代谢中最普遍的轭合反应,生成 的轭合产物含有可解离的羧基(pKa3.2)和多个羟基,无生物活性, 易溶于水和排出体外。
葡萄糖醛酸通常是以活化型的尿苷二磷酸葡萄糖醛酸(UDPGA)作 为辅酶存在,在转移酶的催化下,使葡萄糖醛酸和药物或代谢物 轭合。在UDPGA中葡萄糖醛酸以α -糖苷键与尿苷二磷酸相联,而 形成葡萄糖醛酸轭合物后,则以β -糖苷键结合。轭合反应是亲 核性取代反应。
在硫酸酯化轭合反应中,只有酚羟基化合物和胺类化合物能生成稳 定的硫酸化轭合产物。醇和羟胺化合物形成硫酸酯后,由于硫酸酯有 一个很好的离去基团,会使轭合物生成正电中心,因后者具有亲电能 力,而显著增加药物的毒性。 酚羟基在形成硫酸酯化轭合反应时,具有较高的亲和力,反应较为 迅速。如:支气管扩张药沙丁醇胺(Albuterol,3-98),结构中有三个羟 基,只有酚羟基形成硫酸酯化结合物,而脂肪醇羟基硫酸酯化轭合反 应较低,且形成的硫酸酯易水解成为起始物。

药物化学---药物的化学结构与体内代谢转化

药物化学---药物的化学结构与体内代谢转化

药物化学---药物的化学结构与体内代谢转化方浩第一部分概述对人体而言,绝大多数药物是一类生物异源物质(Xenobiotics)。

当药物进入机体后,一方面药物对机体产生诸多生理药理作用,即治疗疾病;另一方面,机体也对药物产生作用,即对药物的吸收、分布,排泄和代谢。

药物代谢既是药物在人体内发生的化学变化,也是人体对自身的一种保护机能。

药物代谢是指在酶的作用下将药物(通常是非极性分子)转变成极性分子,再通过人体的正常系统排出体外。

药物代谢多使有效药物转变为低效或无效的代谢物,或由无效结构转变成有效结构。

在这过程中,也有可能将药物转变成毒副作用较高的产物。

因此,研究药物在体内代谢过程中发生的化学变化,更能阐明药理作用的特点、作用时程、结构转变以及产生毒性的原因。

药物代谢在创新药物发现和临床药物合理应用中具有重要的地位。

通过对近十年来许多创新药物在临床失败的案例,科学家们发现与药物代谢有关的问题是创新药物临床研究失败的重要原因。

因此当前进行创新药物研究的过程中,应当在候选药物研究阶段就重视考察其药物代谢的相关问题,并将候选药物的代谢问题作为评判其成药性的重要研究内容。

在药理学和生物药剂学课程中,对于药物在体内发生的药物代谢转化反应和代谢产物讲述内容较少。

因此我们将在药物化学的讲述中,重点从药物代谢酶角度入手,讨论药物在体内发生的生物转化,以帮助大家更好的认识药物在体内所反应的代谢反应以及其与药物发现和临床合理应用的关系。

药物的代谢通常分为两相:即第I相生物转化(Phase I )和第n相生物转化(Phase n )。

第I相主要是官能团化反应,包括对药物分子的氧化、还原、水解和羟化等,在药物分子中引入或使药物分子暴露出极性基团,如羟基、羧基、巯基和氨基等。

第n相又称为结合反应(Conjugaten),将第I相中药物产生的极性基团与体内的内源性成分,如葡萄糖醛酸、硫酸、甘氨酸或谷胱甘肽,经共价键结合,生成极性大、易溶于水和易排出体外的结合物。

药物化学药物的化学结构与体内代谢转化

药物化学药物的化学结构与体内代谢转化

药物化学药物的化学结构与体内代谢转化药物化学是研究药物的化学结构和活性关系,以及药物在体内吸收、分布、代谢和排泄的学科。

其中,药物的化学结构与其在体内的代谢转化过程是理解药物作用机制的关键。

本文将探讨药物化学药物的化学结构与体内代谢转化的关系。

药物的化学结构决定了其物理化学性质,进而影响其在体内的药动学和药效学。

例如,脂溶性药物容易通过细胞膜,而水溶性药物则更容易被肾排出。

药物的化学结构也决定了其是否能够被体内酶系代谢以及代谢产物的性质。

药物在体内的代谢转化主要涉及氧化、还原、水解和结合等反应。

这些反应主要在肝脏进行,由肝微粒体中的酶促反应完成。

药物的代谢产物通常比原药具有更低的活性,甚至可能产生不良反应。

因此,药物的代谢转化对于理解药物的作用机制和不良反应的发生至关重要。

药物的化学结构决定了其在体内的代谢转化路径。

例如,一些药物可以被肝脏中的CYP450酶系氧化,而其他药物则可能被其他酶系进行代谢。

了解药物的代谢转化路径可以更好地预测药物之间的相互作用,避免不良反应的发生。

药物的化学结构与体内代谢转化是理解药物作用机制的关键。

药物的化学结构决定了其物理化学性质和代谢转化路径,而代谢转化则影响了药物在体内的药动学和药效学。

因此,在药物设计和开发过程中,需要对药物的化学结构和体内代谢转化进行深入研究,以优化药物的疗效和安全性。

当我们回顾药物发现与发展的历史,不难发现天然药物在其中扮演了至关重要的角色。

然而,随着科技的进步,化学药物逐渐成为了现代医学的支柱。

本文将探讨天然药物向化学药物转化的历程,以及这一过程中所涉及的新思路和新技术的应用。

在过去的几个世纪里,天然药物向化学药物的转化经历了漫长的历程。

最早的天然药物,如吗啡和阿司匹林,都是从植物中提取的。

随着有机合成技术的不断发展,化学家们开始尝试合成这些天然药物及其类似物。

这一阶段的代表性成果包括合成抗生素和抗疟药等。

通过这一过程,人们逐渐认识到天然药物转化为化学药物的重要性和必要性,因为这不仅可以提高药物的产量和质量,还可以通过结构优化来实现药物效果的进一步提升。

药物化学药物代谢的化学变化-1

药物化学药物代谢的化学变化-1

第二章药物代谢本章提示:药物代谢是在体内酶的作用下使药物的化学结构发生变化,大多使有效药物转变为低效或无效的代谢物,有时也会产生活性代谢物;也有可能转变成毒副作用较高的产物。

而前药设计则是通过代谢转变产生有效药物。

执业药师应熟悉药物在体内代谢的化学变化类型,以及药物的化学结构变化后产生生物活性的变化。

药物进入机体后,一方面药物对机体产生诸多生理药理作用,即对疾病治疗作用;另一方面对机体来讲药物是一种外来的化学物质,机体组织将对药物进行作用设法将其排出体外,这就是药物的代谢。

药物代谢是指在酶的作用下将药物(通常是非极性分子)转变成极性分子,再通过人体的正常系统排泄至体外的过程;是药物在人体内发生的化学变化,也是人体对自身的一种保护机能。

因此研究药物在体内代谢过程中发生的化学变化,更能阐明药理作用的特点,作用时程,结构的转变以及产生毒副作用的原因。

药物的代谢通常分为二相:第Ⅰ相生物转化(Phase Ⅰ),也称为药物的官能团化反应,是体内的酶对药物分子进行的氧化、还原、水解、羟基化等反应,在药物分子中引入或使药物分子暴露出极性基团,如羟基、羧基、巯基、氨基等。

第Ⅱ相生物结合(Phase Ⅱ),是将第Ⅰ相中药物产生的极性基团与体内的内源性成分,如葡萄糖醛酸、硫酸、甘氨酸或谷胱甘肽,经共价键结合,生成极性大、易溶于水和易排出体外的轭合物。

但是也有药物经第Ⅰ相反应后,无需进行第Ⅱ相的结合反应,即排出体外。

其中第Ⅰ相生物转化反应对药物在体内的活性影响最大。

由于催化反应时酶对底物化学结构有一定的要求,因此不同化学结构的药物,其代谢的情况也不一样。

第一节药物的官能团化反应(第Ⅰ相生物转化)一、含芳环药物的代谢含芳环的药物主要发生氧化代谢,是在体内肝脏CYP 450酶系催化下,首先将芳香化合物氧化成环氧化合物,然后在质子的催化下会发生重排生成酚,或被环氧化物水解酶水解生成二羟基化合物。

生成的环氧化合物还会在谷胱甘肽S-转移酶的作用下和谷胱甘肽生成硫醚;促进代谢产物的排泄。

药物的化学结构与药代动力学

药物的化学结构与药代动力学

03
药物的吸收与分布
药物的吸收
01
药物吸收是指药物从给药部位进入血液循环的过程,是药物起效的前 提。
02
药物的溶解度和脂溶性是影响药物吸收的主要因素,溶解度大、脂溶 性高的药物更易被吸收。
03
药物的剂型和给药方式也会影响药物的吸收,如口服制剂在胃液中的 溶解度和胃排空速率等。
04
药物吸收的速度和程度与药物在体内的浓度和作用时间密切相关,直 接影响治疗效果。
设计和优化中的关键因素。
药物与核酸的相互作用
01
药物与核酸的结合方式
药物通过碱基配对与核酸的DNA或RNA结合,影响核酸的结构和功能。
02
药物与核酸的结合位点
药物通常与核酸的特定序列结合,从而影响基因的表达或复制。
03
药物与核酸的相互作用对药效的影响
药物与核酸的相互作用决定了药物的疗效和副作用,是抗肿瘤药物和抗
尿液排泄
药物经过代谢后形成水溶性代谢产物,通过肾脏 排泄至尿液中排出体外。
胆汁排泄
部分药物经过肝脏代谢后,形成水溶性代谢产物, 通过胆道排泄至肠道中随粪便排出体外。
汗液排泄
部分药物可通过皮肤的排泄,以汗液的形式排出 体外。
药物代谢产物的活性
有活性
部分药物代谢产物具有生物活性,可 发挥治疗作用或产生副作用。
02
药物与生物大分子的相互作 用
药物与蛋白质的相互作用
药物与蛋白质的结合方式
01
药物通过共价键或非共价键与蛋白质结合,影响蛋白质的结构
和功能。
药物与蛋白质的结合位点
02
药物通常与蛋白质的活性位点或关键区域结合,从而影响蛋白
质的活性。
药物与蛋白质的相互作用对药效的影响

医用化学的名词解释

医用化学的名词解释

医用化学的名词解释
医用化学是一门研究药物化学结构和化学特性的学科,它涉及到识别、合成、改良和分析医药化合物的设计和研究。

以下是一些与医用化学相关的名词解释:
1. 化学药物:指能够治疗疾病的物质,根据其作用机制和化学结构分为不同类型,如抗生素、抗癌药物等。

2. 药物代谢:指药物在体内经过吸收、分布、代谢和排泄等过程的改变。

药物在体内的代谢可以影响药物的药效和副作用。

3. 同离子效应:在弱电解质溶液中加入与该电解质具有相同离子的强电解质,使该电解质的电离度下降的现象称为同离子效应。

4. 缓冲溶液:能够对抗少量酸和碱而维持pH不变的溶液称为缓冲溶液。

5. 晶体渗透压:由小分子或小离子等物质产生的渗透压称为晶体渗透压。

6. 胶体渗透压:由大分子或大离子等物质产生的渗透压称为胶体渗透压。

以上名词解释仅供参考,如需更多医用化学相关的名词解释,建议查阅相关文献或咨询专业人士。

药物结构与药物代谢

药物结构与药物代谢

酯的水解
空间位阻对水解的影响
Atropine, 阿托品
酰胺的水解
4.其它氧化
b.环氧化
5.还原
• 含羰基、硝基、偶氮的药物主要经历还原反应,生成极性 较强的羟基、氨基,然后进行第二相的轭合反应。 • 硝基的还原 • 芳香硝基药物在cyp-450消化细菌还原酶的作用下,生成 芳香胺。其还原过程是一个多步骤过程,经历亚硝基、羟 胺等中间体。 • 羰基的还原 • 在酮还原酶的催化下,还原为仲醇。脂肪族和芳香族不对 称酮的羰基,在酶的催化下,使立体专一性反应,主要以 S-构型为主。
• 第Ⅰ相:主要是官能团的反应,如氧化、还原、水解、 羟基化等。其目的是在药物分子中引入或使药物分子 暴露出极性基团,如羟基、羧基、巯基、氨基等,使 其极性增加。 • 第Ⅱ相:又称结合反应。将第一相药物分子中产生的 极性基团与体内的内源性成分,如醇、酚或胺等与葡 萄糖醛酸、硫酸、甘氨酸或谷胱甘肽经共价键结合, 生成极性更大、易溶于水的复合物排出体外。但有些 药物经第一相后,其产物就可以排出体外。
机理:
当氮原子上相邻的碳原子上有氢时,氢已被氧化为羟基,生成 羟胺。此中间体不稳定,在cyp-450酶的作用下,氮原子和碳原 子发生电子的转移,使碳氮键断裂。
丙咪嗪
地昔帕明
CI NHCH3 O NH
CI O
Ketamine 氯胺酮
CH3
O FAST
CH3
O SLOW
CH3
O
NHCCH2N(CH2CH3)2 CH3
脱卤素反应
• 氧化脱卤素反应是许多卤代烃的主要代谢途径。在cyp -450酶的催化下,生成过渡态的偕二醇;然后再消去 卤化氢,得到羰基化合物。
第Ⅱ相生物转化——结合反应

药物化学结构与代谢

药物化学结构与代谢

H
环氧化物酶
R
O
OH
H
OH2
H
O
OH
谷胱甘肽-S-转移酶 OH
GSH
R
OH
SG
生物大分子 亲核基团X
R OH X
第I相的生物转化
生成的环氧化合物还会在谷胱甘肽-S-转移酶的作用下和谷胱 甘肽生成硫醚;促进代谢产物的排泄。环氧化合物若和体内生 物大分子如DNA、RNA中的亲核基团反应,生成共价键的结 合物,而使生物大分子失去活性,产生毒性。如苯并(α)芘
O
环 H O
O H
N C O N H2
CY P450
氧化N物C O N H2酶
N C O N H2
烯烃类药物经代谢生成环氧化合物后,可以被转化为二羟基 化合物,或者将体内生物大分子如蛋白质、核酸等烷基化, 从而产生毒性,导致组织坏死和致癌作用。如黄曲霉素B1。
第I相的生物转化
炔烃类反应活性比烯烃大,被酶催化氧化速度也比烯烃快。
四、水解酶
水解酶主要参与羧酸酯和酰胺类药物的代谢,这些非 特定的水解酶大多存在于血浆、肝、肾和肠中,因此 大部分酯和酰胺类药物在这些部位发生水解。然而哺 乳类动物的组织中也含有这些水解酶,使得药物发生 水解代谢。但是肝脏、消化道及血液具有更大的水解 能力。
酯水解酶包括酯酶,胆碱酯酶及许多丝氨酸内肽酯酶。 其他如芳磺酸酯酶,芳基磷酸二酯酶等,它们和酯水 解酶的作用相似。
药物代谢的酶
胺类,便于进入第II相的结合反应而排出体外。
参加体内生物转化还原反应的酶系主要是一些氧化— 还原酶系。这些酶具有催化氧化反应和催化还原反应 的双重功能,如CYP-450酶系除了催化药物分子在体 内的氧化外,在肝脏微粒体中的一些CYP-450酶还能 催化重氮化合物和硝基化合物的还原,生成伯胺。硝 基化合物的还原也经历亚硝基、羟胺等中间体过程, 因此CYP-450酶系对这些基团也有还原作用。

药学专业知识(1)2-3药物化学结构与药物代谢-中大网校

药学专业知识(1)2-3药物化学结构与药物代谢-中大网校

全国执业药师资格考试《药学专业知识一》
主讲:魏倩
第三节 药物化学结构与药物代谢
知识点一、药物结构与第I相生物转化的规律
大纲要求:
(1)含芳环、烯烃、炔烃类、饱和烃类药物第I相生物转 化的规律
(2)含卤素的药物第I相生物转化的规律
(3)含氮原子(胺类、含硝基)药物第I相生物转化的规律
(4)含氧原子(醚类、醇类和羧酸类、酮类)药物第I相
生物转化的规律
(5)含硫原子的硫醚 S-脱烷基、硫醚S-氧化反应、硫羰基
化合物的氧化脱硫代谢、亚砜类药物代谢的规律
(6) 酯和酰胺类药物第I相生物转化的规律。

药物化学结构与药效的关系

药物化学结构与药效的关系
药物化学结构与药物安全性 的关系
药物的毒副作用
肝毒性
某些药物在代谢过程中会产生有害物质,对 肝脏造成损害。
肾毒性
某些药物可能导致肾脏损伤,影响肾功能。
心脏毒性
某些药物可能对心脏产生不良影响,如心律 失常、心肌缺血等。
免疫毒性
一些药物可能影响免疫系统的正常功能,导 致免疫系统疾病的发生。
药物的抗药性
02
药物化学结构与药物活性的 关系
药物受体结合
药物受体结合
药物通过与靶点受体结合而发挥药效,药物的化学结构决定了其与受 体的结合能力,进而影响药物的亲和力、选择性和作用强度。
亲和力
药物的化学结构与受体结合的紧密程度,决定了药物作用的强弱。亲 和力越高,药物与受体结合越牢固,药效越强。
选择性
药物的化学结构决定其与特定受体的结合能力,选择性越高,药物对 特定靶点的选择性越强,副作用越小。
感谢您的观看
THANKS
临床试验
通过临床试验,观察患者的反应,评估药物的耐受性。
提高药物耐受性的策略
优化药物设计
通过优化药物的化学结构,提高其在体内的代谢 稳定性和分布特性,从而提高药物的耐受性。
联合用药
通过与其他药物联合使用,降低药物的剂量和不 良反应,从而提高药物的耐受性。
基因治疗
通过基因治疗,改变患者的代谢酶的表达,提高 药物的代谢和耐受性。
作用强度
药物的化学结构影响其与受体结合后引发的生理效应大小,作用强度 决定了药物治疗效果。
药物代谢
代谢稳定性
药物的化学结构影响其在体 内的代谢稳定性,代谢稳定 性高的药物在体内作用时间 长,疗效更持久。
代谢途径
药物的化学结构决定了其代 谢途径和代谢产物的性质, 影响药物在体内的分布、活 化及排泄。

药物化学药物的化学结构与体内代谢转化

药物化学药物的化学结构与体内代谢转化

药物化学药物的化学结构与体内代谢转化药物化学是研究药物的化学结构和性质,以及药物在体内代谢转化的学科。

在药物研发中,了解药物的化学结构和代谢转化对于评估药物的活性、药代动力学特性以及副作用具有重要意义。

本文将对药物化学和药物代谢转化进行详细探讨。

药物的化学结构是指药物在化学上所具有的特定的分子结构。

药物的化学结构决定了药物的药理活性、物化性质以及与靶标结合的方式。

药物的化学结构可以通过研究药物的组成元素、原子结构以及化学键进行探索。

药物的化学结构是药物研发的起点,研究者通过对化学结构的改造来提高药物的活性、选择性以及药物代谢特性。

药物的体内代谢转化是指药物在机体内的生物化学反应和代谢过程。

药物在体内代谢转化主要通过酶的催化作用完成。

药物代谢可以分为两个主要阶段,即相应的阶段Ⅰ反应和阶段Ⅱ反应。

阶段Ⅰ反应是指药物通过氧化、还原、水解、脱甲基等反应转化成更活性或更易代谢的物质。

其中最常见的反应是氧化反应,通过细胞色素P450(CYP)酶家族参与催化。

CYP酶催化的氧化反应通常发生在药物的碳、氮或硫原子上,从而形成药物的代谢产物。

其他的阶段Ⅰ反应还包括还原反应、水解反应和脱甲基反应等。

这些反应主要发生在肝脏中的内质网中,使药物转化为亲水性更强的代谢产物。

阶段Ⅰ代谢转化可以增加药物的药理活性、提高药物的水溶性,也可能产生毒性代谢产物。

阶段Ⅱ反应是指药物代谢产物通过与内源性物质(如葡萄糖、甘氨酸、硫酸等)结合,形成更极性、更易排泄的产物。

阶段Ⅱ代谢反应通常被称为“偶联反应”,其中最常见的是葡萄糖醛酸转移酶(GT)参与的糖基化反应。

阶段Ⅱ代谢转化可以大大增加药物的水溶性,使药物更容易排除。

药物的代谢转化对药物的活性、毒性以及体内停留时间有很大的影响。

药物代谢转化的主要作用是将药物从机体中排除,并减少药物的毒性。

然而,一些药物的代谢转化也可能产生活性代谢产物,并参与药物的药理作用。

药物的代谢转化的机制和调控对于药物疗效的评估和优化具有重要意义。

药学专业知识2--药物的结构与药物作用

药学专业知识2--药物的结构与药物作用

药学专业知识2--药物的结构与药物作用【知识点】结构非特异性药物药物的理化性质直接影响活性理化性质:溶解度、分配系数和解离度多项选择题影响结构非特异性药物活性的因素有A.溶解度B.分配系数C.几何异构体D.光学异构体E.解离度『正确答案』ABE【知识点】药物的溶解度、分配系数和渗透性对药效的影响药物亲水性或亲脂性的过高或过低都对药效产生不利影响。

(适当最好)脂水分配系数当药物脂溶性较低时,随着脂溶性增大,药物的吸收性先提高后降低,成抛物线的变化规律。

脂水分配系数可以反映药物的水溶性和脂溶性。

药物的吸收、分布、排泄过程是在水相和脂相间经多次分配实现的,因此要求药物既具有脂溶性又有水溶性。

A:关于药物的脂水分配系数对药效的影响叙述正确的是A.脂水分配系数适当,药效为好B.脂水分配系数愈小,药效愈好C.脂水分配系数愈大,药效愈好D.脂水分配系数愈小,药效愈低E.脂水分配系数愈大,药效愈低『正确答案』A【知识点】当pKa=pH 时,非解离型和解离型药物各占一半弱酸性在胃中易吸收(水杨酸巴比妥类)弱碱性在小肠易吸收(麻黄碱地西泮)强碱性的药物在整个胃肠道多是离子化的,难吸收。

(季铵盐类)酸酸分子易吸收,酸碱离子易排泄A:已知苯巴比妥的pKa约为7.4,在生理pH为7.4的情况下,其以分子形式存在的比例是A.30%B.40%C.50%D.75%E.90%『正确答案』C官能团:A:吗啡易被氧化变色是由于分子结构中含有以下哪种基团A.醇羟基B.双键C.醚键D.哌啶环E.酚羟基『正确答案』EA.烃基B.羰基C.羟基D.氨基E.羧基1.使酸性和解离度增加的是2.使碱性增加的是3.使脂溶性明显增加的是『正确答案』EDA【知识点】生物药剂学中根据药物溶解性和肠壁渗透性的不同组合将药物分为四类:高水溶解性、高渗透性的两亲性分子药物(体内吸收取决于胃排空速率):普萘洛尔、依那普利、地尔硫(艹卓)——那普尔低水溶解性、高渗性的亲脂性分子药物(体内吸收取决于溶解速率):双氯芬酸、卡马西平、匹罗昔康——双匹马高水溶解性、低渗透性的水溶性分子药物(体内吸收取决于渗透效率):雷尼替丁、纳多诺尔、阿替洛尔——雷纳尔多低水溶解性、低渗透性的疏水性分子药物(体内难吸收):特非那定、酮洛芬、呋塞米——特洛米A.普萘洛尔B.卡马西平C.雷尼替丁D.呋塞米E.葡萄糖注射液1.体内吸收取决于胃排空速率2.体内吸收取决于溶解速度3.体内吸收受渗透效率影响4.体内吸收比较困难『正确答案』ABCD【知识点】非共价键键合类型1)氢键:最常见,药物与生物大分子作用最基本的化学键合形式。

药物化学结构与药物代谢

药物化学结构与药物代谢

第三节药物化学结构与药物代谢第一部分概述药物代谢定义:指在酶的作用下将药物(通常是非极性分子)转变为极性分子,再通过人体的正常系统排除体外。

药物的生物转化(Drug Biotransformation)转化在体内酶的作用下进行代谢的意义:能把外源性的物质(Xenobiolic),进行化学处理—包括药物和毒物—失活,并使排出体外在长期的进化过程中,机体发展出一定的自我保护能力—避免机体受到毒物的伤害代谢反应的分类:官能团化反应—第Ⅰ相反应(Phase Ⅰ)结合反应—第Ⅱ相反应(Phase Ⅱ)官能团化反应:是体内的酶对药物分子进行氧化、还原、水解等化学反应,在药物分子中引入或使药物分子暴露极性基团——如羟基、羧基、氨基和巯基等,使代谢产物的极性增大,利于结合反应结合反应:将第一相中药物产生的极性基团,在酶的作用下,与体内的内源性的小分子成分(如葡萄糖醛酸、硫酸盐、某些氨基酸等)结合,(以酯、酰胺或苷的方式)生成极性大,易溶于水和易排出体外的结合物,可通过肾脏经尿排出体外药物代谢:有较大的甚至决定性的影响的包括:药物的作用、副作用、毒性;给药剂量,给药方式,药物作用的时间;药物的相互作用等第二部分:药物代谢的酶一、细胞色素P450酶系(CYPs)主要的药物代谢酶系,其催化的总反应是:代谢的酶主要存在于肝脏及其它肝脏外组织的内质网中;主要是通过活化分子氧,是其中一个氧原子和有机物分子结合,同时将另一个氧原子还原成水,从而在有机药物的分子中引入氧;CYP-450属于体内的氧化还原酶系,除了催化上述氧化反应外,还能将含重氮和硝基的药物还原成芳香伯胺;CYP-450是一组酶的总称,由许多同工酶和亚型酶组成。

二、还原酶系主要是催化药物在体内进行还原反应(包括得到电子,加氢反应,脱氧反应)的酶系,通常是使药物结构中的羰基转变为羟基,将含氮化合物还原成胺类,便于进入第Ⅱ相的结合反应而排出体外;另一个重要的酶系是醛酮还原酶:一方面催化醛、酮还原成醇,另一方面也会使醇脱氢生成醛、酮。

药物化学---药物的化学结构与体内代谢转化

药物化学---药物的化学结构与体内代谢转化

药物化学---药物的化学结构与体内代谢转化方浩第一部分概述对人体而言,绝大多数药物是一类生物异源物质(Xenobiotics)。

当药物进入机体后,一方面药物对机体产生诸多生理药理作用,即治疗疾病;另一方面,机体也对药物产生作用,即对药物的吸收、分布,排泄和代谢。

药物代谢既是药物在人体内发生的化学变化,也是人体对自身的一种保护机能。

药物代谢是指在酶的作用下将药物(通常是非极性分子)转变成极性分子,再通过人体的正常系统排出体外。

药物代谢多使有效药物转变为低效或无效的代谢物,或由无效结构转变成有效结构。

在这过程中,也有可能将药物转变成毒副作用较高的产物。

因此,研究药物在体内代谢过程中发生的化学变化,更能阐明药理作用的特点、作用时程、结构转变以及产生毒性的原因。

药物代谢在创新药物发现和临床药物合理应用中具有重要的地位。

通过对近十年来许多创新药物在临床失败的案例,科学家们发现与药物代谢有关的问题是创新药物临床研究失败的重要原因。

因此当前进行创新药物研究的过程中,应当在候选药物研究阶段就重视考察其药物代谢的相关问题,并将候选药物的代谢问题作为评判其成药性的重要研究内容。

在药理学和生物药剂学课程中,对于药物在体内发生的药物代谢转化反应和代谢产物讲述内容较少。

因此我们将在药物化学的讲述中,重点从药物代谢酶角度入手,讨论药物在体内发生的生物转化,以帮助大家更好的认识药物在体内所反应的代谢反应以及其与药物发现和临床合理应用的关系。

药物的代谢通常分为两相:即第Ⅰ相生物转化(PhaseⅠ)和第Ⅱ相生物转化(PhaseⅡ)。

第Ⅰ相主要是官能团化反应,包括对药物分子的氧化、还原、水解和羟化等,在药物分子中引入或使药物分子暴露出极性基团,如羟基、羧基、巯基和氨基等。

第Ⅱ相又称为结合反应(Conjugation),将第Ⅰ相中药物产生的极性基团与体内的内源性成分,如葡萄糖醛酸、硫酸、甘氨酸或谷胱甘肽,经共价键结合,生成极性大、易溶于水和易排出体外的结合物。

药物代谢

药物代谢

2 与硫酸结合
含有酚羟基、醇羟基、N-羟基及芳胺的药物或Phase I代
谢物可以与硫酸结合,排除体外,但不是药物代谢的主要形式。 内源性的化合物如甾类激素、儿茶酚、甲状腺素可通过此途 径代谢,与其结构类似的化合物通过该途径代谢。如抗哮喘
药沙丁醇胺和降压药异丙肾上腺素的代谢。
OH H N HO HO OH H N
化学结构与药物代谢
药物代谢是指药物分子被机体吸收后,在有机体内酶的作用下
发生一系列化学反应,排除体外。是机体对药物的处置。 药物代谢反应的类型:官能团反应(Phase I)和结合反应
(Phase II)。Phase I反应是指药物分子在体内进行的官能团 转化,在酶催化下进行氧化、还原、水解等反应,引入极性较 大的基团,如羟基、羧基、氨基和巯基等,增大药物分子的极 性。Phase II 是指在Phase I反应的基础上,与内源性的极性 小分子结合,增加水溶性,有利于排除体外。 意义:药物的代谢与药物的作用、副作用、给药剂量、方式、 药物作用时间和药物之间的相互作用密切相关。是药物化学研 究的重要领域之一。
代谢。
含有氨基的药物,经α-氧化代谢后,得到低一级的胺, 通常具有活性,但对中枢神经系统毒性也增强。
R1 N R2
H
R1 N R2
OH
R1 N R2 H
+
O
N
N
N
丙咪嗪
地西帕明
N H
OCH2CH2CH3 O N O
OCH2CH2CH3 O N O
O
丙哌维林
O
OH O 非那西丁
O HN 扑热息痛 H N OH
OH

结合反应
药物分子经PhaseI代谢反应,转化成羟基、氨基、羧
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重要,对分解某些生物活性胺以及调节活化蛋白质、核 酸等生物大分子的活性也起到非常重要的作用。
甲基化反应也降低被结合物的极性和亲水性,只有叔胺
化合物甲基化后生成季铵盐,有利于提高水溶性而排泄。 甲基化轭合反应一般不是用于体内外来物的结合排泄, 而是降低这些物质的生物活性。
甲基化反应是在甲基转移酶的作用下以S-腺苷-L-甲硫氨酸(SAM)为辅 酶进行的反应。
肾上腺素与心肌细胞膜上相应受体结合后,使心率增快,心肌收缩力增强, 心输出量增多,临床常作为强心急救药;与血管平滑肌细胞膜上相应受体结合 后,使皮肤、肾、胃肠的血管收缩,但对骨骼肌和肝的血管,生理浓度使其舒 张,大剂量时使其收缩,故正常生理浓度的肾上腺素,对外周阻力影响不大。 去甲肾上腺素也能显著地增强心肌收缩力,使心率增快,心输出量增多;使 除冠状动脉以外的小动脉强烈收缩,引起外周阻力明显增大而血压升高,故临 床常作为升压药应用。
于从尿和胆汁中排泄。
轭合反应一般分两步进行:首先是内源性的小分子物质被活化成
活性形式,然后经转移酶的催化与药物或药物在第Ⅰ相的代谢产物结 合形成代谢结合物。 药物或其代谢物中被结合的基团通常是羟基、氨基、羧基、杂环 氮原子及巯基。对于有多个可结合基团的化合物,可进行多种不同的
结合反应,如:对氨基水杨酸(P-aminosalicylic acid, 3-94)。
布洛芬(Ibupro-fen,3-107)
在有些情况下,羧酸和辅酶A形成酰化物后,才具有药理活性或成为药物 发挥活性的形式。 也有的直接参与体内的某些转化反应。如:芳基丙酸类非甾体抗炎药物布洛芬其
S-(+)-异构体有效,R-(-)-异构体无活性。在体内辅酶A立体选择性地和R-(-)-异构体结
对于羟基化合物,也能进行乙酰化反应。芳香羟胺化合物乙酰化时主 要得到O-乙酰化物,因为,在分子内会发生N,O-乙酰基转移反应, 即使是羟胺的N-乙酰化物也会在体内转变为O-乙酰化物。
六、甲基化轭合
甲基化反应是药物代谢中较为少见的代谢途径,但是,
对一些内源性物质如肾上腺素,褪黑激素等的代谢非常
五、乙酰化轭合
乙酰化反应是含伯胺基(包括脂肪胺和芳香胺 ), 氨基酸,磺酰胺,肼,酰肼等基团药物或代谢
物的一条重要的代谢途径,前面讨论的几类结
合反应,都是使亲水性增加,极性增加,而乙
酰化反应是将体内亲水性的氨基结合形成水溶
性小的酰胺。
乙酰化反应一般是体内外来物的去活化反应。
乙酰化反应是在酰基转移酶的催化下进行的,以乙酰辅酶A(3-109)
较强的离去基团。这类反应还用于许多含卤素的药物,如:氯霉 素中二氯乙酰基(Cl2CHCO-)和氮芥类抗肿瘤药物β-氯乙胺基
(ClCH2CH2N)的结合代谢。
谷胱甘肽和酰卤的反应是体内的解毒反应。 当多卤代烃如氯仿在体内代谢生成酰卤或光气 时会对体内生物大分子进行酰化产生毒性。谷 胱甘肽通过和酰卤代谢物反应后生成酰化谷胱 甘肽,解除了这些代谢物对人体的毒害。
溴苯那敏
例如:抗组胺药溴苯那敏 (Brompheniramine ,3-102)经生物转化的第
Ⅰ相反应代谢后形成羧酸化合物(3-103),然后和甘氨酸反应,形成甘
氨酸的结合物(3-104)。
马尿酸
水杨酰苷氨酸
在氨基酸轭合反应中,主要是取代的苯甲酸参加反应。如:苯甲酸和
水杨酸在体内参与结合反应后生成马尿酸(3-105)和水杨酰苷氨酸(3106)。 其它羧酸反应性较差一些。苯乙酸主要和甘氨酸和谷氨酰胺形成加 合物,一些脂肪族羧酸得到的是甘氨酸或牛磺酸的加成物。
第四节
第Ⅱ相的生物转化
PhaseⅡBiotransformation
第Ⅱ相生物转化又称轭合反应 (Conjugation) ,是在酶的
催化下将内源性的极性小分子如葡萄糖醛酸、硫酸、氨基 酸、谷胱甘肽等结合到药物分子中或第Ⅰ相的药物代谢产 物中。 通过结合使药物去活化以及产生水溶性的代谢物,有利
由肾上腺髓质分泌的一种儿茶酚胺激素,去甲肾上腺素是从肾上腺素中去 掉N-甲基的物质。具有肾上腺素的生物活性,但其作用不如肾上腺素显著。 血液中的肾上腺素和去甲肾上腺素主要由肾上腺髓质所分泌,两者对心和 血管的作用,既有共性,又有特殊性,这是因为它们与心肌和血管平滑肌细 胞膜上不同的肾上腺素能受体,结合能力不同所致。
合形成酰化辅酶A,不和S-(+)-异构体结合。形成的酰化辅酶A在体内酶的催化下发生
差向异构化,生成R-和S-酰化辅酶A。S-酰化物很快水解得到S-(+)-布洛芬。
通过这种方式手性药物实现了在体内转化的可能含有硫醇基团的三肽化合物,硫醇基 (SH)具有较好亲核作用,在体内起到清除由于代谢产生的 有害的亲电性物质,此外,谷胱甘肽还有氧化还原性质,
酚羟基的甲基化反应主要对象是具儿茶酚结构的活性物质。
如:肾上腺素、去甲肾上腺素、多巴胺等。
甲基化具有区域选择性,仅仅发生在3-位的酚羟基上。
非儿茶酚结构,一般不发生酚羟基甲基化,如:支气管扩张药特 布他林(Terbutaline ,3-110)含有二个间位羟基,不发生甲基化轭合
代谢。
肾上腺素、去甲肾上腺素
的伯胺、仲胺结合能力强,反应较易进行。此外,对于吡啶氮及具有12个甲基的叔胺也能和葡萄糖醛酸进行糖苷化反应,生成极性较强的季 铵化合物。
磺酰胺类抗菌药物磺胺二甲氧嘧啶(Sulfadimethoxine,3-96)经轭合 反应后生成水溶性较高的代谢物,不会出现在肾脏中结晶的危险。
C-葡萄糖醛酸苷化反应通常是发生在含有1,3-二羰基结构活性
作为辅酶。
首先乙酰辅酶 A对N-乙酰转移酶上的氨基酸残基进行乙酰化,然后, 再将乙酰基转移到被酰化代谢物的氨基上,形成乙酰化物。
乙酰化反应的类型及典型药物见表3-7。
对碱性较强的脂肪族伯胺和仲胺,乙酰化反应通常进行得较少, 即使进行结合率也比较低。但对于大多数芳香伯胺由于其碱性中等极 易进行乙酰化反应。
多巴胺
由脑内分泌,可影响一个人的情绪。 化学名称为4-(2乙胺基)苯-1,2-二醇,简称「DA」。Arvid Carlsson确定 多巴胺为脑内信息传递者的角色使他赢得了2000年诺贝 尔医学奖。多巴胺是一种神经传导物质,用来帮助细胞 传送脉冲的化学物质。这种脑内分泌主要负责大脑的情 欲,感觉,将兴奋及开心的信息传递,也与上瘾有关。
注:D-葡萄糖醛酸的羟基与羧基同侧的是β-D-葡萄糖醛酸,
反之则为α-D-葡萄糖醛酸
辅酶(coenzyme)
作为酶的辅因子的有机分子,本身无催化作用,但一般在酶促反应中
有传递电子、原子或某些功能基团(如参与氧化还原或运载酰基的基团)的
作用。 将化学基团从一个酶转移到另一个酶上的有机小分子,与酶较为松散
参与轭合反应的羧酸有芳香羧酸、芳乙酸、杂
环羧酸;
参加反应的氨基酸,主要是生物体内内源性的
氨基酸或是从食物中可以得到的氨基酸。
以甘氨酸的轭合反应最为常见。
轭 合 反 应 是 在 辅 酶 A 的 作 用 下 进 行 的 , 首 先 羧 酸 和 辅 酶 A 上 的 SH(CoASH)形成酰化物(3-100),该酰化物再在氨基酸 N-酰化转移酶 的催化下,将(3-100)的酰基转移到氨基酸的氨基上,形成N-酰化氨 基酸结合物(3-101)。
对药物及代谢物的转变起到重要的作用。
谷胱甘肽的轭合反应大致上有亲核取代反应(SN2)
芳香环亲核取代反应、酰化反应、Michael加成反应及还原反应。
谷胱甘肽结合物不是最终的代谢形式,而通常经历进一步的
生物转化,最后,谷胱甘肽结合物降解成 N- 乙酰硫醚氨酸 (3108),被排出体外。
• SN2的亲核取代反应,主要发生在sp3碳原子上,该碳原子连有
下发生,后者在较低剂量下发生,其原因是糖苷化反应具有低亲和力和高
反应容量,而硫酸酯化是高亲和力和低反应容量。
新生儿由于体内肝脏UDPG转移酶活性尚未健全,因此会有代谢上的 问题,导致药物在体内聚集产生毒性。如: 新生儿在使用氯霉素时,由 于不能使氯霉素和葡萄糖醛酸形成结合物而排出体外,导致药物在体内 聚集,引起“灰婴综合症”。 参予 N-葡萄糖醛酸苷化反应的胺类化合物有芳香胺、脂肪胺、酰胺 和磺酰胺。芳香胺的反应性小,轭合反应也比较少。脂肪胺中碱性较强
地结合,对于特定酶的活性发挥是必要的。
有许多维他命及其衍生物,如核黄素、硫胺素和叶酸,都属于辅酶。 这些化合物无法由人体合成,必须通过饮食补充。不同的辅酶能够携带
的化学基团也不同:NAD或NADP+携带氢离子,辅酶A携带乙酰基,叶
酸携带甲酰基,S-腺苷基蛋氨酸也可携带甲酰基。
葡萄糖醛酸的轭合反应共有四种类型: O-,N-,S-和C-的葡萄糖醛酸苷化
成儿茶酚结构,也可进行甲基化反应。
如 : 非甾体抗炎药双氯芬酸 (Diclofenae ,3-111),经代谢后会产生 3’,4’-二酚羟基代谢物,经甲基化生成3’-羟基-4’-甲氧基双氯
在含有多个可结合羟基时,可得到不同的结合物,其活性亦不一样。
如:吗啡(Morphine,3-95)有3-酚羟基和6-仲醇羟基,分别和葡萄糖醛酸
反应生成3-O-糖苷物是弱的阿片拮抗剂,生成6-O-糖苷物是较强的阿片 激动剂。
O-葡萄糖醛酸苷化反应通常和O-硫酸酯反应是竞争性反应,前者在高剂量
水解成为起始物。
酚羟基的硫酸酯化轭合反应和葡萄糖醛酸苷化反应是竞争性反应。 对于新生儿和 3~ 9岁的儿童由于体内葡萄糖醛酸苷化机能尚未健全, 对酚羟基药物代谢多经历硫酸酯结合代谢途径(量少、慢),而对成 人则主要进行酚羟基的葡萄糖醛酸苷化结合代谢。
如:解热镇痛药对乙酰氨基酚(Acetaminophen,3-99)即是如此。
科学家们通过试验发现,如果人缺少多巴胺的受体,就会抑制兴奋。如: 一般身材较胖的人体内都缺少多巴胺受体,他们在接受食物所给的刺激时, 往往要比正常人慢。因此,他们需要更多的食物来满足自己对食物的快感。
相关文档
最新文档