2018年度成都中考数学一诊
2018年四川省成都外国语学校中考数学一诊试卷
2018年四川省成都外国语学校中考数学一诊试卷一.选择题(每小题3分,共30分)1.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个B.2个C.3个D.4个2.下列各式正确的是()A.a5+3a5=4a5B.(﹣ab)2=﹣a2b2C.D.m4•m2=m83.如图,立体图形的俯视图是()A.B.C.D.4.已知一组数据1,5,6,5,5,6,6,6,则下列说法正确的是()A.众数是5B.中位数是5C.平均数是5D.极差是45.已知方程x2+3x﹣4=0的解是x1=1,x2=﹣4,则方程(2x+3)2+3(2x+3)﹣4=0的解是()A.x1=﹣1,x2=﹣3.5B.x1=1,x2=﹣3.5C.x1=1,x2=3.5D.x1=﹣1,x2=3.56.如图▱ABCD,E是BC上一点,BE:EC=2:3,AE交BD于F,则BF:FD等于()A.2:5B.3:5C.2:3D.5:77.给出下面四个命题,其中真命题的个数有()(1)平分弦的直径垂直于这条弦,并且平分这条弦所对的弧;(2)90°的圆周角所对的弦是直径;(3)在同圆或等圆中,圆心角的度数是圆周角的度数的两倍;(4)如上图,顺次连接圆的任意两条直径的端点,所得的四边形一定是矩形.A .1个B .2个C .3个D .4个8.如图,在平面直角坐标系中,▱ABCO 的顶点A 在x 轴上,顶点B 的坐标为(4,6).若直线y =kx +3k 将▱ABCO 分割成面积相等的两部分,则k 的值是( )A .B .C .﹣D .﹣9.若2x +5y +4z =0,3x +y ﹣7z =0,则x +y ﹣z 的值等于( )A .0B .1C .2D .不能求出10.如图所示,在△ABC 中,D 是BC 的中点,DE ⊥BC 交AC 于点E ,已知AD =AB ,连接BE 交AD 于点F ,下列结论:①BE =CE ;②∠CAD =∠ABE ;③S △ABF =3S △DEF ;④△DEF ∽△DAE ,其中正确的有( )A .1个B .4个C .3个D .2个二.填空题(每小题4分,共16分)11.已知a ﹣b =2,那么2a ﹣2b +5= .12.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从中任摸一个球,恰好是白球的概率为”,则这个袋中白球大约有个.13.直角三角形纸片的两直角边BC,AC的长分别为6,8,现将△ABC如下图那样折叠,使点A与点B重合,折痕为DE,则CE的长为.14.如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线y=x于点B1,B2,过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线y=x于点B3,…,按照此规律进行下去,则点A n的横坐标为.三.解答题(共54分,15题每小题12分,共12分)15.(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;(2)先化简,再求值:÷(2+),其中a=.16.当m为何值时.关于x的方程=﹣的解是负数?17.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)写出D级学生的人数占全班总人数的百分比为,C级学生所在的扇形圆心角的度数为;(2)该班学生体育测试成绩的中位数落在等级内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?18.观察与思考:阅读下列材料,并解决后面的问题在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图(1)),则,即AD=c sin B,AD=b sin C,于是c sin B=b sin C,即,同理有:,所以.即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=;AC=;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,)19.已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.20.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:△ECF∽△GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tan G=,AH=3,求EM的值.一.填空题(每小题4分,共20分)21.已知+|ab+3|=0,则a﹣b的值是.22.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.23.如图,E、F分别是矩形ABCD的边AB、BC的中点,连AF,CE,AF、CE交于G,则四边形BEGF 与四边形ADCG的面积的比值为.24.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣2,0)、B(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的上方,顶点为C.直线y=kx+m(k≠0)经过点C、B.则下列结论:①b>a;②2a﹣b>﹣1;③2a+c<0;④k>a+b;⑤k<﹣1,其中正确的结论有.25.如图,等边△AOB的边长为4,点P从点O出发,沿OA以每秒1个单位的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP、CA.在点P从O向A运动的过程中,当△PCA为直角三角形时t的值为.二.解答题(共30分)26.某公司经营杨梅业务,以3万元/吨的价格买入杨梅后,分拣成A、B两类,A类杨梅包装后直接销售,包装成本为1万元/吨,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2,单位:吨)之间的函数关系如图所示;B类杨梅深加工后再销售,深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)A类杨梅的销售量为5吨时,它的平均销售价格是每吨多少万元?(2)若该公司收购10吨杨梅,其中A类杨梅有4吨,则经营这批杨梅所获得的毛利润(w)为多少万元?(毛利润=销售总收入﹣经营总成本)(3)若该公司收购20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元.①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?27.已知:如图1.正方形ABCD,过点A作∠EAF=90°,两边分别交直线BC于点E,交线段CD于点F,G为AE中点,连接BG(1)求证:∠AFD+∠CBG=180°;(2)如图2,过点G作BG的垂线交对角线AC于点H,求证:GH=GB;(3)如图3,连接HF,若CH=3AH,AD=2,求线段HF的长.28.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣10ax+16a(a≠0)交x轴于A、B两点,抛物线的顶点为D,对称轴与x轴交于点H,且AB=2DH.(1)求a的值;(2)点P是对称轴右侧抛物线上的点,连接PD,PQ⊥x轴于点Q,点N是线段PQ上的点,过点N作NF⊥DH于点F,NE⊥PD交直线DH于点E,求线段EF的长;(3)在(2)的条件下,连接DN、DQ、PB,当DN=2QN(NQ>3),2∠NDQ+∠DNQ=90°时,作NC⊥PB交对称轴左侧的抛物线于点C,求点C的坐标.参考答案一.选择题(每小题3分,共30分)1.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个B.2个C.3个D.4个【解答】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选:B.2.下列各式正确的是()A.a5+3a5=4a5B.(﹣ab)2=﹣a2b2C.D.m4•m2=m8【解答】解:A、合并同类项,正确;B、(﹣ab)2=a2b2,错误;C、=2,错误;D、m4•m2=m6,错误.故选:A.3.如图,立体图形的俯视图是()A.B.C.D.【解答】解:如图所示的立体图形的俯视图是C.故选:C.4.已知一组数据1,5,6,5,5,6,6,6,则下列说法正确的是()A.众数是5B.中位数是5C.平均数是5D.极差是4【解答】解:把数据1,5,6,5,5,6,6,6,按从小到大排列为1,5,5,5,6,6,6,6,中位数==5.5,众数为6,平均数==5,极差为=6﹣1=5,故C正确,故选:C.5.已知方程x2+3x﹣4=0的解是x1=1,x2=﹣4,则方程(2x+3)2+3(2x+3)﹣4=0的解是()A.x1=﹣1,x2=﹣3.5B.x1=1,x2=﹣3.5C.x1=1,x2=3.5D.x1=﹣1,x2=3.5【解答】解:把方程(2x+3)2+3(2x+3)﹣4=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣4,所以x1=﹣1,x2=﹣3.5.故选:A.6.如图▱ABCD,E是BC上一点,BE:EC=2:3,AE交BD于F,则BF:FD等于()A.2:5B.3:5C.2:3D.5:7【解答】解:∵BE:EC=2:3,∴BE:BC=2:5,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴BE:AD=2:5,△ADF∽△EBF,∴==.故选:A.7.给出下面四个命题,其中真命题的个数有()(1)平分弦的直径垂直于这条弦,并且平分这条弦所对的弧;(2)90°的圆周角所对的弦是直径;(3)在同圆或等圆中,圆心角的度数是圆周角的度数的两倍;(4)如上图,顺次连接圆的任意两条直径的端点,所得的四边形一定是矩形.A.1个B.2个C.3个D.4个【解答】解:(1)平分(非直径)弦的直径垂直于这条弦,并且平分这条弦所对的弧,所以此命题不正确;(2)90°的圆周角所对的弦是直径,正确;(3)在同圆或等圆中,同弧或等弧所对的圆心角的度数是它所对的圆周角的两倍,错误;(4)根据对角线相等且相互平分的四边形是矩形可判断此命题正确;故选:B.8.如图,在平面直角坐标系中,▱ABCO的顶点A在x轴上,顶点B的坐标为(4,6).若直线y=kx+3k 将▱ABCO分割成面积相等的两部分,则k的值是()A.B.C.﹣D.﹣【解答】解:连接OB和AC交于点M,过点M作ME⊥x轴于点E,过点B作CB⊥x轴于点F,如下图所示:∵四边形ABCD 为平行四边形, ∴ME =BF =3,OE =OF =2,∴点M 的坐标为(2,3),∵直线y =kx +3k 将▱ABCO 分割成面积相等的两部分, ∴该直线过点M , ∴3=2k +3k , ∴k =.故选:A .9.若2x +5y +4z =0,3x +y ﹣7z =0,则x +y ﹣z 的值等于( ) A .0B .1C .2D .不能求出【解答】解:根据题意得:,把(2)变形为:y =7z ﹣3x , 代入(1)得:x =3z , 代入(2)得:y =﹣2z , 则x +y ﹣z =3z ﹣2z ﹣z =0. 故选:A .10.如图所示,在△ABC 中,D 是BC 的中点,DE ⊥BC 交AC 于点E ,已知AD =AB ,连接BE 交AD 于点F ,下列结论:①BE =CE ;②∠CAD =∠ABE ;③S △ABF =3S △DEF ;④△DEF ∽△DAE ,其中正确的有( )A .1个B .4个C .3个D .2个【解答】解:∵D 是BC 的中点,且DE ⊥BC , ∴DE 是BC 的垂直平分线,CD =BD , ∴CE =BE ,故①正确;∴∠C =∠7, ∵AD =AB ,∴∠8=∠ABC =∠6+∠7, ∵∠8=∠C +∠4, ∴∠C +∠4=∠6+∠7,∴∠4=∠6,即∠CAD =∠ABE ,故②正确;作AG ⊥BD 于点G ,交BE 于点H , ∵AD =AB ,DE ⊥BC , ∴∠2=∠3,DG =BG =BD ,DE ∥AG ,∴△CDE ∽△CGA ,△BGH ∽△BDE ,DE =AH ,∠EDA =∠3,∠5=∠1, ∴在△DEF 与△AHF 中,,∴△DEF ≌△AHF (AAS ), ∴AF =DF ,EF =HF =EH ,且EH =BH ,∴EF :BF =1:3, ∴S △ABF =3S △AEF , ∵S △DEF =S △AEF ,∴S △ABF =3S △DEF ,故③正确;∵∠1=∠2+∠6,且∠4=∠6,∠2=∠3, ∴∠5=∠3+∠4, ∴∠5≠∠4,∴△DEF ∽△DAE ,不成立,故④错误. 综上所述:正确的答案有3个.故选:C.二.填空题(每小题4分,共16分)11.已知a﹣b=2,那么2a﹣2b+5=9.【解答】解:∵a﹣b=2,∴原式=2(a﹣b)+5=4+5=9,故答案为:912.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从中任摸一个球,恰好是白球的概率为”,则这个袋中白球大约有2个.【解答】解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是白球的概率为,∴=,解得:n=2.故答案为:2.13.直角三角形纸片的两直角边BC,AC的长分别为6,8,现将△ABC如下图那样折叠,使点A与点B重合,折痕为DE,则CE的长为.【解答】解:设CE为x,则BE=AE=8﹣x,∵∠C=90°,∴BE2﹣CE2=BC2,(8﹣x)2﹣x2=36,解得x=.14.如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线y=x于点B1,B2,过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线y=x于点B3,…,按照此规律进行下去,则点A n的横坐标为.【解答】解:∵A n B n+1∥x轴,∴tan∠A n B n+1B n=.当x=1时,y=x=,∴点B1的坐标为(1,),∴A1B1=1﹣,A1B2==﹣1.∵1+A1B2=,∴点A2的坐标为(,),点B2的坐标为(,1),∴A2B2=﹣1,A2B3==﹣,∴点A3的坐标为(,),点B3的坐标为(,).同理,可得:点A n的坐标为(,).故答案为:.三.解答题(共54分,15题每小题12分,共12分)15.(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;(2)先化简,再求值:÷(2+),其中a=.【解答】解:(1)|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+;(2)÷(2+)===,当a=时,原式==﹣1.16.当m为何值时.关于x的方程=﹣的解是负数?【解答】解:两边都乘(x+1)(x﹣2),得m=x2﹣2x﹣x2+1,解得x=,由分式方程的解为负数,得<0且≠﹣1,解得m>1且m≠3.17.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)写出D级学生的人数占全班总人数的百分比为4%,C级学生所在的扇形圆心角的度数为72°;(2)该班学生体育测试成绩的中位数落在等级B内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?【解答】解:(1)总人数为25÷50%=50人,D成绩的人数占的比例为2÷50×100%=4%,表示C的扇形的圆心角360°×(10÷50)=360°×20%=72°,故答案为:4%,72°;(2)由于A成绩人数为13人,C成绩人数为10人,D成绩人数为2人,而B成绩人数为25人,故该班学生体育测试成绩的中位数落在B等级内;故答案为:B;(3)×500=380(人),答:估计这次考试中A级和B级的学生共有380人.18.观察与思考:阅读下列材料,并解决后面的问题在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图(1)),则,即AD=c sin B,AD=b sin C,于是c sin B=b sin C,即,同理有:,所以.即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=60°;AC=20;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,)【解答】解:(1)由正玄定理得:∠A=60°,AC=20;故答案为:60°,20;(2)如图,依题意:BC=40×0.5=20(海里)∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°.∴∠A=45°.在△ABC中,,即,解之得:AB=10≈24.49海里.所以渔政204船距钓鱼岛A的距离约为24.49海里.19.已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.【解答】解:(1)∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1,代入反比例函数解析式,=y,解得y=6,∴点A的坐标为(1,6),又∵点A在一次函数图象上,∴1+m=6,解得m=5,∴一次函数的解析式为y1=x+5;(2)∵第一象限内点C到y轴的距离为3,∴点C的横坐标为3,∴y==2,∴点C的坐标为(3,2),过点C作CD∥x轴交直线AB于D,则点D的纵坐标为2,∴x+5=2,解得x=﹣3,∴点D的坐标为(﹣3,2),∴CD=3﹣(﹣3)=3+3=6,点A到CD的距离为6﹣2=4,联立,解得(舍去),,∴点B 的坐标为(﹣6,﹣1),∴点B 到CD 的距离为2﹣(﹣1)=2+1=3, S △ABC =S △ACD +S △BCD =×6×4+×6×3=12+9=21.20.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,连结AC ,过上一点E 作EG ∥AC 交CD 的延长线于点G ,连结AE 交CD 于点F ,且EG =FG ,连结CE . (1)求证:△ECF ∽△GCE ; (2)求证:EG 是⊙O 的切线;(3)延长AB 交GE 的延长线于点M ,若tan G =,AH =3,求EM 的值.【解答】(1)证明:如图1中,∵AC ∥EG , ∴∠G =∠ACG ,∵AB⊥CD,∴=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE,∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=3,∴HC=4,在Rt△HOC中,∵OC=r,OH=r﹣3,HC=4,∴(r﹣3)2+(4)2=r2,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴=,∴=,∴EM=.一.填空题(每小题4分,共20分)21.已知+|ab+3|=0,则a﹣b的值是±.【解答】解:由题意得,a2+b2﹣5=0,ab+3=0,即a2+b2=5,2ab=﹣6,(a﹣b)2=11,则a﹣b=±,故答案为:±.22.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.【解答】解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,则△=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0,∴m≤,∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(﹣2m)2﹣(m2+3m﹣2)=3m 2﹣3m +2=3(m 2﹣m +﹣)+2 =3(m ﹣)2 +; ∴当m =时,有最小值; ∵<,∴m =成立;∴最小值为;故答案为:. 23.如图,E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF ,CE ,AF 、CE 交于G ,则四边形BEGF 与四边形ADCG 的面积的比值为 .【解答】解:如图:连接BG ,设S △AEG =a ,S △CFG =b ,∵点E ,F 分别是矩形ABCD 的边AB ,BC 的中点,∴S △BEG =a ,∴S △BGF =S △FGC =b ,∴S △ABF =S △BCE =S 矩形ABCD ,S △ABF =2a +b ,S △BCE =2b +a ,∴a =b ,S 矩形ABCD =12a ,∴==.故答案为:.24.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣2,0)、B(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的上方,顶点为C.直线y=kx+m(k≠0)经过点C、B.则下列结论:①b>a;②2a﹣b>﹣1;③2a+c<0;④k>a+b;⑤k<﹣1,其中正确的结论有①⑤.【解答】解:①由图知:抛物线的开口向下,则a<0.对称轴在x轴的左侧,因此,a、b同号,则b<0∵﹣2+x1=﹣,1<x1<2,∴0<<1,∴b>a.故①正确;②∵抛物线交x轴与点(﹣2,0)∴4a﹣2b+c=0∵c>2∴4a﹣2b=﹣c<﹣2即2a﹣b<﹣1.故②错误;③∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣2,0),∴4a﹣2b+c=0∵b>a,∴2b>2a,∴4a﹣2b<2a,∴4a﹣2b+c<2a+c,即0<2a+c,∴2a+c>0,故③错误;⑤如图,过顶点C作CD⊥AB于点D.则k=﹣.AD和BD的长度都在1.5和2之间,也就是说1.5<BD<2,又因为CD>2,所以CD除以BD>1,所以k<﹣1∴k<﹣1,故⑤正确;④∵当x=1时,y>0,∴a+b+c>0,∵c>2,∴a+b>﹣2.又由⑤知,k<﹣1,∴k与a+b的大小无法判断,故④错误;综上所述,正确的结论有①⑤.故答案是:①⑤.25.如图,等边△AOB的边长为4,点P从点O出发,沿OA以每秒1个单位的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP、CA.在点P从O向A运动的过程中,当△PCA为直角三角形时t的值为2或s.【解答】解:①如图1中,连接KC、BC.设PB的中点为K.∵PK=PC,∠KPC=60°,∴△PKC是等边三角形,∴KC=PK=BK,∴∠PCB=90°,∴当∠PCA=90°时,点C在线段AB上,∵△AOB是等边三角形,∴∠A=60°,∴∠APC=30°,∵∠CPK=60°,∴∠APB=90°,∴BP⊥OA,∵BO=BA,∴OP=PA=2,∴t=2.②如图2中,当∠PAC=90°时,作BH⊥OA于H,BG⊥AC于G,连接KC、BC.则四边形BHAG是矩形,△PAC∽△CGB,∴===,设OP=x,则AP=4﹣x,∵AH=BG=2,∴AC=,GC=(4﹣x),∵BH=AG=2,∴+(4﹣x)=2,∴x=.∴t=,综上所述,t=2或s时,△PAC是直角三角形,故答案为2或s.二.解答题(共30分)26.某公司经营杨梅业务,以3万元/吨的价格买入杨梅后,分拣成A、B两类,A类杨梅包装后直接销售,包装成本为1万元/吨,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2,单位:吨)之间的函数关系如图所示;B类杨梅深加工后再销售,深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)A类杨梅的销售量为5吨时,它的平均销售价格是每吨多少万元?(2)若该公司收购10吨杨梅,其中A类杨梅有4吨,则经营这批杨梅所获得的毛利润(w)为多少万元?(毛利润=销售总收入﹣经营总成本)(3)若该公司收购20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元.①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?【解答】解:(1)设x,y的解析式为y=kx+b,把x=2时,y=12,x=8时,y=6得:解得:,∴y=﹣x+14(2≤x≤8),∴x=5时,y=9,答:A类杨梅的销售量为5吨时,它的平均销售价格是每吨9万元;(2)若该公司收购10吨杨梅,其中A类杨梅有4吨,则B类杨梅有6吨,易得:W A=(10﹣3﹣1)×4=24(万元),W A=6×(9﹣3)﹣(12+3×6)=6(万元),∴W=24+6=30(万元),答:此时经营这批杨梅所获得的毛利润w为30万元;(3)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨,①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x,w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x,∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x,w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48,∴w关于x的函数关系式为:w=,②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意,当x≥8时,﹣x+48=30,解得x=18,∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.27.已知:如图1.正方形ABCD,过点A作∠EAF=90°,两边分别交直线BC于点E,交线段CD于点F,G为AE中点,连接BG(1)求证:∠AFD+∠CBG=180°;(2)如图2,过点G作BG的垂线交对角线AC于点H,求证:GH=GB;(3)如图3,连接HF,若CH=3AH,AD=2,求线段HF的长.【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠AEF=90°,∴∠EAB=∠DAF,∵∠ABE=∠ADF=90°,∴△ABE≌△ADF,∴∠AFD=∠E,∵AG=GE,∴GB=GE=GA,∴∠E=∠GBE=∠AFD,∵∠GBE+∠GBC=180°,∴∠AFD+∠GBC=180°.(2)证明:如图2中,连接BD交AC于O,连接OG、BH、取BH的中点K,连接GK、OK.∵∠BGH=∠BOH=90°,BK=KH,∴GK=KH=OK=KB,∴O、H、G、B四点共圆,∵AG=GE,AO=OC.∴OG∥CE,∴∠GOB=∠OBC=45°,∴∠GOH=∠GBH=45°,∵∠BGH=90°,∴∠GBH=∠GHB=45°,∴GH=GB.(3)解:如图3中,如图3中,设OG交AB于T,GH交AB于P.,作HM⊥DF于M.∵OG∥EC,AB⊥CE,∴OG⊥AB,易证∠EAB=∠GBP=∠PGT=∠HBO,∴tan∠EAB=tan∠HBO=,∵CH=3AH,OA=OC=OB,∴tan∠EAB=tan∠HBO==,∵AB=AD=2,∴BE=DF=,在Rt△HMF中,易证FM=,HM=,∴HF==5.28.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣10ax+16a(a≠0)交x轴于A、B两点,抛物线的顶点为D,对称轴与x轴交于点H,且AB=2DH.(1)求a的值;(2)点P是对称轴右侧抛物线上的点,连接PD,PQ⊥x轴于点Q,点N是线段PQ上的点,过点N作NF⊥DH于点F,NE⊥PD交直线DH于点E,求线段EF的长;(3)在(2)的条件下,连接DN、DQ、PB,当DN=2QN(NQ>3),2∠NDQ+∠DNQ=90°时,作NC⊥PB交对称轴左侧的抛物线于点C,求点C的坐标.【解答】解:(1)令y=0,∵a≠0,∴x2﹣10x+16=0,得x=2或x=8,∴点A(2,0),B(8,0),∴AB=8﹣2=6,∵AB=2DH,∴DH=3,∵OH=2+,∴D(5,﹣3),∴﹣3=a×52﹣10a×5+16a,得a=;(2)如图1,过点D作PQ的垂线,交PQ的延长线于点M,∵NE⊥PD,∴∠DPN+∠PNE=90°,∵NF⊥DE,∴∠FEN+∠FNE=90°,又∵DH⊥x轴,PQ⊥x轴,∴DE∥PQ,∴∠FEN=∠PNE,∴∠DPM=∠ENF,∴△EFN∽△DMP,∴,设点P(t,),则FN=DM=t﹣5,PM=+3,∴,解得,EF=3;(3)如图2,作QG⊥DN于点G,∵DF∥PQ,∴∠FDN=∠DNQ,∵2∠NDQ+∠DNQ=90°,∴2∠NDQ+∠FDN=90°,∵∠FDM=90°,∴∠NDM=2∠NDQ,∴∠NDQ=∠MDQ,∴QG=QM=DH=3,设QN=m,则DN=2m,∵sin∠DNM=,sin∠QNG=,sin∠DNM=sin∠QNG,∴,得DM=6=DG,∴OQ=5+6=11,∴点P的纵坐标是:,∴点P(11,9),∵NG=DN﹣DG=2m﹣6,在Rt△NGQ中,QG2+NG2=QN2,∴32+(2m﹣6)2=m2,解得,m=3(舍去)或m=5,设点C的坐标为(n,),作CK⊥x轴于点K,作NF⊥CK于点K,则CT=,NT=11﹣n,∵P(11,9),则BQ=11﹣8=3,PQ=9,∵CN⊥PB,PQ∥CK,PQ⊥x轴,∴△CTN∽△BQP,∴,即,解得,n=﹣1或n=10(舍去),∴点C(﹣1,9).。
初2018届成都市郫都区中考数学九年级一诊数学试卷(含答案)
初2018届成都市郫都区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如图摆放的圆锥、圆柱、三棱柱、球,其主视图、左视图、俯视图都相同的是()A.B.C.D.2.一元二次方程5x2﹣4x﹣3=0的二次项系数与一次项系数分别为()A.5,﹣1 B.5,4 C.5x2,﹣4x D.5,﹣43.已知=,则的值是()A.B.C.﹣D.﹣4.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.5.若m是一元二次方程x2﹣5x﹣2=0的一个实数根,则2018﹣m2+5m的值为()A.2015 B.2016 C.2017 D.20186.下列哪种光线形成的投影不是中心投影()A.探照灯B.太阳C.手电筒D.路灯7.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,则水柱的最大高度是()A.2 B.4 C.6 D.2+8.函数y=中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5 D.x≤59.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.10.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象为()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若反比例函数y=的图象在第一、三象限内,则k的取值范围为.12.抛物线y=x2+2x﹣2向右平移2个单位长度,所得抛物线的对称轴为直线.13.如图,河两岸分别有A、B两村,测得A、B、D在一直线上,A、C、E在一条直线上,BC∥DE,DE=100m,BC=70m,BD=30m,则A、B两村间的距离为.14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:||+﹣2tan45°﹣2sin60°(2)解方程:x2﹣6x+5=016.(6分)如图是由6个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.17.(8分)如图,一艘核潜艇在海面下500米A点处测得俯角为31°正前方的海底C点处有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为62°正前方的海底C点处有黑匣子信号发出,求海底黑匣子C点处距离海面的深度CH.(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)18.(8分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=图象交于点A (1,5)和点B(n,1).(1)求m,n的值;(2)设直线AB与x轴交于点C,求△AOC的面积;(3)若图中一次函数的函数值小于反比例函数的函数值,直接写出x的取值范围.20.(10分)如图,已知矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E、F,交DC于点G,交AB于点H,连接AF,CE.(1)求证:四边形AFCE是菱形;(2)若=,△DGE的面积是2,求△CGF的面积;(3)如果OF=2GO,求证:GO2=DG•GC.B卷(共50分)一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是.22.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=﹣2,则b a的值为.23.已知函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,则k的取值范围是.24.从﹣2、﹣1、0、1这四个数中随机抽取一个记为a,则使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.25.如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M、N,则S △MND:S△AFD的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若保持年平均增长率不变,该企业2018年的利润能否超过3.4亿元?27.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段BE为何值时,线段AM最短,最短是多少?28.(12分)如图,在平面直角坐标系中,抛物线F1:y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(3,0),将抛物线F1沿x轴翻折得到抛物线F2,抛物线F2与y轴交于点C.(1)求抛物线F1和抛物线F2的解析式;(2)若点P是抛物线F2在第一象限的图象上的一个动点,过点P作PE平行于y轴交直线BC于点E,求PE 的最大长度及△PCB的最大面积;(3)若点Q在抛物线F1上,且到∠OCB的两边的距离相等,求点Q的坐标.参考答案与试题解析1.【解答】解:球的三视图是大小相同的圆,而圆锥、圆柱、三棱柱的三视图都不完全相同.所以主视图、左视图、俯视图都完全相同的是球.故选:D.2.【解答】解:一元二次方程5x2﹣4x﹣3=0的二次项系数和一次项系数分别为5,﹣4,故选:D.3.【解答】解:∵=,∴a=5k,b=13k,∴=,故选:A.4.【解答】解:由点A的坐标为(4,3),那么OA==5,∴cosα的值为A的横坐标:OA=4:5,故选:B.5.【解答】解:∵m是一元二次方程x2﹣5x﹣2=0的一个实数根,∴m2﹣5m﹣2=0,即m2﹣5m=2,∴2018﹣m2+5m=2018﹣(m2﹣5m)=2018﹣2=2016.故选:B.6.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,故选B.7.【解答】解:∵抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,∴水柱的最大高度是:6.故选:C.8.【解答】解:根据题意得:x﹣5≥0解得:x≥5故选:C.9.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.10.【解答】解:A、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+b的图象应该开口向上,故A错误;B、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,顶点的纵坐标大于零,故B正确;C、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+b的图象应该开口向下,故C错误;D、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,故D错误;故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:∵反比例函数y=的图象在第一、三象限内,∴k﹣5>0,解得 k>5.故答案为:k>5.12.【解答】解:∵y=x2+2x﹣2=(x+1)2﹣3,∴向右平移2个单位长度后抛物线解析式为y=(x﹣1)2+3,∴所得抛物线的对称轴为直线 x=1.故答案是:x=1.13.【解答】解:∵BC∥DE,∴△ABC∽△AED,∴=,即=,解得,AB=70,故答案为:70.14.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,故白球的个数为12个.故答案为:12.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2﹣+3﹣2×1﹣2×=;(2)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=1.16.【解答】解:如图所示:17.【解答】解:在△ABC中∠CAG=31°,∠CBG=62°,∴BC=AB=3000m,在Rt△BCG中,∠BCD=62°,∴sin∠CBG=,∴CG=0.88×3000≈2640 (m),∴CH=CG﹣GH=2640+500=3140(m),∴海底黑匣子C点处距离海面的深度CH为3140m.18.【解答】解:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:=.19.【解答】解:(1)∵点A(1,5)在反比例函数y=图象上,∴m=1×5=5,∴反比例函数的解析式为y=,∵点B(n,1)在反比例函数y=的图象上,∴n=5.(2)∵点A(1,5)和点B(5,1)在直线y=kx+b上∴,解得,∴直线AB的解析式为y=﹣x+6,∴点C的坐标为(6,0),OC=6,∴△AOC的面积=×6×5=15,(3)观察图象可知:当图中一次函数的函数值小于反比例函数的函数值,x的取值范围为:0<x<1或x >5.20.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACF,在△EOA和△FOC中,,∴△EOA≌△FOC(ASA).∴AE=CF,OE=OF.∴四边形AFCE是平行四边形.∵AC⊥EF,∴四边形AFCE是菱形;(2)∵四边形AFCE是菱形∴AE∥CF,AE=CF.∴△DGE∽△CGF.∴=()2.∵=,△DGE的面积是2,∴=()2.∴S△CGF=18;(3)∵∠EDG=∠COG=90°,∠EGD=∠CGO,∴△EGD∽△CGO.∴EG:DG=CG:GO.∵OF=2GO,∴EG=GO.∴GO2=DG•GC.一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵三角形的3条中位线分别为3cm、4cm、6cm,根据三角形的中位线定理,得三角形的三边分别是6cm、8cm、12cm,则三角形的周长是26cm.故答案为26cm.22.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=﹣2,解得a=2,b=1,∴b a=12=1.故答案为:1.23.【解答】解:∵函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,∴令y=0,则(k﹣3)x2+2x+1=0,则△=4﹣4(k﹣3)>0,且k﹣3≠0,解得,k<4且k≠3.故答案是:k<4且k≠3.24.【解答】解:由题意:当a=﹣1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y=的图象有1个交点,当a=0或1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y =的图象有2个交点,∴使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.故答案.25.【解答】解:连接DF,如图,∵E,F分别是AB,BC的中点,∴AE=BF=,∵四边形ABCD是正方形,∴AD∥BC,AB=BC=,∴DE=AF==5,在△ADE和△BAF中,∴△ADE≌△BAF(SAS),∴∠ADE=∠BAF,∵∠BAF+∠FAD=90°,∴∠FAD+∠ADE=90°,∴∠AMD=90°,∴AM⊥DE,∵AM•DE=AE•AD,∴AM==2,在Rt△AMD中,DM==4,又∵AD∥BF,∴△AND∽△FNB,∴,∴AN=2NF==×5=,∴MN=﹣2=,∴S△DMN=DM•MN=×4×=8,∵S△ADF=×2×2=30,∴S△MND:S△AFD=8:30=4:15.故答案为4:15.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设这两年该企业年利润平均增长率为x,根据题意得:2(1+x)2=2.88,解答:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),则设这两年该企业年利润平均增长率为20%;(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为:2.88(1+20%)=3.456,且3.456>3.4,则该企业2018年的利润能超过3.4亿元.27.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=;∴BE=1或.(3)设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=﹣+x=﹣(x﹣3)2+,∴AM=5﹣CM=(x﹣3)2+,∴当x=3时,AM最短为.28.【解答】解:(1)F1的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=﹣4,解得:a=,故函数F1的表达式为:y=x2﹣x﹣4,将抛物线F1沿x轴翻折得到抛物线F2,抛物线的表达式为:y=﹣x2+x+4;(2)点B、C的坐标分别为(3,0)、(0,4),将点B、C坐标代入一次函数表达式:y=kx+b并解得:直线C的表达式为:y=﹣x+4,设点P(x,﹣x2+x+4),则点E(x,﹣x+4),PE=﹣x2+x+4﹣(﹣x+4)=﹣(x﹣)2+3,∵<0,∴当x=时,PE的最大值为3;(3)如图,在y轴上截取CB=CD=5,则点D(0,﹣1),设BD的中点为H(,﹣),同理过点C、H的直线表达式为:y=﹣3x+4,∵CH平分∠OCB,则CH与抛物线F1的交点Q到∠PCB两边的距离相等,,解得:x=,故点Q(,)或(,)。
2018年四川省成都市锦江区中考数学一诊试卷及答案
2018年四川省成都市锦江区中考数学一诊试卷A卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)如图所示的几何体,其主视图是()A.B.C.D.2.(3分)已知=,则的值为()A.B.C.﹣D.﹣3.(3分)如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(3,1)B.(3,3)C.(4,4)D.(4,1)4.(3分)如图,在菱形ABCD中,AB=2,∠ABC=120°,则对角线BD等于()A.2B.4C.6D.85.(3分)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tan B′的值为()A.B.C.D.6.(3分)如图,在▱ABCD中,AD=18,点E、F分别是BD、CD上的点,EF∥BC,且=,则EF 等于()A.6B.8C.9D.187.(3分)小明家2015年年收入20万元,通过合理理财,2017年年收入达到25万元,求这两年小明家年收入的平均增长率,设这两年年收入的平均增长率为x,根据题意所列方程为()A.20x2=25B.20(1+x)=25C.20(1+x)2=25D.20(1+x)+20(1+x)2=258.(3分)如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须()A.大于60°B.小于60°C.大于30°D.小于30°9.(3分)如图所示,在矩形ABCD中,AD=6,AB=10,若将矩形ABCD沿DE折叠,使点C落在AB边上的点F处,则线段CE的长为()A.B.C.D.1010.(3分)如图,菱形OBAC的边OB在x轴上,点A(8,4),tan∠COB=,若反比例函数y=(k ≠0)的图象经过点C,则反比例函数解析式为()A.y=B.y=C.y=D.y=二、填空题(本大题共4小题,每小题4分,满分16分)11.(4分)课间休息,小亮与小明一起玩“五子棋”游戏,他们决定通过“剪刀、石头、布”游戏赢者开棋,若小亮出“石头”,则小亮开棋的概率是.12.(4分)如图,AC是正方形ABCD的对角线,∠DCA的平分线交BA的延长线于点E,若AB=3,则AE=13.(4分)关于x的一元二次方程(k﹣2)x2+2kx+k=0有实数根,则k的取值范围是14.(4分)如图,⊙O的直径为10,弦AB=8,P是弦AB上一动点,那么OP长的取值范围是.三、解答题(共18分)15.(12分)(1)计算:+6cos30°﹣(+2)0(2)解方程:(x+2)(x+3)=2x+16.16.(6分)为传递爱心,传播文明,某中学团委倡议全校同学在寒假期间选择参加志愿者活动(每人只能参加一种活动),活动项目有:敬老助残(A)、环境保护(B)、关爱留守儿童(C)、团委筹备小组在校门口随机调查50位同学,发现这50位同学选择三种活动项目(A、B、C)的人数之比为3:3:4.(1)若该校有1200名同学,请估计参加环境活动项目的同学有多少人?(2)请用画树状图或列表的方法,求九年级一班班长和团委书记两位同学都选择参加关爱留守儿童(C)的概率17.(8分)如图,AC是▱ABCD的对角线,在AD边上取一点F,连接BF交AC于点E,并延长BF交CD 的延长线于点G.(1)若∠ABF=∠ACF,求证:CE2=EF•EG;(2)若DG=DC,BE=6,求EF的长.18.(8分)如图,一辆滴滴快车在笔直公路上由西向东行驶,行驶至A处时接到正东方B处乘客订单,但师傅发现油量不足,马上左拐30°,沿AC行驶1200米到达加油站C处加油,加油用时5分钟,加油后再沿CB行驶1000米到B处接到乘客,假设滴滴快车的平均速度是每分钟360米,其他情况忽略不计,滴滴快车让乘客多等了多少时间?(结果保留整数≈1.414,≈1.732,≈2.236)19.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A、B两点,与x轴、y轴交于C、D两点,且点C、D刚好是线段AB的三等分点,OD=2,tan∠DCO=(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积;(3)若y1≤y2,请直接写出相应自变量x的取值范围20.(10分)如图,在△ABC中,∠ABC=90°,⊙O是△ABC外接圆,点D是圆上一点,点D、B分别在AC两侧,且BD=BC,连接AD、BD、OD、CD,延长CB到点P,使∠APB=∠DCB.(1)求证:AP为⊙O的切线;(2)若⊙O的半径为1,当△OED是直角三角形时,求△ABC的面积;(3)若△BOE、△DOE、△AED的面积分别为a、b、c,试探究a、b、c之间的等量关系式,并说明理由.B卷六、填空题(每小题4分,共20分)21.(4分)已知m、n是方程x2﹣2x﹣7=0的两个根,那么m2+mn+2n=.22.(4分)如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A处前进4米到达B处时,测得影子BC长为1米,已知小明身高1.6米,他若继续往前走4米到达D处,此时影子DE长为米.23.(4分)如图,点A是反比例函数y=(x>0)图象上的一点,点B是反比例函数y=﹣(x<0)图象上的点,连接OA、OB、AB,若∠AOB=90°,则sin∠A=24.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣1,2),下列结论:①abc>0;②a+b+c >0;③2a+b<0;④b<﹣1;⑤b2﹣4ac<8a,正确的结论是(只填序号)25.(4分)如图,⊙O的半径为6,∠AOB=90°,点C是上一动点(不与点B、A重合),过点C作CD⊥OB于点D,CE⊥OA于点E,连接ED,点F是OD的中点,连接CF交DE于点P,则CE2+3CP2等于.26.(8分)科技驱动新零售商业变革的时代已经来临,无人超市的经营模式已在全国各地兴起,某家无人超市开业以来,经测算,为销售A型商品每天需固定支出的费用为400元,若A型商品每件的销售利润不超过9元,每天销售A型商品的数量为280件,若A型商品每件的销售利润超过9元,则每超过1元,每天销售A型商品的数量减少10件,设该家无人超市A型商品的销售利润为x元/件,A型商品的日净收入为y元(日净收入=A型商品每天销售的总利润﹣A型商品每天固定的支出费用):(1)试求出该超市A型商品的日净收入为y(元)与A型商品的销售利润x(元/件)之间的关系式;(2)该超市能否实现A型商品的销售日净收入3000元的目的?如能实现,求出A型商品的销售利润为多少元/件?如不能实现,请说明理由;(3)请问该超市A型商品的销售利润为多少元/件时,能获得A型商品的最大日净收入?八、解答题(10分)27.(10分)如图,在△ABC中,CA=CB,AB=10,0°<∠C<60°,AF⊥BC于点F,在FC上截取FD =FB,点E是AC上一点,连接DA、DE,且∠ADE=∠B.(1)求证:ED=EC(2)若∠C=30°,求BD长;(3)在(2)的条件下,将图1中△DEC绕点D逆时针旋转得到△DE′C′,请问在旋转的过程中,以点D、E、C′、E′为顶点的四边形可以构成平行四边形吗?若可以,请求出该平行四边形的面积;若不可以,请说明理由.28.(12分)如图,在平面直角坐标系中,抛物线y=x2+bx+c的图象与x轴交于点A(2,0)、B(﹣4,0),与y轴交于点D.(1)求抛物线的解析式;(2)连接BD,点P在抛物线的对称轴上,以Q为平面内一点,以点P、B、D、Q为顶点的四边形能否成为矩形?若能,请求出点P的坐标;若不能,请说明理由;(3)在抛物线上有一点M,过点M、A的直线MA交y轴于点C,连接BC,若∠MBO=∠BCO,请直接写出点M的坐标.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)如图所示的几何体,其主视图是()A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,右边一个小正方形,故选:B.2.(3分)已知=,则的值为()A.B.C.﹣D.﹣【解答】解:设x=2k,y=5k,则==﹣.故选:D.3.(3分)如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(3,1)B.(3,3)C.(4,4)D.(4,1)【解答】解:∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为:1:2,∴点C的坐标为:(4,4)故选:C.4.(3分)如图,在菱形ABCD中,AB=2,∠ABC=120°,则对角线BD等于()A.2B.4C.6D.8【解答】解:∵四边形ABCD为菱形,∴AD∥BC,AD=AB,∴∠A+∠ABC=180°,∴∠A=180°﹣120°=60°,∴△ABD为等边三角形,∴BD=AB=2,故选:A.5.(3分)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tan B′的值为()A.B.C.D.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tan B==,∴tan B′=tan B=.故选:B.6.(3分)如图,在▱ABCD中,AD=18,点E、F分别是BD、CD上的点,EF∥BC,且=,则EF等于()A.6B.8C.9D.18【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=18,∵EF∥BC,且=,∴EF=BC=×18=6.故选:A.7.(3分)小明家2015年年收入20万元,通过合理理财,2017年年收入达到25万元,求这两年小明家年收入的平均增长率,设这两年年收入的平均增长率为x,根据题意所列方程为()A.20x2=25B.20(1+x)=25C.20(1+x)2=25D.20(1+x)+20(1+x)2=25【解答】解:设这两年年收入的平均增长率为x,由题意得:20(1+x)2=25,故选:C.8.(3分)如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须()A.大于60°B.小于60°C.大于30°D.小于30°【解答】解:连接OA,OB,AB,BC,如图所示:∵AB=OA=OB,即△AOB为等边三角形,∴∠AOB=60°,∵∠ACB与∠AOB所对的弧都为,∴∠ACB=∠AOB=30°,又∠ACB为△SCB的外角,∴∠ACB>∠ASB,即∠ASB<30°.故选:D.9.(3分)如图所示,在矩形ABCD中,AD=6,AB=10,若将矩形ABCD沿DE折叠,使点C落在AB边上的点F处,则线段CE的长为()A.B.C.D.10【解答】解:由折叠是性质可知,DF=DC=AB=10,在Rt△ADF中,AF==8,∴BF=AB﹣AF=2,设CE=x,则BE=6﹣x,由折叠是性质可知,EF=CE=x,在Rt△BEF中,EF2=BF2+BE2,即x2=22+(6﹣x)2,解得,x=,故选:C.10.(3分)如图,菱形OBAC的边OB在x轴上,点A(8,4),tan∠COB=,若反比例函数y=(k ≠0)的图象经过点C,则反比例函数解析式为()A.y=B.y=C.y=D.y=【解答】解:如图,过点A作AE⊥x轴于点E,过点C作CF⊥OB于点F,∵四边形OCAB为菱形,∴OC∥BA,则tan∠COB=tan∠ABE==,∵点A(8,4),∴AE=4,则BE=3,∴OC=AB==5,设CF=4x,则OF=3x,根据OF2+CF2=OC2即(3x)2+(4x)2=52,解得x=1,则OF=3、CF=4,即点C坐标为(3,4),所以反比例函数解析式为y=,故选:B.二、填空题(本大题共4小题,每小题4分,满分16分)11.(4分)课间休息,小亮与小明一起玩“五子棋”游戏,他们决定通过“剪刀、石头、布”游戏赢者开棋,若小亮出“石头”,则小亮开棋的概率是.【解答】解:若小亮出“石头”,则小明出的手势情况为剪刀、石头、布这3种,其中小明出布时,小亮获胜,所以小亮开棋的概率是,故答案为:.12.(4分)如图,AC是正方形ABCD的对角线,∠DCA的平分线交BA的延长线于点E,若AB=3,则AE=3【解答】解:∵AC是正方形ABCD的对角线,AB=3,∴AC=3,∵正方形ABCD,∠DCA的平分线交BA的延长线于点E,∴∠DCE=∠ECA,DC∥EB,∴∠CEA=∠DCE,∴∠E=∠ECA,∴AE=AC=3,故答案为:313.(4分)关于x的一元二次方程(k﹣2)x2+2kx+k=0有实数根,则k的取值范围是k≥0且k≠2【解答】解:∵关于x的一元二次方程(k﹣2)x2+2kx+k=0有实数根,∴,解得:k≥0且k≠2.故答案为:k≥0且k≠2.14.(4分)如图,⊙O的直径为10,弦AB=8,P是弦AB上一动点,那么OP长的取值范围是3≤OP≤5.【解答】解:如图:连接OA,作OM⊥AB与M,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OM⊥AB与M,∴AM=BM,∵AB=8,∴AM=4,在Rt△AOM中,OM=,OM的长即为OP的最小值,∴3≤OP≤5.三、解答题(共18分)15.(12分)(1)计算:+6cos30°﹣(+2)0(2)解方程:(x+2)(x+3)=2x+16.【解答】解:(1)+6cos30°﹣(+2)0=2﹣2+6×﹣1=5﹣3;(2)(x+2)(x+3)=2x+16,x2+5x+6=2x+16,x2+3x﹣10=0,(x﹣2)(x+5)=0,解得x1=2,x2=﹣5.16.(6分)为传递爱心,传播文明,某中学团委倡议全校同学在寒假期间选择参加志愿者活动(每人只能参加一种活动),活动项目有:敬老助残(A)、环境保护(B)、关爱留守儿童(C)、团委筹备小组在校门口随机调查50位同学,发现这50位同学选择三种活动项目(A、B、C)的人数之比为3:3:4.(1)若该校有1200名同学,请估计参加环境活动项目的同学有多少人?(2)请用画树状图或列表的方法,求九年级一班班长和团委书记两位同学都选择参加关爱留守儿童(C)的概率【解答】解:(1)1200×=360(人),答:估计参加环境活动项目的同学有360人;(2)如图所示:,一共有9种可能,两位同学都选择参加关爱留守儿童的可能有1种,故两位同学都选择参加关爱留守儿童的概率为:.四、解答题(每小题8分,共16分)17.(8分)如图,AC是▱ABCD的对角线,在AD边上取一点F,连接BF交AC于点E,并延长BF交CD 的延长线于点G.(1)若∠ABF=∠ACF,求证:CE2=EF•EG;(2)若DG=DC,BE=6,求EF的长.【解答】解:(1)∵AB∥CG,∴∠ABF=∠G,又∵∠ABF=∠ACF,∴∠ECF=∠G,又∵∠CEF=∠CEG,∴△ECF∽△EGC,∴,即CE2=EF•EG;(2)∵平行四边形ABCD中,AB=CD,又∵DG=DC,∴AB=CD=DG,∴AB:CG=1:2,∵AB∥CG,∴,即,∴EG=12,BG=18,∵AB∥DG,∴,∴BF=BG=9,∴EF=BF﹣BE=9﹣6=3.18.(8分)如图,一辆滴滴快车在笔直公路上由西向东行驶,行驶至A处时接到正东方B处乘客订单,但师傅发现油量不足,马上左拐30°,沿AC行驶1200米到达加油站C处加油,加油用时5分钟,加油后再沿CB行驶1000米到B处接到乘客,假设滴滴快车的平均速度是每分钟360米,其他情况忽略不计,滴滴快车让乘客多等了多少时间?(结果保留整数≈1.414,≈1.732,≈2.236)【解答】解:如图作CH⊥AB于H.在Rt△ACH中,AC=1200,∠A=30°,∴CH=AC=600,AH=CH≈1039.2,在Rt△BCH中,BH===800,∴AB=1893,AC+BC=2200,∴滴滴快车让乘客多等的时间=5+≈6(分钟),五、解答题(每小题10分,共20分)19.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A、B两点,与x轴、y轴交于C、D两点,且点C、D刚好是线段AB的三等分点,OD=2,tan∠DCO=(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积;(3)若y1≤y2,请直接写出相应自变量x的取值范围【解答】解:(1)∵OD=2,tan∠DCO==,∴,∴OC=3,∴D(0,2),C(﹣3,0),把D(0,2),C(﹣3,0)代入y1=kx+b中得:,解得:,∴一次函数的解析式为:y1=x+2;过A作AE⊥x轴于E,∵点C、D刚好是线段AB的三等分点,∴AC=CD=BD,∵∠AEC=∠COD=90°,∠ECA=∠OCD,∴△AEC≌△DOC,∴EC=OC=3,AE=OD=2,∴A(﹣6,﹣2),∴m=﹣6×(﹣2)=12,∴反比例函数的解析式为:y2=;(2)同理得:B(3,4),∴S△AOB=S△BOC+S△ACO,=•|y B|+•|y A|,=+×3×2,=9;(3)由图象得:当x≤﹣6或0<x≤3时,y1≤y2.20.(10分)如图,在△ABC中,∠ABC=90°,⊙O是△ABC外接圆,点D是圆上一点,点D、B分别在AC两侧,且BD=BC,连接AD、BD、OD、CD,延长CB到点P,使∠APB=∠DCB.(1)求证:AP为⊙O的切线;(2)若⊙O的半径为1,当△OED是直角三角形时,求△ABC的面积;(3)若△BOE、△DOE、△AED的面积分别为a、b、c,试探究a、b、c之间的等量关系式,并说明理由.【解答】(1)证明:∵BD=BC,∴∠BDC=∠BCD,∵∠P=∠BCD,∠BAC=∠BDC,∴∠P=∠BAC,∵AC是直径,∴∠ABC=∠ABP=90°,∴∠P+∠BAP=90°,∴∠BAP+∠BAC=90°,∴∠OAP=90°,∴OA⊥P A,∴P A是⊙O的切线.(2)解:①当∠OED=90°时,CB=CD=BD,△ABC是等边三角形,可得∠ACB=30°,∵AC=2,∴AB=1,BC=,∴S△ABC=.②当∠DOE=90°时,作BH⊥AC于H.∵BD=BC,BO=BO,OC=OD,∴△BOC≌△BOD(SSS),∴∠OBC=∠OBD=∠OCB=22.5°,∴∠BOH=45°,∴BH=,∴S△ABC=×2×=(3)解:∵BD=BC,OD=OC,BO=BO,∴△BOD≌△BOC,∴∠OBD=∠OBC,∵OB=OD=CO,∴∠OBD=∠OBC=∠ODB=∠OCB,∵∠ADB=∠OCB,∴∠ADB=∠OBD,∴AD∥OB,∴△AED∽△OEB,∴=()2,∵==,∴=()2,∴b2=ac.六、填空题(每小题4分,共20分)21.(4分)已知m、n是方程x2﹣2x﹣7=0的两个根,那么m2+mn+2n=4.【解答】解:∵m、n是方程x2﹣2x﹣7=0的两个根,∴m+n=2,mn=﹣7,m2﹣2m﹣7=0,∴m2=2m+7,∴m2+mn+2n=2m+7+mn+2n=7+2×2+(﹣7)=4.故答案为:4.22.(4分)如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A处前进4米到达B处时,测得影子BC长为1米,已知小明身高1.6米,他若继续往前走4米到达D处,此时影子DE长为2米.【解答】解:由FB∥AP可得,△CBF∽△CAP,∴,即,解得AP=8,由GD∥AP可得,△EDG∽△EAP,∴,即,解得ED=2,故答案为:2.23.(4分)如图,点A是反比例函数y=(x>0)图象上的一点,点B是反比例函数y=﹣(x<0)图象上的点,连接OA、OB、AB,若∠AOB=90°,则sin∠A=【解答】解:如图作AE⊥x轴于E,BF⊥x轴于F.设A(a,),B(b,﹣),∵∠AOB=∠OFB=∠AEO=90°,∴∠BOF+∠AOE=90°,∠AOE+∠OAE=90°,∴∠BOF=∠OAE,∴△BOF∽△OAE,∴=,∴=,∴a2b2=5,∵AB2=OB2+OA2=b2++a2+=6b2+,∴AB=,OB=,∴sin∠A===,故答案为.24.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣1,2),下列结论:①abc>0;②a+b+c >0;③2a+b<0;④b<﹣1;⑤b2﹣4ac<8a,正确的结论是①④⑤(只填序号)【解答】解:①∵抛物线开口向上,∴a>0,∵x=﹣>0,∴b<0,又∵抛物线与y轴交于负半轴,∴c<0,∴abc>0.故①正确;②∵x=1时,y<0,∴a+b+c<0,故②错误;③∵a>0,0<﹣<1,∴﹣b<2a,∴2a+b>0.故③错误;④∵抛物线过点(﹣1,2),∴a﹣b+c=2∴a+c=b+2∵a+b+c<0,∴b+2+b<0∴b<﹣1故④正确;∵>﹣2且a>0∴4ac﹣b2>﹣8a∴b2﹣4ac<8a成立,故⑤正确.故答案为:①④⑤.25.(4分)如图,⊙O的半径为6,∠AOB=90°,点C是上一动点(不与点B、A重合),过点C作CD⊥OB于点D,CE⊥OA于点E,连接ED,点F是OD的中点,连接CF交DE于点P,则CE2+3CP2等于48.【解答】解:设DF=OF=a,CD=b,连接OC.∵CD⊥OB于点D,CE⊥OA于点E,∴∠EOD=∠CDO=∠CEO=90°,∴四边形CDOE是矩形,∴CE=OD=2a,CD=OE=b,∵EC∥DF,∴==,∴PC=2PF,PC=CF=,∴EC2+3CP2=4a2+(a2+b2)=(4a2+b2),在Rt△OCE中,∵EC2+OE2=OC2,∴4a2+b2=36,∴EC2+3CP2=48.故答案为48七、解答题(8分)26.(8分)科技驱动新零售商业变革的时代已经来临,无人超市的经营模式已在全国各地兴起,某家无人超市开业以来,经测算,为销售A型商品每天需固定支出的费用为400元,若A型商品每件的销售利润不超过9元,每天销售A型商品的数量为280件,若A型商品每件的销售利润超过9元,则每超过1元,每天销售A型商品的数量减少10件,设该家无人超市A型商品的销售利润为x元/件,A型商品的日净收入为y元(日净收入=A型商品每天销售的总利润﹣A型商品每天固定的支出费用):(1)试求出该超市A型商品的日净收入为y(元)与A型商品的销售利润x(元/件)之间的关系式;(2)该超市能否实现A型商品的销售日净收入3000元的目的?如能实现,求出A型商品的销售利润为多少元/件?如不能实现,请说明理由;(3)请问该超市A型商品的销售利润为多少元/件时,能获得A型商品的最大日净收入?【解答】解:(1)由题意可得,当0<x≤9时,y=280x﹣400,当x>9时,y=[280﹣(x﹣9)×10]x﹣400=﹣10x2+370x﹣400,由上可得,该超市A型商品的日净收入为y(元)与A型商品的销售利润x(元/件)之间的关系式是:y=;(2)∵当0<x≤9时,y=280x﹣400≤2120,∴令y=3000代入y=﹣10x2+370x﹣400,解得,x1=17,x2=20,答:该超市能实现A型商品的销售日净收入3000元的目的,A型商品的销售利润为17元/件或20元/件;(3)∵当0<x≤9时,y=280x﹣400≤2120,当x>9时,y=﹣10x2+370x﹣400=﹣10(x﹣)2+3022.5,∵x>9且x为整数,∴当x=18或19时,y取得最大值,此时y=3020,答:该超市A型商品的销售利润为18元/件或19元/件时,能获得A型商品的最大日净收入.八、解答题(10分)27.(10分)如图,在△ABC中,CA=CB,AB=10,0°<∠C<60°,AF⊥BC于点F,在FC上截取FD =FB,点E是AC上一点,连接DA、DE,且∠ADE=∠B.(1)求证:ED=EC(2)若∠C=30°,求BD长;(3)在(2)的条件下,将图1中△DEC绕点D逆时针旋转得到△DE′C′,请问在旋转的过程中,以点D、E、C′、E′为顶点的四边形可以构成平行四边形吗?若可以,请求出该平行四边形的面积;若不可以,请说明理由.【解答】解:(1)∵AC=BC,∴∠ABC=∠BAC,∴∠C=180°﹣∠ABC﹣∠BAC=180°﹣2∠ABC,∵AF⊥BC,BF=DF,∴AB=AD,∴∠ADB=∠ABC,∵∠ADE=∠ABC,∴∠CDE=180°﹣∠ADE﹣∠ADB=180°﹣2∠ABC,∴∠CDE=∠C,∴DE=CE;(2)∵∠C=30°,∴∠ABC=∠ADB=∠BAC=∠ADE=75°,∴∠BAD=30°,过点B作BG⊥AD于G,如图1,在Rt△ABG中,AB=10,∠BAD=30°,∴BG=5,AG=5,∴DG=AD﹣AG=10﹣5=5(2﹣),在Rt△BDG中,BD==10=5﹣5;(3)可以,①理由:如图2;∵DE=CE,∴∠EDC=∠C=30°,由旋转知,∠E'DC'=∠E'C'D=∠C=30°∵四边形DEC'E'是平行四边形,∴C'E'∥DE,∴∠C'DE=30°,∴∠C'DC=60°,∴C'D⊥AC于H,在Rt△ADH中,AD=10,∠DAH=∠BAC﹣∠BAD=45°,∴DH=5,在Rt△DEH中,∠AED=∠ACB+∠CDE=60°,∴∠EDH=30°,∴DE=,∴CE=,∴S▱DEC'E'=2S△CDE=2×CE×DH=×5=.②理由:如图3,由①知,S△CDE=S△C'DE'=,∴S▱DEC'E'=2S△CDE=2×CE×DH=×5=.九、解答题(12分)28.(12分)如图,在平面直角坐标系中,抛物线y=x2+bx+c的图象与x轴交于点A(2,0)、B(﹣4,0),与y轴交于点D.(1)求抛物线的解析式;(2)连接BD,点P在抛物线的对称轴上,以Q为平面内一点,以点P、B、D、Q为顶点的四边形能否成为矩形?若能,请求出点P的坐标;若不能,请说明理由;(3)在抛物线上有一点M,过点M、A的直线MA交y轴于点C,连接BC,若∠MBO=∠BCO,请直接写出点M的坐标.【解答】解:(1)由题意,解得,∴抛物线的解析式为y=x2+x﹣4.(2)如图1中,当BD为矩形的边时,∵直线BD的解析式为y=﹣x﹣4,∴直线BP的解析式为y=x=4,直线DP′的解析式为y=x﹣4,可得P(﹣1,3),P′(﹣1,﹣5).当BD为矩形的对角线时,设P(﹣1,m),BD的中点N(﹣2,﹣2),由BN=P″N,可得12+(m+2)2=(2)2,解得m=﹣2+或﹣2﹣,∴P″(﹣1,﹣2+),或(﹣1.﹣2﹣),∴要使四边形PBQD能成为矩形,满足条件的点P坐标为(﹣1,﹣2+)或(﹣1.﹣2﹣).综上所述,满足条件的P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2+)或(﹣1.﹣2﹣).(3)设M(m,m2+m﹣4),设直线AM的解析式为y=kx+b,则有,解得,∴直线AM的解析式为y=x﹣m﹣4,∴C(0,﹣m﹣4).①点M在第二象限显然不可能,当点M在第三象限时,如图2中,作MN⊥OB于N.∵∠MBN=∠BCO,∠MNB=∠BOC=90°,∴△MNB∽△BOC,∴=,∴=,∴m=﹣2或0.∴M(﹣2,﹣4)或(0,﹣4)(舍弃)②当点M在y轴上时,可得M(0,﹣4);③当点M在第一象限时,同法可得=,整理得:m2+2m﹣16=0,∴m=﹣1+或﹣1﹣(舍弃),∴M(﹣1+,4),④当点M在第四象限时,不存在,综上所述,满足条件的点M坐标(﹣2,﹣4)或(0,﹣4)或(﹣1+,4).。
2018届成都七中育才校初三一诊数学
2018届七中育才“校一诊”数学22.对于一个各数位上的数字均不为0且互不相等的数m,将它各个数位上的数字分别平方后取其个位数字,得到一个新的数n,称n为m的“绝对疯狂数”,并规定f(m)=am-bn,其中(a,b为非零常数).例如:m=234,其各个数位上的数字分别平方后的数的个位数字分别是4、9、6,则234的“绝对疯狂数”n=496,已知, f(7)=5,f(12)=10.则________________.24.如图,直线l: y x k与两坐标轴分别交于C、D两点,CD的中点A关于原点对称的点为点B,函数(0)ky k x 的图像在第一象限内经过B,点P 在函数在第一象限图像上,且在点B 左侧,当ΔPOB 的面积为3时,点P 的坐标为______________25.如图,将矩形ABCD 沿CF 折叠,使点D 落在BC 边上的点E 处,又把∠A 沿BG 折叠,点A 恰好与折痕CF 上A ’重合,过点A ’作A ’H//BC 交折痕BG 于点H ,当BC=7,S 矩形ABCD=35时,则A ’H 的长为____________26.每年春节是烟花爆竹行业的销售高峰期,今年2月初某烟花批发商用 2.2万元购入A 种烟花B 种烟花共400箱,其中A 、B 两种烟花数量比为5:3,已知A 种烟花售价是B 种烟花售价的2倍少10元,预计当月即可全部售完.(1)若该批发商想通过这次销售至少获利0.8万元,则每箱A 种烟花至少卖多少元?(2)实际销售时,其中A 、B 两种烟花均以(1)中最低售价销售,但由于周边多地禁止燃放烟花爆竹,而A 种烟花的销量还是下降了8%3a ,售价下降了%a ;同时B 种烟花的销售量下降了3%a ,但售价不变,结果A 、B 两种烟花的销售总额相等,求a 的值27.如图1,菱形ABCD中,,点E、F分别是边AB、AD上两个动点,满足,连接BF与DE相交于点G.(1)如图2,连接BD,求的度数;(2)如图3,作于H点,求证:,求BDG的面积。
2018年四川省成都市高新区中考数学一诊试卷
2018年四川省成都市高新区中考数学一诊试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂多多涂记0分1.计算3+(﹣2)的结果是()A.1 B.0 C.﹣2 D.22.下列计算正确的是()A.2a2+a2=3a4B.a6÷a2=a3C.a6•a2=a12D.(﹣a6)2=a123.如图所示物体的俯视图是()A. B.C.D.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.﹣3x>﹣3y D.>5.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4 B.3 C. D.26.如图,直线a∥b,∠1=50°,2=30°,则∠3的度数为()A.20°B.30°C.40°D.50°7.在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A.18,18,1 B.18,17.5,3 C.18,18,3 D.18,17.5,18.从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米 B.(6+3)米 C.(6+2)米 D.12米9.一元二次方程:x2﹣2(a+1)x+a2+4=0的两根是x1,x2,且|x1﹣x2|=2,则a的值是()A.4 B.3 C.2 D.110.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.方程组的解是.12.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于.13.抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为.14.如图,在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公点,若直线y=﹣x+b与反比例函数y=的图象没有公共点,则b的取值范围是.三、解答题(本大题共6个小题,共54分)15.计算:(﹣)0+()﹣1﹣|tan45°﹣|16.解方程:x2﹣3x﹣1=0.17.化简求值:[﹣]•,其中x=+1.18.如图,要在宽为22米的大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,求路灯的灯柱BC高度.19.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.20.如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.21.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P 在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.四、填空题22.已知关于x的不等式组的解集为x>1,则a的取值范围是.23.如图,在五边形ABCDE中,已知∠BAE=120°,∠B=∠E=90°,AB=BC=2,AE=DE=4,在BC、DE上分别找一点M、N,若要使△AMN的周长最小时,则△AMN的最小周长为.=2 24.如图,已知矩形ABCD的四个顶点位于双曲线y=上,且点A的横坐标为,S矩形ABCD ,则k=.25.2002年在北京召开的世界数学大会会标图案是由四个全等的直角三角形围成的一个大正方形,中间的阴影部分是一个小正方形的“赵爽弦图”.若这四个全等的直角三角形有一个角为30°,顶点B1、B2、B3、…、B n和C1、C2、C3、…、C n分别在直线和x轴上,则第n个阴影正方形的面积为.26.如图,已知二次函数y=ax2+bx+c(a≠0)的图形经过点(1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:①abc<0;②a<b<﹣2a;③b2+8a<4ac;④﹣1<a<0.其中正确结论的序号是.五、解答题(共3个小题,共30分)27.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?28.如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.(1)求证:△ADP∽△ABQ;(2)若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化,当点M落在矩形ABCD 内部时,求a的取值范围.29.如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l 上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B 的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.2018年四川省成都市高新区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂多多涂记0分1.计算3+(﹣2)的结果是()A.1 B.0 C.﹣2 D.2【考点】有理数的加法.【分析】根据有理数的加法,即可解答.【解答】解:3+(﹣2)=1,故选:A.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数的加法法则.2.下列计算正确的是()A.2a2+a2=3a4B.a6÷a2=a3C.a6•a2=a12D.(﹣a6)2=a12【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】分别根据同底数幂的乘法及除法、合并同类项、幂的乘方与积的乘方法则对各选项进行逐一计算即可.【解答】解:A、2a2+a2=3a2,故本选项错误;B、a6÷a2=a4,故本选项错误;C、a6•a2=a8,故本选项错误;D、符合幂的乘方与积的乘方法则,故本选项正确.故选D.【点评】本题考查的是同底数幂的乘法及除法、合并同类项、幂的乘方与积的乘方法则,熟知以上知识是解答此题的关键.3.如图所示物体的俯视图是()A. B.C.D.【考点】简单组合体的三视图.【专题】常规题型.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面向下看,易得到横排有3个正方形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面向下看得到的视图.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.﹣3x>﹣3y D.>【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号方向不变,故B正确;C、不等式的两边都乘﹣3,不等号的方向改变,故C错误;D、不等式的两边都除以3,不等号的方向改变,故D正确;故选:C.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.5.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4 B.3 C. D.2【考点】三角形中位线定理;含30度角的直角三角形.【分析】先由含30°角的直角三角形的性质,得出BC,再由三角形的中位线定理得出DE即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选D.【点评】本题考查了三角形的中位线定理,解答本题的关键是掌握含30°角的直角三角形的性质及三角形的中位线定理.6.如图,直线a∥b,∠1=50°,2=30°,则∠3的度数为()A.20°B.30°C.40°D.50°【考点】平行线的性质.【专题】计算题;线段、角、相交线与平行线.【分析】由a与b平行,利用两直线平行同位角相等得到一对角相等,再利用外角性质即可求出所求角的度数.【解答】解:∵a∥b,∴∠1=∠4,∵∠4为三角形外角,∴∠4=∠2+∠3,即∠1=∠2+∠3,∵∠1=50°,∠2=30°,∴∠3=20°,故选A【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.7.在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A.18,18,1 B.18,17.5,3 C.18,18,3 D.18,17.5,1【考点】方差;折线统计图;中位数;众数.【专题】数形结合.【分析】根据众数、中位数的定义和方差公式分别进行解答即可.【解答】解:这组数据18出现的次数最多,出现了3次,则这组数据的众数是18;把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18;这组数据的平均数是:(17×2+18×3+20)÷6=18,则方差是:[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1;故选:A.【点评】本题考查了众数、中位数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].8.从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米 B.(6+3)米 C.(6+2)米 D.12米【考点】解直角三角形的应用-仰角俯角问题.【专题】几何图形问题.【分析】在Rt△ABC求出CB,在Rt△ABD中求出BD,继而可求出CD.【解答】解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AB=6米,∴BC=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6米,∴DC=CB+BD=6+6(米).故选:A.【点评】本题考查仰角俯角的定义,要求学生能借助仰角俯角构造直角三角形并解直角三角形,难度一般.9.一元二次方程:x2﹣2(a+1)x+a2+4=0的两根是x1,x2,且|x1﹣x2|=2,则a的值是()A.4 B.3 C.2 D.1【考点】根与系数的关系.【专题】压轴题.【分析】由根与系数的关系,求出两根的和与两根的积,再由|x1﹣x2|等于(x1+x2)2﹣4x1•x2的算术平方根进行计算.【解答】解:由根与系数的关系可得:x1+x2=2(a+1),x1•x2=a2+4.由|x1﹣x2|=2,得(x1﹣x2)2=4,即(x1+x2)2﹣4x1•x2=4.则4(a+1)2﹣4(a2+4)=4,解得a=2.故选C.【点评】本题考查一元二次方程根与系数的关系,记住关系式是解本题的关键.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】根据抛物线开口方向,对称轴的位置,与x轴交点个数,以及x=﹣1,x=2对应y值的正负判断即可.【解答】解:由二次函数图象开口向上,得到a>0;与y轴交于负半轴,得到c<0,∵对称轴在y轴右侧,且﹣=1,即2a+b=0,∴a与b异号,即b<0,∴abc>0,选项①正确;∵二次函数图象与x轴有两个交点,∴△=b2﹣4ac>0,即b2>4ac,选项②错误;∵原点O与对称轴的对应点为(2,0),∴x=2时,y<0,即4a+2b+c<0,选项③错误;∵x=﹣1时,y>0,∴a﹣b+c>0,把b=﹣2a代入得:3a+c>0,选项④正确,故选B【点评】此题考查了二次函数图象与系数的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题11.方程组的解是.【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=3,即x=1,把x=1代入①得:y=﹣3,则方程组的解为,故答案为:【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于130°.【考点】圆内接四边形的性质;圆周角定理.【分析】根据圆内接四边形的对角互补求得∠C的度数,再根据圆周角定理求解即可.【解答】解:∵∠A=115°∴∠C=180°﹣∠A=65°∴∠BOD=2∠C=130°.故答案为:130°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.13.抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为y=x2﹣8x+20.【考点】二次函数图象与几何变换.【分析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:y=x2﹣2x+3=(x﹣1)2+2,其顶点坐标为(1,2).向上平移2个单位长度,再向右平移3个单位长度后的顶点坐标为(4,4),得到的抛物线的解析式是y=(x﹣4)2+4=x2﹣8x+20,故答案为:y=x2﹣8x+20.【点评】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.14.如图,在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公点,若直线y=﹣x+b与反比例函数y=的图象没有公共点,则b的取值范围是﹣2<b<2.【考点】反比例函数与一次函数的交点问题.【分析】根据双曲线的性质、结合图象解答即可.【解答】解:如图,∵直线y=﹣x+2与反比例函数y=的图象有唯一公点,双曲线是中心对称图形,∴直线y=﹣x﹣2与反比例函数y=的图象有唯一公点,∴﹣2<b<2时,直线y=﹣x+b与反比例函数y=的图象没有公共点,故答案为:﹣2<b<2.【点评】本题考查的是反比例函数与一次函数的交点问题,掌握双曲线是中心对称图形是解题的关键.三、解答题(本大题共6个小题,共54分)15.计算:(﹣)0+()﹣1﹣|tan45°﹣|【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【专题】计算题.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+3×﹣︳1﹣︳=1+2﹣+1=.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16.解方程:x2﹣3x﹣1=0.【考点】解一元二次方程-公式法.【专题】计算题.【分析】此题比较简单,采用公式法即可求得,首先确定a,b,c的值,然后检验方程是否有解,若有解代入公式即可求解.【解答】解:∵a=1,b=﹣3,c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13,∴x1=,x2=.【点评】此题考查了学生的计算能力,解题的关键是准确应用公式.17.化简求值:[﹣]•,其中x=+1.【考点】分式的化简求值.【分析】首先将中括号内的部分进行通分,然后按照同分母分式的减法法则进行计算,再按照分式的乘法法则计算、化简,最后再代数求值即可.【解答】解:原式===,将x=+1代入得:原式==.【点评】本题主要考查的是分式的化简以及二次根式的运算,掌握分式的通分、加减、乘除等运算法则是解题的关键.18.如图,要在宽为22米的大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,求路灯的灯柱BC高度.【考点】相似三角形的应用.【分析】如图,延长OD,BC交于点P.解直角三角形得到DP=DC•cot30°=m,PC=CD÷(sin30°)=4米,通过△PDC∽△PBO,得到代入数据即可得到结论.【解答】解:如图,延长OD,BC交于点P.∵∠ODC=∠B=90°,∠P=30°,OB=11米,CD=2米,∴在直角△CPD中,DP=DC•cos30°=m,PC=CD÷(sin30°)=4米,∵∠P=∠P,∠PDC=∠B=90°,∴△PDC∽△PBO,∴∴PB===11米,∴BC=PB﹣PC=(11﹣4)米.【点评】本题考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念,正确的作出辅助线构造相似三角形是解题的关键.19.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【考点】频数(率)分布直方图;频数(率)分布表;列表法与树状图法.【专题】图表型.【分析】(1)用总人数减去第1、2、3、5组的人数,即可求出a的值;(2)根据(1)得出的a的值,补全统计图;(3)用成绩不低于40分的频数乘以总数,即可得出本次测试的优秀率;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,画出树状图,再根据概率公式列式计算即可.【解答】解:(1)表中a的值是:a=50﹣4﹣8﹣16﹣10=12;(2)根据题意画图如下:(3)本次测试的优秀率是=0.44.答:本次测试的优秀率是0.44;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有4种,当CD分为一组时,其实也表明AB在同一组;则小宇与小强两名男同学分在同一组的概率是.【点评】本题考查了频数分布直方图和概率,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,概率=所求情况数与总情况数之比.20.如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.【考点】反比例函数与一次函数的交点问题;平移的性质.【专题】代数几何综合题.【分析】(1)根据题意得出:A′点的坐标为:(4,2),B′点的坐标为:(8,0),进而利用待定系数法求一次函数解析式即可;(2)首先得出A′B′的中点M的坐标为:(,1)则2m=m+2,求出m的值即可.【解答】解:(1)由图②值:A′点的坐标为:(4,2),B′点的坐标为:(8,0),∴k=4×2=8,∴y=,把(4,2),(8,0)代入y=ax+b得:,解得:,∴经过A′、B′两点的一次函数表达式为:y=﹣x+4;(2)当△AOB向右平移m个单位时,A′点的坐标为:(m,2),B′点的坐标为:(m+4,0)则A′B′的中点M的坐标为:(,1),∵反比例函数y=的图象经过点A′及M,∴m×2=×1,解得:m=2,∴当m=2时,反比例函数y=的图象经过点A′及A′B′的中点M.【点评】此题主要考查了待定系数法求一次函数解析式以及坐标的平移等知识,得出A′,B′点坐标是解题关键.21.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P 在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【考点】切线的判定与性质;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】几何综合题;压轴题.【分析】(1)根据∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中∠ABC+∠BAC+∠BCA=180°,得到2∠BCP+2∠BCA=180°,从而得到∠BCP+∠BCA=90°,证得直线CP是⊙O的切线.(2)作BD⊥AC于点D,得到BD∥PC,从而利用sin∠BCP=sin∠DBC===,求得DC=2,再根据勾股定理求得点B到AC的距离为4.(3)先求出AC的长度,然后利用BD∥PC的比例线段关系求得CP的长度,再由勾股定理求出AP 的长度,从而求得△ACP的周长.【解答】解:(1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180°∴2∠BCP+2∠BCA=180°,∴∠BCP+∠BCA=90°,又C点在直径上,∴直线CP是⊙O的切线.(2)如右图,作BD⊥AC于点D,∵PC⊥AC∴BD∥PC∴∠PCB=∠DBC∵BC=2,sin∠BCP=,∴sin∠BCP=sin∠DBC===,解得:DC=2,∴由勾股定理得:BD=4,∴点B到AC的距离为4.(3)如右图,连接AN,∵AC为直径,∴∠ANC=90°,∴Rt△ACN中,AC==5,又CD=2,∴AD=AC﹣CD=5﹣2=3.∵BD∥CP,∴,∴CP=.在Rt△ACP中,AP==,AC+CP+AP=5++=20,∴△ACP的周长为20.【点评】本题考查了切线的判定与性质等知识,考查的知识点比较多,难度较大.四、填空题22.已知关于x的不等式组的解集为x>1,则a的取值范围是a≤1.【考点】不等式的解集.【分析】根据不等式组的解集是同大取大,可得答案.【解答】解:由关于x的不等式组的解集为x>1,得a≤1,故答案为:a≤1.【点评】本题考查了不等式组的解集,不等式组的解集是:同大取大,同小取小,大小小大中间找,大大小小无处找.23.如图,在五边形ABCDE中,已知∠BAE=120°,∠B=∠E=90°,AB=BC=2,AE=DE=4,在BC、DE上分别找一点M、N,若要使△AMN的周长最小时,则△AMN的最小周长为4.【考点】轴对称-最短路线问题.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A 关于BC和ED的对称点A′,A″,即可得出最短路线,再利用勾股定理,求出即可.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.作EA延长线的垂线,垂足为H,∵AB=BC=2,AE=DE=4,∴AA′=2BA=4,AA″=2AE=8,则Rt△A′HA中,∵∠EAB=120°,∴∠HAA′=60°,∵A′H⊥HA,∴∠AA′H=30°,∴AH=AA′=2,∴A′H=,A″H=2+8=10,∴A′A″=.故答案为:.【点评】此题主要考查了平面内最短路线问题求法以及勾股定理的应用,根据已知得出M,N的位置是解题关键.24.如图,已知矩形ABCD的四个顶点位于双曲线y=上,且点A的横坐标为,S=2矩形ABCD ,则k=.【考点】反比例函数系数k的几何意义.【分析】先根据四边形ABCD是矩形,再根据两点间的距离公式用k表示出AB及BC的长,利用矩形的面积公式即可得出结论.【解答】解:∵矩形ABCD的四个顶点位于双曲线y=上,∴A与C,B与D关于原点对称,A与D,C与B关于直线x=y对称,设A(,k),则D(,k),C(﹣,﹣k),B(﹣,﹣k),∴AB==,AD==,=AB•AD=•=2,∵S四边形ABCD∴k=±,∵k>0,∴k=.故答案为:.【点评】本题考查了反比例函数系数k的几何意义,反比例函数的性质,反比例函数图象上点的坐标特点,矩形的性质,难度适中.25.2002年在北京召开的世界数学大会会标图案是由四个全等的直角三角形围成的一个大正方形,中间的阴影部分是一个小正方形的“赵爽弦图”.若这四个全等的直角三角形有一个角为30°,顶点B1、B2、B3、…、B n和C1、C2、C3、…、C n分别在直线和x轴上,则第n个阴影正方形的面积为()2n.【考点】一次函数综合题;勾股定理;正方形的性质.【专题】压轴题;规律型.【分析】根据阴影正方形的边长与大正方形边长有个对应关系,分别表示出每个阴影部分的面积,得出规律,即可得出第n个阴影正方形的面积.【解答】解:∵B1点坐标设为(t,t),∴t=﹣t++1,解得:t=(),∴B1N1=t=(+1),那么大正方形边长为t,阴影正方形边长为t﹣t=×()=,∴第1个阴影正方形的面积是()2,∴原正方形与阴影正方形面积之比为同理可求得第2个正方形边长为,∴每个相邻正方形中多边形,可以理解成是一系列的相似多边形,相似比为2:3,∴第2个阴影正方形的面积为:(•)2=()4,第3个阴影正方形的面积为:(••)2=()6,∴第n个阴影正方形的面积为:()2n,故答案为:()2n.【点评】此题主要考查了勾股定理以及正方形的性质和一次函数的综合应用,得出相似多边形,相似比为2:3,进而得出正方形面积是解决问题的关键.26.如图,已知二次函数y=ax2+bx+c(a≠0)的图形经过点(1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:①abc<0;②a<b<﹣2a;③b2+8a<4ac;④﹣1<a<0.其中正确结论的序号是①②.【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴的右侧,a,b异号,b>0,判断①;根据对称轴小于1,判断②;根据顶点的纵坐标大于2判断③,根据图象经过(1,2)判断④.【解答】解:∵抛物线的开口向下,∴a<0,∵抛物线与y轴的正半轴相交,∴c>0,∵对称轴在y轴的右侧,a,b异号,∴b>0,∴①abc<0,正确;∵﹣<1,∴b<﹣2a,∴②a<b<﹣2a正确;由于抛物线的顶点纵坐标大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故③错误,由题意知,a+b+c=2,(1)a﹣b+c<0,(2)4a+2b+c<0,(3)把(1)代入(3)得到:4a+b+2﹣a<0,则a<.由(1)代入(2)得到:b>1.则a<﹣1.故④错误.综上所述,正确的结论是①②.故答案为①②.【点评】本题考查了图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.五、解答题(共3个小题,共30分)27.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【考点】分式方程的应用;一元一次不等式的应用.【专题】工程问题.【分析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.。
2018年四川省成都市青羊区中考数学一诊试卷(解析版)
2018年四川省成都市青羊区中考数学一诊试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)cos30°=()A.B.C.D.2.(3分)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.3.(3分)下列说法正确的是()A.对角线相等的四边形是矩形B.有两边及一角对应相等的两个三角形全等C.对角线互相垂直的矩形是正方形D.平分弦的直径垂直于弦4.(3分)某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)2=60 B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120 D.50(1+x)+50(1+x)2=1205.(3分)函数y=自变量x的取值范围是()A.x≥3 B.x≤3 C.x>3 D.x<36.(3分)如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°7.(3分)对于抛物线y=(x﹣1)2+2的说法错误的是()A.抛物线的开口向上B.抛物线的顶点坐标是(1,2)C.抛物线与x轴无交点D.当x<1时,y随x的增大而增大8.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A.4 B.﹣4 C.8 D.﹣89.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁10.(3分)如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“小于3”的概率为12.(4分)如图,已知斜坡AB 的坡度为1:3.若坡长AB=10m,则坡高BC= m.13.(4分)如图,在▱ABCD中,∠C=43°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为.14.(4分)如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB 在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:(﹣1)2017﹣()﹣2•sin60°+|3﹣|(2)解方程:2(x﹣2)2=x2﹣416.(6分)如图,在Rt△ABC中,∠ACB=90°,D为AB中点,AE∥CD,CE∥AB.(1)试判断四边形ADCE的形状,并证明你的结论.(2)连接BE,若∠BAC=30°,CE=1,求BE的长.17.(8分)据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的热点话题分别有:消费、教育、环保、反腐及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l所示,关注该五类热点问题网民的人数的不完整条形统计如图2,请根据图中信息解答下列问题.(1)求出图l中关注“反腐”类问题的网民所占百分比x的值,并将图2中的不完整的条形统计图补充完整;(2)为了深度了解成都网民对政府工作报告的想法,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表.请你用列表法或画树状图的方法,求出一次所选代表恰好是丙和丁的概率.18.(8分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)19.(10分)如图,在平面直角坐标系中,直线l与x轴相交于点M(3,0),与y轴相交于点N(0,4),点A为MN的中点,反比例函数y=(x>0)的图象过点A.(1)求直线l和反比例函数的解析式;(2)在函数y=(k>0)的图象上取异于点A的一点C,作CB⊥x轴于点B,连接OC交直线l于点P,若△ONP的面积是△OBC面积的3倍,求点P的坐标.20.(10分)如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆经过点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G,且D是的中点.(1)求证:AC是⊙O的切线;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点P,连接CF,求证:CF=DO+OP;(3)在(2)的条件下,连接CD,若tan∠HDC=,CG=4,求OP的长.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两根x1、x2满足x12+x22=14,则m=22.(4分)如图,由点P(14,1),A(a,0),B(0,a)(0<a<14)确定的△PAB的面积为18,则a的值为.23.(4分)如图,在直角坐标系中,⊙A的圆心的坐标为(﹣2,0),半径为2,点P为直线y=﹣x+6上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ 的最小值是.24.(4分)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.25.(4分)如图,已知正方形ABCD的边长是⊙O半径的4倍,圆心O是正方形ABCD的中心,将纸片按图示方式折叠,使EA'恰好与⊙O相切于点A',则tan ∠A'FE的值为.五、解答题(本大题共3小题,共30分)26.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.27.(10分)如图,已知一个三角形纸片ACB,其中∠ACB=90°,AC=8,BC=6,E、F分别是AC、AB边上的点,连接EF.(1)如图1,若将纸片ACB的一角沿EF=4S△EDF,求ED的长;折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF(2)如图2,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M 处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图3,若FE的延长线与BC的延长线交于点N,CN=2,CE=,求的值.28.(12分)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.2018年四川省成都市青羊区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)cos30°=()A.B.C.D.【解答】解:由特殊角的三角函数值可知,cos30°=.故选:B.2.(3分)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A.3.(3分)下列说法正确的是()A.对角线相等的四边形是矩形B.有两边及一角对应相等的两个三角形全等C.对角线互相垂直的矩形是正方形D.平分弦的直径垂直于弦【解答】解:A、对角线相等的平行四边形是矩形,错误;B、有两边及夹角对应相等的两个三角形全等,错误;C、对角线互相垂直的矩形是正方形,正确;D、两条直径一定互相平分,但是不一定垂直,错误;故选:C.4.(3分)某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)2=60 B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120 D.50(1+x)+50(1+x)2=120【解答】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:50(1+x),三月份生产机器为:50(1+x)2;又知二、三月份共生产120台;所以,可列方程:50(1+x)+50(1+x)2=120.故选:D.5.(3分)函数y=自变量x的取值范围是()A.x≥3 B.x≤3 C.x>3 D.x<3【解答】解:根据题意得:3﹣x>0,解得x<3.故选D.6.(3分)如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°【解答】解:∵AB是⊙O的切线,B为切点,∴OB⊥AB,即∠OBA=90°,∵∠BAO=40°,∴∠O=50°,∵OB=OC(都是半径),∴∠OCB=(180°﹣∠O)=65°.故选:C.7.(3分)对于抛物线y=(x﹣1)2+2的说法错误的是()A.抛物线的开口向上B.抛物线的顶点坐标是(1,2)C.抛物线与x轴无交点D.当x<1时,y随x的增大而增大【解答】解:∵a=1>0,∴抛物线开口向上,∵二次函数为y=a(x﹣h)2+k顶点坐标是(h,k),∴二次函数y=(x﹣1)2+2的图象的顶点坐标是(1,2),∵抛物线顶点(1,2),开口向上,∴抛物线与x轴没有交点,故A、B、C正确故选:D.8.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A.4 B.﹣4 C.8 D.﹣8【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S=S△ABC=4,△OAB=|k|,而S△OAB∴|k|=4,∵k<0,∴k=﹣8.故选:D.9.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.10.(3分)如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F【解答】解:∵正五边形FGHMN和正五边形ABCDE位似,∴DE:MN=AB:FG=2:3,∴3DE=2MN.故选:B.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“小于3”的概率为【解答】解:根据题意可得:标号小于3有1,2,两个球,共3个球,从中随机摸出一个小球,其标号小于3的概率为是:.故答案为:.12.(4分)如图,已知斜坡AB 的坡度为1:3.若坡长AB=10m,则坡高BC=m.【解答】解:设BC=xm,∵斜坡AB 的坡度为1:3,∴AC=3x,由勾股定理得,x2+(3x)2=102,解得,x=,故答案为:.13.(4分)如图,在▱ABCD中,∠C=43°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为47°.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=43°.∵DF⊥AD,∴∠ADE=90°,∴∠AED=90°﹣43°=47°,∴∠BEF=∠AED=47°.故答案是:47°.14.(4分)如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB 在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为10m.【解答】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,∵△ABC∽△DEF,AB=5m,BC=3m,EF=6m∴=∴∴DE=10(m)故答案为10m.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:(﹣1)2017﹣()﹣2•sin60°+|3﹣|(2)解方程:2(x﹣2)2=x2﹣4【解答】解:(1)原式==﹣4;(2)2(x﹣2)2=x2﹣4(x﹣2)(2x﹣4﹣x﹣2)=0(x﹣2)(x﹣6)=0解得:x1=2,x2=6.16.(6分)如图,在Rt△ABC中,∠ACB=90°,D为AB中点,AE∥CD,CE∥AB.(1)试判断四边形ADCE的形状,并证明你的结论.(2)连接BE,若∠BAC=30°,CE=1,求BE的长.【解答】解:(1)∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,∵∠ACB=90°,D为AB的中点,∴CD=AB=AD,∴四边形ADCE为菱形;(2)∵∠BAC=30°,四边形ADCE为菱形,∴∠BAE=60°=∠DCE,又∵∠ACB=90°,∴∠DBC=60°,而DB=DC,∴△BCD是等边三角形,∴∠DCB=60°,∴∠BCE=120°,又∵BC=CD=CE,∴∠CBE=30°,∴∠ABE=30°,∴△ABE中,∠AEB=90°,又∵AE=CE=1,∴AB=2,∴BE==.17.(8分)据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的热点话题分别有:消费、教育、环保、反腐及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l所示,关注该五类热点问题网民的人数的不完整条形统计如图2,请根据图中信息解答下列问题.(1)求出图l中关注“反腐”类问题的网民所占百分比x的值,并将图2中的不完整的条形统计图补充完整;(2)为了深度了解成都网民对政府工作报告的想法,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表.请你用列表法或画树状图的方法,求出一次所选代表恰好是丙和丁的概率.【解答】解:(1)1﹣15%﹣30%﹣25%﹣10%=20%,所以x=20,总人数为:140÷10%=1400(人)关注教育问题网民的人数1400×25%=350(人),关注反腐问题网民的人数1400×20%=280(人),关注其它问题网民的人数1400×15%=210(人),如图2,补全条形统计图,(2)画树状图如下:由树状图可知共有20种等可能结果,其中一次所选代表恰好是丙和丁的有2种结果,所以一次所选代表恰好是丙和丁的概率为=.18.(8分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)【解答】解:Rt△ABC中,斜边AB=200米,∠α=16°,BC=AB•sinα=200×sin16°≈54(m),Rt△BDF中,斜边BD=200米,∠β=42°,DF=BD•sinβ=200×sin42°≈132,因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.19.(10分)如图,在平面直角坐标系中,直线l与x轴相交于点M(3,0),与y轴相交于点N(0,4),点A为MN的中点,反比例函数y=(x>0)的图象过点A.(1)求直线l和反比例函数的解析式;(2)在函数y=(k>0)的图象上取异于点A的一点C,作CB⊥x轴于点B,连接OC交直线l于点P,若△ONP的面积是△OBC面积的3倍,求点P的坐标.【解答】解:(1)设直线l的解析式为y=mx+n(m≠0),将(3,0)、(0,4)代入y=mx+n,得,解得:,∴直线l的解析式为y=﹣x+4.∵点A为线段MN的中点,∴点A的坐标为(,2).将A(,2)代入y=,得k=×2=3,∴反比例函数解析式为y=;=|k|=,(2)∵S△OBC∴S=3S△OBC=.△ONP∵点N(0,4),∴ON=4.设点P的坐标为(a,﹣a+4),则a>0,∴S=ON•a=2a,△ONP∴a=,则﹣a+4=﹣×+4=1,∴点P的坐标为(,1).20.(10分)如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆经过点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G,且D是的中点.(1)求证:AC是⊙O的切线;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点P,连接CF,求证:CF=DO+OP;(3)在(2)的条件下,连接CD,若tan∠HDC=,CG=4,求OP的长.【解答】(1)证明:如图1中,连接OC.∵OF⊥BC,∴∠B+∠BOF=90°,∵AC=BC,∴∠A+∠B=90°,∴∠A+∠BOF=90°,∵点D是的中点,∴,∴∠COD=∠EOD=∠BOF,∴∠A+∠COD=90°,∴∠ACO=9°,∴OC⊥AC,∴AC是⊙O的切线,(2)证明:如图2中,连接OC,∵EF⊥HC,∴CG=GH,∴EF垂直平分HC,∴FC=FH,∵∠CFP=∠COE,∵∠COD=∠DOE,∴∠CFP=∠COD,∵∠CHP=∠COD,∴∠CHP=∠CFP,∴点P在以F为圆心FC为半径的圆上,∴FC=FP=FH,∵DO=OF,∴DO+OP=OF+OP=FP=CF,即CF=OP+DO;(3)解:如图3,连接CO并延长交⊙O于M,连接MH,∴∠∠CMH=∠CDH,∠CHM=90°,∵OF⊥CH于G,∴CH=2CG=8,在Rt△CHN中,tan∠CMH==tan∠HDC=,∴,∴MH=,∴CM==,∴OD=OF=∵∠CGO=∠CHM=90°,∴OG∥MH,∵OC=OM,∴OG=MH=,∴FG=OF﹣OG=3,在Rt△CGF中,根据勾股定理得,CF==5,由(2)知,OP=CF﹣OD=5﹣=.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两根x1、x2满足x12+x22=14,则m=﹣2【解答】解:∵关于x的一元二次方程x2﹣mx+2m﹣1=0的两根是x1、x2,∴x1+x2=m,x1x2=2m﹣1,∴x12+x22=(x1+x2)2﹣2x1x2=m2﹣2(2m﹣1),∵x12+x22=14,∴m2﹣2(2m﹣1)=14,解得m=6或m=﹣2,当m=6时,方程为x2﹣6x+11=0,此时△=(﹣6)2﹣4×11=36﹣44=﹣8<0,不合题意,舍去,∴m=﹣2,故答案为:﹣2.22.(4分)如图,由点P(14,1),A(a,0),B(0,a)(0<a<14)确定的△PAB的面积为18,则a的值为3或12.【解答】解:当0<a<14时,如图,作PD⊥x轴于点D,∵P(14,1),A(a,0),B(0,a),∴PD=1,OD=14,OA=a,OB=a,=S梯形OBPD﹣S△OAB﹣S△ADP=×14(a+1)﹣a2﹣×1×(14﹣a)=18,∴S△PAB解得:a1=3,a2=12;故答案为:3或1223.(4分)如图,在直角坐标系中,⊙A的圆心的坐标为(﹣2,0),半径为2,点P为直线y=﹣x+6上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ 的最小值是4.【解答】解:如图,作AP⊥直线y=﹣x+6,垂足为P,作⊙A的切线PQ,切点为Q,此时切线长PQ最小,∵A的坐标为(﹣2,0),设直线与x轴,y轴分别交于B,C,∴B(0,6),C(8,0),∴OB=6,AC=,10,∴BC==10,在△APC与△BOC中,,∴△APC≌△BOC,∴AP=OB=6,∴PQ==4.故答案为424.(4分)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.【解答】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=4BC=4,∴==,=,∴=,∵∠ABI=∠ABC,∴△ABI∽△CBA;∵AB=AC,∴AI=BI=4;∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故答案为:.25.(4分)如图,已知正方形ABCD的边长是⊙O半径的4倍,圆心O是正方形ABCD的中心,将纸片按图示方式折叠,使EA'恰好与⊙O相切于点A',则tan∠A'FE的值为.【解答】解:如图,连接AA',EO,作OM⊥AB,A'N⊥AB,垂足分别为M、N.设⊙O的半径为r,则AM=MO=2r,设AF=FA'=x,在Rt△FMO中,∵FO2=FM2+MO2,∴(r+x)2=(2r﹣x)2+(2r)2,∴7r=6x,设r=6a则x=7a,AM=MO=12a,FM=5a,AF=FA1=7a,∵A'N∥OM,∴,∴,∴A'N=a,FN=a,AN=a,∵∠1+∠4=90°,∠4+∠3=90°,∠2=∠3,∴∠1=∠3=∠2,∴tan∠2=tan∠1=.∴tan∠A'FE=故答案为.五、解答题(本大题共3小题,共30分)26.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.【解答】解:(1)设y=kx+b,将(50,100)、(60,80)代入,得:,解得:,∴y=﹣2x+200 (40≤x≤80);(2)W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当x=70时,W取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W=1350时,得:﹣2x2+280x﹣8000=1350,解得:x=55或x=85,∵该抛物线的开口向上,所以当55≤x≤85时,W≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,∴该商品每千克售价的取值范围是55≤x≤80.27.(10分)如图,已知一个三角形纸片ACB,其中∠ACB=90°,AC=8,BC=6,E、F分别是AC、AB边上的点,连接EF.(1)如图1,若将纸片ACB的一角沿EF 折叠,折叠后点A落在AB边上的点D处,且使S=4S△EDF,求ED的长;四边形ECBF(2)如图2,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M 处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图3,若FE的延长线与BC的延长线交于点N,CN=2,CE=,求的值.【解答】解:(1)∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D 处,∴EF⊥AB,△AEF≌△DEF,∴S△AEF ≌S△DEF,∵S四边形ECBF=4S△EDF,∴S△ABC=5S△AEF,在Rt△ABC中,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∵∠EAF=∠BAC,∴Rt△AEF∽Rt△ABC,∴=()2,即()2=,∴AE=2,由折叠知,DE=AE=2(2)连结AM交EF于点O,如图2,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴AE=EM,AF=MF,∠AFE=∠MFE,∵MF∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=EM=MF=AF,∴四边形AEMF为菱形,设AE=x,则EM=x,CE=8﹣x,∵四边形AEMF为菱形,∴EM∥AB,∴△CME∽△CBA,∴==,即,解得x=,CM=,在Rt△ACM中,AM==,=EF•AM=AE•CM,∵S菱形AEMF∴EF=2×=;(3)如图③,作FH⊥BC于H,∵EC∥FH,∴△NCE∽△NFH,∴,∴∴设FH=4x,NH=7x,则CH=7x﹣2,BH=6﹣(7x﹣2)=8﹣7x,∵FH∥AC,∴△BFH∽△BAC,∴,∴,∴x=∴FH=4x=,BH=8﹣7x=,在Rt△BFH中,BF==4,∴AF=AB﹣BF=10﹣4=6,∴==.28.(12分)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【解答】解:(1)当x=0时,y=4,∴B(0,4),当y=0时,﹣x+4=0,x=6,∴C(6,0),把B(0,4)和C(6,0)代入抛物线y=ax2+x+c中得:,解得:,∴抛物线的解析式为:y=﹣x2+x+4;(2)如图1,过E作EG∥y轴,交直线BC于G,设E(m,﹣m2+m+4),则G(m,﹣m+4),∴EG=(﹣m2+m+4)﹣(﹣m+4)=﹣+4m,=EG•OC=×6(﹣+4m)=﹣2(m﹣3)2+18,∴S△BEC∵﹣2<0,∴S有最大值,此时E(3,8);(3)y=﹣x2+x+4=﹣(x2﹣5x+﹣)+4=﹣(x﹣)2+;对称轴是:x=,∴A(﹣1,0)∵点Q是抛物线对称轴上的动点,∴Q的横坐标为,在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形;①如图2,以AM为边时,由(2),可得点M的横坐标是3,∵点M在直线y=﹣x+4上,∴点M的坐标是(3,2),又∵点A的坐标是(﹣1,0),点Q的横坐标为,根据M到Q的平移规律:可知:P的横坐标为﹣,∴P(﹣,﹣);②如图3,以AM为边时,四边形AMPQ是平行四边形,由(2),可得点M的横坐标是3,∵A(﹣1,0),且Q的横坐标为,∴P的横坐标为,∴P(,﹣);③以AM为对角线时,如图4,∵M到Q的平移规律可得P到A的平移规律,∴点P的坐标是(﹣,),综上所述,在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣,﹣)或(,﹣)或(﹣,).。
初2018届成都市锦江区中考数学九年级一诊数学试卷(含答案)
初2018届成都市锦江区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题:(共10个小题,每小题3分,满分30分)1.如图所示的几何体,其主视图是()A.B.C.D.2.已知=,则的值为()A.B.C.﹣D.﹣3.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(3,1)B.(3,3)C.(4,4)D.(4,1)4.如图,在菱形ABCD中,AB=2,∠ABC=120°,则对角线BD等于()A.2 B.4 C.6 D.85.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.6.如图,在▱ABCD中,AD=18,点E、F分别是BD、CD上的点,EF∥BC,且=,则EF等于()A.6 B.8 C.9 D.187.小明家2015年年收入20万元,通过合理理财,2017年年收入达到25万元,求这两年小明家年收入的平均增长率,设这两年年收入的平均增长率为x,根据题意所列方程为()A.20x2=25 B.20(1+x)=25C.20(1+x)2=25 D.20(1+x)+20(1+x)2=258.如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须()A.大于60°B.小于60°C.大于30°D.小于30°9.如图所示,在矩形ABCD中,AD=6,AB=10,若将矩形ABCD沿DE折叠,使点C落在AB边上的点F处,则线段CE的长为()A.B.C.D.1010.如图,菱形OBAC的边OB在x轴上,点A(8,4),tan∠COB=,若反比例函数y=(k≠0)的图象经过点C,则反比例函数解析式为()A.y=B.y=C.y=D.y=二、填空题:(本大题共4个小题,每小题4分,满分16分)11.课间休息,小亮与小明一起玩“五子棋”游戏,他们决定通过“剪刀、石头、布”游戏赢者开棋,若小亮出“石头”,则小亮开棋的概率是.12.如图,AC是正方形ABCD的对角线,∠DCA的平分线交BA的延长线于点E,若AB=3,则AE=13.关于x的一元二次方程(k﹣2)x2+2kx+k=0有实数根,则k的取值范围是14.如图,⊙O的直径为10,弦AB=8,P是弦AB上一动点,那么OP长的取值范围是.三、简答题(15小题每小题12分,16小题6分,共18分)15.(12分)(1)计算:+(﹣)﹣1+6cos30°﹣(+2)0(2)解方程:(x+2)(x+3)=2x+1616.(6分)为传递爱心,传播文明,某中学团委倡议全校同学在寒假期间选择参加志愿者活动(每人只能参加一种活动),活动项目有:敬老助残(A)、环境保护(B)、关爱留守儿童(C)、团委筹备小组在校门口随机调查50位同学,发现这50位同学选择三种活动项目(A、B、C)的人数之比为3:3:4.(1)若该校有1200名同学,请估计参加环境活动项目的同学有多少人?(2)请用画树状图或列表的方法,求九年级一班班长和团委书记两位同学都选择参加关爱留守儿童(C)的概率17.(8分)如图,AC是▱ABCD的对角线,在AD边上取一点F,连接BF交AC于点E,并延长BF交CD的延长线于点G.(1)若∠ABF=∠ACF,求证:CE2=EF•EG;(2)若DG=DC,BE=6,求EF的长.18.(8分)如图,一辆滴滴快车在笔直公路上由西向东行驶,行驶至A处时接到正东方B处乘客订单,但师傅发现油量不足,马上左拐30°,沿AC行驶1200米到达加油站C处加油,加油用时5分钟,加油后再沿CB行驶1000米到B处接到乘客,假设滴滴快车的平均速度是每分钟360米,其他情况忽略不计,滴滴快车让乘客多等了多少时间?(结果保留整数≈1.414,≈1.732,≈2.236)19.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A、B两点,与x轴、y轴交于C、D两点,且点C、D刚好是线段AB的三等分点,OD=2,tan∠DCO=(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积;(3)若y1≤y2,请直接写出相应自变量x的取值范围20.(10分)如图,在△ABC中,∠ABC=90°,⊙O是△ABC外接圆,点D是圆上一点,点D、B分别在AC 两侧,且BD=BC,连接AD、BD、OD、CD,延长CB到点P,使∠APB=∠DCB.(1)求证:AP为⊙O的切线;(2)若⊙O的半径为1,当△OED是直角三角形时,求△ABC的面积;(3)若△BOE、△DOE、△AED的面积分别为a、b、c,试探究a、b、c之间的等量关系式,并说明理由.B卷(共50分)一、填空题:(每小题4分,共20分)21.已知m、n是方程x2﹣2x﹣7=0的两个根,那么m2+mn+2n=.22.如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A处前进4米到达B处时,测得影子BC长为1米,已知小明身高1.6米,他若继续往前走4米到达D处,此时影子DE长为米.23.如图,点A是反比例函数y=(x>0)图象上的一点,点B是反比例函数y=﹣(x<0)图象上的点,连接OA、OB、AB,若∠AOB=90°,则sin∠A=24.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣1,2),下列结论:①abc>0;②a+b+c>0;③2a+b<0;④b<﹣1;⑤b2﹣4ac<8a,正确的结论是(只填序号)25.如图,⊙O的半径为6,∠AOB=90°,点C是上一动点(不与点B、A重合),过点C作CD⊥OB于点D,CE⊥OA于点E,连接ED,点F是OD的中点,连接CF交DE于点P,则CE2+3CP2等于.二、解答题(8分)26.(8分)科技驱动新零售商业变革的时代已经来临,无人超市的经营模式已在全国各地兴起,某家无人超市开业以来,经测算,为销售A型商品每天需固定支出的费用为400元,若A型商品每件的销售利润不超过9元,每天销售A型商品的数量为280件,若A型商品每件的销售利润超过9元,则每超过1元,每天销售A型商品的数量减少10件,设该家无人超市A型商品的销售利润为x元/件,A型商品的日净收入为y元(日净收入=A型商品每天销售的总利润﹣A型商品每天固定的支出费用):(1)试求出该超市A型商品的日净收入为y(元)与A型商品的销售利润x(元/件)之间的关系式;(2)该超市能否实现A型商品的销售日净收入3000元的目的?如能实现,求出A型商品的销售利润为多少元/件?如不能实现,请说明理由;(3)请问该超市A型商品的销售利润为多少元/件时,能获得A型商品的最大日净收入?27.(10分)如图,在△ABC中,CA=CB,AB=10,0°<∠C<60°,AF⊥BC于点F,在FC上截取FD=FB,点E是AC上一点,连接DA、DE,且∠ADE=∠B.(1)求证:ED=EC(2)若∠C=30°,求BD长;(3)在(2)的条件下,将图1中△DEC绕点D逆时针旋转得到△DE′C′,请问在旋转的过程中,以点D、E、C′、E′为顶点的四边形可以构成平行四边形吗?若可以,请求出该平行四边形的面积;若不可以,请说明理由.28.(12分)如图,在平面直角坐标系中,抛物线y=x2+bx+c的图象与x轴交于点A(2,0)、B(﹣4,0),与y轴交于点D.(1)求抛物线的解析式;(2)连接BD,点P在抛物线的对称轴上,以Q为平面内一点,以点P、B、D、Q为顶点的四边形能否成为矩形?若能,请求出点P的坐标;若不能,请说明理由;(3)在抛物线上有一点M,过点M、A的直线MA交y轴于点C,连接BC,若∠MBO=∠BCO,请直接写出点M的坐标.参考答案与试题解析1.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,右边一个小正方形,故选:B.2.【解答】解:设x=2k,y=5k,则==﹣.故选:D.3.【解答】解:∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为:1:2,∴点C的坐标为:(4,4)故选:C.4.【解答】解:∵四边形ABCD为菱形,∴AD∥BC,AD=AB,∴∠A+∠ABC=180°,∴∠A=180°﹣120°=60°,∴△ABD为等边三角形,∴BD=AB=2,故选:A.5.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选:B.6.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=18,∵EF∥BC,且=,∴EF=BC=×18=6.故选:A.7.【解答】解:设这两年年收入的平均增长率为x,由题意得:20(1+x)2=25,故选:C.8.【解答】解:连接OA,OB,AB,BC,如图所示:∵AB=OA=OB,即△AOB为等边三角形,∴∠AOB=60°,∵∠ACB与∠AOB所对的弧都为,∴∠ACB=∠AOB=30°,又∠ACB为△SCB的外角,∴∠ACB>∠ASB,即∠ASB<30°.故选:D.9.【解答】解:由折叠是性质可知,DF=DC=AB=10,在Rt△ADF中,AF==8,∴BF=AB﹣AF=2,设CE=x,则BE=6﹣x,由折叠是性质可知,EF=CE=x,在Rt△BEF中,EF2=BF2+BE2,即x2=22+(6﹣x)2,解得,x=,故选:C.10.【解答】解:如图,过点A作AE⊥x轴于点E,过点C作CF⊥OB于点F,∵四边形OCAB为菱形,∴OC∥BA,则tan∠COB=tan∠ABE==,∵点A(8,4),∴AE=4,则BE=3,∴OC=AB==5,设CF=4x,则OF=3x,根据OF2+CF2=OC2即(3x)2+(4x)2=52,解得x=1,则OF=3、CF=4,即点C坐标为(3,4),所以反比例函数解析式为y=,故选:B.二、填空题:(本大题共4个小题,每小题4分,满分16分)11.【解答】解:若小亮出“石头”,则小明出的手势情况为剪刀、石头、布这3种,其中小明出布时,小亮获胜,所以小亮开棋的概率是,故答案为:.12.【解答】解:∵AC是正方形ABCD的对角线,AB=3,∴AC=3,∵正方形ABCD,∠DCA的平分线交BA的延长线于点E,∴∠DCE=∠ECA,DC∥EB,∴∠CEA=∠DCE,∴∠E=∠ECA,∴AE=AC=3,故答案为:313.【解答】解:∵关于x的一元二次方程(k﹣2)x2+2kx+k=0有实数根,∴,解得:k≥0且k≠2.故答案为:k≥0且k≠2.14.【解答】解:如图:连接OA,作OM⊥AB与M,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OM⊥AB与M,∴AM=BM,∵AB=8,∴AM=4,在Rt△AOM中,OM=,OM的长即为OP的最小值,∴3≤OP≤5.三、简答题(15小题每小题12分,16小题6分,共18分)15.【解答】解:(1)原式=2﹣2+6×﹣1,=2﹣2+3﹣1,=5﹣3.(2)(x+2)(x+3)=2x+16,x2+5x+6=2x+16,x2+3x﹣10=0,(x﹣2)(x+5)=0,解得x1=2,x2=﹣5.16.【解答】解:(1)1200×=360(人),答:估计参加环境活动项目的同学有360人;(2)如图所示:,一共有9种可能,两位同学都选择参加关爱留守儿童的可能有1种,故两位同学都选择参加关爱留守儿童的概率为:.四、简答题:(每小题8分,共16分)17.【解答】解:(1)∵AB∥CG,∴∠ABF=∠G,又∵∠ABF=∠ACF,∴∠ECF=∠G,又∵∠CEF=∠CEG,∴△ECF∽△EGC,∴,即CE2=EF•EG;(2)∵平行四边形ABCD中,AB=CD,又∵DG=DC,∴AB=CD=DG,∴AB:CG=1:2,∵AB∥CG,∴,即,∴EG=12,BG=18,∵AB∥DG,∴,∴BF=BG=9,∴EF=BF﹣BE=9﹣6=3.18.【解答】解:如图作CH⊥AB于H.在Rt△ACH中,AC=1200,∠A=30°,∴CH=AC=600,AH=CH≈1039.2,在Rt△BCH中,BH===800,∴AB=1893,AC+BC=2200,∴滴滴快车让乘客多等的时间=5+≈6(分钟),五、简答题:(每小题10分,共20分)19.【解答】解:(1)∵OD=2,tan∠DCO==,∴,∴OC=3,∴D(0,2),C(﹣3,0),把D(0,2),C(﹣3,0)代入y1=kx+b中得:,解得:,∴一次函数的解析式为:y1=x+2;过A作AE⊥x轴于E,∵点C、D刚好是线段AB的三等分点,∴AC=CD=BD,∵∠AEC=∠COD=90°,∠ECA=∠OCD,∴△AEC≌△DOC,∴EC=OC=3,AE=OD=2,∴A(﹣6,﹣2),∴m=﹣6×(﹣2)=12,∴反比例函数的解析式为:y2=;(2)同理得:B(3,4),∴S△AOB=S△BOC+S△ACO,=•|y B|+•|y A|,=+×3×2,=9;(3)由图象得:当x≤﹣6或0<x≤3时,y1≤y2.20.【解答】(1)证明:∵BD=BC,∴∠BDC=∠BCD,∵∠P=∠BCD,∠BAC=∠BDC,∴∠P=∠BAC,∵AC是直径,∴∠ABC=∠ABP=90°,∴∠P+∠BAP=90°,∴∠BAP+∠BAC=90°,∴∠OAP=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)解:①当∠OED=90°时,CB=CD=BD,△BCD是等边三角形,可得∠ACB=30°,∵AC=2,∴AB=1,BC=,∴S△ABC=.②当∠DOE=90°时,作BH⊥AC于H.∵BD=BC,BO=BO,OC=OD,∴△BOC≌△BOD(SSS),∴∠OBC=∠OBD=∠OCB=22.5°,∴∠BOH=45°,∴BH=,∴S△ABC=×2×=(3)解:∵BD=BC,OD=OC,BO=BO,∴△BOD≌△BOC,∴∠OBD=∠OBC,∵OB=OD=CO,∴∠OBD=∠OBC=∠ODB=∠OCB,∵∠ADB=∠OCB,∴∠ADB=∠OBD,∴AD∥OB,∴△AED∽△OEB,∴=()2,∵==,∴=()2,∴b2=ac.一、填空题:(每小题4分,共20分)21.【解答】解:∵m、n是方程x2﹣2x﹣7=0的两个根,∴m+n=2,mn=﹣7,m2﹣2m﹣7=0,∴m2=2m+7,∴m2+mn+2n=2m+7+mn+2n=7+2×2+(﹣7)=4.故答案为:4.22.【解答】解:由FB∥AP可得,△CBF∽△CAP,∴,即,解得AP=8,由GD∥AP可得,△EDG∽△EAP,∴,即,解得ED=2,故答案为:2.23.【解答】解:如图作AE⊥x轴于E,BF⊥x轴于F.设A(a,),B(b,﹣),∵∠AOB=∠OFB=∠AEO=90°,∴∠BOF+∠AOE=90°,∠AOE+∠OAE=90°,∴∠BOF=∠OAE,∴△BOF∽△OAE,∴=,∴=,∴a2b2=5,∵AB2=OB2+OA2=b2++a2+=6b2+,∴AB=,OB=,∴sin∠A===,故答案为.24.【解答】解:①∵抛物线开口向上,∴a>0,∵x=﹣>0,∴b<0,又∵抛物线与y轴交于负半轴,∴c<0,∴abc>0.故①正确;②∵x=1时,y<0,∴a+b+c<0,故②错误;③∵a>0,0<﹣<1,∴﹣b<2a,∴2a+b>0.故③错误;④∵抛物线过点(﹣1,2),∴a﹣b+c=2∴a+c=b+2∵a+b+c<0,∴b+2+b<0∴b<﹣1故④正确;∵>﹣2且a>0∴4ac﹣b2>﹣8a∴b2﹣4ac<8a成立,故⑤正确.故答案为:①④⑤.25.【解答】解:设DF=OF=a,CD=b,连接OC.∵CD⊥OB于点D,CE⊥OA于点E,∴∠EOD=∠CDO=∠CEO=90°,∴四边形CDOE是矩形,∴CE=OD=2a,CD=OE=b,∵EC∥DF,∴==,∴PC=2PF,PC=CF=,∴EC2+3CP2=4a2+(a2+b2)=(4a2+b2),在Rt△OCE中,∵EC2+OE2=OC2,∴4a2+b2=36,∴EC2+3CP2=48.故答案为48二、简答题(8分)26.【解答】解:(1)由题意可得,当0<x≤9时,y=280x﹣400,当x>9时,y=[280﹣(x﹣9)×10]x﹣400=﹣10x2+370x﹣400,由上可得,该超市A型商品的日净收入为y(元)与A型商品的销售利润x(元/件)之间的关系式是:y=;(2)∵当0<x≤9时,y=280x﹣400≤2120,∴令y=3000代入y=﹣10x2+370x﹣400,解得,x1=17,x2=20,答:该超市能实现A型商品的销售日净收入3000元的目的,A型商品的销售利润为17元/件或20元/件;(3)∵当0<x≤9时,y=280x﹣400≤2120,当x>9时,y=﹣10x2+370x﹣400=﹣10(x﹣)2+3022.5,∵x>9且x为整数,∴当x=18或19时,y取得最大值,此时y=3020,答:该超市A型商品的销售利润为18元/件或19元/件时,能获得A型商品的最大日净收入.27.【解答】解:(1)∵AC=BC,∴∠ABC=∠BAC,∴∠C=180°﹣∠ABC﹣∠BAC=180°﹣2∠ABC,∵AF⊥BC,BF=DF,∴AB=AD,∴∠ADB=∠ABC,∵∠ADE=∠ABC,∴∠CDE=180°﹣∠ADE﹣∠ADB=180°﹣2∠ABC,∴∠CDE=∠C,∴DE=CE;(2)∵∠C=30°,∴∠ABC=∠ADB=∠BAC=∠ADE=75°,∴∠BAD=30°,过点B作BG⊥AD于G,如图1,在Rt△ABG中,AB=10,∠BAD=30°,∴BG=5,AG=5,∴DG=AD﹣AG=10﹣5=5(2﹣),在Rt△BDG中,BD==10=5﹣5;(3)可以,①理由:如图2;∵DE=CE,∴∠EDC=∠C=30°,由旋转知,∠E'DC'=∠E'C'D=∠C=30°∵四边形DEC'E'是平行四边形,∴C'E'∥DE,∴∠C'DE=30°,∴∠C'DC=60°,∴C'D⊥AC于H,在Rt△ADH中,AD=10,∠DAH=∠BAC﹣∠BAD=45°,∴DH=5,在Rt△DEH中,∠AED=∠ACB+∠CDE=60°,∴∠EDH=30°,∴DE=,∴CE=,∴S▱DEC'E'=2S△CDE=2×CE×DH=×5=.②理由:如图3,由①知,S△CDE=S△C'DE'=,∴S▱DEC'E'=2S△CDE=2×CE×DH=×5=.四、简答题(12分)28.【解答】解:(1)由题意,解得,∴抛物线的解析式为y=x2+x﹣4.(2)如图1中,当BD为矩形的边时,∵直线BD的解析式为y=﹣x﹣4,∴直线BP的解析式为y=x=4,直线 DP′的解析式为y=x﹣4,可得P(﹣1,3),P′(﹣1,﹣5).当BD为矩形的对角线时,设P(﹣1,m),BD的中点N(﹣2,﹣2),由BN=P″N,可得12+(m+2)2=(2)2,解得m=﹣2+或﹣2﹣,∴P″(﹣1,﹣2+),或(﹣1.﹣2﹣),∴要使四边形PBQD能成为矩形,满足条件的点P坐标为(﹣1,﹣2+)或(﹣1.﹣2﹣).综上所述,满足条件的P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2+)或(﹣1.﹣2﹣).(3)设M(m,m2+m﹣4),设直线AM的解析式为y=kx+b,则有,解得,∴直线AM的解析式为y=x﹣m﹣4,∴C(0,﹣m﹣4).①点M在第二象限显然不可能,当点M在第三象限时,如图2中,作MN⊥OB于N.∵∠MBN=∠BCO,∠MNB=∠BOC=90°,∴△MNB∽△BOC,∴=,∴=,∴m=﹣2或0.∴M(﹣2,﹣4)或(0,﹣4)(舍弃)②当点M在y轴上时,可得M(0,﹣4);③当点M在第一象限时,同法可得=,整理得:m2+2m﹣16=0,∴m=﹣1+或﹣1﹣(舍弃),∴M(﹣1+,4),④当点M在第四象限时,不存在,综上所述,满足条件的点M坐标(﹣2,﹣4)或(0,﹣4)或(﹣1+,4)。
初2018届成都市高新区中考数学九年级一诊数学试卷(含答案)
初2018届成都市高新区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列各数与﹣8 相等的是()A.|﹣8| B.﹣|﹣8| C.﹣42D.﹣(﹣8)2.2017年成都市经济呈现活力增强、稳中向好的发展态势.截止2017年12月,全市实现地区生产总值约14000亿元,将14000亿元用科学记数法表示是()A.14×1011元B.1.4×1011元C.1.4×1012元D.1.4×1013元3.如图是由五个大小相同的正方体组成的几何体,从左面看这个几何体,看到的图形的()A.B.C.D.4.下列计算正确的是()A.a3•a2=a6B.a3﹣a2=a C.(﹣a3)2=a6D.a6÷a2=a35.在下列四个标志中,既是中心对称又是轴对称图形的是()A.B.C.D.6.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°7.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.1 9.1 9.1 9.1方差7.6 8.6 9.6 9.7根据表中数据,要从中选择一名成绩发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁8.如图,四边形 ABCD 和A′B′C′D′是以点 O 为位似中心的位似图形,若 OA′:A′A=2:1,四边形A′B′C′D′的面积为12cm2,则四边形 ABCD 的面积为()A.24cm2B.27cm2C.36cm2D.54cm29.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.a<0 B.c<0 C.a+b+c<0 D.b2﹣4ac<010.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2D.3二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.在二次根式中,x的取值范围是.12.用反证法证明“若a>b>0,则a2>b2”,应假设.13.将抛物线y=x2+2x+3向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为.14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)解不等式组:16.(6分)关于x的方程x2﹣ax+a+1=0有两个相等的实数根,求的值.17.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.18.(8分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>的x的取值范围;(3)若点P在x轴上,且S△ACP=,求点P的坐标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,作CD⊥AB,垂足为D,E为弧BC的中点,连接AE、BE,AE交CD于点F.(1)求证:∠AEC=90°﹣2∠BAE;(2)过点E作⊙O的切线,交DC的延长线于G,求证:EG=FG;(3)在(2)的条件下,若BE=4,CF=6,求⊙O的半径.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.22.有9张卡片,分别写有0﹣8这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为m,能使关于x的分式方程的解为正数的概率为.23.如图,花园边墙上有一宽为1m的矩形门ABCD,量得门框对角线AC的长为2m,现准备打掉部分墙体,使其变成以AC为直径的圆弧形门,则打掉墙体后,弧形门洞的周长(含线段BC)为.24.如图,点A是反比例函数y=的图象上位于第一象限的点,点B在x轴的正半轴上,过点B作BC⊥x 轴,与线段OA的延长线交于点C,与反比例函数的图象交于点D.若直线 AD恰为线段 OC 的中垂线,则sinC=.25.如图,在△ABC中,∠C=60°,点D、E分别为边BC、AC上的点,连接DE,过点E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,则BC=.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.27.(10分)【问题背景】在平行四边形ABCD中,∠BAD=120°,AD=nAB,现将一块含60°的直角三角板(如图)放置在平行四边形ABCD所在平面内旋转,其60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB、AD于点E、F(不包括线段的端点).【发现】如图1,当n=1时,易证得AE+AF=AC;【类比】如图2,过点C作CH⊥AD于点H,(1)当n=2时,求证:AE=2FH;(2)当n=3时,试探究AE+3AF与AC之间的等量关系式;【延伸】将60°角的顶点移动到平行四边形ABCD对角线AC上的任意点Q,其余条件均不变,试探究:AE、AF、AQ 之间的等量关系式(请直接写出结论).28.(12分)如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A 和第一象限内一点B,该抛物线顶点H的纵坐标为5.(1)求抛物线的解析式;(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB=,求k的值;(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,ⅰ)求点P的坐标;ⅱ)已知点M在抛物线上,点N在x轴上,当四边形PBMN为平行四边形时,请求出点M的坐标.参考答案与试题解析1.【解答】解:A.|﹣8|=8,与﹣8不相等,故此选项不符合题意;B.﹣|﹣8|=﹣8,与﹣8相等,故此选项符合题意;C.﹣42=﹣16,与﹣8不相等,故此选项不符合题意;D.﹣(﹣8)=8,与﹣8不相等,故此选项不符合题意;故选:B.2.【解答】解:14000亿元用科学记数法表示是1.4×1012元,故选:C.3.【解答】解:由图可得,从左面看几何体有2列,第一列有2块,第二列有1块,∴该几何体的左视图是:故选:D.4.【解答】解:A、a3•a2=a5,故此选项错误;B、a3﹣a2,无法计算,故此选项错误;C、(﹣a3)2=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.5.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.6.【解答】解:如图,由三角形的外角性质可得:∠3=30°+∠1=30°+30°=60°,∵AB∥CD,∴∠2=∠3=60°.故选:D.7.【解答】解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选:D.8.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA′:A′A=2:1,∴OA′:OA=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:9:4,∵四边形A′B′C′D′的面积为12cm2,∴四边形 ABCD 的面积为:27cm2.故选:B.9.【解答】解:∵抛物线开口向上,∴a>0,故A错误;∵抛物线与y轴交于负半轴,∴c<0,故B正确;由图象可得:当x=1时,y>0,故C错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故D错误;故选:B.10.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB==2,故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:由题意可知:4﹣2x≥0,∴x≤2故答案为:x≤212.【解答】解:用反证法证明“若a>b>0,则a2>b2”的第一步是假设a2≤b2,故答案为:a2≤b2,13.【解答】解:y=x2+2x+3=(x+1)2+2,此抛物线的顶点坐标为(﹣1,2),把点(﹣1,2)向下平移3个单位长度,再向左平移2个单位长度后所得对应点的坐标为(﹣3,﹣1),所以平移后得到的抛物线的解析式为y=(x+3)2﹣1.故答案为:y=(x+3)2﹣1.14.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2+2×+﹣1﹣1=2++﹣1﹣1=2;(2)由不等式①得x≤8.由不等式②得x>﹣1;∴不等式组的解集为﹣1<x≤8.16.【解答】解:=×=×=﹣,∵关于x的方程x2﹣ax+a+1=0有两个相等的实数根,∴△=0,即(﹣a)2﹣4(a+1)=0,∴a2﹣4a=4,∴原式=﹣=﹣.17.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.18.【解答】解:过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CHcot68°=0.4x,由AB=49知x+0.4x=49,解得:x=35,∵BE=4,∴EF=BEsin68°=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为66.7cm.19.【解答】解:(1)将A(m,3)代入反比例解析式得:m=2,则A(2,3),将B(﹣6,n)代入反比例解析式得:n=﹣1,则B(﹣6,﹣1),将A与B的坐标代入y=kx+b得:,解得:,则一次函数解析式为y=x+2;(2)由图象得:x+2>的x的取值范围是:﹣6<x<0或x>2;(3)∵y=x+2中,y=0时,x+2=0,解得x=﹣4,则C(﹣4,0),OC=4∴△BOC的面积=×4×1=2,∴S△ACP==×2=3.∵S△ACP=CP×3=CP,∴CP=3,∴CP=2,∵C(﹣4,0),∴点P的坐标为(﹣2,0)或(﹣6,0).20.【解答】证明:(1)连接AC、BC,∴∠CEA=∠CBA,∵E为的中点,∴=,∴∠CAE=∠BAE,∴∠CAB=2∠BAE,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∴2∠BAE+∠AEC=90°,∴∠AEC=90°﹣2∠BAE;(2)连接EO,∵OA=OE,∴∠OEA=∠OAE,设∠OEA=∠OAE=α,∵EG为切线,∴OE⊥EG,∴∠OEG=90°,∴∠GEA=90°﹣∠AEO=90°﹣α,∵DG⊥AB,∴∠FDA=90°,∴∠FAD+∠AFD=90°,∴∠AFD=90°﹣α=∠GFE,∴∠GFE=∠GEF=90°﹣α,∴GE=GF;(3)如图3,连接CE、CB、OE、OC,CB与AE交于点N,CB与OE交于点M,∵E为的中点,∴∠COM=∠BOM,∵OC=OB,∴OM⊥BC,∴∠OMB=90°,由(2)得∠GEM=90°,∴CM∥EG,∴∠GEF=∠CNF,∵∠GFE=∠GEF,∴∠CFE=∠CNF,∴CF=CN=6,设MN=x,则CM=BM=6+x,cos∠EBM=,∴=,解得:x1=2,x2=﹣11(舍),MB=6+x=6+2=8,由勾股定理得:ME===4,在△OBM中,设OM=m,则OE=OB=m+4,OM2+MB2=OB2,即m2+82=(m+4)2,∴OM=m=6,∴OE=OB=6+4=10.则⊙O的半径为10.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵3<+<4,∴[+]的值为3.故答案为:3.22.【解答】解:解方程得x=m﹣2,因为方程的解为正数,所以m﹣2>0,且m﹣2≠1,解得:m>2且m≠3,则在0﹣8这九个数字中符合条件的有5个,所以使关于x的分式方程的解为正数的概率为,故答案为:.23.【解答】解:设矩形外接圆的圆心为O,连接OB,∵矩形ABCD的AC=2m,BC=1m,∴OB=OC=BC=1m,∴△OBC是等边三角形,∴∠BOC=60°.∴弧形门洞的周长(含线段BC)为:+1=+1,故答案为:(+1)m.24.【解答】解:如图,连接OD,∵AD垂直平分OC,∴CD=OD,设A(a,b),则C(2a,2b),∴BC=2b,OB=2a,∴D(2a,b),∴BD=b,CD=b,∴OD=b,∵Rt△BOD中,BD2+OB2=OD2,∴(b)2+(2a)2=(b)2,∴b2=2a2,又∵Rt△BOC中,OC==2,∴sinC====.故答案为:.25.【解答】解:连接BE,在EC上截取EH=CD=6,作DM⊥EC于M.∵CB=CE,∠C=60°,∴△BCE是等边三角形,∴BE=EC,∠BEH=∠C=60°,∵EH=CD,∴△BEH≌△ECD,∴∠EHB=∠EDC,BH=ED∴∠BHC=∠BDE,∵∠BHC=∠A+∠ABH,∠EDB=2∠A,∴∠A=∠ABH,∴AH=BH=8+6=14,∴DE=BH=14,在Rt△DCM中,∵CD=6,∠CDM=30°,∴CM=3,DM=3,在Rt△DEM中,EM==13,∴EC=3+13=16,∴BC=EC=16,故答案为16.26.【解答】解:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920﹣2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080,此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,∴当x=6时,W最大值=45760元.∵46000>45760,∴当x=5时,W最大,且W最大值=46000元.综上所述:W=.27.【解答】解:【发现】:如图1,当n=1时,AD=AB,∴▱ABCD是菱形,∴AB=BC,∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∴△ABC、△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∵,∴△BCE≌△ACF(ASA),∴BE=AF,∴AE+AF=AE+BE=AB=AC;【类比】:(1)如图2,当n=2时,AD=2AB,设DH=x,由题意得:CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,由勾股定理得:AC===2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴,∵AC=2CH,∴AE=2FH;(2)如图3,当n=3时,AD=3AB,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于H,∴∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴,∵S▱ABCD=AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴,∵EM=3FN,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHD=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC===a,∴AE+3AF=(EM﹣AM)+3(AH+HN﹣FN),=EM﹣AM+3AH+3HN﹣3FN,=3AH+3HN﹣AM,=3×a+3a﹣a,=a,∴==;【延伸】如图4,AD=nAB,过Q作QG∥AD,作QH∥AB,则四边形AGQH是平行四边形,且AH=nAG,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于P,同理可得:△QFN∽△QEM,∴=,∵S▱AGQH=AG•QM=AH•QN,AH=nAG,∴QM=nQN,∴=,∵EM=nFN,设QN=a,FN=b,则QM=na,EM=nb,∵∠MAH=60°,∠M=90°,∴∠APM=∠QPD=30°,∴PQ=2a,PM=na﹣2a,PN=a,∴AM=(na﹣2a),AP=2AM,∴AQ===,∴AE+nAF=(EM﹣AM)+n(AP+PN﹣FN),=EM﹣AM+nAP+nPN﹣nFN,=nAP+nPN﹣AM,=2n•(na﹣2a)+an﹣(na﹣2a),=a(n2﹣n+1),∴==.28.【解答】解:(1)∵抛物线y=ax2﹣4ax+c与直线y=kx+1交于y轴上一点A ∴A(0,1),即c=1∵抛物线y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c∴顶点坐标为(2,c﹣4a)∴c﹣4a=5∴a=﹣1∴抛物线解析式y=﹣x2+4x+1=﹣(x﹣2)2+5(2)∵抛物线与直线相交∴kx+1=﹣x2+4x+1∴x1=0,x2=4﹣k∴B点横坐标为4﹣k∵点B在第一象限∴4﹣k>0即k<4∵S△AHB=HK×(4﹣k)=∴(5﹣2k﹣1)×(4﹣k)=解得:k1=,k2=(不合题意舍去)(3)ⅰ)如图:将AB绕B点顺时针旋转90°到BC位置,过B点作BD⊥x轴,过点C点作CD⊥BD于D,过A点作AE⊥BD于E∵k=,∴B(,)∵A(0,1),B(,)∴AE=,BE=∵旋转∴BC=AB,∠ABC=90°∴∠CAB=45°,∠CBD+∠ABE=90°且∠CBD+∠DCB=90°∴∠ABE=∠DCB且AB=BC,∠D=∠AEB=90°∴△ABE≌△BCD∴AE=BD=,BE=CD=∴C(,)设AC解析式y=bx+1∴=b+1∴b=3∴AC解析式y=3x+1∵P是直线AC与抛物线的交点∴3x+1=﹣x2+4x+1∴x1=0,x2=1∴P(1,4)ⅱ)如图2:设PM与BN的交点为H∵四边形PBMN为平行四边形∴PH=NH,BH=MH∵设点M坐标为(x,y)∴=∴y=﹣∴﹣=﹣(x﹣2)2+5解得:x1=﹣,x2=∴点M坐标为(﹣,﹣),(,﹣)。
2018年成都市一诊考试数学试题及答案word(理科)
理科数学第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集U =R ,集合{}2=≤-A x x {}1,,=≥-B x x 则()=U A BA.[]21,- B.21(,)-- C.(][)21,,-∞--+∞ D.21(,)-2.复数21iz =+在复平面内对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限3.空气质量指数AQI 是检测空气质量的重要参数,其数值越大说明空气污染状况越严重,空气质量越差.某地环保部门统计了该地区12月1日至12月24日连续24天空气质量指数AQI ,根据得到的数据绘制出如图所示的折线图.则下列说法错误..的是 A.该地区在12月2日空气质量最好B.该地区在12月24日空气质量最差C.该地区从12月7日到12月12日AQI 持续增大D.该地区的空气质量指数AQI 与日期成负相关4.已知锐角ABC ∆的三个内角分别为,,,A B C 则“sin >sin A B ”是“tan >tan A B ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5. “更相减损术”是我国古代数学名著《九章算术》中的算法案例,其对应的程序框图如图所示.若输入的x,y,k 的值分别为4,6,1,则输出的k 的值为A.2B.3C.4D.56.若关于x 的不等式2210x ax ++≥在[)0+∞,上恒成立,则实数a 的取值范围为A.0+∞(,)B.[)1-+∞, C.[]11-, D.[)0+∞,[)[)[][)26210001110.,()(,)(),(),(),x a A B C D ++≥+∞+∞ -+∞ - +∞若关于的不等式在上恒成立,则实数的取值范围为x ax7.如图,已知双曲线2222100x y E a b a b-=:(,)>>,长方形ABCD 的顶点A ,B 分别为双曲线E 的左,右焦点,且点C ,D 在双曲线E 上.若6AB =,52BC =,则此双曲线的离心率为A.2B.32 C.52D.522228100562.:(,),,,,,,,ABCD A B E C D E AB BC -===如图已知双曲线长方形的顶点分别为双曲线的左、右焦点且点在双曲线上若则双曲线的离心率为x y E a b a b>>8.已知3sin 0652ααππ-=∈(),(,),则cos α的值为 A.433- B.433+ C.433- D.334- 9.在三棱锥P ABC -中,已知PA ⊥底面ABC ,1202BAC PA AB AC ︒∠====,.若该三棱锥的顶点都在同一个球面上,则该球的表面积为A.103πB.18πC.20πD.93π10.已知定义在R 上的奇函数f x ()满足20f x f x ++=()(),且当[]01x ∈,时,2log 1f x x =+()().则下列不等式正确的是A. ()()()2log 756f f f <-<B. ()()()2log 765f f f <<-C. ()()()25log 76f f f -<<D. ()()()256log 7f f f -<< 11.设函数sin 23f x x π=+()(),若12x x 0,<且120f x f x +=()(),则21x x -的取值范围为 A.6π∞(,+)B.3π∞(,+) C.23π+∞(,)D.43π+∞(,) 12.已知关于x 的方程e 0e exx x++-x m =x 有三个不相等的实数根123x x x ,,,且1230x x <x <<,其中m ∈R ,e 271828=⋅⋅⋅.为自然对数的底数.则1232312111e e e x x x ---()()()x x x 的值为 A.e B. 1 C. 1m + D.1m -第II 卷(非选择题,共90分)二、填空题:本大题共4道小题,每小题5分,共20分.13.52()y x+的展开式中的第三项系数为.14.若实数x y ,满足线性约束条件124+≥⎧⎪≤⎨⎪-≤⎩x y y x x y ,则2+x y 的最大值为.15.如图,在直角梯形ABDE 中,已知90ABD EDB ︒∠=∠=,C 是BD 上一点,315,AB ACB ︒=∠=60,ECD ︒∠=45EAC ︒∠=,则线段DE 的长度为.16.在长方体1111ABCD A B C D -中,已知底面ABCD 为正方形,P 为11A D的中点,12AD AA ==,Q 是正方形ABCD 所在平面内...的一个动点,且=QC ,则线段BQ 的长度的最大值为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 的前n 项和为Sn ,24316a S ==,,*n ∈N .(1)求数列{}n a 的通项公式;(2)设2nn n b a =,求数列{}n b 的前n 项和nT.18. (本小题满分12分)某部门为了解一企业在生产过程中的用水量情况,对每天的用水量作了记录,得到了大量的该企业的日用水量的统计数据.从这些统计数据中随机抽取12天的数据作为样本,得到如图所示的茎叶图(单位:吨). 若用水量不低于95(吨),则称这一天的用水量超标.(1)从这12天的数据中随机抽取3个,求至多有1天是用水量超标的概率; (2)以这12天的样本数据中用水量超标的频率作为概率,估计该企业未来3天中用水量超标的天数.记随机变量X 为未来这3天中用水量超标的天数,求X 的分布列和数学期望.19.(本小题满分12分)如图①,在边长为5的菱形ABCD 中,6AC =.现沿对角线AC 把ADC ∆翻折到APC ∆的位置得到四面体P ABC -,如图②所示.已知PB =(1)求证:平面PAC ⊥平面ABC ; (2)若Q 是线段AP 上的点,且13AQ =AP ,求二面角Q BC A --的余弦值.图① 图②20.(本小题满分12分)AA已知椭圆222210x y C a b a b+=:()>>的右焦点0F ),长半轴与短半轴之比等于2.(1)求椭圆C 的标准方程;(2)设不经过点01(,)B 的直线l 与椭圆C 相交于不同的两点M N ,.若线段MN 的中点H 满足2MN =BH ,证明直线l 过定点,并求出该定点的坐标.21.(本小题满分12分)已知函数e xf x =(),其中e 271828=⋅⋅⋅.为自然对数的底数.(1)若曲线()=y f x 在点00e xP x (,)处的切线方程为y kx b =+,求k b -的最小值;(2)当常数()2,+m ∈∞时,已知函数212g x x f x mx =--+()()()在0(,)+∞上有两个零点()1212x x x x ,<.证明:214ln e<-<x x m .请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.(本小题满分10分)选修4-4:极坐标与参数方程在平面直角坐标系xOy 中,直线l的参数方程为12222x t t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为2sin 4sin ρθθρ+=.(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点M 的直角坐标为22(,).若直线l 与曲线C 相交于不同的两点A B ,,求MA MB ⋅的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数21f x x k x k =-++∈(),R .(1)当1k=时,若不等式4f x ()<的解集为{}12x x x x |<<,求12x x +的值;(2)若关于x 的不等式f x k ≥()当x ∈R 时恒成立,求k 的最大值.数学(理科)参考答案及评分意见第I 卷(选择题,共60分)一.选择题:(每小题5分,共60分)1.B ;2.D ;3.D ;4.C ;5.C ;6.B ;7.B ;8.A ;9.C ;10.C ;11.B ;12.B.第II 卷(非选择题,共90分)二.填空题:(每小题5分,共20分)13.40;14.12;15.6;16.6.三.解答题:(共70分)17.解:(1)设数列{}n a 的公差为d .24316a S ==,,1134616a d a d ∴+=+=,.解得121d a ==,. ………4分21n a n ∴=-. ………6分(2)由题意,212n n b n =-⨯().1211232232212n n n T n n -∴=⨯+⨯+⋅⋅⋅+-⨯+-⨯()(). ①21212232212n n n T n n +=⨯+⋅⋅⋅+-⨯+-⨯()(). ②由①-②,可得1231122222212n n n T n +-=⨯+⨯++⋅⋅⋅+--⨯()().………9分311122212126232n n n n T n n -++∴-=+---⨯=-+-+⨯()()().………11分16232n n T n +∴=+-⨯(). ………12分18.解:(1)记“从这12天的数据中随机抽取3个,至多有1天是用水量超标” 为 事件A .则123488331212C C C 16842C C 22055P A =+==(). ………4分 (2)以这12天的样本数据中用水量超标的频率作为概率,易知其概率为13.随机变量X 表示未来三天用水量超标的天数,∴X 的取值分别为:0123,,,. 易知3311230123333k k k XB P X kC k -===(,),()()(),,,,.则84210123279927P X P X P X P X ========()(),(),()., ………8分 ∴随机变量X 的分布列为………10分数学期望1313E X =⨯=(). ………12分19.解:(1)取AC 的中点O ,连接,PO BO 得到∆PBO .ABCD 是菱形,∴=PA PC ,PO AC ⊥.5634DC AC OC PO OB ==∴===,,,,42PB =,222PO OB PB ∴+=. PO OB ∴⊥.BOAC O =,∴⊥PO 平面ABC .⊂PO 平面PAC , ∴平面ABC ⊥平面PAC . ………4分(2)AB BC BO AC =∴⊥.,易知,,OB OC OP 两两相互垂直.以O 为坐标原点,OB OC OP ,,分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系Oxyz ,如图所示.则400030004030B C P A -(,,),(,,),(,,),(,,). 设点(,,)Q x y z . 由13AQ AP =,得4023Q -(,,). ………6分 4430423BC BQ ∴=-=--(,,),(,,).设1111x y z =(,,)n 为平面BCQ 的一个法向量.由11111114300442003x y BC x y z BQ -+=⎧⎧⋅=⎪⎪⇒⎨⎨--+⋅=⎪⎪⎩⎩.=n n 解得111134415x y y z ⎧=⎪⎪⎨⎪⎪⎩.= 取115z =,则13415=(,,).n ………8分 取平面ABC 的一个法向量2001=(,,)n .121222212310cos ,3415⋅===++n n n n n n , ………11分∴二面角--Q BC A 的余弦值为31010.………12分20.解:(1)22232ac a b c b===+,,, ∴21,==a b .∴椭圆的标准方程为2214x y +=.………4分(2)易知当直线l 的斜率不存在时,不合题意. 设直线l 的方程为1)y kx m m =+≠(,点1122M x y N x y (,),(,).联立2244y kx m x y =+⎧⎨+=⎩,消去y 可得222418440k x kmx m +++-=(). 2212221224108414441k m km x x k m x x k ⎧⎪∆=+->⎪-⎪∴+=⎨+⎪⎪-=⎪+⎩.由2MN =BH ,可知点B 在以MN 为直径的圆上.BM BN ∴⊥. 0BM BN ∴⋅=. ………7分112211(,)(,)⋅=+-⋅+-BM BN x kx m x kx m2212121110k x x k m x x m =++-++-=()()()(),2222244811104141m kmk k m m k k --∴++-+-=++()()().整理,得25230m m --=. 解得35=-m 或1=m (舍去). ∴直线l 的方程为35y kx =-. 故直线l 经过定点,且该定点的坐标为305-(,).………12分21.解:(1)曲线在点00e xP x (,)处的切线为0000e e e x x x y x x =-+.0000e e e x x x k b x ∴==-+,.00e x k b x ∴-=.………3分设e x H x x =().由1e 0x H x x '=+=()(),解得1x =-.当x >-1时,0H x '()>,∴H x ()单调递增; 当x <-1时, 0H x '<(),∴H x ()单调递减.H x ∴()的极小值(也是最小值)为11eH -=-().∴-k b 的最小值为1e -.………5分(2)当0>x 时,由e 20x g x x m '=-=()(),解得ln 2.x m = 当ln 2x m >时,()0g x '>,∴()g x 在(ln 2,)+∞m 上单调递增; 当0ln 2x m <<时,()0g x '<,∴()g x 在(0,ln 2)m 上单调递减.∴()g x 的极小值为(ln 2).g m ………7分∵(1)20g m =-<,ln 2ln 41x m =>>,(ln 2)0.g m ∴< 又010120(),(),=>=-<g g m ∴101(,),∃∈x 使得10g x =(). 2ln 2ln 4,x m >>214ln 41ln .e x x ∴->-=………9分当x m =时,31e 22m g m m m m =--+()(),.>2e 3e 3m m g m m m m m '∴=-=-()().设e 32m G m m m =-(),.>e 30m G m '=-(),>()∴G m 在2(,)+∞上单调递增. 22e 60G m G ∴=-()().>>0()g m '∴>恒成立.22e 60g m g ∴=-()().>>2(ln 2,),x m m ∴∃∈使得20g x =(). 2m x ∴.>21m x x ∴-.>故214ln e<-<x x m 成立. ………12分 22.解:(1)由1222x t y ⎧=+⎪⎪⎨⎪=⎪⎩,消去参数t可得22y x =-+). ∴直线l20y -+-=. ………2分2222sin 4sin sin 4sin .ρθθρρθρθρ+=∴+=,222sin ,y x y ρθρ==+,故曲线C 的直角坐标方程为24x y =. ………4分 (2)将1222x t y ⎧=+⎪⎪⎨⎪=⎪⎩代入抛物线方程24x y =,可得2124222t t +=+()().即28160t t +--=(. ………8分设点,A B 对应的参数分别为12,t t .则12120,+8,16,∆>==-t t t t ∴1216MA MB t t ==. ………10分23.解:(1)由题意,得214x x -++<.i ()当2x >时,原不等式即25x <.∴522x <<; ii ()当x <-1时,原不等式即23x -<.∴312-<<-x ; iii ()当2x -1≤≤时,原不等式即3<4.∴12x -≤≤.综上,原不等式的解集为3522x |x ⎧⎫-<<⎨⎬⎩⎭,即123522x x =-=,. 121x x ∴+=. ………5分(2)由题意,得21x k x k -++≥.当2=x 时,即不等式k k ≥3成立.0.k ∴≥i ()当2-≤x 或0≥x 时,11x +≥,∴不等式k x k x ≥++-|1||2|恒成立. ii ()当12-≤<-x 时,原不等式可化为2---≥x kx k k .可得241.22x k x x -≤=-+++3.k ∴≤iii ()当01<<-x 时,原不等式可化为2.x kx k k -++≥可得21.k x ≤-3.k ∴≤综上,可得03k ≤≤,即k 的最大值为3.………10分。
初2018届成都市高新区中考数学九年级一诊数学试卷(含答案)
初2018届成都市高新区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列各数与﹣8 相等的是()A.|﹣8| B.﹣|﹣8| C.﹣42D.﹣(﹣8)2.2017年成都市经济呈现活力增强、稳中向好的发展态势.截止2017年12月,全市实现地区生产总值约14000亿元,将14000亿元用科学记数法表示是()A.14×1011元B.1.4×1011元C.1.4×1012元D.1.4×1013元3.如图是由五个大小相同的正方体组成的几何体,从左面看这个几何体,看到的图形的()A.B.C.D.4.下列计算正确的是()A.a3•a2=a6B.a3﹣a2=a C.(﹣a3)2=a6D.a6÷a2=a35.在下列四个标志中,既是中心对称又是轴对称图形的是()A.B.C.D.6.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°7.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.1 9.1 9.1 9.1方差7.6 8.6 9.6 9.7根据表中数据,要从中选择一名成绩发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁8.如图,四边形 ABCD 和A′B′C′D′是以点 O 为位似中心的位似图形,若 OA′:A′A=2:1,四边形A′B′C′D′的面积为12cm2,则四边形 ABCD 的面积为()A.24cm2B.27cm2C.36cm2D.54cm29.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.a<0 B.c<0 C.a+b+c<0 D.b2﹣4ac<010.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2D.3二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.在二次根式中,x的取值范围是.12.用反证法证明“若a>b>0,则a2>b2”,应假设.13.将抛物线y=x2+2x+3向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为.14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)解不等式组:16.(6分)关于x的方程x2﹣ax+a+1=0有两个相等的实数根,求的值.17.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.18.(8分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>的x的取值范围;(3)若点P在x轴上,且S△ACP=,求点P的坐标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,作CD⊥AB,垂足为D,E为弧BC的中点,连接AE、BE,AE交CD于点F.(1)求证:∠AEC=90°﹣2∠BAE;(2)过点E作⊙O的切线,交DC的延长线于G,求证:EG=FG;(3)在(2)的条件下,若BE=4,CF=6,求⊙O的半径.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.22.有9张卡片,分别写有0﹣8这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为m,能使关于x的分式方程的解为正数的概率为.23.如图,花园边墙上有一宽为1m的矩形门ABCD,量得门框对角线AC的长为2m,现准备打掉部分墙体,使其变成以AC为直径的圆弧形门,则打掉墙体后,弧形门洞的周长(含线段BC)为.24.如图,点A是反比例函数y=的图象上位于第一象限的点,点B在x轴的正半轴上,过点B作BC⊥x 轴,与线段OA的延长线交于点C,与反比例函数的图象交于点D.若直线 AD恰为线段 OC 的中垂线,则sinC=.25.如图,在△ABC中,∠C=60°,点D、E分别为边BC、AC上的点,连接DE,过点E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,则BC=.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.27.(10分)【问题背景】在平行四边形ABCD中,∠BAD=120°,AD=nAB,现将一块含60°的直角三角板(如图)放置在平行四边形ABCD所在平面内旋转,其60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB、AD于点E、F(不包括线段的端点).【发现】如图1,当n=1时,易证得AE+AF=AC;【类比】如图2,过点C作CH⊥AD于点H,(1)当n=2时,求证:AE=2FH;(2)当n=3时,试探究AE+3AF与AC之间的等量关系式;【延伸】将60°角的顶点移动到平行四边形ABCD对角线AC上的任意点Q,其余条件均不变,试探究:AE、AF、AQ 之间的等量关系式(请直接写出结论).28.(12分)如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A 和第一象限内一点B,该抛物线顶点H的纵坐标为5.(1)求抛物线的解析式;(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB=,求k的值;(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,ⅰ)求点P的坐标;ⅱ)已知点M在抛物线上,点N在x轴上,当四边形PBMN为平行四边形时,请求出点M的坐标.参考答案与试题解析1.【解答】解:A.|﹣8|=8,与﹣8不相等,故此选项不符合题意;B.﹣|﹣8|=﹣8,与﹣8相等,故此选项符合题意;C.﹣42=﹣16,与﹣8不相等,故此选项不符合题意;D.﹣(﹣8)=8,与﹣8不相等,故此选项不符合题意;故选:B.2.【解答】解:14000亿元用科学记数法表示是1.4×1012元,故选:C.3.【解答】解:由图可得,从左面看几何体有2列,第一列有2块,第二列有1块,∴该几何体的左视图是:故选:D.4.【解答】解:A、a3•a2=a5,故此选项错误;B、a3﹣a2,无法计算,故此选项错误;C、(﹣a3)2=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.5.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.6.【解答】解:如图,由三角形的外角性质可得:∠3=30°+∠1=30°+30°=60°,∵AB∥CD,∴∠2=∠3=60°.故选:D.7.【解答】解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选:D.8.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA′:A′A=2:1,∴OA′:OA=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:9:4,∵四边形A′B′C′D′的面积为12cm2,∴四边形 ABCD 的面积为:27cm2.故选:B.9.【解答】解:∵抛物线开口向上,∴a>0,故A错误;∵抛物线与y轴交于负半轴,∴c<0,故B正确;由图象可得:当x=1时,y>0,故C错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故D错误;故选:B.10.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB==2,故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:由题意可知:4﹣2x≥0,∴x≤2故答案为:x≤212.【解答】解:用反证法证明“若a>b>0,则a2>b2”的第一步是假设a2≤b2,故答案为:a2≤b2,13.【解答】解:y=x2+2x+3=(x+1)2+2,此抛物线的顶点坐标为(﹣1,2),把点(﹣1,2)向下平移3个单位长度,再向左平移2个单位长度后所得对应点的坐标为(﹣3,﹣1),所以平移后得到的抛物线的解析式为y=(x+3)2﹣1.故答案为:y=(x+3)2﹣1.14.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2+2×+﹣1﹣1=2++﹣1﹣1=2;(2)由不等式①得x≤8.由不等式②得x>﹣1;∴不等式组的解集为﹣1<x≤8.16.【解答】解:=×=×=﹣,∵关于x的方程x2﹣ax+a+1=0有两个相等的实数根,∴△=0,即(﹣a)2﹣4(a+1)=0,∴a2﹣4a=4,∴原式=﹣=﹣.17.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.18.【解答】解:过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CHcot68°=0.4x,由AB=49知x+0.4x=49,解得:x=35,∵BE=4,∴EF=BEsin68°=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为66.7cm.19.【解答】解:(1)将A(m,3)代入反比例解析式得:m=2,则A(2,3),将B(﹣6,n)代入反比例解析式得:n=﹣1,则B(﹣6,﹣1),将A与B的坐标代入y=kx+b得:,解得:,则一次函数解析式为y=x+2;(2)由图象得:x+2>的x的取值范围是:﹣6<x<0或x>2;(3)∵y=x+2中,y=0时,x+2=0,解得x=﹣4,则C(﹣4,0),OC=4∴△BOC的面积=×4×1=2,∴S△ACP==×2=3.∵S△ACP=CP×3=CP,∴CP=3,∴CP=2,∵C(﹣4,0),∴点P的坐标为(﹣2,0)或(﹣6,0).20.【解答】证明:(1)连接AC、BC,∴∠CEA=∠CBA,∵E为的中点,∴=,∴∠CAE=∠BAE,∴∠CAB=2∠BAE,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∴2∠BAE+∠AEC=90°,∴∠AEC=90°﹣2∠BAE;(2)连接EO,∵OA=OE,∴∠OEA=∠OAE,设∠OEA=∠OAE=α,∵EG为切线,∴OE⊥EG,∴∠OEG=90°,∴∠GEA=90°﹣∠AEO=90°﹣α,∵DG⊥AB,∴∠FDA=90°,∴∠FAD+∠AFD=90°,∴∠AFD=90°﹣α=∠GFE,∴∠GFE=∠GEF=90°﹣α,∴GE=GF;(3)如图3,连接CE、CB、OE、OC,CB与AE交于点N,CB与OE交于点M,∵E为的中点,∴∠COM=∠BOM,∵OC=OB,∴OM⊥BC,∴∠OMB=90°,由(2)得∠GEM=90°,∴CM∥EG,∴∠GEF=∠CNF,∵∠GFE=∠GEF,∴∠CFE=∠CNF,∴CF=CN=6,设MN=x,则CM=BM=6+x,cos∠EBM=,∴=,解得:x1=2,x2=﹣11(舍),MB=6+x=6+2=8,由勾股定理得:ME===4,在△OBM中,设OM=m,则OE=OB=m+4,OM2+MB2=OB2,即m2+82=(m+4)2,∴OM=m=6,∴OE=OB=6+4=10.则⊙O的半径为10.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵3<+<4,∴[+]的值为3.故答案为:3.22.【解答】解:解方程得x=m﹣2,因为方程的解为正数,所以m﹣2>0,且m﹣2≠1,解得:m>2且m≠3,则在0﹣8这九个数字中符合条件的有5个,所以使关于x的分式方程的解为正数的概率为,故答案为:.23.【解答】解:设矩形外接圆的圆心为O,连接OB,∵矩形ABCD的AC=2m,BC=1m,∴OB=OC=BC=1m,∴△OBC是等边三角形,∴∠BOC=60°.∴弧形门洞的周长(含线段BC)为:+1=+1,故答案为:(+1)m.24.【解答】解:如图,连接OD,∵AD垂直平分OC,∴CD=OD,设A(a,b),则C(2a,2b),∴BC=2b,OB=2a,∴D(2a,b),∴BD=b,CD=b,∴OD=b,∵Rt△BOD中,BD2+OB2=OD2,∴(b)2+(2a)2=(b)2,∴b2=2a2,又∵Rt△BOC中,OC==2,∴sinC====.故答案为:.25.【解答】解:连接BE,在EC上截取EH=CD=6,作DM⊥EC于M.∵CB=CE,∠C=60°,∴△BCE是等边三角形,∴BE=EC,∠BEH=∠C=60°,∵EH=CD,∴△BEH≌△ECD,∴∠EHB=∠EDC,BH=ED∴∠BHC=∠BDE,∵∠BHC=∠A+∠ABH,∠EDB=2∠A,∴∠A=∠ABH,∴AH=BH=8+6=14,∴DE=BH=14,在Rt△DCM中,∵CD=6,∠CDM=30°,∴CM=3,DM=3,在Rt△DEM中,EM==13,∴EC=3+13=16,∴BC=EC=16,故答案为16.26.【解答】解:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920﹣2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080,此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,∴当x=6时,W最大值=45760元.∵46000>45760,∴当x=5时,W最大,且W最大值=46000元.综上所述:W=.27.【解答】解:【发现】:如图1,当n=1时,AD=AB,∴▱ABCD是菱形,∴AB=BC,∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∴△ABC、△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∵,∴△BCE≌△ACF(ASA),∴BE=AF,∴AE+AF=AE+BE=AB=AC;【类比】:(1)如图2,当n=2时,AD=2AB,设DH=x,由题意得:CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,由勾股定理得:AC===2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴,∵AC=2CH,∴AE=2FH;(2)如图3,当n=3时,AD=3AB,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于H,∴∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴,∵S▱ABCD=AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴,∵EM=3FN,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHD=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC===a,∴AE+3AF=(EM﹣AM)+3(AH+HN﹣FN),=EM﹣AM+3AH+3HN﹣3FN,=3AH+3HN﹣AM,=3×a+3a﹣a,=a,∴==;【延伸】如图4,AD=nAB,过Q作QG∥AD,作QH∥AB,则四边形AGQH是平行四边形,且AH=nAG,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于P,同理可得:△QFN∽△QEM,∴=,∵S▱AGQH=AG•QM=AH•QN,AH=nAG,∴QM=nQN,∴=,∵EM=nFN,设QN=a,FN=b,则QM=na,EM=nb,∵∠MAH=60°,∠M=90°,∴∠APM=∠QPD=30°,∴PQ=2a,PM=na﹣2a,PN=a,∴AM=(na﹣2a),AP=2AM,∴AQ===,∴AE+nAF=(EM﹣AM)+n(AP+PN﹣FN),=EM﹣AM+nAP+nPN﹣nFN,=nAP+nPN﹣AM,=2n•(na﹣2a)+an﹣(na﹣2a),=a(n2﹣n+1),∴==.28.【解答】解:(1)∵抛物线y=ax2﹣4ax+c与直线y=kx+1交于y轴上一点A ∴A(0,1),即c=1∵抛物线y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c∴顶点坐标为(2,c﹣4a)∴c﹣4a=5∴a=﹣1∴抛物线解析式y=﹣x2+4x+1=﹣(x﹣2)2+5(2)∵抛物线与直线相交∴kx+1=﹣x2+4x+1∴x1=0,x2=4﹣k∴B点横坐标为4﹣k∵点B在第一象限∴4﹣k>0即k<4∵S△AHB=HK×(4﹣k)=∴(5﹣2k﹣1)×(4﹣k)=解得:k1=,k2=(不合题意舍去)(3)ⅰ)如图:将AB绕B点顺时针旋转90°到BC位置,过B点作BD⊥x轴,过点C点作CD⊥BD于D,过A点作AE⊥BD于E∵k=,∴B(,)∵A(0,1),B(,)∴AE=,BE=∵旋转∴BC=AB,∠ABC=90°∴∠CAB=45°,∠CBD+∠ABE=90°且∠CBD+∠DCB=90°∴∠ABE=∠DCB且AB=BC,∠D=∠AEB=90°∴△ABE≌△BCD∴AE=BD=,BE=CD=∴C(,)设AC解析式y=bx+1∴=b+1∴b=3∴AC解析式y=3x+1∵P是直线AC与抛物线的交点∴3x+1=﹣x2+4x+1∴x1=0,x2=1∴P(1,4)ⅱ)如图2:设PM与BN的交点为H∵四边形PBMN为平行四边形∴PH=NH,BH=MH∵设点M坐标为(x,y)∴=∴y=﹣∴﹣=﹣(x﹣2)2+5解得:x1=﹣,x2=∴点M坐标为(﹣,﹣),(,﹣)。
2018年3月四川省成都市高新区初2018届初三中考一诊数学试题参考答案
高新区!"#*届中考数学一诊试卷
!卷
(
#!!!!"%!%"%!&"#!'"$!("$!)"#!*"!! (
$"%!#""#
( (
##!*(!#!!-+"&*. ,*化简后-+". &.", (
. 亦 可 !#%!'04!#&!.*
(
(
#'!*解 原
式
+ 槡(
&*&(槡(
( ( (
",.!= #&
&
$%7
%8& $%
+
#8& #8%
即
" .
+
( (
. 解得 ",.
"*
+槡/ &*".
+
&槡/
&*舍
去
!
( (
= #$
& %& 7
##$#8
+
#$#8 %
( (
689#$#8%
+
$% #8%
+
.
槡/ &*,.
+
槡/ &* .
( ( (
7689##$#8+槡/.&*!
7 #+ + ) 槡/*0!由 垂 径 定 理得 #$ +
( ( (
.#+ +*./槡*0!
( (
#卷
初2018届成都市高新区中考数学九年级一诊数学试卷
成都市高新区2018届一诊数学试卷(考试时间:120分 满分:150分)A 卷(共100分)一、选择题(每小题3分,共30分)1、sin30°的值为( ) A. 21 B. 22 C. 33 D. 23 2、下面的几何体中,俯视图为三角形的是( )A. B. C. D.3、2017年10月18日上午9时,中国共产党第十九次全国代表大会在北京人民大会堂开幕,据统计,在10月18日9时至10月19日9时期间,新浪微博话题#十九大#阅读量为25.3亿,把数据25.3亿写成科学计数法正确的是( )A. 8103.25⨯B. 81053.2⨯C. 91053.2⨯D. 9103.25⨯4、一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( ) A.61 B. 21 C. 31 D. 32 5、下列各点中,在反比例函数xy 3-=图像上的点是( ) A. (1,3) B. (3,1) C. (2,23) D. (23-,2) 6、如图,在△ABC 中,点D 在AB 上,BD =2AD ,DE ∥BC 交AC 于E ,则下列结论不正确的是( )A. BC =3DEB. BD:BA =CE:CAC. △ADE ∽△ABCD. ABC ADE S S ∆∆=317、二次函数122+-=x x y 与x 轴的交点个数( )A. 0个B. 1个C. 2个D. 3个8、在菱形ABCD 中,AE ⊥BC 于点E,AF ⊥CD 于点F ,且E 、F 分别为BC 、CD 的中点(如图),则∠EAF 等于( )A. 60°B. 75°C. 120°D. 45°9、如图,在圆O 中,半径OC 与弦AB 垂直于点D ,且AB =8,OC =5,则CD 的长是( )A. 3B. 2.5C. 2D. 110、如图,Rt △AOB 中,AB ⊥OB ,且AB =OB =3,设直线x =t 截此三角形所得阴影部分的面积S ,则S 与t 之间的函数关系的图像为下列选项中的( )A. B. C. D.二、填空题(每小题4分,共16分)11、在某一时刻,测得一根长为1.5m 的标杆的影长为3m ,同时测得一根旗杆的影长为26m ,那么这根旗杆的高度为 m 。
初2018届成都市武侯区中考数学九年级一诊数学试卷
成都市武侯区2018届一诊数学试卷(考试时间:120分 满分:150分)A 卷(共100分)一、选择题(每小题3分,共30分)1、︒30cos 的值是( ) A.21 B.22 C.23 D.332、下列四个几何体中,主视图是三角形的是( )A. B. C D.3、反比例函数x y 4=的图象经过的象限是( )A.第一二象限B.第一三象限C.第二三象限D.第二四象限4、一元二次方程x x 7522=+的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断5、下列抛物线中,与抛物线132+-=x y 的形状、开口方向完全相同,且顶点坐标为(-1,2)的是()A.()2132++-=x yB.()2232+--=x yC.()2132++-=x yD.()2132+--=x y6、已知某斜坡的坡角为α,坡度4:3=i ,则αsin 的值为( ) A.43 B.53 C.34 D.547、如图,AB 是⊙O 的直径,若︒=∠30BAC ,则D ∠的度数是( )A.30°B.45°C.60°D.75°8、已知关于x 的一元二次方程062=--kx x 的一个根为3=x ,则另一个根为( )A.2-=xB.3-=xC.2=xD.3=x9、如图,点F 在平行四边形ABCD 的边CD 上,且32=AB CF ,连接BF 并延长交AD 的延长线于点E ,则BCDE 的值是( ) A.31 B.32 C.21 D.5210、如图,抛物线()02≠++=a c bx ax y 与直线x y -=相交于B A ,两点,则下列说法正确的是( )A.0<ac ,()0412<-+ac bB.0<ac ,()0412>-+ac b C.0>ac ,()0412<-+ac b D.0>ac ,()0412>-+ac b 二、填空题(每小题4分,共16分)11、李明同学利用影长测学校旗杆的高度,某一时刻身高1.8米的李明的影长为1米,同时测得旗杆的影长为7米,则学校的旗杆的高为 米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年四川省成都市成华区中考数学二诊试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)在2,,0,﹣2四个数中,最大的一个数是()A.2 B.C.0 D.﹣22.(3分)下面所给几何体的俯视图是()A. B.C. D.3.(3分)下列运算正确的是()A.(a﹣3)2=a2﹣9 B.a2•a4=a8C.=±3 D.=﹣24.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10105.(3分)下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.6.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115°C.125°D.130°7.(3分)一元二次方程x2﹣6x﹣5=0配方后可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4 8.(3分)已知关于x的方程x2+2x﹣(m﹣2)=0有两个不相等的实数根,则m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<19.(3分)如图,点A、B、C、D在⊙O上,DE⊥OA,DF⊥OB,垂足分别为E,F,若∠EDF=50°,则∠C的度数为()A.40° B.50° C.65° D.130°10.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a <0;②c>0;③a﹣b+c<0;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共4个小题,第小题4分,共16分)11.(4分)因式分解:a2﹣9= .12.(4分)在函数中,自变量x的取值范围是.13.(4分)如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=2,则菱形ABCD的周长是.14.(4分)如图,在矩形ABCD中,点E在边BC上,BE=EC=2,且AE=AD,以A为圆心,AB长为半径作圆弧AE于点F,则扇形ABF的面积是(结果保留π).三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:|1﹣|﹣3tan30°+(π﹣2017)0﹣(﹣)﹣1(2)解不等式组并在数轴上表示它的解集.16.(6分)先化简(1﹣)•,再在1,2,3中选取一个适当的数代入求值.17.(8分)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)18.(8分)在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83乙:88,79,90,81,72.回答下列问题:(1)甲成绩的平均数是,乙成绩的平均数是;(2)经计算知S甲2=6,S乙2=42.你认为选拔谁参加比赛更合适,说明理由;(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.19.(10分)如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求一次函数和反比例函数的解析式;(2)求点C的坐标;(3)结合图象直接写出不等式0<x+m≤的解集.20.(10分)已知:AB为⊙O的直径,C是⊙O上一点,如图,AB=12,BC=4.BH与⊙O相切于点B,过点C作BH的平行线交AB于点E.(1)求CE的长;(2)延长CE到F,使EF=,连接BF并延长BF交⊙O于点G,求BG的长;(3)在(2)的条件下,连接GC并延长GC交BH于点D,求证:BD=BG.一、填空题(本大题共5小题,每小题4分,共20分)21.(4分)在平面直角坐标系xOy中,点P(4,a)在正比例函数y=x的图象上,则点Q(2a﹣5,a)关于y轴的对称点Q'坐标为.22.(4分)定义新运算:a*b=a(b﹣1),若a、b是关于一元二次方程x2﹣x+m=0的两实数根,则b*b﹣a*a的值为.23.(4分)如图,AB是⊙O的直径,AB=10,∠A=40°,点D为弧BC的中点,点P是直径AB上的一个动点,PC+PD的最小值为.24.(4分)如图,已知双曲线y=与直线y=k2x(k1,k2都为常数)相交于A,B两点,在第一象限内双曲线y=上有一点M(M在A的左侧),设直线MA,MB分别与x轴交于P,Q两点,若MA=m•AP,MB=n•QB,则n﹣m 的值是.25.(4分)如图,在正n边形(n为整数,且n≥4)绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为正n边形的“叠弦角”,△AOP为“叠弦三角形”.以下说法,正确的是.(填番号)①在图1中,△AOB≌△AOD';②在图2中,正五边形的“叠弦角”的度数为360°;③“叠弦三角形”不一定都是等边三角形;④正n边形的“叠弦角”的度数为60°﹣.二、解答题(本大题共3个小题,共30分)26.(8分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240027.(10分)(1)如图1,在正方形ABCD中,点O是对角线AC的中点,点E是边BC上一点,连接OE,过点O作OE的垂线交AB于点F.求证:OE=OF.(2)若将(1)中,“正方形ABCD”改为“矩形ABCD”,其他条件不变,如图2,连接EF.ⅰ)求证:∠OEF=∠BAC.ⅱ)试探究线段AF,EF,CE之间数量上满足的关系,并说明理由.28.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣1,0),B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)连接BC,点P为抛物线上第一象限内一动点,当△BCP面积最大时,求点P的坐标;(3)设点D是抛物线的对称轴上的一点,在抛物线上是否存在点Q,使以点B,C,D,Q为顶点的四边形为平行四边形?若存在,求出点Q的坐标;若不存在,说明理由.2017年四川省成都市成华区中考数学二诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)在2,,0,﹣2四个数中,最大的一个数是()A.2 B.C.0 D.﹣2【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得2>>0>﹣2,∴在2,,0,﹣2四个数中,最大的一个数是2.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(3分)下面所给几何体的俯视图是()A. B.C. D.【分析】直接利用俯视图的观察角度从上往下观察得出答案.【解答】解:由几何体可得:圆锥的俯视图是圆,且有圆心.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.3.(3分)下列运算正确的是()A.(a﹣3)2=a2﹣9 B.a2•a4=a8C.=±3 D.=﹣2【分析】利用同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式分别计算后即可确定正确的选项.【解答】解:A、(a﹣3)2=a2﹣6a+9,故错误;B、a2•a4=a6,故错误;C、=3,故错误;D、=﹣2,故正确,故选:D.【点评】本题考查了同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式,属于基础知识,比较简单.4.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:4 400 000 000=4.4×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.6.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115°C.125°D.130°【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选:B.【点评】本题考查了角平分线定义和平行线性质的应用,注意:平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补.7.(3分)一元二次方程x2﹣6x﹣5=0配方后可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4【分析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.【解答】解:x2﹣6x﹣5=0,x2﹣6x=5,x2﹣6x+9=5+9,(x﹣3)2=14,故选:A.【点评】本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.8.(3分)已知关于x的方程x2+2x﹣(m﹣2)=0有两个不相等的实数根,则m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<1【分析】关于x的方程x2+2x﹣(m﹣2)=0有两个不相等的实数根,即判别式△=b2﹣4ac>0,即可得到关于m的不等式,从而求得m的范围.【解答】解:∵关于x的方程x2+2x﹣(m﹣2)=0有两个不相等的实数根,∴△=b2﹣4ac=22+4×1×(m﹣2)=4m﹣4>0,解得:m>1.故选:C.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.9.(3分)如图,点A、B、C、D在⊙O上,DE⊥OA,DF⊥OB,垂足分别为E,F,若∠EDF=50°,则∠C的度数为()A.40° B.50° C.65° D.130°【分析】根据四边形的内角和等于360°求出∠AOB,根据圆周角定理计算即可.【解答】解:∵DE⊥OA,DF⊥OB,∴∠OED=∠OFD=90°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,由圆周角定理得,∠C=∠AOB=65°,故选:C.【点评】本题考查的是圆周角定理、多边形的内角和定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.10.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a <0;②c>0;③a﹣b+c<0;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4【分析】根据图象可知开口方向,对称轴的位置,与x轴交点的个数等信息,从而可判断出答案.【解答】解:抛物线开口向下:a<0,故①正确;抛物线与y轴交点位于y轴的正半轴:c>0,故②正确;当x=﹣1时,y=a﹣b+c<0,故③正确,抛物线与x轴有两个交点,∴△>0,故选:D.【点评】本题考查二次函数的图象与性质,解题的关键是熟练运用抛物线的图象与性质进行解答,本题属于中等题型.二、填空题(本大题共4个小题,第小题4分,共16分)11.(4分)因式分解:a2﹣9= (a+3)(a﹣3).【分析】a2﹣9可以写成a2﹣32,符合平方差公式的特点,利用平方差公式分解即可.【解答】解:a2﹣9=(a+3)(a﹣3).【点评】本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键.12.(4分)在函数中,自变量x的取值范围是x≥3且x≠4 .【分析】根据二次根式的意义可知:x﹣3≥0,根据分式的意义可知:x﹣4≠0,就可以求出x的范围.【解答】解:根据题意得:x﹣3≥0且x﹣4≠0,解得:x≥3且x≠4.【点评】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(4分)如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=2,则菱形ABCD的周长是16 .【分析】利用三角形中位线定理得出EO是△ABC的中位线,进而得出BC的长,即可得出菱形周长.【解答】解:∵在菱形ABCD中,AC、BD相交于点O,E为AB的中点,∴EO是△ABC的中位线,∵OE=2,∴BC=4,则菱形ABCD的周长是:4×4=16.故答案为:16.【点评】此题主要考查了菱形的性质,得出EO是△ABC的中位线是解题关键.14.(4分)如图,在矩形ABCD中,点E在边BC上,BE=EC=2,且AE=AD,以A为圆心,AB长为半径作圆弧AE于点F,则扇形ABF的面积是π(结果保留π).【分析】根据直角三角形的性质得出∠BAE=30°,得出∠DAE=60°,根据扇形的面积公式得出答案即可.【解答】解:∵BE=EC=2,且AE=AD,∴AD=AE=4,∴∠BAE=30°,∴∠DAE=60°,∴AB==2,∴S△ABF==π,故答案为π.【点评】本题考查了扇形的面积公式和矩形的性质,直角三角形的性质,勾股定理,掌握矩形的性质的应用,能综合运用性质进行推理和计算是解此题的关键.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:|1﹣|﹣3tan30°+(π﹣2017)0﹣(﹣)﹣1(2)解不等式组并在数轴上表示它的解集.【分析】(1)根据实数的混合运算法则计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=﹣1﹣3×+1+3=﹣1﹣+1+3=3;(2)解不等式①,得:x<,解不等式②,得:x≥﹣1,∴不等式的解集为﹣1≤x<,表示在数轴上如下:【点评】本题考查的是实数的混合运算和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)先化简(1﹣)•,再在1,2,3中选取一个适当的数代入求值.【分析】此题只需先进行分式运算得到最简结果,再挑选出一个使分式有意义的值代入求得结果即可.【解答】解:(1﹣)•,=•,=,∵x﹣1≠0,x﹣3≠0,∴x≠1,x≠3,∴把x=2代入得:原式==﹣2.【点评】本题考查了分式的化简求值.注意:取适当的数代入求值时,要特别注意原式及化简过程中的每一步都有意义.17.(8分)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE﹣CE.【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.【点评】本题考查了解直角三角形﹣仰角俯角问题.要求学生能借助仰角构造直角三角形并解直角三角形.18.(8分)在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83乙:88,79,90,81,72.回答下列问题:(1)甲成绩的平均数是83 ,乙成绩的平均数是82 ;(2)经计算知S甲2=6,S乙2=42.你认为选拔谁参加比赛更合适,说明理由;(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.【分析】(1)根据平均数的定义可列式计算;(2)由平均数所表示的平均水平及方差所衡量的成绩稳定性判断可知;(3)列表表示出所有等可能的结果,找到能使该事件发生的结果数,根据概率公式计算可得.【解答】解:(1)==83(分),==82(分);(2)选拔甲参加比赛更合适,理由如下:∵>,且S 甲2<S乙2,∴甲的平均成绩高于乙,且甲的成绩更稳定,故选拔甲参加比赛更合适.(3)列表如下:7986828583 8888,7988,8688,8288,8588,83 7979,7979,8679,8279,8579,83 9090,7990,8690,8290,8590,83 8181,7981,8681,8281,8581,83 7272,7972,8672,8272,8572,83由表格可知,所有等可能结果共有25种,其中两个人的成绩都大于80分有12种,∴抽到的两个人的成绩都大于80分的概率为.故答案为:(1)83,82.【点评】本题主要考查平均数、方差即列表或画树状图求概率,根据题意列出所有等可能结果及由表格确定使事件发生的结果数是解题的关键.19.(10分)如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求一次函数和反比例函数的解析式;(2)求点C的坐标;(3)结合图象直接写出不等式0<x+m≤的解集.【分析】(1)先把A(2,1)代入y=x+m得到m=﹣1,再把A(2,1)代入y=可求出k=2,从而得出一次函数和反比例函数的解析式;(2)令y=0,求得一次函数与x轴的交点坐标即为点C的坐标;(3)观察函数图象得到不等式0<x+m≤的解集为1<x≤2.【解答】解:(1)∵一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,点A的坐标为(2,1),∴1=2+m,解得m=﹣1,1=,解得k=2.故一次函数的解析式为y=x﹣1,反比例函数的解析式为y=;(2)令y=0,则0=x﹣1,解得x=1.故点C的坐标为(1,0);(3)观察函数图象得到不等式0<x+m≤的解集为1<x≤2.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了观察函数图象的能力以及用待定系数法确定一次函数的解析式.20.(10分)已知:AB为⊙O的直径,C是⊙O上一点,如图,AB=12,BC=4.BH与⊙O相切于点B,过点C作BH的平行线交AB于点E.(1)求CE的长;(2)延长CE到F,使EF=,连接BF并延长BF交⊙O于点G,求BG的长;(3)在(2)的条件下,连接GC并延长GC交BH于点D,求证:BD=BG.【分析】(1)只要证明△ABC∽△CBE,可得=,由此即可解决问题.(2)连接AG.只要证明△ABG∽△FBE,可得=,由BE==4,再求出BF,即可解决问题.(3)通过计算首先证明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可证明.【解答】解:(1)∵BH与⊙O相切于点B,∴AB⊥BH,∵BH∥CE,∴CE⊥AB,∵AB是直径,∴∠CEB=∠ACB=90°,∵∠CBE=∠ABC,∴△ABC∽△CBE,∴=,∵AC==4,∴CE=4.(2)连接AG.∵∠FEB=∠AGB=90°,∠EBF=∠ABG,∴△ABG∽△FBE,∴=,∵BE==4,∴BF==3,∴=,∴BG=8.(3)易知CF=4+=5,∴GF=BG﹣BF=5,∴CF=GF,∴∠FCG=∠FGC,∵CF∥BD,∴∠GCF=∠BDG,∴∠BDG=∠BGD,∴BG=BD.【点评】本题考查的是切线的性质、相似三角形的判定和性质、勾股定理的应用,掌握圆的切线垂直于经过切点的半径是解题的关键.一、填空题(本大题共5小题,每小题4分,共20分)21.(4分)在平面直角坐标系xOy中,点P(4,a)在正比例函数y=x的图象上,则点Q(2a﹣5,a)关于y轴的对称点Q'坐标为(1,2).【分析】把点P坐标代入正比例函数解析式可得a的值,进而求得Q点的坐标,然后根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:∵点P(4,a)在正比例函数y=x的图象上,∴a=2,∴2a﹣5=﹣1,∴Q(﹣1,2),∴点Q(﹣1,2)关于y轴的对称点Q′的坐标为(1,2),故答案为:(1,2).【点评】本题考查了一次函数图象上点的坐标特征以及关于y轴对称点的坐标特点,得到a的值是解决本题的突破点.22.(4分)定义新运算:a*b=a(b﹣1),若a、b是关于一元二次方程x2﹣x+m=0的两实数根,则b*b﹣a*a的值为0 .【分析】由a、b是关于一元二次方程x2﹣x+m=0的两实数根,可得出a2﹣a=﹣m、b2﹣b=﹣m,根据定义新运算的定义式,将b*b﹣a*a展开,代入数据即可得出结论.【解答】解:∵a、b是关于一元二次方程x2﹣x+m=0的两实数根,∴a2﹣a=﹣m,b2﹣b=﹣m,∴b*b﹣a*a=b(b﹣1)﹣a(a﹣1)=b2﹣b﹣(a2﹣a)=﹣m﹣(﹣m)=0.故答案为:0.【点评】本题考查了一元二次方程的解以及实数的运算,根据一元二次方程的解找出a2﹣a=﹣m、b2﹣b=﹣m是解题的关键.23.(4分)如图,AB是⊙O的直径,AB=10,∠A=40°,点D为弧BC的中点,点P是直径AB上的一个动点,PC+PD的最小值为5.【分析】作出D关于AB的对称点D′,则PC+PD的最小值就是CD′的长度,在△COD′中根据边角关系即可求解.【解答】解:作出D关于AB的对称点D′,连接OC,OD′,CD′.又∵点C在⊙O上,∠CAB=40°,D为的中点,即=,∴∠BAD′=∠CAB=20°.∴∠CAD′=60°.∴∠COD′=120°,∵OC=OD′=AB=5,∴CD′=5.故答案为:5.【点评】本题考查了圆周角定理以及路程和最小的问题,正确作出辅助线是解题的关键.24.(4分)如图,已知双曲线y=与直线y=k2x(k1,k2都为常数)相交于A,B两点,在第一象限内双曲线y=上有一点M(M在A的左侧),设直线MA,MB分别与x轴交于P,Q两点,若MA=m•AP,MB=n•QB,则n﹣m 的值是 2 .【分析】作MH⊥y轴,AN⊥y轴,BI⊥y轴分别于点H、N、I,则MH∥AN∥BI,ON=OI,根据平行线分线段成比例定理即可求解.【解答】解:作MH⊥y轴,AN⊥y轴,BI⊥y轴分别于点H、N、I,则MH∥AN∥BI.∵反比例函数是中心对称图形,∴ON=OI.∵MH∥AN∥BI,MA=m•AP,MB=n•QB∴m==,n===,又∵ON=OI,∴n==+2=m+2,∴n﹣m=2.故答案是:2.【点评】本题考查了平行线分线段成比例定理和一次函数与反比例函数的应用,关键是根据平行线分线段成比例定理得出比例式,题目比较好,但有一定的难度.25.(4分)如图,在正n边形(n为整数,且n≥4)绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为正n边形的“叠弦角”,△AOP为“叠弦三角形”.以下说法,正确的是①.(填番号)①在图1中,△AOB≌△AOD';②在图2中,正五边形的“叠弦角”的度数为360°;③“叠弦三角形”不一定都是等边三角形;④正n边形的“叠弦角”的度数为60°﹣.【分析】①先由正方形的性质和旋转的性质得出AB=AD′,再根据HL得出Rt△ABO≌Rt△AD′O即可;②先判断出∴△APE≌△AOE′,再判断出Rt△AEM≌Rt△ABN,再判断出Rt△APM≌Rt△AON,依此计算即可;③先判断出△APF≌△AE′F′,再用旋转角为60°,从而得出△PAO是等边三角形;④用②的方法求出正n边形的“叠弦角”的度数即可.【解答】解:①∵四边形ABCD是正方形,∴AB=AD,∠D=∠B=90°,由旋转的性质得,AD=AD′,∠D=∠D′=90°,∴AB=AD′,在Rt△ABO与Rt△AD′O中,,∴Rt△ABO≌Rt△AD′O,故①正确;②如图2,作AM⊥DE于M,作AN⊥CB于N.∵五边形ABCDE是正五边形,由旋转知:AE=AE',∠E=∠E'=108°,∠EAE'=∠OAP=60°,∴∠EAP=∠E'AO,在△APE与△AOE'中,,∴△APE≌△AOE′(ASA),∴∠OAE′=∠PAE.在Rt△AEM和Rt△ABN中,,∴Rt△AEM≌Rt△ABN (AAS),∴∠EAM=∠BAN,AM=AN.在Rt△APM和Rt△AON中,,∴Rt△APM≌Rt△AON (HL).∴∠PAM=∠OAN,∴∠PAE=∠OAB,∴∠OAE'=∠OAB=(108°﹣60°)=24°,故②错误;③如图3,∵六边形ABCDEF和六边形A′B′C′D′E′F′是正六边形,∴∠F=F′=120°,由旋转得AF=AF′,EF=E′F′,∴△APF≌△AE′F′,∴∠PAF=∠E′AF′,由旋转得∠FAF′=60°,AP=AO,∴∠PAO=∠FAF′=60°,∴△PAO是等边三角形,故③错误.④由图1中的多边形是四边形,图2中的多边形五边形,图3中的多边形是六边形,∴图n中的多边形是正(n+3)边形,同②的方法得,∠OAB=[(n+3﹣2)×180°÷(n+3)﹣60°]÷2=60°﹣,故正n边形的“叠弦角”的度数为60°﹣.故④正确.故答案:①④.【点评】此题是几何变形综合题,主要考查了正多边形的性质,旋转的性质,全等三角形的判定,等边三角形的判定,解本题的关键是判定三角形全等.二、解答题(本大题共3个小题,共30分)26.(8分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格2400【分析】(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,先求出m的范围,构建一次函数,利用函数性质解决问题.【解答】解:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.【点评】本题考查一次函数的应用、分式方程等知识,解题的关键是设未知数列出方程解决问题,注意分式方程必须检验,学会构建一次函数,利用一次函数性质解决实际问题中的最值问题,属于中考常考题型.27.(10分)(1)如图1,在正方形ABCD中,点O是对角线AC的中点,点E是边BC上一点,连接OE,过点O作OE的垂线交AB于点F.求证:OE=OF.(2)若将(1)中,“正方形ABCD”改为“矩形ABCD”,其他条件不变,如图2,连接EF.ⅰ)求证:∠OEF=∠BAC.ⅱ)试探究线段AF,EF,CE之间数量上满足的关系,并说明理由.【分析】(1)连接OB,更好正方形的性质得到OB=OA,∠OAB=∠OBA=∠OBC=45°,得到∠AOB=90°,根据全等三角形的判定和性质即可得到结论;(2)①根据已知条件得到O,E,F,B四点共圆,由圆周角定理得到∠OBA=∠OEF,根据矩形的性质即可得到结论;②如图,连接BD,延长EO交AD于G 于是到OG=OE,根据线段的垂直平分线的性质得到FG=EF,根据勾股定理即可得到结论.【解答】证明:(1)连接OB,∵在正方形ABCD中,O是AC的中点,∴OB=OA,∠OAB=∠OBA=∠OBC=45°,∴∠AOB=90°,又∵OE⊥OF,∴∠AOF=∠BOE,在△AOF和△BOE中,,∴△AOF≌△BOE,∴OE=OF;(2)①∵∠EOF=∠FBE=90°,∴O,E,F,B四点共圆,∴∠OBA=∠OEF,∵在矩形ABCD中,O是AC的中点,∴OA=OB,∠OAB=∠OBA,∴∠OEF=∠BAC;②如图,连接BD,延长EO交AD于G,∵BD与AC交于O,则△OGD≌△DEB,∴OG=OE,∴AG=CE,∵OF⊥GE,∴FG=EF,在Rt△AGF中,GF2=AG2+AF2,即EF2=CE2+AF2.【点评】本题考查了全等三角形的判定和性质,正方形的性质,矩形的性质,等腰三角形的性质,正确的作出辅助线是解题的关键.28.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣1,0),B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)连接BC,点P为抛物线上第一象限内一动点,当△BCP面积最大时,求点P的坐标;(3)设点D是抛物线的对称轴上的一点,在抛物线上是否存在点Q,使以点B,C,D,Q为顶点的四边形为平行四边形?若存在,求出点Q的坐标;若不存在,说明理由.【分析】(1)设交点式y=a(x+1)(x﹣3),然后把C点坐标代入求出a的值即可得到抛物线的解析式;(2)先利用待定系数法求出直线BC的解析式为y=﹣x+3,作PM∥y轴交BC 于M,如图1,设P(x,﹣x2+2x+3),(0<x<3),则M(x,﹣x+3),利用三角形面积公式得到∴S△PCB=•3•PM=﹣x2+,然后根据二次函数的性质求解;(3)如图2,分类讨论:当四边形BCDQ为平行四边形,设D(1,a),利用点平移的坐标规律得到Q(4,a﹣3),然后把Q(4,a﹣3)代入y=﹣x2+2x+3中求出a即可得到Q点坐标;当四边形BCQD为平行四边形或四边形BQCD为。