高等数第9章 线性方程组
高等代数方法总结
高等代数方法总结一、前言高等代数是数学中的重要分支,它涉及到很多重要的概念和理论。
在学习高等代数时,我们需要掌握一些基本的方法和技巧,以便更好地理解和应用这些概念和理论。
本文将总结一些常见的高等代数方法,帮助读者更好地学习和应用高等代数知识。
二、线性方程组的求解线性方程组是高等代数中最基础的问题之一。
在实际应用中,线性方程组经常出现,并且求解线性方程组是很多问题的关键步骤。
下面介绍几种常见的线性方程组求解方法。
1. 高斯消元法高斯消元法是求解线性方程组最常用的方法之一。
它通过矩阵变换将原始矩阵转化为一个上三角矩阵或者行简化阶梯形矩阵,从而得到线性方程组的解。
具体步骤如下:(1)将系数矩阵增广为一个增广矩阵;(2)从第一行开始,找到第一个非零元素所在列,并将该列所有元素除以该元素;(3)将第一行乘以一个系数,使得该行第一个非零元素下面的元素都为零;(4)重复步骤(2)和(3),直到将矩阵转化为上三角矩阵或者行简化阶梯形矩阵;(5)从最后一行开始,依次求解每个未知量。
2. 矩阵求逆法如果一个方阵的行列式不等于零,则该方阵可以求逆。
对于一个n×n 的方阵A,如果它的行列式不等于零,则存在一个n×n的方阵B,使得AB=BA=I。
具体步骤如下:(1)构造增广矩阵[A|I];(2)通过初等变换将[A|I]变成[I|B],其中B即为A的逆矩阵。
3. 克拉默法则克拉默法则是一种基于行列式的线性方程组求解方法。
对于一个n元线性方程组,如果它的系数矩阵A可逆,则其唯一解可以表示为:xi=det(Ai)/det(A),i=1,2,...,n,其中Ai是将系数矩阵A中第i列替换为常数向量b后得到的新矩阵。
三、特征值和特征向量特征值和特征向量是高等代数中的重要概念,它们在很多领域中都有广泛的应用。
下面介绍几种常见的特征值和特征向量求解方法。
1. 特征方程法对于一个n阶矩阵A,如果存在一个非零向量x,使得Ax=kx,其中k为一个常数,则称k为矩阵A的特征值,x为矩阵A对应于特征值k 的特征向量。
高等代数第9章习题参考答案
第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量)0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ijy x a,),(αααα,由于A 是正定矩阵,因此∑ji j i ijy x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()(ΛΛi j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a aa a a a a a ΛM O MM ΛΛ212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。
高等数学第九章第一节 多元函数的基本概念
多元初等函数:由多元多项式及基本初等函数 经过有限次的四则运算和复合步骤所构成的可 用一个式子所表示的多元函数叫多元初等函数 一切多元初等函数在其定义区域内是连续的. 定义区域是指包含在定义域内的区域或闭区域.
29
一般地,求 lim f (P) 时,如果 f (P) 是初等函 P P0
数,且 P0 是 f (P ) 的定义域的内点,则 f (P ) 在
第一节 多元函数的基本概念
一、平面点集 二、多元函数的概念 三、多元函数的极限 四、多元函数的连续性
1
一、平面点集
1. 平面点集
平面上的点P与有序二元实数组 ( x, y) 之间
是一一对应的。
R2 R R (x, y) | x, y R 表示坐标平面。
平面上具有性质P的点集,称为平面点集,记作
边界上的点都是聚点也都属于集合.
9
二、多元函数概念
设 D是平面上的一个点集,如果对于每个点
P( x, y) D,变量z按照一定的法则总有确定的值 和它对应,则称 z 是变量 x, y 的二元函数,记为 z f ( x, y)(或记为z f (P)).
类似地可定义三元及三元以上函数.
当n 2时,n 元函数统称为多元函数.
点 P0
处连续,于是 lim P P0
f (P)
f (P0 ).
例7 求 lim xy 1 1.
x0
xy
y0
30
四、小结
多元函数的定义 多元函数极限的概念
(注意趋近方式的任意性)
多元函数连续的概念 闭区域上连续函数的性质
31
思考题
若点( x, y)沿着无数多条平面曲线趋向于 点( x0 , y0 )时,函数 f ( x, y)都趋向于 A,能否 断定 lim f ( x, y) A?
高等数学线性代数教材目录
高等数学线性代数教材目录第一章行列式1.1 行列式的引入1.2 二阶和三阶行列式的计算1.3 行列式的性质和性质的应用1.4 行列式的性质证明第二章矩阵和向量2.1 矩阵的概念和基本运算2.2 矩阵的转置和逆2.3 向量的线性相关性和线性无关性2.4 向量组的秩和极大线性无关组第三章矩阵的运算3.1 矩阵的加法和减法3.2 矩阵的数乘3.3 矩阵的乘法3.4 矩阵的特殊类型第四章线性方程组4.1 线性方程组的概念和解的分类4.2 齐次线性方程组和非齐次线性方程组的解 4.3 线性方程组的向量表示第五章向量空间5.1 向量空间的定义和例子5.2 向量子空间和子空间的概念5.3 向量空间的线性组合和生成子空间5.4 基和维数第六章矩阵的特征值和特征向量6.1 特征值和对角化6.2 特征多项式和特征方程6.3 相似矩阵和相似对角矩阵6.4 实对称矩阵的对角化第七章线性变换7.1 线性变换的概念和性质7.2 线性变换的矩阵表示7.3 线性变换的特征值和特征向量7.4 线性变换的相似、迹和行列式第八章内积空间8.1 内积的定义和性质8.2 欧几里得空间和具有内积的实向量空间8.3 向量的正交性和正交子空间8.4 施密特正交化方法第九章广义特征值问题9.1 广义特征值问题的引入9.2 广义特征值的计算9.3 广义特征值与相似变换9.4 对称矩阵的广义特征值问题与对角化第十章特殊矩阵的标准形式10.1 对称矩阵的对角化10.2 正定矩阵和正定二次型10.3 实对称矩阵的正交对角化10.4 复数矩阵的标准型这是《高等数学线性代数》教材的目录, 包含了十个章节,每个章节中有相应的小节来详细介绍相关内容。
这本教材综合了高等数学和线性代数的知识,旨在帮助读者掌握线性代数的基本概念、理论和方法,以及应用于实际问题的能力。
希望读者通过学习这本教材,能够系统地理解和应用线性代数的知识,为今后的学习和研究打下坚实的基础。
《高等数学》同济第六版 第9章答案
1 得C = 0 , 9 1 1 故所求的特解为: y = x ln x − x 3 9
代入初始条件 y (1) = − 11.求下列微分方程的通解 (1) y′′ − 4 y′ + 3 y = 0 (3) y′′ − 4 y′ + 4 y = 0 解: (1)特征方程为 (2) y′′ − 4 y′ = 0 (4) y′′ − 4 y′ + 5 y = 0
x )dy = 0 y
解: (1)原方程可化为: 3
dy x 2 y = + , 这是齐次方程. dx y 2 x
设u
=
y dy du ,由 y = xu 得 =u + x⋅ dx dx x
3u 2 1 du = dx 代入原方程并分离变量得: 3 x 1 − 2u
两边积分得: −
3
1 ln 1 − 2u 3 = ln x + ln C1 2 1 C 3 ,即 1 − 2u = 2 , 2 2 C1 x x
3 3 ⎤ ∫ y dy ⎡ y − ∫ y dy x=e dy + C ⎥ ⎢∫ − e ⎢ ⎥ ⎣ 2 ⎦
y 1 1 y2 = y 3 ( ∫ − ⋅ 3 dy + C ) = y 3 ( + C ) = Cy 3 + 2 2 y 2y
10.求微分方程 xy′ + 2 y = x ln x 满足 y (1) = − 解:原方程化为 将 P ( x) =
有⎨
⎧ C1 = 0 解得 C1 = 0, C2 = 1 . C + 2 C = 1 ⎩ 2 1
写出由下列条件确定的曲线所满足的微分方程.
4
(1)曲线在点 ( x, y ) 处的切线斜率等于该点横坐标的 5 倍. (2) 曲线在点 ( x, y ) 处的切线斜率等于该点横坐标与纵坐标乘积的倒数. 答案.(1) y ′ = 5 x (2) y ′ =
高等数学第9章第5节
y′
x =0
x
e −y =− cos y − x (0,0)
两边再对 x 求导
− sin y ⋅ ( y′)2 + cos y ⋅ y′′
令 x = 0 , 注意此时 y = 0 , y′ = −1
d y = −3 2 x =0 dx
2
定理2 . 若函数 F(x, y, z)满足: ① 在点 ② F(x0 , y0 , z0 ) = 0 ③ Fz (x0 , y0 , z0 ) ≠ 0 则方程 在点 某一邻域内可唯一确 定一个单值连续函数 z = f (x , y) , 满足 并有连续偏导数 Fx ∂z =− , ∂x Fz 的某邻域内具有连续偏导数 , 连续偏导数
2
x y x
2 Fy
=−
Fxx Fy − Fyx Fx
2 Fy
−
Fxy Fy − Fy y Fx
Fx (− ) Fy
=−
Fxx Fy 2 − 2Fxy Fx Fy + Fy y Fx2
3 Fy
例1. 验证方程 可确定一个单值可导隐函数
在点(0,0)某邻域 并求
dy d2 y , dx x = 0 dx2 x = 0
把 z 看成 x, y 的函数对 x 求偏导数得 ∂z ∂z ∂z = f u ⋅ (1 + ) + f v ⋅ ( yz + xy ), ∂x ∂x ∂x ∂z f u + yzf v , = 整理得 ∂x 1 − f u − xyfv
令 u = x + y + z , v = xyz , 则 z = f ( u, v ),
Fx Fv Gx Gv
(P86-P87)
高等代数第九章 1第一节 定义与基本性质
在解析几何中,向量 , 的夹角 的夹角<α, 的余弦 在解析几何中,向量α,β的夹角 ,β>的余弦 可以通过内积来表示 可以通过内积来表示 内积
cos < ห้องสมุดไป่ตู้ , β >= (α , β )
α β
.
(4) )
为了在一般的欧几里得空间中利用(4)引入夹角的 为了在一般的欧几里得空间中利用( ) 在一般的欧几里得空间中利用 概念,我们需要证明不等式 概念,我们需要证明不等式
返回 上页 下页
例2 在Rn里,对于向量 α=(a1, a2,…,an), 定义内积
β=(b1, b2,…,bn)
(α, β)=a1b1+2a2b2+…+nanbn 则其内积适合定义中的条件,这样 则其内积适合定义中的条件,这样Rn就也成为一个 内积适合定义中的条件 欧几里得空间. 仍用 n来表示这个欧几里得空间 这个欧几里得空间. 欧几里得空间 仍用R 来表示这个欧几里得空间 注意, 知道,对同一个线性空间可 注意,由例1、例2知道,对同一个线性空间可 引入不同的内积,使得它作成欧几里得空间 作成欧几里得空间. 以引入不同的内积,使得它作成欧几里得空间
返回
证毕. 证毕
上页 下页
结合具体例子来看一下这个不等式是很有意思 结合具体例子来看一下这个不等式是很有意思 具体例子来看一下这个不等式 对于例 空间R 的. 对于例1的空间 n,(5)式就是
2 2 2 2 2 a1b1 + a 2 b2 + L + an bn ≤ a1 + a2 + L + a n b12 + b2 + L + bn .
(1) )
高等代数知识点总结课件
行列式的展开定理
• 总结词:行列式的展开定理是行列式计算的核心,它提供了计算行列式 值的有效方法。
• 详细描述:行列式的展开定理指出,一个$n$阶行列式等于它的主对角线上的元素的乘积与其它元素乘积的代数和的相 反数。具体来说,对于一个$n$阶行列式$|\begin{matrix} a{11} & a{12} & \cdots & a{1n} \ a{21} & a{22} & \cdots & a{2n} \ \vdots & \vdots & \ddots & \vdots \ a{n1} & a{n2} & \cdots & a{nn} \end{matrix}|$,其值等于 $a{11}A{11} + a{21}A{21} + \cdots + a{n1}A{n1}$,其中$A{ii}$表示去掉第$i$行和第$i$列后得到的$(n-1)$阶行列 式的值。
04
线性函数与双线性函数
线性函数的定义与性质
线性函数的定义
线性函数是数学中的一种函数,其图 像为一条直线。在高等代数中,线性 函数是指满足 f(ax+by)=af(x)+bf(y) 的函数。
线性函数的性质
线性函数具有一些重要的性质,如加 法性质、数乘性质、零元素性质和负 元素性质等。这些性质在解决实际问 题中具有广泛的应用。
欧几里得空间与酉空间
欧几里得空间
欧几里得空间是一个几何空间,它满足 欧几里得几何的公理。在欧几里得空间 中,向量的长度和角度都可以用实数表 示。
VS
酉空间
酉空间是一种特殊的线性空间,它满足酉 几何的公理。在酉空间中,向量的长度和 角度都可以用复数表示。酉空间在量子力 学、信号处理等领域有广泛应用。
大一高等数学的教材目录
大一高等数学的教材目录第一章:函数与极限1.1 函数的定义与性质1.2 函数的极限与连续性1.3 极限运算法则1.4 无穷小与无穷大1.5 极限存在准则第二章:导数与微分2.1 导数的定义与性质2.2 基本初等函数的导数2.3 反函数与参数方程的导数2.4 高阶导数与函数的近似2.5 微分的定义与应用第三章:积分与反常积分3.1 不定积分与换元积分法3.2 定积分与牛顿-莱布尼兹公式3.3 反常积分的概念与性质3.4 反常积分的审敛法3.5 广义积分与无穷级数第四章:多元函数与偏导数4.1 多元函数的概念与性质4.2 偏导数的定义与计算4.3 隐函数与复合函数的偏导数4.4 方向导数与梯度4.5 多元函数的极值与条件极值第五章:重积分与曲线积分5.1 二重积分的概念与性质5.2 二重积分的计算方法5.3 三重积分的概念与性质5.4 三重积分的计算方法5.5 曲线积分的定义与计算第六章:无穷级数与级数展开6.1 收敛级数与无穷级数的运算6.2 正项级数的审敛法6.3 幂级数与泰勒级数6.4 函数展开与近似计算6.5 傅里叶级数与傅里叶变换第七章:常微分方程7.1 常微分方程的基本概念7.2 可分离变量方程与一阶线性方程7.3 二阶线性常系数齐次方程7.4 二阶线性常系数非齐次方程7.5 线性方程组与常微分方程应用第八章:概率论与数理统计8.1 随机事件与概率8.2 条件概率与事件独立性8.3 随机变量与概率分布8.4 多维随机变量与联合分布8.5 统计量与抽样分布第九章:常用数学方法和定理9.1 矩阵与线性方程组9.2 特征值与特征向量9.3 数学归纳法及其应用9.4 极值、最值与不等式9.5 极限的定义与性质第十章:复变函数10.1 复数与复数函数10.2 复变函数的导数与解析函数10.3 共轭函数与全纯函数10.4 积分与柯西公式10.5 函数级数与留数定理总结:本教材涵盖了大一高等数学的核心内容,从函数与极限起步,通过导数与微分、积分与反常积分、多元函数与偏导数、重积分与曲线积分等章节的学习,引导学生掌握数学分析的基本方法和思维,为日后的数学学习打下坚实基础。
《高等数学》(曹治清)课件 高等数学第九章
图9-1
MATLAB集成环境的上层铺放着4个最常用的界面:指令窗 口(CommandWindow)、历史指令(CommandHistory)窗口、工作空 间(Workspace)窗口和当前目录(CurrentDirectory)窗口。此外, 在MATLAB主窗口的左下角还有一个“开始(Start)〞按钮。
最小公倍数
例如,要计算y sin ,可直接在指令窗口输入y=sin(pi/6),得 6
y=0.5000。
如果我们输入:x= linspace (0 , 2*pi , 4);
y= sin(x)
% y被扩展为与x同维数的矩阵
得y=0 0.8660 -0.8660
-
2.点运算 点运算是指在有关算术运算符前面加点。点运算符有“.*〞“./
9.1.3 MATLAB变量与操作
在MATLAB中,变量由字母、数字和下划线组成。第一个字 符必须是字母,并区分大小写。表9-1是MATLAB中常用的系统 预定义变量。
表9-1
预定义变量
ans eps pi
含义
计算结果默认 赋值变量
机器零阈值
圆周率π
预定义变量
含义
i或j inf或lnf NaN或nan
在MATLAB语句后面可以加上注释,用于解释或说明语句的 含义,对语句处理结果不产生任何影响。注释以%开头,后面是 注释的内容。
例
9.1.1
计算
1 4
3
3
2
sin
5
。
解
在MATLAB指令窗口输入命令: x=(1/4-3+2^(1/3)) * sin(pi/5)
%计算表达式的值
按下回车键得输出结果为 x= -
《九章算术》—方程
《九章算术》—方程“方程”史话:我们研究许多数学问题时,可以发现其中的未知数不是孤立的,它们与一些已知数之间有确定的联系,这种联系常常表现为一定的相等关系,把这种关系用数学形式写出来就是含有未知数的等式,这种等式的数学专有名称是方程.人们对方程的研究可以上溯到很早以前,公园820年左右,中亚细亚的数学家阿尔花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法,这本书对后来数学发展产生了很大的影响.在很长时期内,方程没有专门的表达形式,而是使用一般的语言文字来叙述它们,17世纪时,法国数学家笛卡尔最早提出用x,y,z 这样的字母表示未知数,把这样的字母与普通数字同样看待,用运算符合和等号将字母与数字连接起来,就形成含有未知数的等式,后来经过不断的简化改进,方程逐渐演变成现在的表达形式,例如543,04,16752=+=-=+y x x x 等. 中国人对方程的研究有悠久的历史,汉语中“方程”一词最初源于讨论多个未知数的问题.著名中国古代著作《九章算术》大约成书于公元前200~前50年,其中有专门以“方程”命名的一章,其中以一些实际应用问题为例,给出了列由几个方程组成的方程组的解题方法.中国古代数学家表示方程时,只用算筹表示各未知数的系数,而没有使用专门的记法来表示未知数,按照这样的表示法,方程组被排列成长方形的数字阵,这与现在代数学中的矩阵非常接近,宋元时期,中国数学家创立了“天元术”,用“天元”表示未知数进而建立方程,这种方法的代表作是“立天元一”相当于现在的“设未知数x”.1859年,中国清代数学家李善兰翻译外国数学著作时,开始讲equation(指含有未知数的等式)一词译为方程,即将含有未知数的一个等式称为方程,而将含有未知数的多个等式的组合称为方程组,至今一直这样沿用.随着数学的研究范围不断扩充,方程被普遍使用,它的作用越来越重要,从初等数学中的简单代数方程,到高等数学中的微分方程、积分方程,方程的类型由简单到复杂不断地发展.但是,无论方程的类型如何变化,形形色色的方程都是含有未知数的等式,都表述涉及未知数的相等关系;解方程的基本思想都是依据相等关系使未知数逐步化归为用已知数表达的形式.这正是方程的本质所在.《九章算术》方程:《九章算术》方程章中所谓“方程”是专指多元一次方程组而言,与现在“方程”的含义并不相同.《九章算术》中多元一次方程组的解法,是将它们的系数和常数项用算筹摆成“方阵”(所以称之谓“方程”).消元的过程相当于现代大学课程高等代数中的线性变换.方程章第一题:“今有上禾(指上等稻子)三秉(指捆)中禾二秉,下禾一秉,实(指谷子)三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗.问上、中、下禾实一秉各几何”,这一题若按现代的记法.设x 、y 、z 依次为上、中、下禾各一秉的谷子数,则上述问题是求解三元一次方程组:⎪⎩⎪⎨⎧=++=++=++ 26323432 323z y x z y x z y x其他国家或民族给出联立一次方程组的解法比中国晚不少年,如在印度最早出现在婆罗摩笈多(Brahmagupta ,598-660)的著作《婆罗摩修正体系》之中;而欧洲最早提出三元一次方程组解法者是法国数学家布丢(J.Buteo ,1485-1572).《九章算术》方程章中共计18道题目,其中关于二元一次方程组的有8题,三元的6题,四元、五元的各2题皆是用直除法求解,该演算法是我国古代求解线性方程组的基本方法,其理论上和现在加减消元法基本一致.如第2、10题就是典型的二元一次方程组.今有上禾七秉,损实一斗,益之下禾二秉,而实一十斗;下禾八秉,益实一斗与上禾二秉,而实一十斗.问上、下禾实一秉各几何?这里的“损实”就是减去,“益实”就是加上,故而“益实”和“损实”是一对互为相反意义的正负概念.同时在“术”中还给出移项的概念.解按术计算有:设上禾每捆打谷斗,下禾每捆打谷斗.据题意可得方程组(71)2102(81)10x yx y-+=⎧⎨++=⎩,解得35264152xy⎧=⎪⎪⎨⎪=⎪⎩.今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?据题意可得15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,解得37.525xy=⎧⎨=⎩.。
高等数学试题库
第一章 函数、极限与连续一、 判断题:1.极限)(lim 0x f x x →存在的充要条件是)0(0-x f 与)0(0+x f 都存在。
( )2.如果)0(0-x f 与)0(0+x f 都存在且相等,则)(lim 0x f x x →存在。
( )3.如果函数)(x f 在0x 处既左连续且右连续,则)(x f 在0x 连续。
( ) 4.如果)(lim 0x f x x →存在,则)(x f 在0x 连续。
( )5.如果函数)(x f 在0x 连续,则)(lim 0x f x x →存在。
( )6.极限 2200limy x xyy x +→→存在 。
( )7.如果)(x f 在()b a ,内连续,则)(x f 在()b a ,内必有最大值和最小值。
( ) 8.如果)(x f 在[]b a ,内连续,则)(x f 在[]b a ,内必有最大值和最小值。
( ) 9.极限 ()e x xx -=-→1lim 0。
( )10.极限21946853lim 2323=-++-∞→x x x x x 。
( ) 二、 填空题:1.函数1)3ln(2222-++--=y x y x y 的定义域是 。
2. 函数4192222-++--=y x y x y 的定义域是 。
3.若⎪⎩⎪⎨⎧<=>+=0,00,,1)(x x x x x f π,则=-)]}1([{f f f 。
4. 函数 x y 2sin ln =的复合过程是 。
5. 一切初等函数在其 内都是连续的。
6. 设arctgx x y 2-=,则)(lim x y x --∞→= 。
7. 如果322sin 3lim0=→x mx x ,则m = 。
8. 设⎪⎩⎪⎨⎧≥-<<≤-+=2,2221,1,32)(2x x x x x x x x f ,则)(lim 1x f x →= 。
9. 函数11)(2+-=x x x f 的间断点是 。
高等代数第9章习题参考答案
第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ijy x a,),(αααα,由于A 是正定矩阵,因此∑ji j i ijy x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。
数学专业论文—线性方程组的求解及其应用
嘉兴学院南湖学院(2011届)本科毕业论文(设计)题目:线性方程组的求解及其应用专业:数学与应用数学班级学号:姓名:指导教师:完成日期: 2011.5.5诚信声明我声明,所呈交的论文(设计)是本人在老师指导下进行的研究工作及取得的研究成果.据我查证,除了文中特别加以标注和致谢的地方外,论文(设计)中不包含其他人已经发表或撰写过的研究成果,也不包含为获得嘉兴学院或其他教育机构的学位或证书而使用过的材料.我承诺,论文(设计)中的所有内容均真实、可信.论文(设计)作者签名:签名日期:年月日授权声明学校有权保留送交论文(设计)的原件,允许论文(设计)被查阅和借阅,学校可以公布论文(设计)的全部或部分内容,可以影印、缩印或其他复制手段保存论文(设计),学校必须严格按照授权对论文(设计)进行处理,不得超越授权对论文(设计)进行任意处置.论文(设计)作者签名:签名日期:年月日线性方程组的求解及其应用***(**学院)摘要:线性方程组是线性代数中一个最基础的内容,它在科学和工程计算等领域都发挥着重要的作用.本文主要讨论线性方程组解的基本结构,并运用克拉默法则,高斯消元法和追赶法等来求解.另外还研究了它在解析几何,高等代数,运筹学等学科以及其他学科领域中的一些简单的应用.通过线性方程组的求解及其应用,使很多繁琐的问题变得方便快捷.关键词:线性方程组;克拉默法则;高斯消元法;LU分解;应用The Solution of Linear System of Equations and It’s Application***(** University)Abstract:Linear system of equations is one of the most basic content in linearalgebra. It plays an important role in many areas, for example in science and engineering calculation. This article discusses the basic structure solution of linear equations, and use Cramer's rule, Gauss-elimination and chase way to find solutions. In addition, it also examines it’s in analytic geometry, higher algebra, operations research, as well as other areas of some simple applications. By the solution of linear system of equations and it’s application, we can make a lot of complicated problems becoming more convenient.Key words:Linear equations; Cramer's rule; Gauss-elimination; LU-decomposition;Application目录1 引言 (1)2 线性方程组求解 (2)2.1 概念 (2)2.2 解的情况及其通解 (3)2.3 克拉默法则 (5)2.4 高斯消元法 (7)2.5 追赶法 (9)2.5.1 LU分解 (9)2.5.2 追赶法 (10)3 线性方程组的应用 (13)3.1 在解析几何中的应用 (13)3.2 在高等代数中的应用 (13)3.3 在运筹学中的应用 (14)3.4 在化学中的应用 (15)3.5 在经济学中的应用 (16)3.6 在控制科学中的应用 (18)4 结束语 (21)致谢 (22)参考文献 (23)1 引言线性方程组即各个方程关于未知量均为一次的方程组.对线性方程组的研究,中国比欧洲至少早1500年,记载在公元初《九章算术》方程章中.线性方程组是线性代数的主要内容,它主要包括线性方程组有解性的判定、线性方程组的求解和线性方程组解的结构等.而且随着现代工业的发展,线性方程组的应用出现在各个领域,伴随着大量方程和多未知数的出现,寻找简便而且准确的求解方法就显得十分重要而且具有现实意义.因此对线性方程组解法的研究就显得十分必要[]1.本文主要内容是讨论了线性方程组解的几种基本情况,以及有不唯一解时的通解表示形式.其次还介绍了线性方程组当解唯一时的三种求解方法,分别是:1、克拉默法则;2、高斯消元法;3、追赶法.另外本文还介绍了线性方程组在高等代数,解析几何,运筹学等数学领域以及在其他学科领域中的一些基本的应用.2 线性方程组求解线性方程组的核心问题是研究它何时有解,以及解是什么.本节主要对线性方程组解的情况进行讨论,给出当解不唯一时通解的表示形式.另外还介绍了几种特殊的线性方程组的求解方法.线性方程组可以分成两类,一类是未知量个数与方程的个数相等,另一类是未知量个数与方程的个数不等.对于前一类特殊的线性方程组,我们可以采用克拉默法则,对于后一种线性方程组我们可以采用高斯消元法.而追赶法是数值计算中解线性方程组的一种直接法,它能在无舍入误差存在的情况下,经过有限步运算即可求得方程组的精确解的算法.2.1 概念错误!未找到引用源。
高等数学课后习题答案第九章
习题九1. 求函数u=xy2+z3-xyz在点(1,1,2)处沿方向角为的方向导数。
解:2. 求函数u=xyz在点(5,1,2)处沿从点A(5,1,2)到B(9,4,14)的方向导数。
解:的方向余弦为故3. 求函数在点处沿曲线在这点的内法线方向的方向导数。
解:设x轴正向到椭圆内法线方向l的转角为φ,它是第三象限的角,因为所以在点处切线斜率为法线斜率为.于是∵∴4.研究下列函数的极值:(1)z=x3+y3-3(x2+y2); (2)z=e2x(x+y2+2y);(3)z=(6x-x2)(4y-y2); (4)z=(x2+y2);(5)z=xy(a-x-y),a≠0.解:(1)解方程组得驻点为(0,0),(0,2),(2,0),(2,2).z xx=6x-6, z xy=0, z yy=6y-6在点(0,0)处,A=-6,B=0,C=-6,B2-AC=-36<0,且A<0,所以函数有极大值z(0,0)=0.在点(0,2)处,A=-6,B=0,C=6,B2-AC=36>0,所以(0,2)点不是极值点.在点(2,0)处,A=6,B=0,C=-6,B2-AC=36>0,所以(2,0)点不是极值点.在点(2,2)处,A=6,B=0,C=6,B2-AC=-36<0,且A>0,所以函数有极小值z(2,2)=-8.(2)解方程组得驻点为.在点处,A=2e,B=0,C=2e,B2-AC=-4e2<0,又A>0,所以函数有极小值.(3) 解方程组得驻点为(3,2),(0,0),(0,4),(6,0),(6,4).Z xx=-2(4y-y2),Z xy=4(3-x)(2-y)Z yy=-2(6x-x2)在点(3,2)处,A=-8,B=0,C=-18,B2-AC=-8×18<0,且A<0,所以函数有极大值z(3,2)=36.在点(0,0)处,A=0,B=24,C=0,B2-AC>0,所以(0,0)点不是极值点.在点(0,4)处,A=0,B=-24,C=0,B2-AC>0,所以(0,4)不是极值点.在点(6,0)处,A=0,B=-24,C=0,B2-AC>0,所以(6,0)不是极值点.在点(6,4)处,A=0,B=24,C=0,B2-AC>0,所以(6,4)不是极值点.(4)解方程组得驻点P0(0,0),及P(x0,y0),其中x02+y02=1,在点P0处有z=0,而当(x,y)≠(0,0)时,恒有z>0,故函数z在点P0处取得极小值z=0.再讨论函数z=u e-u由,令得u=1,当u>1时,;当u<1时,,由此可知,在满足x02+y02=1的点(x0,y0)的邻域内,不论是x2+y2>1或x2+y2<1,均有.故函数z在点(x0,y0)取得极大值z=e-1(5)解方程组得驻点为z xx=-2y, z xy=a-2x-2y, z yy=-2x.故z的黑塞矩阵为于是易知H(P1)不定,故P1不是z的极值点,H(P2)当a<0时正定,故此时P2是z的极小值点,且,H(P2)当a>0时负定,故此时P2是z的极大值点,且.5. 设2x2+2y2+z2+8xz-z+8=0,确定函数z=z(x,y),研究其极值。
高等代数(第9章)
证 依题意,可设 = k11+k22+…+knn ,则
n
n
( , ) ( ki i , ) ki ( i , ) 0
i 1
i 1
故 = 0.
(2)性质 设V是欧氏空间,则内积有如下性质
(i) (, 0)= (0, )=0
对称性
(ii) (k , )= (, k )
3.度量矩阵
定义 设V是n维欧氏空间, 1, 2,…,n为V的一组基.称
( 1 , 1 ) ( 1 , 2 ) ( 1 , n )
A ( 2 , 1 ) ( 2 , 2 ) ( 2 , n )
( n , 1 ) ( n , 2 ) ( n , n )
依定义,若1, 2,…,n是n维欧氏空间V中一个标
准正交基,则
( i ,
j)
1, 0,
i i
j j
(i, j 1,2,, n).
反之亦然,因此有如下结论.
定理 n维欧氏空间V的一组基1, 2,…,n是标准正 交基为该基的度量矩阵A=((i,j))nn为单位矩阵.
(ii)|k |=| k| | | (iii) |+ || |+ | | (后证)
证 (ii) k (k, k ) k 2 (, ) k .
长度为1的向量称为单位向量,而 称为把单位化.
(2)向量的夹角 为合理引进两个向量夹角的概念,首先证明欧氏空
间中的柯西——布涅科夫斯基(Cauchy-Buniakowski) 不等式.
定理 设V是欧氏空间, , V,有 |( , ) ||| | |
当且仅当 , 线性相关时等号成立. 证 (i)若 , 线性无关,则0, t , tR.考虑向量 =-t ( 0),由于
丘维声高等代数第九章3
当 2 t l 时,把上式中的 t 换成 t -1,得 rank B t 1 N ( t ) 2 N ( t 1) ( l t 1) N ( l ) () 当 t 1时, ()式左端为 rank B0 rankI r , ( ) 式右端为
10
则 A1 的最小多项式是 m1 ( ) ( a )5 ( b ) 2 , A2 的最小多项式是 m2 ( ) ( 1) 2 ( 2) 。
定义 设 为数域 K 上线性空间 W 上的一个线 性变换, W 。若存在正整数 t,使
t 1 0 , t 0
l
l j 1 lj j =0, j
0
定义 满足l = 0 的线性变换称为幂零变换; 使l = 0 成立的最小正整数 l 称为的幂零指数。 满足 Al = 0 的矩阵 A 称为幂零矩阵;使 Al = 0 成立的最小正整数 l 称为 A 的幂零指数。
j = |W j -j 就是W j 上的幂零变换。
N (1) 2 N (2) lN ( l )
恰是 B 中全部 Jordan 块的级数之和,故等于 B 的 级数 r。所以, ()式对1 t l 都成立。 把()式与前面一式相减,得 rank B t 1 rank B t = N ( t ) N ( t 1) N ( l ) 对1 t l ,把上式中的 t 换成 t +1,得 rank B t rank B t 1 = N ( t 1) N ( t 2) N ( l ) 上面两式再次相减,得 rank B t 1 +rank B t 1 2rank B t = N ( t ) () 当 t l 时, ()式左端为 rank B l 1 +rank B l 1 2rank B l = rank B l 1 [ l ( l 1)]N ( l )
《高等代数》数分高代定理大全
数分高代定理大全《高等代数》第一章带余除法 对于[]P x 中任意两个多项式()f x 与()g x ,其中()0g x ≠,一定有[]P x 中的多项式(),()q x r x 存在,使()()()()f x q x g x r x =+成立,其中(())(())r x g x ∂<∂或者()0r x =,并且这样的(),()q x r x 是唯一决定的.定理 1 对于数域P 上的任意两个多项式(),()f x g x ,其中()0,()|()g x g x f x ≠的充分必要条件是()g x 除()f x 的余式为零.定理 2 对于[]P x 中任意两个多项式()f x ,()g x ,在[]P x 中存在一个最大公因式()d x ,且()d x 可以表示成()f x ,()g x 的一个组合,即有[]P x 中多项式(),()u x v x 使()()()()()d x u x f x v x g x =+.定理 3 []P x 中两个多项式()f x ,()g x 互素的充分必要条件是有[]P x 中的多项式(),()u x v x 使()()()()1u x f x v x g x +=.定理 4 如果((),())1f x g x =,且()|()()f x g x h x ,那么()|()f x h x .定理 5 如果()p x 是不可约多项式,那么对于任意的两个多项式(),()f x g x ,由()|()()p x f x g x 一定推出()|()p x f x 或者()|()p x g x .&因式分解及唯一性定理 数域P 上每一个次数1≥的多项式()f x 都可以唯一地分解成数域P 上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式1212()()()()()()(),s t f x p x p x p x q x q x q x ==那么必有s t =,并且适当排列因式的次序后有()(),1,2,,,i i i p x c q x i s ==其中(1,2,,)i c i s =是一些非零常数.定理 6 如果不可约多项式()p x 是()f x 的k 重因式(1)k ≥,那么它是微商()f x '的1k -重因式.定理 7(余数定理) 用一次多项式x α-去除多项式()f x ,所得的余式是一个常数,这个常数等于函数值()f α.定理 8 []P x 中n 次多项式(0)n ≥在数域P 中的根不可能多于n 个,重根按重数计算.定理 9 如果多项式()f x ,()g x 的次数都不超过n ,而它们对1n +个不同的数121,,n ααα+有相同的值,即()(),1,2,1,i i f g i n αα==+那么()()f x g x =.代数基本定理 每个次数1≥的复系数多项式在复数域中有一根.复系数多项式因式分解定理 每个次数1≥的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.实系数多项式因式分解定理 每个次数1≥的实系数多项式在实数域上都可以唯一地分解成一次因式与二次不可约因式的乘积.定理 10(高斯(Gauss )引理) 两个本原多项式的乘积还是本原多项式. 定理 11 如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定能分解成两个次数较低的整系数多项式的乘积. 定理 12 设110()n n n n f x a x a x a --=+++是一个整系数多项式,而rs是它的有理根,其中,r s 互素,那么必有0|,|n s a r a .特别地,如果()f x 的首项系数1n a =,那么()f x 的有理根是整根,而且是0a 的因子.)定理 13 (艾森斯坦(Eisenstein )判别法) 设110()n n n n f x a x a x a --=+++是一个整系数多项式,如果有一个素数p ,使得1.|n p a /; 2.120|,,,n n p a a a --;3.20|p a /那么()f x 在有理数域上是不可约的.第二章 定理 1 对换改变排列的奇偶性. 定理 2 任意一个n 级排列与排列12n 都可以经过一系列对换互变,并且所作对换的个数与这个排列有相同的奇偶性.定理 3 设111212122212n n n n nna a a a a a d a a a =,ij A 表示元素ij a 的代数余子式,则下列公式成立:—1122,,0,.k i k i kn in d k i a A a A a A k i =⎧+++=⎨≠⎩当当 1122,,0,.l j l j nl nj d j a A a A a A j =⎧+++=⎨≠⎩当l 当l定理 4 (克拉默法则) 如果线性方程组11112211211222221122,,n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的系数矩阵111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的行列式0d A =≠,那么该线性方程组有解,并且解是唯一的,解可以通过系数表为1212,,,,nn d d d x x x d dd===其中j d 是把矩阵A 中第j 列换成方程组的常数项12,,,n b b b 所成的行列式,即1,11,111112,12,12122,1,11,1,2,,.j j n j j n j n j n j n n nna a ab a a a a b a d j n a a a b a -+-+-+==定理 5 如果齐次线性方程组1111221211222211220,0,0n n n nn n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的系数矩阵的行列式0A ≠,那么它只有零解.换句话说,如果该方程组有非零解,那么必有0A =.@定理 6 (拉普拉斯定理) 设在行列式D 中任意取定了(11)k k n ≤≤-个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D .定理 7 两个n 级行列式1112121222112n n n n nna a a a a a D a a a =和1112121222212n n n n nnb b b b b b D b b b =的乘积等于一个n 级行列式111212122212n n n n nnc c c c c c C c c c =,其中ij c 是1D 的第i 行元素分别与2D 的第j 列的对应元素乘积之和:1122ij i j i j in nj c a b a b a b =+++.第三章定理 1 在齐次线性方程组1111221211222211220,0,0n n n nn n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 中,如果sn ,那么它必有非零解.定理 2 设12,,r 与1,,,r 2是两个向量组,如果1)向量组12,,r 可以经1,,,r 2线性表出,2)rs ,那么向量组12,,r 必线性相关..定理 3 一向量组的极大线性无关组都含有相同个数的向量 定理 4 矩阵的行秩与列秩相等. 定理 5 n n 矩阵111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的行列式为零的充分必要条件是A 的秩小于n .定理 6 一矩阵的秩是r 的充分必要条件为矩阵中有一个r级子式不为零,同时所有1r级子式全为零.定理 7 (线性方程组有解判别定理) 线性方程组11112211211222221122,,n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩有解的充分必要条件为它的系数矩阵111212122212n n s s sn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦与增广矩阵11121121222212n n s s sn s a a a b a a a b A a a a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦有相同的秩。
高等数学(本科)第九章课后习题解答
习题9.11.二元函数()y x f ,在有界闭区域D 可积的充分与必要条件是什么?它的几何意义和物理意义是什么?【答】几何意义表曲顶柱体的体积的代数和;物理意义表平面薄片的质量. 2.设()(){}11|,22≤+-=y x y x D ,则二重积分⎰⎰=Ddxdy π.【解】根据二重积分的性质,⎰⎰Ddxdy 等于积分区域D 的面积.而此处积分区域D 是半径为1的圆域,因此其面积为π. 3.求⎰⎰Ddxdy 4,其中(){}1|,≤+=y x y x D .【解】⎰⎰Ddxdy 4()()824442=⨯===⎰⎰D S dxdy D.4.如果闭区域D 被分成区域1D 、2D 且()5,1⎰⎰=D dxdy y x f ,()1,2⎰⎰=D dxdy y x f ,求()⎰⎰Ddxdy y x f ,.【解】根据二重积分的性质()⎰⎰Ddxdy y x f ,()⎰⎰+=1,D dxdy y x f ()615,2=+=⎰⎰D dxdy y x f .5.设()⎰⎰+=13221D d y x I σ, (){}22,11|,1≤≤-≤≤-=y x y x D ;()⎰⎰+=23222D d y x I σ,其中(){}20,10|,2≤≤≤≤=y x y x D .试利用二重积分的几何意义说明1I 与2I 之 间的关系.【解】因为积分区域2D 关于x 轴及y 轴均对称,且被积函数()()322,y x y x f +=为偶函数,故根据二重积分的对称性知214I I =. 6.估计下列积分的值. (1)⎰⎰+=Dy xd e I σ22,其中(){}41|,22≤+≤=y x y x D ;【解】积分区域D 的面积πσ3=.显然被积函数()32,y x e y x f +=在积分区域D 内有最小值e e m ==1及最大值4e M =,因此由估值定理知 433e I e ππ≤≤.(2)⎰⎰=Dyd x I σ22sin sin ,其中(){}ππ≤≤≤≤=y x y x D 0,0|,.【解】积分区域D 的面积2πσ=.显然被积函数()x x y x f 22sin sin ,=在积分区域D 内有最小值()00,0==f m 及最大值12,2=⎪⎭⎫⎝⎛=ππf M ,因此由估值定理知20π≤≤I .7.设函数()y x f ,在点()b a ,的某个邻域内连续,D 表示以点()b a ,为圆心且完全含在上述邻域内的圆域(半径为R ).求极限 ()⎰⎰→DR d y x f R σπ,1lim20.【解】积分区域D 的面积2R πσ=.由积分中值定理知 ()⎰⎰Dd y x f σ,()()ηξπσηξ,.,2f R f ==.显然当0→R 时,()()b a ,,→ηξ,所以 ()⎰⎰→DR d y x f R σπ,1lim20()()b a f f R ,,lim 0==→ηξ.8.设区域(){}1|,22≤+=y x y x D ,()y x f ,为区域D 上的连续函数,且 ()()dxdy y x f y x y x f D⎰⎰---=,11,22π. ① 求()y x f ,.【解】记 ()dxdy y x f a D⎰⎰=,. ②则①成为()πay x y x f ---=221,. ③由③得()⎰⎰⎰⎰⎰⎰---=DDDdxdy adxdy y x dxdy y x f π221,. ④其中,根据几何意义及性质可知32134211322ππ=⎪⎭⎫ ⎝⎛⨯=--⎰⎰dxdy y x D.π=⎰⎰Ddxdy .所以由④式得到 3.32ππππ=⇒-=a a a . 将3π=a 代入③即得到()311,22---=y x y x f .习题9.21.在化二重积分时,选择坐标系的原则是什么?【解】选择坐标系的原则主要是根据积分区域的形状,具体地讲,积分区域的边界曲线是用直角坐标方程表示方便还是用极坐标方程表示简洁.当然,被积函数的特征也要考虑,如形如()22y xf+的积分就首选极坐标系来计算.2.先画出积分区域,再计算二重积分.(1)()⎰⎰+Dd y x σ22,其中D 是矩形区域:1,1≤≤y x ;【解】记(){}10,10|,1≤≤≤≤=y x y x D .由对称性知()⎰⎰+Dd y xσ22()⎰⎰+=1224D d y x σ()dy y x dx ⎰⎰+=101224⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=101032|314dx y y x 3831314314101032|=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎰x x dx x .(2)()⎰⎰++Dd y y x x σ3233,其中D 是矩形区域:10,10≤≤≤≤y x ;【解】()⎰⎰+Dd y xσ22()dy y y x x dx ⎰⎰++=10103233⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=10104223|4123dx y y x y x1412141412310103423|=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=⎰x x x dx x x .(3)()⎰⎰+Dd y x σ23,其中D 是由两坐标轴及直线2=+y x 所围成的区域;【解】()⎰⎰+Dd y x σ23()dy y x dx x⎰⎰-+=202023()⎰⎥⎦⎤⎢⎣⎡+=-20202|3dx y xy x()()[]()3204324222232020232022|=⎪⎭⎫ ⎝⎛++-=++-=-+-=⎰⎰x x x dx x x dx x x x .(4)()⎰⎰+Dd y x x σcos ,其中D 是顶点分别为()0,0,()0,π,()ππ,的三角形区域;【解】()⎰⎰+Dd y x x σcos ()dy y x x dx x ⎰⎰+=π00cos ()⎰⎥⎦⎤⎢⎣⎡+=π00|sin dx y x x x()⎰⎰⎰-=-=πππ0sin 2sin sin 2sin xdx x xdx x dx x x x()()⎰⎰+-=ππ00cos 2cos 21x xd x xd 【分部】()⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--=⎰⎰ππππ0000cos cos 22cos 212cos 21||xdx x x x xd x xπππππππ2321sin 2sin 2121||00-=--=⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡--=x x .(5)⎰⎰Dxy dxdy ye ,其中D 是由曲线2,2,1===y x xy 所围成的区域; 【解】⎰⎰Dxydxdy ye dy ye dx x xy⎰⎰=22121()x d e yd x x xy ⎰⎰⎥⎦⎤⎢⎣⎡=221211x d dy e ye x x xy x xy ⎰⎰⎪⎪⎭⎫ ⎝⎛-=2212121|1x d e x x e e x x xy x⎰⎪⎪⎭⎫ ⎝⎛--=221212|1121 x d e x e x x x ⎰⎪⎭⎫ ⎝⎛-=22122212x d e x x⎰=221212x d e xx ⎰-221221其中=⎰x d e x x 221221⎪⎭⎫ ⎝⎛-⎰x d e x 12212【分部】()⎥⎦⎤⎢⎣⎡--=⎰2212221211|x x e d x e x ++-=e e 2214x d e xx ⎰221212.所以⎰⎰Dxydxdy ye -=⎰x d e x x 221212e e dx e x e e x22112221422214-=⎥⎦⎤⎢⎣⎡++-⎰. (6)()⎰⎰+Ddxdy y x sin ,其中D 是矩形区域:ππ20,0≤≤≤≤y x .【解】以直线π=+y x 及π2=+y x 将区域D 分成三个子区域:321D D D D ⋃⋃=.其中,⎩⎨⎧≤≤-≤≤,0,0:1ππx x y D , ⎩⎨⎧≤≤-≤≤-,0,2:2πππx x y x D ,⎩⎨⎧≤≤≤≤-,0,22:3πππx y x D ()dy y x dx I x⎰⎰-+=ππ0sin ()dy y x dx x x ⎰⎰--+-+πππ02sin ()dy y x dx x⎰⎰-++πππ022sin其中()dy y x dx x⎰⎰-+ππ0sin ()dx y x x ⎰⎥⎦⎤⎢⎣⎡+-=-ππ00|cos ()()πππ=+=+=⎰|0sin cos 1x x dx x ;()dy y x dx xx⎰⎰--+-πππ02sin ()dx y x xx ⎰⎥⎦⎤⎢⎣⎡+=--πππ02|cosππ220==⎰dx ;()dy y x dx x ⎰⎰-+πππ022sin ()dx y x x ⎰⎥⎦⎤⎢⎣⎡+-=-πππ022|cos ()()πππ=-=-=⎰|0sin cos 1x x dx x .所以 .42ππππ=++=I3.化二重积分()⎰⎰Dd y x f σ,为二次积分,且二次积分的两个变量的积分次序不同,其中积分区域D 为:(1)由直线x y =及抛物线x y 42=所围成的区域;【解】联立⎩⎨⎧==,4,2x y x y 解得⎩⎨⎧==,0,0y x 或⎩⎨⎧==.4,4y x 所以直线x y =及抛物线x y 42=的交点为()0,0及()4,4.(i )若视区域D 为-X 型区域,则⎩⎨⎧≤≤≤≤.40,2:x x y x D()⎰⎰Dd y x f σ,()⎰⎰=402,xxdy y x f dx .(ii )若视区域D 为-Y 型区域,则⎪⎩⎪⎨⎧≤≤≤≤.40,41:2y y x y D()⎰⎰Dd y x f σ,()⎰⎰=40412,y y dx y x f dy .(2)半圆形区域222r y x ≤+,0≥y .(i )若视区域D 为-X 型区域,则⎪⎩⎪⎨⎧≤≤--≤≤.,0:22r x r x r y D()⎰⎰Dd y x f σ,()⎰⎰--=rrx r dy y x f dx 320,.(ii )若视区域D 为-Y 型区域,则⎪⎩⎪⎨⎧≤≤-≤≤--.0,:3222r y y r x y r D()⎰⎰Dd y x f σ,()⎰⎰---=ry r y r dx y x f dy 03222,.4.交换下列积分次序 (1)()⎰⎰--21222,x x xdy y x f dx ;【解】D 是由圆周曲线()1122=+-y x ,2=+y x 【两曲线交于点()1,1】所围成的区域.故()⎰⎰--21222,x x xdy y x f dx ().,11122⎰⎰-+-=y ydy y x f dy(2)()⎰⎰e xdy y x f dx 1ln 0,;【解】积分区域D 由曲线x y ln =,及x 轴和直线e x =所围成. 若改变积分次序,即将区域D 视为-Y 型区域,则⎩⎨⎧≤≤≤≤,10:1y ex e D y ,所以()⎰⎰e xdy y x f dx 1ln 0,().,10⎰⎰=eey dx y x f dy(3)()⎰⎰102,x xdy y x f dx ;【解】积分区域D 由抛物线x y 42=及两直线x y =和直线1=x 所围成.若改变积分次序,即将区域D 视为-Y 型区域,则需要将D 分块: 21D D D ⋃=.其中⎪⎩⎪⎨⎧≤≤≤≤,1041:21y yx y D ,⎪⎩⎪⎨⎧≤≤≤≤,21141:22y x y D .所以 ()⎰⎰102,xxdy y x f dx()⎰⎰=10412,y y dx y x f dy ()⎰⎰+211412,y dx y x f dy .(4)()⎰⎰--0121,ydx y x f dy ()⎰⎰++1021,ydx y x f dy .【解】积分区域21D D D ⋃=.其中⎩⎨⎧≤≤-≤≤-,0121:1y x y D ,⎩⎨⎧≤≤≤≤+,1021:2y x y D 因此积分区域D 是由三直线1,1=-=+y x y x 及2=x 所围成的三角形区域.若改变积分次序,即将区域D 视为-X 型区域,则⎩⎨⎧≤≤-≤≤-21,11:x x y x D所以 ()⎰⎰--0121,y dx y x f dy ()⎰⎰++1021,ydx y x f dy ()⎰⎰--=2111,x x dy y x f dx .5.计算⎰⎰-10122xy dy e dx x .【解】积分区域D 是由直线x y =、1=y 及y 轴所围成的三角形区域. 改变积分次序得⎰⎰-10122x y dy e dx x ⎰⎰-=10022y y dx x dy e ⎰⎪⎭⎫ ⎝⎛=-1003|312dy x e y y⎰-=103231dy e y y ()⎰--=102261y ed y 【分部】 ()⎥⎦⎤⎢⎣⎡-+-=⎰--10210222|61y d e e y y y ⎥⎦⎤⎢⎣⎡+-=--|101261y e e 6131+-=e .6.求由平面0,0==y x 及1=+y x 所围成的柱体被平面0=z 及抛物面z y x -=+622截得的立体的体积.【解】根据二重积分的几何意义知()⎰⎰--=Ddxdy y x V 226.其中积分区域D 是xoy 面内由直线1=+y x 及x 轴、y 轴所围成的平面区域.V ()dy y x dx x⎰⎰---=1010226⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=-101032|316dx y y x y x()()()⎰⎰⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡-----=101023323175234131116dx x x x dx x x x x .617317253231|10234=⎪⎭⎫ ⎝⎛+--=x x x x . 7.利用极坐标计算下列各题. (1)⎰⎰+Dy xd e σ22,其中D 是圆形区域:422≤+y x ; 【解】⎰⎰+Dy xd e σ22⎰⎰+=1224D y xd e σ【极坐标】()121244202020|22-=⎪⎭⎫⎝⎛==⎰⎰e e rdr e d r r ππθπ.(2)()⎰⎰++Dd y x σ221ln ,其中D 是圆周122=+y x 及坐标轴在第一象限内所围成的区域;【解】()⎰⎰++Dd y x σ221ln 【极坐标】()=+=⎰⎰rdr r d 20121ln πθ【令t r =2】()dt t ⎰+=11ln 4π【分部】()⎥⎦⎤⎢⎣⎡+-+=⎰dt t t t t 101011ln 4|π()⎥⎦⎤⎢⎣⎡+-+-=⎰dt t t 101112ln 4π []()12ln 241ln 42ln 4|10-=+--=πππt t .(3)σd x yD⎰⎰arctan ,其中D 是由圆周122=+y x ,422=+y x 及直线xy y ==,0在第一象限内所围成的区域;【解】rdr r r d dxdy x y I D.cos sin arctan arctan 4021⎰⎰⎰⎰==πθθθ==⎰⎰rdr d .421πθθ .64321.21.22124024021||πθθθππ=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎰⎰r dr r d(4)⎰⎰Dxdxdy ,(){}x y x y x D 22|,22≤+≤=;【解】⎰⎰Dxdxdy ⎰⎰=12D xdxdy 【极坐标】⎥⎦⎤⎢⎣⎡+=⎰⎰⎰⎰24cos 204020.cos .cos 2ππθπθθθθrdr r d rdr r d⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎰⎰⎰24cos 20340202|31cos .cos 2ππθπθθθθd r dr r d ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰24420340cos 3831sin 2||πππθθθd r θθππd ⎰+=244cos 3163424132331634ππ=⎥⎦⎤⎢⎣⎡-+=.【其中θθππd ⎰244cos θθππd 22422cos 1⎰⎪⎭⎫ ⎝⎛+=()θθθππd ⎰++=2422cos 2cos 2141⎰=2441ππθd ()⎰+2422cos 41ππθθd +⎰+2424cos 141ππθθd 413234sin 3214812sin 41441||2424-=⎥⎦⎤⎢⎣⎡+⨯++⨯=πθπθπππππ】. 【注意:此题书中答案有误】.(5)⎰⎰-Ddxdy y x ,(){}0,0,1|,22≥≥≤+=y x y x y x D ;【解】以直线x y =将积分区域D 分块:21D D D ⋃=其中1D 由圆周()0,0122≥≥=+y x y x 及x 轴和直线x y =所围成; 其中2D 由圆周()0,0122≥≥=+y x y x 及y 轴和直线x y =所围成.⎰⎰-Ddxdy y x ()+-=⎰⎰1D dxdy y x ()⎰⎰-2D dxdy x y 【极坐标】()rdr r r d ⎰⎰-=14sin cos θθθπ()rdr r r d ⎰⎰-+124cos sin θθθππ()dr r d ⎰⎰-=1240sin cos πθθθ()dr r d ⎰⎰-+1224cos sin ππθθθ()⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+=||1034031.cos sin r πθθ()⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+-+||1032431.sin cos r ππθθ ()()12311231-+-=()1232-=. (6)()⎰⎰+Ddxdy y x y 23,(){}0,4|,22≥≤+=y y x y x D .【解】()⎰⎰+Ddxdy y x y 23⎰⎰=Dydxdy ⎰⎰+Ddxdy y x 230+=⎰⎰Dydxdy【极坐标】rdr r d ⎰⎰=20.sin θθπdr r d ⎰⎰=220sin πθθ31631cos ||2030=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=r πθ. 8.把()⎰⎰+=Ddxdy y xfI 22化为单重积分,其中(){}1|,22≤+=y x y x D .【解】()⎰⎰+=Ddxdy y xfI 22【极坐标】()⎰⎰=1204rdr r f d πθ()⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰⎰1020.4rdr r f d πθ()⎰=102rdr r f π.9.把下列积分化为极坐标形式,并计算其积分值. (1)()⎰⎰-+ay a dx y xdy 002222;【解】()⎰⎰-+ay a dx y xdy 02222【极坐标】404228412|a r rdr r d aaππθπ=⎪⎭⎫ ⎝⎛==⎰⎰. (2)()⎰⎰-+ax ax dy y xdx 2020222;【解】()⎰⎰-+ax ax dy y xdx 2020222【极坐标】==⎰⎰rdr r d a 20cos 202πθθ⎰⎪⎭⎫ ⎝⎛20cos 204|41πθθd r a . 44244432.!!4!!34cos 4a a d a ππθθπ=⎪⎭⎫ ⎝⎛==⎰.(3)⎰⎰+axdy y x dx 022;【解】⎰⎰+axdy y x dx 022【极坐标】==⎰⎰rdr r d a 40sec 0.πθθ⎰⎪⎭⎫ ⎝⎛40sec 03|31πθθd r a ⎰=4033sec 31πθθd a []|403tan sec ln tan .sec 61πθθθθ++=a()[]21ln 2613++=a【其中,()⎰⎰==θθθθtan sec sec 3d d I 【分部】()⎰-=θθθθsec tan tan .sec d⎰-=θθθθθd 2tan sec tan .sec ()⎰--=θθθθθd 1sec sec tan .sec 2 I d d -++=+-=⎰⎰θθθθθθθθθθtan sec ln tan .sec sec sec tan .sec 3所以,[]C I +++=θθθθtan sec ln tan .sec 21.】 (4)⎰⎰+1222xxdx y x dx .【解】⎰⎰+10222xxdx y x dx 【极坐标】==⎰⎰rdr r d a 40sec tan 0.πθθθ⎰⎪⎭⎫ ⎝⎛40tan sec 03|31πθθθd r a ⎰=40333tan sec 31πθθθd a ()()⎰-=40223sec 1sec sec 31πθθθd a()12452sec 31sec 5131|40353+=⎥⎦⎤⎢⎣⎡-=πθθa .10.设()x f 为连续函数,且()()⎰⎰+=Ddxdy y x f t F 22,其中(){}222|,t y x y x D ≤+=,求极限()tt F t '→0lim.【解】()()⎰⎰+=Ddxdy y x f t F 22【极坐标】()rdr r f d t⎰⎰=πθ202()r dr r f t⎰=022π.故 ()()22t tf t F π='. ① 所以()t t F t '→0lim【代入 ①】()()022lim 0f t t tf t ππ==→. 【注意:怀疑此题本身有问题,故对题目本身作了合理修正】11*.设()x f 在[]1,0上连续,并设()A dx x f =⎰10,求()()⎰⎰101xdy y f x f dx .【解】 记⎩⎨⎧≤≤≤≤,10,1:1x y x D ⎩⎨⎧≤≤≤≤,10,0:2x x y D ,21D D D ⋃=.则 ()()()()dxdy y f x f dy y f x f dx I D x⎰⎰⎰⎰==1111. ①()()()()dxdy y f x f dy y f x f dx I D x⎰⎰⎰⎰==2102. ②又交换积分次序后()()==⎰⎰111x dy y f x f dx I ()()⎰⎰10y dx y f x f dy ()()⎰⎰=10xdy y f x f dx ,即21I I =.所以有 ()()()dxdy y f x f I I I D⎰⎰=+=2121211 ()()210102121A dy y f dx x f ==⎰⎰. 12*.设()x ϕ为[]1,0上的正值连续函数,证明:()()()()()b a dxdy x y x b y a D+=++⎰⎰21ϕϕϕϕ,其中b a ,为常数,(){}10,10|,≤≤≤≤=y x y x D . 【证明】因为积分区域D 关于直线x y =对称,则 ()()()=+=⎰⎰Ddxdy y x x I ϕϕϕ()()()⎰⎰+Ddxdy y x y ϕϕϕ. ① 故有()()()()212121==⎥⎦⎤⎢⎣⎡++=⎰⎰⎰⎰DD dxdy dxdy y x y x I ϕϕϕϕ. ② 所以有()()()()=++⎰⎰D dxdy x y x b y a ϕϕϕϕ()()()b dxdy y x y a D++⎰⎰ϕϕϕ()()()⎰⎰+Ddxdy y x x ϕϕϕ ).(21b a bI aI +=+= 13*.设闭区间[]b a ,上()x f 连续且恒大于零,试利用二重积分证明不等式()()()21a b dx x f dx x f baba-≥⎰⎰. 【证法一】考虑到定积分与变量的记号无关.故有: ()()⎰⎰=b a bay f dy x f dx. ① 以及()().dy y f dx x f baba⎰⎰= ②所以有()()()()..⎰⎰⎰⎰=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡D b a b a dxdy y f x f x f dx dx x f ③其中,⎩⎨⎧≤≤≤≤.,:b y a b x a D 同时()()()()..⎰⎰⎰⎰=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡D b a b a dxdy x f y f x f dx dx x f ④ ③+④,得()()()()()()()()()().2.2⎰⎰⎰⎰⎰⎰≥⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡D Db a b a dxdy y f x f x f y f dxdy y f x f x f y f x f dx dx x f ()222.Ddxdy b a ==-⎰⎰即: ()()()2..b b a a dx f x dx b a f x ⎡⎤⎡⎤≥-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰ 【证法二】:因为()0≥x f ,所以有20b a dx ⎡⎤⎢≥⎢⎣⎰,即 ()()()220.bbaadxf x dx b a f x λλ⎡⎤+-+≥⎢⎥⎣⎦⎰⎰① ①式左边是λ的非负二次三项式,因此必有判别式()()()20b b a a dx b a f x dx f x ⎡⎤⎡⎤∆=--≤⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰. ② 故由②得到()()()2..b b a a dx f x dx b a f x ⎡⎤⎡⎤≥-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰14*.设()x f 在闭区间[]b a ,上连续.试利用二重积分证明不等式()()()dx x fa b dx x f ba ba ⎰⎰-≤⎥⎦⎤⎢⎣⎡22.【证明】由于()2⎥⎦⎤⎢⎣⎡⎰dx x f b a ()()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎰⎰dx x f dx x f b a b a ()()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎰⎰dy y f dx x f ba b a . ① 令 ⎩⎨⎧≤≤≤≤.,:b y a b x a D 则 由①得到()()()dxdy y f x f dx x f Dba ⎰⎰⎰=⎥⎦⎤⎢⎣⎡2. ②又 ()()()()222y fx fy f x f +≤.③故()()()dxdy y fx f dx x f Db a ][21222+≤⎥⎦⎤⎢⎣⎡⎰⎰⎰()()⎥⎦⎤⎢⎣⎡+=⎰⎰⎰⎰b a b a b a b a dy y f dx dx x f dy 2221 ()()dx x f a b b a ⎰-=221()()dy y f a b b a ⎰-+221【定积分与变量记号无关()()dx x fa b ba⎰-=2.15*.设区域(){}0,1|,22≥≤+=x y x y x D ,求二重积分⎰⎰+++Ddxdy y x xy2211.【解】⎰⎰+++Ddxdy y x xy 2211⎰⎰++=D dxdy y x 2211⎰⎰+++D dxdy yx xy221 0112122+++=⎰⎰D dxdy y x 【极坐标】rdr r d ⎰⎰+=2102112πθ ()().2ln 21ln 21112|1022102πππ=+=++=⎰rr d r习题9.31.利用定积分、二重积分和三重积分计算空间立体体积时,被积函数和积分区域各有什么不同? 【解】略.2.将三重积分()dxdydz z y x f I ⎰⎰⎰Ω=,,化为三次积分,其中空间区域分别为:(1)由曲面22y x z +=,0=x ,0=y ,1=z 所围成且在第一卦限内的区域;【解】⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤≤≤+Ω.10,10,1:222x x y z y x Ω向xoy 面上投影区域为⎪⎩⎪⎨⎧≤≤-≤≤.10,10:2x x y D xy ,所以()dz z y x f dy dx I y x x ⎰⎰⎰+-=1101222,,.(2)由双曲抛物面xy z =及平面01=-+y x ,1=z 所围成的区域;【解】⎪⎩⎪⎨⎧≤≤-≤≤≤≤Ω.10,10,0:x x y xy z Ω向xoy 面上投影区域为⎩⎨⎧≤≤-≤≤.10,10:x x y D xy ,所以()dz z y x f dy dx I xyx⎰⎰⎰-=01010,,.(3)由曲面222y x z +=及22x z -=所围成的区域. 【解】联立⎪⎩⎪⎨⎧-=+=,2,2222x z y x z 消去z ,得 Ω向xoy 面上的投影区域为 1:22≤+y x D xy . 故⎪⎪⎩⎪⎪⎨⎧≤≤--≤≤---≤≤+Ω.11,11,22:22222x x y x x z y x所以()dz z y x f dy dx I x y x x x ⎰⎰⎰-+----=22222221111,,.3.利用直角坐标系计算下列三重积分.(1)dV z xy ⎰⎰⎰Ω32,其中Ω是由平面x y =,1=x ,0=z 及曲面xy z =所围区域.【解】Ω在xoy 坐标面上的投影区域为三角形区域.10,0:⎩⎨⎧≤≤≤≤x x y D 故dz z dy y xdx dV z xy xyx⎰⎰⎰⎰⎰⎰=Ω03021032⎰⎰⎥⎦⎤⎢⎣⎡=xxy dy z y xdx 004210|41⎰⎰=x dy y dx x 0610541⎰⎥⎦⎤⎢⎣⎡=10075|7141dx y x x 3641131281281|10131012=⨯==⎰x dx x . (2)()⎰⎰⎰Ω+++31z y x dV,其中Ω是由平面0=x ,0=y ,0=z 及1=++z y x 所围成的四面体;【解】Ω在xoy 坐标面上的投影区域为三角形区域.10,10:⎩⎨⎧≤≤-≤≤x x y D 故()dxdydz z y x ⎰⎰⎰Ω+++311=()dz z y x dy dx x y x ⎰⎰⎰---+++101010311()()z y x d z y x dy dx xyx ++++++=⎰⎰⎰---1111010103()⎰⎰---⎥⎦⎤⎢⎣⎡+++-=1010102|11.21xy x dy z y x dx ()⎰⎰-⎥⎦⎤⎢⎣⎡-++=10102411121xdy y x dx ⎰-⎪⎪⎭⎫ ⎝⎛-++-=1010|411121dx y y x x⎰⎪⎭⎫⎝⎛+++-=101144321dx x x ().1652ln 21811ln 4321|102-=⎪⎭⎫ ⎝⎛+++-=x x x (3)()dxdydz z x y ⎰⎰⎰Ω+cos ,其中Ω是由抛物柱面x y =以及平面0=y ,0=z ,2π=+z x 所围成区域.【解】Ω在xoy 坐标面上的投影区域为.20,0:⎪⎩⎪⎨⎧≤≤≤≤πx x y D 故()dxdydz z x y ⎰⎰⎰Ω+cos =()dz z x ydy dx xx⎰⎰⎰-+2020cos ππ()⎰⎰⎥⎦⎤⎢⎣⎡+=-200|2sin ππxxdy z x y dx ()⎰⎰-=200sin 1πx ydy x dx ()⎰⎥⎦⎤⎢⎣⎡-=2002|21sin 1πdx y x x ()⎰-=20sin 121πdx x x⎰=2021πxdx 21161sin 21220-=-⎰ππxdx x .【其中2202201614121|πππ==⎰x xdx ;()⎰⎰=-2020cos 21sin 21ππx xd xdx x 【分部】⎥⎦⎤⎢⎣⎡-=⎰2020cos cos 21|ππxdx x x 21sin 21|20-=-=πx .】4.利用柱面坐标计算三重积分.(1)()d V y x ⎰⎰⎰Ω+22,其中Ω是由曲面z y x 222=+及平面2=z 所围成的区域;【解】本题宜采用“切片法”计算()()dxdy y x dz dz dxdy y xzD ⎰⎰⎰⎰⎰⎰+=+Ω22222.3163242.||20320202422020πππθπ====⎰⎰⎰⎰z dz r rdr r d dz z z如采用柱面坐标系:()dz dxdy y x⎰⎰⎰Ω+22.3166.2142222.2|206420223222202πππθπ=⎥⎦⎤⎢⎣⎡-=⎪⎪⎭⎫⎝⎛-==⎰⎰⎰⎰r r dr r r dz r rdr d r (2)()d V y x ⎰⎰⎰Ω+22,其中Ω是由曲面()222254y x z +=及平面5=z 所围成的区域;【解】(柱面坐标法)Ω在xoy 坐标面上的投影区域为.4:22≤+y x D()V d y x⎰⎰⎰Ω+22dr z r dz r rdr d r r ⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛==20205253525220|.2πθπ dr r r ⎪⎭⎫ ⎝⎛-=⎰255223πππ82452|2054=⎥⎦⎤⎢⎣⎡-=r r .(3)dV xyz ⎰⎰⎰Ω,其中Ω是由球面1222=++z y x 及三个坐标面所围且在第一卦限内的区域.【解】(球面坐标法)Ω在xoy 坐标面上的投影区域为V xyzd ⎰⎰⎰Ω⎰⎰⎰=2015320cos sin cos sin ππρρϕϕϕθθθd d d48161.sin 41.sin 21|||106204202=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=ρϕθππ.5.利用球面坐标计算三重积分.(1)()d V z y x ⎰⎰⎰Ω++222,其中()(){}222223,|,,y x z z z y x z y x +≥≤++=Ω;【解】(球面坐标法)()d V z y x⎰⎰⎰Ω++222⎰⎰⎰=60cos 02220.sin πϕπρρρϕϕθd d dϕρϕππϕd ⎰⎥⎦⎤⎢⎣⎡=6cos 05|51sin 2ϕϕϕππd ⎰=605sin cos 52()ϕϕππcos cos 52605d ⎰-=πϕππ96037cos 6152|606=⎥⎦⎤⎢⎣⎡-=.(2)dxdydz z ⎰⎰⎰Ω2,其中Ω是由抛物面22y x z +=之上,球面2222=++z y x 之内的部分围成;【解】(柱面坐标法)联立⎩⎨⎧+==++22222,2y x z z y x 消z ,得Ω在xoy 坐标面上投影区域.1:22≤+y x D 所以dz dxdy z⎰⎰⎰Ω2⎰⎰⎰-=1222022r rdz z rdr d πθ⎰⎥⎦⎤⎢⎣⎡=-123|22312r r z r π()⎰⎥⎦⎤⎢⎣⎡--=10632232dr r r r π()⎰-=1032232dr r r π()πππππ121228151121232107--=-=-⎰dr r ()1323260-=π.【其中()⎰-1032232dr r r π【令t r sin 2=】⎰=404cos .sin 328ππtdt t ()()πππππ228151cos 51328cos cos 328|405404-=⎥⎦⎤⎢⎣⎡-=-=⎰t t td ; .121813232|108107πππ-=⎥⎦⎤⎢⎣⎡-=-⎰r dr r 】(3)dxdydz x ⎰⎰⎰Ω,其中()(){}0,0,0|,,2222≥≥>≤++=Ωy x a a z y x z y x .【解】(球面坐标法)⎰⎰⎰Ωxdxdydz ⎰⎰⎰=ππρρθϕρϕϕθ00220.cos sin sin ad d d ⎰⎰⎰=ππρρρϕϕθθ0222.sin cos ad d d404020841.2sin 4121.sin |||a a πρϕϕθππ=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡=.6.采用三种坐标计算三重积分dxdydz z ⎰⎰⎰Ω2,其中()2222|,,{R z y x z y x ≤++=Ω()}2,0222Rz z y x R ≤++>.【解法一】(柱面坐标法)联立⎩⎨⎧=++=++,2,222222Rz z y x R z y x 消z ,得Ω在xoy 坐标面上的投影区域为 .43:222R y x D ≤+dz dxdy z ⎰⎰⎰Ω2 dr z r dz z rdr d R R r R r R R r R r R R ⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛==------232303220|222222223.2πθπ()()⎰⎥⎦⎤⎢⎣⎡----=R dr rR R r R r 23032232232π(令t R r sin =)()[]⎰--=30333cos .cos cos sin 32ππtdt R t R R t R t R[]⎰-+-=30235cos sin cos 3cos 31cos 232ππtdt t t t t R⎰=3045sin cos 34ππtdt t R ⎰-305sin cos 32ππtdt t R⎰+3025sin cos 2ππtdt t R⎰-3035sin cos 2ππtdt t R|30555cos 34ππt R -=|30252cos 32ππt R +|30353cos 2ππt R -|30454cos 2ππt R + ⎪⎭⎫ ⎝⎛--=32311545R π⎪⎭⎫ ⎝⎛-+4335R π⎪⎭⎫ ⎝⎛--87325R π⎪⎭⎫ ⎝⎛-+161525R π .480595R π=【解法二】(球面坐标法)球面坐标计算:这时首先要把积分区域Ω分成两个子区域: .21Ω⋃Ω=Ω 其中⎪⎩⎪⎨⎧≤≤≤≤≤≤Ω,0,30,20:1R ρπϕπθ ⎪⎩⎪⎨⎧≤≤≤≤≤≤Ω,cos 20,232,20:2ϕρπϕππθR则dz dxdy z ⎰⎰⎰Ω2=dz dxdy z ⎰⎰⎰Ω12dz dxdy z ⎰⎰⎰Ω+22ρρϕρϕϕθππd d d R⎰⎰⎰=2030222.cos sinρρϕρϕϕθπππϕd d d R ⎰⎰⎰+2023cos 20222.cos sin⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰⎰R d d 04302cos .sin 2ρρϕϕϕππ ⎪⎪⎭⎫ ⎝⎛+⎰⎰ϕππρρϕϕϕπcos 204232cos .sin 2R d d ⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=||0530351cos 312R ρϕππ⎪⎪⎭⎫ ⎝⎛+⎰2375cos .sin 32512ππϕϕϕπd R 551.247.2R π=⎪⎪⎭⎫ ⎝⎛-+|2385cos 81564ππϕπR 5607R π=⎪⎭⎫ ⎝⎛+81.25615645R π5607R π=5160R π+.480595R π= 【解法三】(直角坐标系之“切片法”)将Ω分块为21Ω⋃Ω=Ω.其中()()⎪⎩⎪⎨⎧∈≤≤Ω11,,20z D y x R z :,()22212:z Rz y x D z -≤+; ()()⎪⎩⎪⎨⎧∈≤≤Ω22,,2z D y x R z R:,()22222:z R y x D z -≤+. ()()()()[]dz z Rz z dz D S z dxdy dz z dz dxdy zR z D R R z220212022022211-===⎰⎰⎰⎰⎰⎰⎰⎰Ωπ5205440151412|R z z R Rππ=⎥⎦⎤⎢⎣⎡-=;()()()()[]dz z R z dz D S z dxdy dz z dz dxdy z RR z D RR R R z222222222222-===⎰⎰⎰⎰⎰⎰⎰⎰Ωπ 52532480475131|R z z R R R ππ=⎥⎦⎤⎢⎣⎡-=. 所以dz dxdy z ⎰⎰⎰Ω2=dz dxdy z ⎰⎰⎰Ω12dz dxdy z ⎰⎰⎰Ω+225554805948047401R R R πππ=+=. 7.若柱面122=+y x 与平面0=z ,1=z 所围成的柱体内任一点()z y x ,,处的密度22y x z --=μ,试计算该柱体的质量.【解】()()⎪⎩⎪⎨⎧Ω∈-+Ω∈--=--=.,,,,,22212222y x z y x y x y x z y x z μ 其中()⎩⎨⎧∈≤≤+ΩD y x z y x ,,1221:;()⎩⎨⎧∈+≤≤ΩD y x y x z ,,0222:;1:22≤+y x D . 所以 =M ()dz dxdy y xz ⎰⎰⎰Ω--122()πππ316161222=+=-++⎰⎰⎰Ωdz dxdy z y x .【其中()dz dxdy y xz ⎰⎰⎰Ω--122【柱面坐标】()dr z r z r dz r z rdr d r r ⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛-=-=10101221220|222.2πθπ()πππ6161222|10642153=⎪⎪⎭⎫ ⎝⎛+-=+-=⎰r r r dr r r r ;()dz dxdy z y x⎰⎰⎰Ω-+222【柱面坐标】()dr z z r r dz z r rdr d r r ⎰⎰⎰⎰⎪⎭⎫ ⎝⎛-=-=110022220|2221.2πθππππ6161|10615=⎪⎭⎫ ⎝⎛==⎰r dr r .】8.分别用定积分、二重积分和三重积分求由22y x z +=和22y x z +=所围成的立体Ω的体积.【解】联立⎪⎩⎪⎨⎧+=+=,,2222y x z y x z 消z ,得Ω在xoy 坐标面上的投影区域为 .1:22≤+y x D(一)定积分过z 轴上任意一点z 作Ω的截面,则该截面的面积为 ()()()[]1,0,222∈-=-=z z z z z z A πππ所以Ω的体积为()()πππ613121|103210210=⎪⎭⎫ ⎝⎛-=-==⎰⎰z z dz z z dz z A V .(二)二重积分 ()[]d xdy y x y xV D⎰⎰+-+=2222【极坐标】()ππθπ61432|10432012=⎪⎪⎭⎫ ⎝⎛-=-=⎰⎰r r rdr r r d . (三)三重积分⎰⎰⎰Ω=dV V 【球面坐标】ρρϕϕθπϕϕππd d d ⎰⎰⎰=20sin cos 02242sin()ϕϕπϕϕϕπϕρϕπππππππϕϕcot cot 32sin cos 3231sin 2243245324sin cos 03|2d d d ⎰⎰⎰-==⎥⎦⎤⎢⎣⎡=πϕπππ61cot 4132|244=⎥⎦⎤⎢⎣⎡-=. 9.设()x f 在0=x 处可导,且()00=f ,求极限()d xdydz z y x f t t ⎰⎰⎰Ω→++22241lim,其中(){}2222|,,t z y x z y x ≤++=Ω.【解】()d xdydz z y x f tt ⎰⎰⎰Ω→++222401lim ()⎰⎰⎰=ππρρρϕϕθ00220.sin ad f d d()ρρρϕππd f a 200.cos 2|⎰⎥⎦⎤⎢⎣⎡-=()ρρρπd f a 20.4⎰=. ①所以()d xdydz z y x ft t ⎰⎰⎰Ω→++22241lim【由①】()4204lim t f tt ⎰→=ρρπ【洛必达法则】()32044lim t t t f t π→=()t t f t 0lim →=π()()00lim 0--=→t f t f t π()0f '=π. 习题9.41.求由曲线()xy y x C =+222:所围平面图形D 的面积.【解】化曲线C 为极坐标表示:θθsin cos 2=r ,⎥⎦⎤⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡∈πππθ23,2,0.由对称性知()⎰⎰=12D d D S σ【极坐标】θθπθθπθθd r dr r d ⎰⎰⎰⎥⎦⎤⎢⎣⎡==20cos sin 0220cos sin 0|2122()21sin 21sin sin cos sin |2022020====⎰⎰πππθθθθθθθd d d .2.求由曲面222y x z +=及2226y x z --=所围成的立体Ω的体积. 【解】联立⎪⎩⎪⎨⎧--=+=,26,22222y x z y x z 消去z ,得 Ω向xoy 面上的投影区域为 2:22≤+y x D xy .所以Ω的体积为 ()()[]d xdy y x y xV xyD ⎰⎰+---=2222226()d xdy y xxyD ⎰⎰--=22336()ππθπ6433236|2422022=⎥⎦⎤⎢⎣⎡-=-=⎰⎰r rrdr r d . 3.求由曲面()xyz a z y x S 332223:=++所围立体的体积.【解】做球坐标变换:⎪⎩⎪⎨⎧===,cos ,sin sin ,cos sin ϕρθϕρθϕρz y x 则S 在球坐标下的方程为θθϕϕρsin cos cos sin 3233a =ρρϕϕθθθϕϕππd d d dV V a ⎰⎰⎰⎰⎰⎰Ω==3231cos sin cos sin 3022020sin 44⎰⎰⎥⎦⎤⎢⎣⎡=2020cos sin cos sin 303|32331sin 4ππθθϕϕϕρϕθd d a ⎰⎰=22033cos sin cos sin 4ππϕϕϕθθθd d a.21sin 41sin 21432042023||a a =⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=ππϕθ4.证明:曲面2214:y x z S ++= ① 任一点处的切平面与曲面22:2y x z S +=所围立体图形Ω的体积为定值.【证明】任取曲面1S 上一点()0000,,z y x M .令 ()z y x z y x F -++=224,,.则1S 在点()0000,,z y x M 处的切平面的法向量为 ()()(){}{}1,2,2,,00000-='''=y x M F M F M F z y x .1S 在点()0000,,z y x M 处的切平面π的法平面为()()()02200000=---+-z z y y y x x x .即 ()0222:02020000=-+---+z y x z z y y x x π. ②又由于()10000,,S z y x M ∈,故402020-=-+z y x . ③ 将③式代入②式得0822:000=+--+z z y y x x π. ④ 联立⎩⎨⎧+==+--+,,082222000y x z z z y y x x 消去z ,得 ()()8020202020+-+=-+-z y x y y x x 【由③】4=,故Ω向xoy 面上的投影区域为()()4:2020≤-+-y y x x D xy . ⑤所以,Ω的体积为 ()()[]d xdy y x z y yx x V xyD ⎰⎰+-+-+=2200822()()()[]d xdy y y x x z y xxyD ⎰⎰----+-+=202002028【由③】()()[]d xdy y y x x xyD ⎰⎰----=2024令⎩⎨⎧+=+=.sin ,cos 00θθr y y r x x 则()()r r r y r y xrxr y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,所以()dr d r r V r D θθ⎰⎰-=24()ππθπ841224|20422022=⎥⎦⎤⎢⎣⎡-=-=⎰⎰r r rdr r d .从而:2S 与π所围立体图形Ω的体积为定值π8.5.形状如22y x z +=,100≤≤z (单位:米)的“碗”,计划在其上刻上刻度使其成为一个容器.求对应于容积为1立方米的液体在该容器内的高度是多少? 【解】设对应于容积为1立方米的液体在该容器内的高度是h (米). 由题意知()()σπd y xh h D⎰⎰+-⨯=222.1. ①其中222:h y x D ≤+.()⎰⎰⎰⎰=+πθσ200222.h Drdr r d d y x20421412|h r h ππ=⎥⎦⎤⎢⎣⎡=. ②将②式代入①式得2221.1h h ππ-=,即 2211h π=,解之得π2=h (米).6.求均匀密度的半椭圆平面薄片()01:2222≥≤+y by a x D 的质心.【解】设D 的质心坐标为()y x ,.由质心坐标公式得⎰⎰⎰⎰=DDxd d x σσ1; ①⎰⎰⎰⎰=DDyd d y σσ1②【其中令⎩⎨⎧==,sin ,cos θθbr y ar x 则()()abrbr b ar a y ry xrxr y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,由对称性知0=⎰⎰σd x D;()⎰⎰⎰⎰⎰⎰==πθθθθσθ0102.sin sin rdr r d ab drd J br d y r D D⎰⎥⎦⎤⎢⎣⎡=πθθ01032|31sin d r ab2020232cos 31sin 31|ab ab d ab =-==⎰ππθθθ;又 ()ab D S d Dπσ2121==⎰⎰. 故⎰⎰⎰⎰==DDxd d x 01σσ;ππσσ34213212bab ab yd d y DD===⎰⎰⎰⎰. 所以,平面薄片()01:2222≥≤+y b y a x D 的质心为⎪⎭⎫⎝⎛π34,0b .7.社平面薄片所占的区域D 由抛物线2x y =及直线x y =所围成,它在点()y x ,处的面密度()y x y x 2,=ρ,求此薄片的质心.【解】设D 的质心坐标为()y x ,.由质心坐标公式得()()⎰⎰⎰⎰=DDd y x x d y x x σρσρ,,1σσ⎰⎰⎰⎰=DDyd x yd x 321; ① ()()⎰⎰⎰⎰=D D d y x y d y x y σρσρ,,1⎰⎰⎰⎰=DDd y x yd xσσ2221②ydy x dx yd x xx D⎰⎰⎰⎰=10222σ⎰⎪⎭⎫ ⎝⎛=1022|221dx y x x x ()⎰-=106421dx x x 351715121|1075=⎪⎭⎫ ⎝⎛-=x x ; ③ydy x dx yd x x x D⎰⎰⎰⎰=10332σ⎰⎪⎭⎫ ⎝⎛=1023|221dx y x x x ()⎰-=107521dx x x 481816121|1086=⎪⎭⎫ ⎝⎛-=x x ; ④ dy y x dx d y x xx D2102222⎰⎰⎰⎰=σ⎰⎪⎭⎫⎝⎛=1032|231dx y x x x ()⎰-=108531dx x x 541916131|1096=⎪⎭⎫ ⎝⎛-=x x . ⑤故 4835351481==x ;5435351541==y .所以此薄片的质心为⎪⎭⎫⎝⎛5435,4835.8.平面薄片D 由ax y x ≥+22,222a y x ≤+确定,其上任一点处的面密度与离原点的距离成正比,求此薄片的质心.【解】由题意知,面密度()22,y x k y x +=ρ)0(>k .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
,
1 3
x
2
x3
1
,
4 3
x2
5x3
2
.
9.1 线性方程组的消元法
第二步:上式第一个方程乘 -1/2和-2分别加到第二个和 第三个方程,得
x1
5 3 1 2
x2 3x3 3 ,
1
1
x2 2 x3 2
2 x2 x3 4 .
,
第三步:上式第二个方程 两边乘以 -2,得
得这个线性方程组的相应的一个解。此时,该 线性方程组有无穷多解。
9.2 非齐次线性方程组
当r=n时,这个线性方程组可相应地化为
x1 c1 ,
x2
c2 ,Biblioteka x n c n .此时,该线性方程组有惟一确定的一个解。
9.2 非齐次线性方程组
当时cr+1≠0,线性方程组相应地化为
x1
a1r1xr1 a1nxn c1 ,
(3)线性方程组的经济应用。
2. 重点与难点
第九章 线性方程组
(1)重点
消元法、矩阵的初等行变换、线性方程组 解的判定、齐次线性方程组的一般解。
(2) 难点
线性方程组解的判定、求齐次线性方程组 的一般解。
第九章 线性方程组
9.1 线性方程组的消元法
线性方程组的一般形式为
a11x1 a12x2
x1
5
3 x2
x2
x3
3x3 1,
3
,
2x2 x3 4 .
9.1 线性方程组的消元法
第四步:上式第二个方程 乘以2加到第三个方程,得
x1
5 3
x2 x2
3 x3 x3
1
3, ,
x3 2 .
方程组的解为
阶梯形方程组
x14,x23,x32
9.1 线性方程组的消元法
把方程组化为阶梯形方程组,需要反复运 用以下三种变换:
a21x1
a22x2
am1x1 am2x2
a1nxn b1 , a2nxn b2 ,
amnxn bm .
9.1 线性方程组的消元法
系数矩阵
a11 a12 a1n
A
a
21
a 22
a2n
am1
am2
a
mn
增广矩阵
a11 a12 a1n b1
A~a21
a22
a2n
x1 x2
a1r1xr1a1nxn c1 a2r1xr1a2nxn c2
xr arr1xr1arnxn cr
9.2 非齐次线性方程组
所以
x1 x2
c1 c2
(a1r1xr1 (a2 x r1 r1
aa12nnxxnn))
xr cr (ar x r1 r1 arnxn)
xr 1,xr2 ,xn任意取定的一组值,都可求
0 2 14
0 0 1 2
阶梯形矩阵B对应 的阶梯形方程组是:
x1
5 3
x2
x2
3x3 x3 1
3 ,
,
x14,x23,x32
x3 2 .
9.1 线性方程组的消元法
另外,若将矩阵B用初等行变换化为行 简化阶梯形矩阵
1 0 0 4
0
1
0
3
0 0 1 2
则矩阵的最后一列元素就是方程组的解。
1.交换两个方程的位置;
2.用一个非零数乘某个方程;
3.用一个非零数乘某个方程加在另一个方程上。
将任一个方程组进行上述变换所得到的新方 程组与原方程组是同解方程组。上述三种变换称 为线性方程组的初等变换。
9.1 线性方程组的消元法
例1的求解过程用矩阵的初等行变换表示如下:
1 2
1 3
1
5 3
2
0
00
0
0
c
r
1
0
00
0 0
0
rn
9.2 非齐次线性方程组
当时cr+1=0,上式变成
1 0
00 10
a1 r 1 a2 r1
a1n a2n
c1 c2
0 0 1 ar r1 arn cr
0
0
0
0
0
0
9.2 非齐次线性方程组
当r<n时,这个线性方程组可相应地化为
第九章 线性方程组
9.2 非齐次线性方程组
9.2.1 解的判定
一般地,含有n个未知量、m个方程的线性 方程组为
a11x1 a12 x2
a21x1
a22 x2
a1n xn b1 , a2n xn b2 ,
am1x1 am2x2 amn xn bm .
9.2 非齐次线性方程组
其增广矩阵为
a11
A~
a21
a12
a22
a1n a2n
b1 b2
am1 am2 amn bm
9.2 非齐次线性方程组
经过初等行变换后可以化成以下的形式:
1 0
0 0 a1 r1 a1n 1 0 a2 r1 a2 n
c1 c2
0 0 1 ar r1 arn cr
高等数第9章 线 性方程组
第九章 线性方程组
9.1 线性方程组的消元法 9.2 非齐次线性方程组 9.3 齐次线性方程组 9.4 应用与实践 9.5 拓展与提高
第九章 线性方程组
一 知识结构框图
第九章 线性方程组
二 教学的基本要求和重点、难点
1. 基本要求 (1)线性方程组的消元法。
(2)用矩阵的初等行变换判定关于线性方程组解 的情况和求齐次线性方程组一般解的方法。
x2 a2 x r1 r1 a2nxn c2 ,
xr ar x r1 r1 arnxn cr ,
0 cr1 .
最后一个方程不成立,即原方程组无解。
9.2 非齐次线性方程组
定理9.1 设有m个方程、n个未知量的线性
方程组,其系数矩阵A的秩为r(A),增广矩阵 A
的秩为 r(A~),则有如下结论:
4 3
1 5 31 2 3 ( ① , ② ) 1 1 2 2
5 3
1 3
4 3
1 5 31 2 3 ② ③ ① ① (( 2 1 2)) 1 0 0 5 32 1 2 3 1 1 2 3 4 1 2
1
5 3
3 3
1
5 3
3
3
② ( 2) 0 1 1 1 ③ ② 2 011 1 B
(1)线性方程组有解的充分必要条件是 r(A)r(A ~) (2)若r(A)r(A ~)n,线性方程组有且只有惟一解;
(3)若 r(A)r(A)n,则线性方程组有无穷多解; (4)若r(A)r(A ~),则线性方程组没有解。
b2
am1
am2
amn
bm
9.1 线性方程组的消元法
例1 解线性方程组
1 2
x1
x1
2 x1
5 3 4 3
1 3 x2
x
x2 2
3x 5
x
3
x
3 3
1, 3, 2.
解:第一步:交换第一 个方程和第二个方程的 位置,得
x1
1 2
x1
2 x1
5 3
x2
3x3