最新九年级数学利润专题训练
初三利润练习题
初三利润练习题一、选择题:1.某公司去年的销售额为1000万元,成本总额为900万元,求该公司的利润率是多少?A. 10%B. 11%C. 12%D. 13%2.某商店购进一批商品,购进价为800元,若每件商品标价1200元出售,则该商店的利润率是多少?A. 30%B. 40%C. 50%D. 60%3.某工厂生产一种产品,每个单位的成本为5元,销售价为10元,该产品的利润率是多少?A. 25%B. 50%C. 75%4.某公司去年的销售额为400万元,净利润为40万元,该公司的利润率是多少?A. 8%B. 10%C. 12%D. 14%5.某商店购进一批商品,购进价为2000元,若每件商品卖出后的利润是400元,则该商店的利润率是多少?A. 15%B. 17%C. 20%D. 25%二、计算题:1.某公司去年的销售额为800万元,成本总额为600万元,求该公司的利润率是多少?解:利润率 = (销售额 - 成本总额) / 销售额 * 100%= (800 - 600) / 800 * 100%= 200 / 800 * 100%2.某商店购进一批商品,购进价为500元,若每件商品标价750元出售,则该商店的利润率是多少?解:利润率 = (售价 - 购进价) / 购进价 * 100%= (750 - 500) / 500 * 100%= 250 / 500 * 100%= 50%3.某工厂生产一种产品,每个单位的成本为6元,销售价为12元,该产品的利润率是多少?解:利润率 = (销售价 - 成本) / 成本 * 100%= (12 - 6) / 6 * 100%= 6 / 6 * 100%= 100%4.某公司去年的销售额为600万元,净利润为60万元,该公司的利润率是多少?解:利润率 = 净利润 / 销售额 * 100%= 60 / 600 * 100%= 10%5.某商店购进一批商品,购进价为3000元,若每件商品卖出后的利润是600元,则该商店的利润率是多少?解:利润率 = 利润 / 购进价 * 100%= 600 / 3000 * 100%= 20%总结:在计算利润率时,可以使用利润率公式:利润率 = (利润 / 成本或销售额) * 100%。
中考数学利润问题专题训练
中考数学利润问题专题训练
1、某商品的进价为每件50元,售价为每件60元,每天可以卖出18件,若每件商品的售价上涨1元,则每天少卖2件,当每件商品的售价为多少元时,每天的销售利润为1500元?
2、某商品的价格为每件60元,每年销售1000件,现决定降价销售,调查发现,若每件降价1元,则每年多卖100件,如果每年销售不少于800件,那么每件商品的售价应不超过多少元?
3、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,若商场每天要盈利1200元,每件衬衫应降价多少元?
4、某商品每件成本72元,原来按成本定价出售,每天可出售100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量减少多少件?
5、某书店一本数学辞典卖40元,可获利25%,求这本辞典的进价?。
中考数学试卷利润题
一、选择题(本大题共10小题,每小题3分,共30分)1. 下列关于利润的说法中,正确的是()A. 利润总是大于成本B. 利润总是小于售价C. 利润与成本成正比D. 利润与售价成反比2. 一件商品的成本为200元,售价为300元,若要使利润率提高5%,则售价应调整为()A. 320元B. 330元C. 340元D. 350元3. 某商店进购一批商品,成本为1000元,售价为1500元,若要使利润率提高10%,则售价应调整为()A. 1650元B. 1700元C. 1750元D. 1800元4. 下列关于利润问题的方程中,正确的是()A. 利润 = 成本 + 售价B. 利润 = 售价 - 成本C. 利润率 = 利润 / 成本D. 利润率 = 利润 / 售价5. 一件商品的成本为120元,售价为180元,若要使利润率提高20%,则售价应调整为()A. 216元B. 216.8元C. 217.6元D. 218.4元6. 某商店进购一批商品,成本为500元,售价为800元,若要使利润率提高15%,则售价应调整为()A. 920元B. 925元C. 930元D. 935元7. 下列关于利润问题的公式中,正确的是()A. 利润 = 成本× 利润率B. 利润率 = 利润 / 成本C. 利润 = 售价× 利润率D. 利润率 = 售价 / 成本8. 一件商品的成本为80元,售价为120元,若要使利润率提高25%,则售价应调整为()A. 150元B. 152元C. 154元D. 156元9. 某商店进购一批商品,成本为300元,售价为500元,若要使利润率提高30%,则售价应调整为()A. 650元B. 652元C. 654元D. 656元10. 下列关于利润问题的不等式中,正确的是()A. 利润 > 成本B. 利润 < 售价C. 利润率 > 0D. 利润率 < 100%二、填空题(本大题共5小题,每小题5分,共25分)11. 利润率是表示利润与成本的百分比,其计算公式为:利润率 = 利润 / 成本× 100%。
初三利润解方程应用题练习题
初三利润解方程应用题练习题一、题目描述某公司生产某种产品,每台生产成本为600元,每台售价为1000元。
已知该公司在一定时间内总共生产了N台产品,并且总利润为P 元。
请你解答以下问题:1. 该公司生产了多少台产品?2. 该公司的总成本是多少元?3. 该公司的总收入是多少元?二、解题思路根据题目描述,我们可以列出以下方程:1. 成本方程:600N = C2. 收入方程:1000N = R3. 利润方程:P = R - C三、解题过程1. 根据成本方程,可以得到成本C与生产数量N的关系:C = 600N2. 根据收入方程,可以得到收入R与生产数量N的关系:R = 1000N3. 将成本方程和收入方程代入利润方程,可以得到:P = R - C = (1000N - 600N) = 400N4. 根据利润方程,可以得到生产数量N与利润P的关系:P = 400N四、应用题1. 如果该公司的总利润为8000元,求该公司生产了多少台产品?根据利润方程P = 400N,将P = 8000代入,得到8000 = 400N,解方程N = 8000 / 400 = 20,所以该公司生产了20台产品。
2. 如果该公司生产了30台产品,求该公司的总成本和总收入分别是多少元?根据成本方程C = 600N,将N = 30代入,得到C = 600 * 30 = 18000,所以该公司的总成本为18000元。
根据收入方程R = 1000N,将N = 30代入,得到R = 1000 * 30 = 30000,所以该公司的总收入为30000元。
五、总结通过以上的解题过程,我们可以得到利润解方程应用题的解题思路,并通过具体的例子进行了解答。
在解题过程中,要灵活运用成本方程、收入方程和利润方程,通过代入数值解方程来求解问题。
初三数学利润练习题
初三数学利润练习题
1. 某商店购进一批商品,进价为每件100元,售价为每件150元。
如果该商店售出了50件商品,求该商店的利润是多少元?
2. 某工厂生产一种产品,每件产品的生产成本为200元,销售价格为300元。
如果工厂卖出了100件产品,计算工厂的总利润。
3. 一家服装店购进一批衣服,每件衣服的进价是80元,售价是120元。
如果该店卖出了60件衣服,求该店的总利润。
4. 某电子产品的进价为500元,售价为800元。
如果该产品卖出了20件,计算总利润。
5. 一家书店购进一批图书,每本书的进价为15元,售价为25元。
如果书店卖出了200本书,求书店的利润总额。
6. 某玩具厂生产一批玩具,每件玩具的生产成本为30元,销售价格为50元。
如果该厂卖出了150件玩具,计算该厂的总利润。
7. 一家超市购进一批水果,每箱水果的进价为40元,售价为60元。
如果该超市卖出了80箱水果,求该超市的利润总额。
8. 某公司生产一批零件,每件零件的生产成本为10元,销售价格为20元。
如果该公司卖出了500件零件,计算该公司的总利润。
9. 一家文具店购进一批文具,每件文具的进价为5元,售价为8元。
如果该店卖出了300件文具,求该店的总利润。
10. 某手机店购进一批手机,每部手机的进价为2000元,售价为3000元。
如果该店卖出了50部手机,计算该店的总利润。
初三半期数学试卷利润题
一、题目描述小明开了一家水果店,最近进了一批苹果,每千克进价为8元。
为了吸引顾客,小明决定进行打折促销。
在促销期间,他先将苹果降价到每千克6元,但销售情况并不理想。
于是,小明决定再次降价,将苹果的售价调整为每千克5.5元。
经过一段时间的促销,小明成功地将这批苹果全部售出。
已知小明共卖出苹果1000千克,求小明在这批苹果上的总利润。
二、解题步骤1. 计算促销前后的利润差异。
促销前,苹果的售价为每千克8元,进价为每千克8元,因此每千克利润为:8元 - 8元 = 0元促销后,苹果的售价为每千克6元,进价为每千克8元,因此每千克利润为:6元 - 8元 = -2元再次降价后,苹果的售价为每千克5.5元,进价为每千克8元,因此每千克利润为:5.5元 - 8元 = -2.5元2. 计算总利润。
根据题目,小明共卖出苹果1000千克。
因此,在促销期间,每千克苹果的利润减少了2.5元。
所以,小明在这批苹果上的总利润为:1000千克× (-2.5元/千克) = -2500元3. 分析结果。
从计算结果来看,小明在这批苹果上的总利润为-2500元,即亏损了2500元。
这可能是由于促销降价幅度过大,导致利润空间被压缩。
为了改善这一情况,小明可以考虑以下措施:(1)在促销期间,适当调整降价幅度,确保利润空间;(2)提高进价,降低成本;(3)增加其他水果的品种,提高顾客的购买欲望。
三、总结本题通过实际情境,考查了学生对利润问题的理解和应用能力。
在解题过程中,学生需要运用基本的数学运算和逻辑思维,分析问题,找出解决问题的方法。
在实际生活中,利润问题无处不在,掌握解决利润问题的方法对于提高生活品质具有重要意义。
初三利润计算练习题
初三利润计算练习题一、选择题1. 小明购买了一批商品,进价为2000元,他以售价3000元的价格卖出了全部商品,他的利润是多少?A. 1000元B. 1500元C. 2000元D. 3000元2. 小红在农贸市场上买来了100斤番茄,进价为每斤5元,她以每斤10元的价格卖了出去,她的利润是多少?A. 500元B. 1000元C. 1500元D. 2000元3. 小明买了一辆自行车,进价为800元,他以900元的价格卖给了小刚,小明的利润率是多少?A. 11.1%B. 12.5%C. 20%D. 25%4. 某公司购买了100件服装,总进价为3000元,以每件40元的价格卖出,公司的利润率是多少?A. 10%B. 12%C. 14%D. 16%5. 一家餐馆购买了1000斤大米,进价共计2000元,餐馆以每斤3元的价格卖出,餐馆的利润率是多少?A. 10%B. 20%C. 30%D. 40%二、计算题1. 小华购买了一批商品,进价为3500元,他以售价5000元的价格卖出了全部商品,他的利润是多少?2. 小明在市场上买了10只苹果,进价为每只2元,他以每只4元的价格卖了出去,他的利润是多少?3. 小红购买了一盒巧克力,进价为15元,她以每盒25元的价格卖出了,她的利润是多少?4. 某公司购买了500件商品,总进价为15000元,以每件30元的价格卖出,公司的利润是多少?5. 一家超市购买了1000斤西瓜,进价共计5000元,超市以每斤8元的价格卖出,超市的利润是多少?三、应用题1. 爸爸在农贸市场上购买了80斤土豆,进价为每斤4元,他以每斤6元的价格卖给了邻居,问爸爸的利润是多少?2. 小明的妈妈开了一家餐馆,小明帮妈妈算一下,如果他们购买1000斤鸡肉,总进价为6000元,以每斤12元的价格出售,他们的利润是多少?3. 某公司购买了100件电视,总进价为20000元,以每件250元的价格卖出,公司的利润率是多少?4. 一家商场购买了1000条裤子,进价共计90000元,商场以每条120元的价格卖出,商场的利润率是多少?5. 一位商人购买了一批商品,总进价为150000元,他以总售价180000元的价格卖出了全部商品,他的利润率是多少?四、综合题某公司购买了200只电子产品,总进价为30000元,以每只200元的价格卖出,公司的利润率为50%。
初三利润计算的练习题
初三利润计算的练习题一、题目描述:小明是一名初三学生,在学校的经济管理课上学习了利润计算的知识。
为了更好地巩固所学内容,他练习了以下几个利润计算的题目。
请你帮助小明解答这些问题。
二、题目内容:1. 小明的爸爸开了一家小型超市,他在生意上有些困惑。
小明知道成本、售价和利润之间的关系,请根据以下信息计算利润。
成本:800元售价:1200元2. 小红买了一条裙子,她想计算自己的利润率。
以下是有关这条裙子的信息,请帮助小红计算利润率。
成本:400元售价:600元3. 小强是一位小商贩,他从供应商那里购买了一批冰淇淋,然后以高出进货价格的利润售卖给顾客。
小强希望你能帮他计算以下问题。
成本:500元利润率:40%4. 小雨在某健身房工作,她计算顾客的利润率时遇到了问题。
以下是相关信息,请帮助小雨计算利润率。
成本:300元利润:75元5. 小明在学校组织了一次义卖活动,他想计算这次活动的利润率。
以下是相关信息,请帮助小明计算利润率。
成本:200元收入:500元三、解答:1. 利润计算公式为:利润 = 售价 - 成本。
根据给定的信息,可以计算出小明的利润:利润 = 1200 - 800 = 400元2. 利润率计算公式为:利润率 = (售价 - 成本) / 成本 * 100%。
根据给定的信息,可以计算出小红的利润率:利润率 = (600 - 400) / 400 * 100% = 50%3. 利润计算公式为:利润 = 成本 * 利润率。
根据给定的信息,可以计算出小强的利润:利润 = 500 * 40% = 200元4. 利润率计算公式为:利润率 = 利润 / 成本 * 100%。
根据给定的信息,可以计算出小雨的利润率:利润率 = 75 / 300 * 100% = 25%5. 利润率计算公式为:利润率 = (收入 - 成本) / 成本 * 100%。
根据给定的信息,可以计算出小明的利润率:利润率 = (500 - 200) / 200 * 100% = 150%四、总结:通过以上练习题,小明巩固了利润计算的知识。
初三数学利润题试卷
一、选择题(每题5分,共20分)1. 某商品成本价为每件100元,若要获得20%的利润,则售价应为每件:A. 120元B. 100元C. 80元D. 120元2. 某商店进价为每件50元的服装,若以每件60元的价格销售,预计每月可售出200件。
若每降价1元,销量增加5件,则该商店每月可获得的利润为:A. 2000元B. 3000元C. 4000元D. 5000元3. 某商店购进一批玩具,成本价为每件20元,若以每件30元的价格销售,预计每月可售出100件。
若每降价1元,销量增加10件,则该商店每月可获得的最大利润为:A. 1000元B. 2000元C. 3000元D. 4000元4. 某商店购进一批图书,成本价为每册20元,若以每册30元的价格销售,预计每月可售出200册。
若每降价1元,销量增加10册,则该商店每月可获得的利润为:A. 2000元B. 3000元C. 4000元D. 5000元5. 某商店购进一批手机,成本价为每部1000元,若以每部1500元的价格销售,预计每月可售出50部。
若每降价100元,销量增加10部,则该商店每月可获得的最大利润为:A. 5000元B. 10000元C. 15000元D. 20000元二、填空题(每题5分,共20分)1. 某商品成本价为每件50元,若要获得30%的利润,则售价应为每件____元。
2. 某商店购进一批货物,成本价为每件100元,若以每件150元的价格销售,预计每月可售出200件。
若每降价10元,销量增加20件,则该商店每月可获得的利润为____元。
3. 某商店购进一批服装,成本价为每件80元,若以每件120元的价格销售,预计每月可售出100件。
若每降价5元,销量增加10件,则该商店每月可获得的最大利润为____元。
4. 某商店购进一批玩具,成本价为每件30元,若以每件50元的价格销售,预计每月可售出200件。
若每降价2元,销量增加10件,则该商店每月可获得的利润为____元。
九年级数学利润专题训练
九年级利润问题专题训练1、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:m=140-2x 。
(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?2、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若设降价价格为x元:(1)设平均每天销售量为y件,请写出y与x的函数关系式.(2)设平均每天获利为Q元,请写出Q与x的函数关系式.(3)若想商场的盈利最多,则每件衬衫应降价多少元?(4)每件衬衫降价多少元时,商场平均每天的盈利在1200元以上?4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?5、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?6、某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低10元,日均多售出20kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数表达式,并注明x 的取值范围.(2)将(1)中所求出的二次函数配方成y=a (x +ab 2)2+a b ac 442 的形式,写出顶点坐标,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?7、一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)(1) 求y与x的函数关系式;(2) 若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3) 该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?8、某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元,床位可以全部租出;当床价高于10元时,每提高1元,将有3张床空闲,为了获得较高效益,该宾馆要给床位定一个合适的价格,但要注意:①为了方便结账,床价服务态度是整数;②该宾馆每天的支出费用是575元,若用x表示床价,Y表示该宾馆一天出租床位的纯收入。
初三数学试卷利润问题
1. 一件商品的成本是200元,如果售价提高20%,则利润是()A. 40元B. 60元C. 80元D. 100元2. 某商店购进一批商品,进价为每件100元,售价为每件150元,如果售出其中的80%,则利润率是()A. 20%B. 25%C. 30%D. 40%3. 一件商品的成本是300元,售价为400元,如果售价降低10%,则利润率是()A. 10%B. 15%C. 20%D. 25%4. 某商店销售一批商品,成本为每件100元,售价为每件150元,如果售出其中的50%,则利润是()A. 25元B. 50元C. 75元D. 100元5. 某商店销售一批商品,成本为每件100元,售价为每件150元,如果售出其中的60%,则利润率是()A. 10%B. 15%C. 20%D. 25%二、填空题6. 一件商品的成本是120元,售价为180元,则利润是________元。
7. 某商品的成本是150元,售价提高10%,则利润是________元。
8. 某商品的成本是200元,售价降低20%,则利润率是________。
9. 某商店购进一批商品,进价为每件100元,售价为每件150元,如果售出其中的70%,则利润是________元。
10. 某商品的成本是300元,售价为400元,如果售价降低15%,则利润率是________。
三、解答题11. 一件商品的成本是200元,售价为300元,如果售出其中的80%,则利润是多少?12. 某商店购进一批商品,进价为每件100元,售价为每件150元,如果售出其中的60%,则利润率是多少?13. 一件商品的成本是250元,售价为400元,如果售价降低10%,则利润率是多少?14. 某商店销售一批商品,成本为每件100元,售价为每件150元,如果售出其中的70%,则利润是多少?15. 一件商品的成本是300元,售价为500元,如果售价提高20%,则利润是多少?四、应用题16. 某商店购进一批商品,进价为每件100元,售价为每件150元,如果售出其中的50%,则利润是多少?请计算并解释计算过程。
九年级利润问题专题训练
年级利润问题专题训练1、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:m=140-2x 。
(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?2、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若设降价价格为x 元:(1)设平均每天销售量为y 件,请写出y 与x 的函数关系式.(2)设平均每天获利为Q 元,请写出Q 与x 的函数关系式.(3)若想商场的盈利最多,则每件衬衫应降价多少元?(4)每件衬衫降价多少元时,商场平均每天的盈利在1200元以上?4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?5、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?6、某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低1元,日均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数表达式,并注明x 的取值范围.(2)将(1)中所求出的二次函数配方成y=a (x +ab 2)2+a b ac 442 的形式,写出顶点坐标,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?7、一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)(1) 求y 与x 的函数关系式;(2) 若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3) 该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?8、某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元,床位可以全部租出;当床价高于10元时,每提高1元,将有3张床空闲,为了获得较高效益,该宾馆要给床位定一个合适的价格,但要注意:①为了方便结账,床价服务态度是整数;②该宾馆每天的支出费用是575元,若用x 表示床价,Y 表示该宾馆一天出租床位的纯收入。
初三数学利润问题试卷
1. 某商品原价为100元,打八折后售价为多少元?A. 80元B. 85元C. 90元D. 95元2. 一件衣服的成本为50元,售价为80元,利润率是多少?A. 20%B. 30%C. 40%D. 50%3. 一家商店卖出100件商品,每件商品利润为10元,总利润是多少元?A. 1000元B. 2000元C. 3000元D. 4000元4. 某商品进价为100元,售价为150元,利润率是多少?A. 50%B. 40%C. 30%D. 20%5. 一家工厂生产一批产品,每件产品的成本为20元,售价为30元,如果生产1000件产品,总利润是多少元?A. 10000元B. 20000元C. 30000元D. 40000元二、填空题(每题5分,共25分)1. 利润率是指利润与成本的比值,通常用百分比表示,计算公式为:______。
2. 利润是指售价与成本的差额,计算公式为:______。
3. 在利润问题中,利润与销售量成正比,即销售量越大,利润越大。
4. 利润率与成本和售价的关系是:当成本不变时,售价越高,利润率越大;当售价不变时,成本越低,利润率越大。
5. 在实际生活中,为了提高利润,可以采取以下措施:提高售价、降低成本、增加销售量等。
三、解答题(每题20分,共60分)1. 某商店将一批商品打九折出售,若按原价出售,可获利1000元。
求原价和折扣率。
2. 一家工厂生产一批产品,每件产品的成本为50元,售价为80元。
如果生产1000件产品,总利润是多少元?3. 一件衣服的成本为100元,售价为150元。
为了提高利润率,该衣服售价应提高多少?四、应用题(每题20分,共40分)1. 某商店将一批商品打八折出售,若按原价出售,可获利2000元。
求原价和折扣率。
2. 一家工厂生产一批产品,每件产品的成本为30元,售价为50元。
如果生产2000件产品,总利润是多少元?答案:一、选择题1. A2. B3. A4. A5. A二、填空题1. 利润率=(利润/成本)×100%2. 利润=售价-成本3. 销售量4. 成本、售价5. 提高售价、降低成本、增加销售量等三、解答题1. 原价为200元,折扣率为20%。
初三利润问题练习题
初三利润问题练习题
1. 问题描述
小明在暑假开始创业,他决定开一家糖果店。
他向一家糖果供应商订购了500盒糖果,每盒成本为10元。
小明打算以每盒糖果20元的价格销售。
请你帮助他回答以下问题:
a) 小明每卖出一盒糖果,利润是多少?
b) 小明卖出全部糖果后,总利润是多少?
2. 计算问题
a) 小明每卖出一盒糖果,利润是多少?
答:小明的成本是10元,销售价格是20元,利润可以用销售价格减去成本来计算。
所以,利润=销售价格-成本=20-10=10元。
b) 小明卖出全部糖果后,总利润是多少?
答:小明订购了500盒糖果,每盒糖果的利润为10元。
将每盒利润乘以总盒数可得到总利润。
所以,总利润=利润(每盒)*总盒数=10*500=5000元。
3. 问题解决
a) 小明每卖出一盒糖果,利润是10元。
b) 小明卖出全部糖果后,总利润是5000元。
4. 拓展问题
小明卖出的每盒糖果利润为10元,如果他改变销售价格,会对利
润产生什么影响?
答:如果小明提高销售价格,利润会增加;如果小明降低销售价格,利润会减少。
利润与销售价格呈正比关系。
5. 总结
在解决初三利润问题练习题时,我们计算了小明每卖出一盒糖果的
利润和卖出全部糖果后的总利润。
我们还拓展了问题,讨论了销售价
格对利润的影响。
通过计算和分析,我们可以更好地理解和应用利润
问题。
最新中考数学利润问题专题训练
利润问题专题训练1、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:m=140-2x 。
(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式; (2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?2、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元? (3)若该商场获得利润不低于500元,试确定销售单价x 的范围.3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若设降价价格为x 元: (1)设平均每天销售量为y 件,请写出y 与x 的函数关系式. (2)设平均每天获利为Q 元,请写出Q 与x 的函数关系式. (3)若想商场的盈利最多,则每件衬衫应降价多少元?(4)每件衬衫降价多少元时,商场平均每天的盈利在1200元以上?4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式. (2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式. (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?5、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? 6、某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低1元,日均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元. (1)求y 关于x 的二次函数表达式,并注明x 的取值范围.(2)将(1)中所求出的二次函数配方成y=a (x +a b 2)2+ab ac 442-的形式,写出顶点坐标,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?7、一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)(1) 求y 与x 的函数关系式;(2) 若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3) 该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?8、某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元,床位可以全部租出;当床价高于10元时,每提高1元,将有3张床空闲,为了获得较高效益,该宾馆要给床位定一个合适的价格,但要注意:①为了方便结账,床价服务态度是整数;②该宾馆每天的支出费用是575元,若用x 表示床价,Y 表示该宾馆一天出租床位的纯收入。
中考数学总复习《最大利润问题(一次函数的实际应用)》专题训练(附答案)
中考数学总复习《最大利润问题(一次函数的实际应用)》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.某学校准备购买A、B两种型号的垃圾箱,通过市场调研发现:买2个A型垃圾箱和1个B型垃圾箱共需100元;买1个A型垃圾箱和2个B型垃圾箱共需110元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)若该校需购买A,B两种型号的垃圾箱共30个,其中A型垃圾箱不超过16个,求购买垃圾箱的总费用w (元)与A型垃圾箱的数量a(个)之间的函数关系式,并说明总费用至少要多少元?2.春节临近,为了满足顾客的消费需求,某大型商场计划用200000元购进一批家电,这批家电的进价和售价如表:类别彩电冰箱洗衣机进价(元/台)200026001000售价(元/台)230028001100若在现有资金允许的范围内,计划购买三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商场购买冰箱x台.(1)用含x的代数式表示洗衣机的台数;(2)商场最多可以购买冰箱多少台?(3)购买冰箱多少台时,能使商场销售完这批家电后获得的利润最大?最大利润为多少元?3.某商场准备购进甲、乙两种服装进行销售,甲种服装每件进价160元,售价220元;乙种服装每件进价120元,售价160元.现计划购进两种服装共100件,其中甲种服装不少于60件.设购进甲种服装x件,两种服装全部售完,商场获利y元.(1)求y与x之间的函数关系式.(2)若购进100件服装的总费用不超过15000元,则最大利润为多少元?4.某商店11月份购进甲、乙两种配件共花费1350元,其中甲种配件6元/个,乙种配件15元/个.12月份,这两种配件的进价上调为:甲种配件8元/个,乙种配件18元/个.(1)若该店12月份购进这两种配件的数量与11月份都相同,将多支付货款350元,求该店11月份购进甲、乙两种配件分别是多少个?(2)若12月份将这两种配件进货总量减少到120个,设购进甲种配件a个,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若乙种配件不少于30个,则12月份该店需要支付这两种配件的货款最少应是多少元?5.某商店准备购进甲乙两种服装共100件进行销售,其中甲种服装每件利润40元,乙种服装每件利润50 x≥)件,两种服装全部售完,商场获利y元.元.设购进甲种服装x(30(1)求y与x之间的函数关系式;(2)该店购进甲,乙服装各多少件时,才能使销售总利润最大?最大利润为多少元?(3)实际进货时,厂家对甲服装的出厂价下调a(020<<)元,且限定该店最多只能购进甲服装60件.若a该店保持售价不变,请你根据以上信息,设计出使这100件服装总利润最大的进货方案.6.为迎接“国家级文明卫生城市”检查,我市环卫局准备购买A,B两种型号的垃圾箱.通过市场调研发现:购买1个A型垃圾箱和2个B型垃圾箱共需170元;购买3个A型垃圾箱和1个B型垃圾箱共需210元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中购买A型垃圾箱不超过16个.①求购买垃圾箱的总花费W(元)与A型垃圾箱x(个)之间的函数关系式;①当购买A型垃圾箱个数多少时总费用最少,最少费用是多少?7.某商店销售3台A 型和5台B 型电脑的利润为3000元,销售5台A 型和3台B 型电脑的利润为3400元.(1)求每台A 型电脑和B 型电脑的销售利润各多少元?(2)该商店计划一次购进两种型号的电脑共50台,设购进A 型电脑n 台,这50台电脑的销售总利润为w 元.请写出w 关于n 的函数关系式,并判断总利润能否达到26000元,请说明理由.8.第19届亚运会已于2023年9月23日至10月8日在中国浙江杭州成功举行.这是党的二十大胜利召开之后我国举办的规模最大、水平最高的国际综合性体育赛事,举国关注,举世瞩目.杭州亚运会三个吉祥物分别取名“琮琮”“宸宸”“莲莲”.某专卖店购进A ,B 两种杭州亚运会吉祥物礼盒进行销售.A 种礼盒每个进价160元,售价220元;B 种礼盒每个进价120元,售价160元.现计划购进两种礼盒共100个,其中A 种礼盒不少于60个.设购进A 种礼盒x 个,两种礼盒全部售完,该专卖店获利y 元.(1)求y 与x 之间的函数关系式;(2)若购进100个礼盒的总费用不超过15000元,求最大利润为多少元?(3)在(2)的条件下,该专卖店对A 种礼盒以每个优惠(020)m m <<元的价格进行优惠促销活动,B 种礼盒每个进价减少n 元,售价不变,且4m n -=,若最大利润为4900元,请直接..写出m 的值.9.某教育科技公司销售A,B两种多媒体,这两种多媒体的进价与售价如表所示:A B进价(万元/套)3 2.4售价(万元/套) 3.3 2.8(1)若该教育科技公司计划购进两种多媒体共50套,共需资金132万元,该教育科技公司计划购进A,B两种多媒体各多少套?(2)若该教育科技公司计划购进两种多媒体共50套,其中购进A种多媒体m套(1020<<),当把购进的m两种多媒体全部售出,求购进A种多媒体多少套时,能获得最大利润,最大利润是多少万元?10.某商店购进一批牛奶进行销售,据了解,每箱甲种牛奶的进价比每箱乙种牛奶的进价少5元,且购进2箱甲种牛奶和3箱乙种牛奶共需215元.(1)问甲、乙两种牛奶每箱的进价分别为多少元?(2)若每箱甲种牛奶的售价为50元,每箱乙种牛奶的售价为60元,考虑到市场需求,商店决定共购进这两种牛奶共300箱,且购进甲种牛奶的数量不少于100箱.设购进甲种牛奶m箱,总利润为W元,请求出总利润W(元)与m(箱)的函数关系式,并根据函数关系式求出获得最大利润的进货方案.(1)学校用4920元以进价购进这批篮球和足球,求购进篮球和足球各多少个;(2)设该电商所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数表达式(不要求写出x的取值范围);(3)因资金紧张,电商的进货成本只能在4745元的限额内,请为学校设计一种进货方案使得尽可能多地购买篮球和足球,同时要使电商利润最小;并求出利润的最小值.13.陕西洛川盛产苹果,政府要将其发展成“帮助群众脱贫致富、推动乡村振兴”的特色产业.王师傅在政府的扶持下种植了A、B两个品种的苹果共50亩,两种苹果的成本和售价如下表所示:品种成本(万元/亩)售价(万元/亩)A 1.1 2.2B 1.3 2.7设种植A品种苹果x亩,若50亩地全部种植两种苹果共获得利润y万元.(1)求y与x之间的函数关系式;(2)若A品种苹果的种植亩数不少于B品种苹果种植亩数的1.5倍,则种植A品种苹果多少亩时利润最大?并求出最大利润.14.某校在开展数学文化节知识竞赛中,对优秀选手予以评奖,并颁发奖品,奖品有甲、乙、丙三种类型.已知1个甲种奖品的价格是1个丙种奖品价格的2倍,1个乙种奖品的价格比1个甲种奖品的价格少20元.若决定:今年新采购100台污水处理设备用以增强公司的污水处理能力.经过市场考查,诚信机械设备公司(以下简称:诚信公司)推荐了A、B两种型号的设备供选择,其中每台的报价与月处理污水量如表:经核算,若按诚信公司的报价:购买一台A型设备将比购买一台B型设备多20万元,购买2台A型设备会比购买3台B型设备少40万元.(1)求m,n的值;(2)诚信公司最初给出的销售条件是:购买B型设备原则上不予优惠;购买A型设备不超过20台时无优惠;购买20台以上时,超过20台的部分每台可按报价的7.5折销售.并且由于受库存和产能等因素限制,在规定的交货期限内,诚信公司最多只能提供80台A型设备,而富春紫光需要这批新购进的100台设备月处理污水总能力不能低于20600吨①富春紫光买下这批设备最少需要支付多少购买资金?①经过反复谈判协商,诚信公司最终同意:在富春紫光按照最初的销售条件全部买下诚信公司库存的50台A型设备的前提下,再给予B 型设备如下的优惠措施:购买B 型设备不超过a 台时无优惠;购买a 台以上时,超过a 台的部分每台可按报价的8折销售.如果富春紫光想要用不超过7850万元的资金买下这批污水处理设备,试求a 的最大值?参考答案: 1.(1)每个A 型垃圾箱30元,每个B 型垃圾箱40元(2)购买垃圾箱的总费用w (元)与A 型垃圾箱的数量a (个)之间的函数关系式为101200w a =-+,总费用至少要1040元2.(1)1003x -(2)27台(3)购买冰箱27台时,能使商场销售完这批家电后获得的利润最大,最大利润为23500元3.(1)204000y x =+(2)当75x =时,y 最大,最大值为5500元4.(1)该店11月份购进甲种配件100个,购进乙种配件50个;(2)102160w a =-+;(3)12月份该店需要支付这两种配件的货款最少应是1260元.5.(1)105000y x =-+(2)当购进甲服装30件,乙服装70件时,总利润最大,为4700元(3)购进60件甲服装,40件乙服装时,总利润最大6.(1)每个A 型垃圾箱50元,每个B 型垃圾箱60元.(2)①()101800016W x x =-+≤≤,其中x 为整数.①购买16个A 型垃圾箱时总费用最少,最少费用是1640元.7.(1)每台A 型电脑和B 型电脑的销售利润各为500,300元(2)20015000w n =+,不能8.(1)()20400060y x x =+≥(2)5500元(3)109.(1)购进A 种多媒体20套,B 种多媒体30套(2)购进A 种多媒体11套时,能获得最大利润,最大利润是189.万元10.(1)每箱甲种牛奶的进价为40元,每箱乙种牛奶的进价为45元.(2)总利润W (元)与m (箱)的函数关系式为54500W m =-+;获得最大利润的进货方案为购进甲种牛奶100箱,乙种牛奶200箱.11.(1)每辆甲车一次能装运18吨生活物资,每辆乙车一次能装运26吨生活物资(2)有三种派车方案(3)安排甲车3辆,乙车7辆所用的燃油费最少,最低燃油费是24200元12.(1)购进篮球37个,购进足球13个(2)51750y x =-+(3)购进篮球16个,足球34个利润最小为1670元13.(1)0.370y x =-+(2)当30x =时,最大利润为61万元14.(1)1个甲种奖品的价格为60元,1个乙种奖品的价格为40元,1个丙种奖品的价格为30元(2)11500元15.(1)m的值为100,n的值为80(2)①富春紫光买下这批设备最少需要支付8100万元购买资金;①a的最大值为25.第11页共11页。
【初中数学】人教版九年级上册第3课时 利润(费用)类问题(练习题)
人教版九年级上册第3课时利润(费用)类问题(353)1.某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=−1100x+150,成本为20元/件.无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润=销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳1100x2元的附加费.设月利润为w外(元)(利润=销售额-成本-附加费).(1)当x=1000时,y=元/件,w内= 元;(2)分别求出w内,w外与x之间的函数解析式(不必写出x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=−x2+10x,y2=2x.若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元3.襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数关系式为y={−2x+140(40≤x<60),−x+80(60≤x≤70).(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数关系式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.4.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为60元/件,设售价为x元/件.(1)请用含x的式子表示:①销售该运动服每件的利润是元;②月销量是件.(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?5.草莓是云南多地盛产的一种水果.今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元.经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,图是y与x的函数关系图象.(1)求y与x之间的函数关系式,请直接写出x的取值范围;(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.6.为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交0.05x2万美元的特别关税.在不考虑其他因素的情况下:(1)分别写出该企业两个投资方案的年利润y1,y2与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?7.出售某种文具盒,若每个获利x元,一天可售出(6−x)个,则当x=元时,一天出售该种文具盒的总利润y最大.8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当每件的销售价为25元时平均每天能售出8件,而当销售价每件每降低2元,平均每天能多售出4件.若设每件服装定价为x元,则每件服装的利润为元,每天销售服装件,该服装店每天的销售利润y=元;若设每件服装降低x元,则每件服装的利润为元,每天销售服装件,该服装店每天的销售利润y=元.(所列算式不需化简)9.某种产品按质量分为10个档次,生产最低档次产品,每件获利8元,每提高一个档次,每件产品利润增加2元.用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果每天获得利润最大的产品是第k档次(最低档次为第一档次,档次依次随质量增加),那么k等于()A.5B.7C.9D.1010.某网店销售某款童装,每件售价60元,每星期可卖300件.为了促销,该店决定降价销售,市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?11.某玩具厂计划生产一种玩具熊,每日最高产量为40只,且每日产出的产品全部售出.已知生产x只玩具熊的成本为R(元),售价为每只P(元),且R,P与x的关系式分别为R=30x+500,P=170−2x.若想获得最大利润,则日产量为()A.25 B.30 C.35 D.40参考答案1(1)【答案】140;57500(2)【答案】w 内=x(y −20)−62500=−1100x 2+130x −62500,w 外=−1100x 2+(150−a)x (3)【答案】当x =−1302×(−1100)=6500时,w 内最大; 由题意得0−(150−a)24×(−1100) =0−(150−a)24×(−1100) =4×(−1100)×(−62500)−13024×(−1100) 解得a 1=30,a 2=270(不合题意,舍去),所以a =30.(4)【答案】当x =5000时,w 内=337500,w 外=−5000a +500000. 若w 内 < w 外,则a <32.5;若w 内=w 外,则a =32.5;若w 内 > w 外,则a >32.5.所以,当10≤a <32.5时,选择在国外销售;当a =32.5时,在国外和国内销售都一样;当32.5<a ≤40时,选择在国内销售.2.【答案】:D【解析】:设在甲地销售x 辆,获得的利润为W 万元,则在乙地销售(15−x)辆. 根据题意得W =y 1+y 2=−x 2+10x +2(15−x)=−x 2+8x +30=−(x −4)2+46,∴当x =4时,W 有最大值,最大值为46.3(1)【答案】W ={−2x 2+200x −4200(40≤x <60),−x 2+110x −2400(60≤x ≤70).(2)【答案】由(1)知,当40≤x <60时,W =−2(x −50)2+800. ∵−2<0,∴当x =50时,W 有最大值800.当60≤x ≤70时,W =−(x −55)2+625.∵−1<0,∴当60≤x ≤70时,W 随x 的增大而减小, ∴当x =60时,W 有最大值600.∵800>600,∴当该产品的售价为50元/件时,企业销售该产品获得的年利润最大,最大年利润为800万元(3)【答案】当40≤x <60时,令W =750,得−2(x −50)2+800=750,解得x 1=45,x 2=55.由函数W =−2(x −50)2+800的增减性可知,当45≤x ≤55时,W ≥750.当60≤x ≤70时,W 最大值为600<750.所以,要使企业销售该产品的年利润不少于750万元,该产品的售价x(元/件)的取值范围为45≤x ≤554(1)【答案】(x −60);(−2x +400)【解析】:①销售该运动服每件的利润是(x −60)元. ②设月销量W 与x 的函数解析式为W =kx +b , 由题意得{100k +b =200,110k +b =180, 解得{k =−2,b =400. ∴W =−2x +400.将其余各组对应值代入上式均成立,∴W 与x 的函数解析式为W =−2x +400(2)【答案】由题意,得y =(x −60)(−2x +400)=−2x 2+520x −24000=−2(x −130)2+9800,∴售价为130元/件时,当月的利润最大,最大利润是9800元5(1)【答案】设y与x之间的函数关系式为y=kx+b,由图象可知经过点(20,300),(30,280),所以有{20k+b=300,30k+b=280,解得{k=−2,b=340,∴y与x之间的函数关系式为y=−2x+340,x的取值范围是20≤x≤40(2)【答案】该水果销售店试销草莓获得的利润为W元,则W=y(x−20)=(−2x+340)(x−20)=−2x2+380x−6800=−2(x−95)2+11250.∵−2<0,∴当x≤95时,W随x的增大而增大.∵20≤x≤40,∴当x=40时,W最大,W最大值=−2×(40−95)2+11250=5200(元).6(1)【答案】解:y1=(10−a)x(1≤x≤200,x为正整数);y2=10x−0.05x2(1≤x≤120,x为正整数)(2)【答案】①∵3<a<8,∴10−a>0,即y1随x的增大而增大,∴当x=200时,最大年利润为(10−a)×200=(2000−200a)万美元.②y2=−0.05(x−100)2+500,∵−0.05<0,1≤x≤120,∴当x=100时,有最大年利润为500万美元.(3)【答案】由2000−200a>500,得a<7.5.∴当3<a<7.5时,选择方案一;由2000−200a=500,得a=7.5,∴当a=7.5时,选择方案一或方案二均可;由2000−200a<500,得a>7.5,∴当7.5<a<8时,选择方案二.7.【答案】:38.【答案】:(x−15);(8+25−x2×4);(x−15)(8+25−x2×4);(25−15−x);(8+x2×4);(25−15−x)(8+x2×4)9.【答案】:C【解析】:因为第k档次产品比最低档次产品提高了(k−1)个档次,所以每天获得的利润为y=[60−3(k−1)][8+2(k−1)]=−6(k−9)2+864,所以生产第九档次产品每天获得利润最大,每天获利864元10(1)【答案】y=300+30(60−x)=−30x+2100(2)【答案】设每星期的销售利润为W元,依题意,得W=(x−40)(−30x+2100)=−30x2+3300x−84000=−30(x−55)2+6750.∵a=−30<0,∴当x=55时,W最大值=6750.即当每件售价定为55元时,每星期的销售利润最大,最大利润是6750元(3)【答案】由题意,得−30(x−55)2+6750=6480,解这个方程,得x1=52,x2=58.∵抛物线W=−30(x−55)2+6750的开口向下,∴当52≤x≤58时,每星期的销售利润不低于6480元.在y=−30x+2100中,k=−30<0,y随x的增大而减小,∴当x=58时,y最小值=−30×58+2100=360.即每星期至少要销售该款童装360件11.【答案】:C【解析】:设利润是y,则y=Px−R,即y=x(170−2x)−(30x+500)=−2x2+140x−500=−2(x−35)2+1950.所以当x=35时,y有最大值,最大值为1950。
初中数学利润问题练习题
初中数学利润问题练习题
1. 某商店购进一批商品,进价为每件100元,售价为每件150元。
如
果该商店共售出200件商品,请问该商店的总利润是多少?
2. 一家水果店购进一批苹果,每公斤进价为5元,售价为每公斤8元。
如果水果店共售出500公斤苹果,那么水果店的总利润是多少?
3. 某工厂生产一批玩具,每件玩具的成本为50元,售价为每件80元。
工厂共生产并售出1000件玩具,请问工厂的总利润是多少?
4. 一家服装店购进一批T恤,每件T恤的进价为30元,售价为每件
60元。
如果该服装店共售出300件T恤,那么服装店的总利润是多少?
5. 某书店购进一批图书,每本图书的进价为20元,售价为每本30元。
书店共售出400本图书,请问书店的总利润是多少?
6. 一家电子产品商店购进一批耳机,每副耳机的进价为80元,售价
为每副120元。
如果该商店共售出250副耳机,那么商店的总利润是
多少?
7. 某花店购进一批鲜花,每束鲜花的进价为40元,售价为每束60元。
花店共售出200束鲜花,请问花店的总利润是多少?
8. 一家文具店购进一批笔记本,每本笔记本的进价为10元,售价为
每本15元。
文具店共售出500本笔记本,那么文具店的总利润是多少?
9. 某玩具店购进一批积木,每盒积木的进价为25元,售价为每盒35元。
玩具店共售出300盒积木,请问玩具店的总利润是多少?
10. 一家眼镜店购进一批眼镜,每副眼镜的进价为150元,售价为每副200元。
眼镜店共售出100副眼镜,那么眼镜店的总利润是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级利润问题专题训练1、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:m=140-2x 。
(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?2、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若设降价价格为x元:(1)设平均每天销售量为y件,请写出y与x的函数关系式.(2)设平均每天获利为Q元,请写出Q与x的函数关系式.(3)若想商场的盈利最多,则每件衬衫应降价多少元?(4)每件衬衫降价多少元时,商场平均每天的盈利在1200元以上?4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?5、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?6、某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低10元,日均多售出20kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数表达式,并注明x 的取值范围.(2)将(1)中所求出的二次函数配方成y=a (x +ab 2)2+a b ac 442 的形式,写出顶点坐标,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?7、一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)(1) 求y与x的函数关系式;(2) 若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3) 该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?8、某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元,床位可以全部租出;当床价高于10元时,每提高1元,将有3张床空闲,为了获得较高效益,该宾馆要给床位定一个合适的价格,但要注意:①为了方便结账,床价服务态度是整数;②该宾馆每天的支出费用是575元,若用x表示床价,Y表示该宾馆一天出租床位的纯收入。
(1)求Y与X的函数关系式;(2)宾馆所订价为多少时,纯收入最多?(3)不使宾馆亏本的最高床价是多少元?9、我州有一种可食用的野生菌,上市时,外商李经理按市场价格20元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.(1)设x到后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P 与x之间的函数关系式.(3)李经理将这批野生茵存放多少天后出售可获得最大利润W元?10.某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价X元与销售量Y(1Y(件)与日销售单价X元之间的函数关系式.(2)设经营此商品的日销售利润(不考虑其它因素)为P元,根据日销售规律:①试求日销售利润P(元)与销售单价X(元)之间的数关系式,并求出日销售单价X为多少时,才能获得最大日销售利润.②试问日销售利润P是否存在最小值?若有,试求出,若无,说明理由;11.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为10(10万件).为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (10万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:(1)求y与x(2)如果把利润看作是销售总额减去成本和广告费,试写出年利润S(10万元)与广告费x(10万元)函数表达式;(3)如果投入的广告费为10万元~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?12、某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).(1)求y与x之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额-总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大?最大值是多少?y213.某公司推出了一种高效环保洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二产供销函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s 与t之间的关系)。
根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与销售时间t(月)之间的关系式;(2)求截止到几个月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?14、某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y(元)与销售月份x(月)满足关系式3368y x=-+,而其每千克成本2y(元)与销售月份x(月)满足的函数关系如图所示.(1)试确定b c、的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?15、某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,在对历年市场行情和生产情况进行了调查的基础上,对今年这种蔬菜上市后,市场售价和生产成本进行了预测,提供了两个方面的信息,如图甲、乙所示。
x甲乙注:甲、乙两图中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成本,生产成本6月份最低,其中图甲反映的是一次函数,图乙反映的是二次函数。
(1)求出售价与月份函数关系式(2)成本与月份的函数关系式(3)由“收益=售价-成本”,求出收益与月份的函数关系式,并求这个函数的最大值。
16、为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y 和每台家电的收益Z 与政府补贴款额x 之间的函数关系式;(3)要使该商场销售彩电的总收益w (元)最大,政府应将每台补贴款额x 定为多少?并求出总收益w 的最大值.) 图②17、随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。
某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y与投资量x成正比例关1y与投资量x成二次函数关系,如图12-②所示系,如图12-①所示;种植花卉的利润2(注:利润与投资量的单位:万元)y与2y关于投资量x的函数关系式;(1)分别求出利润1(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?18、某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =1001 x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳1001x 2 元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费). (1)当x = 1000时,y = 元/件,w 内 = 元;(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?19.为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a 万美元(a 为常数,且3<a <8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x 件乙产品...时需上交20.05x 万美元的特别关税.在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润1y 、2y 与相应生产件数x (x 为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?20、研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式;(2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?。