立体几何中外接球与内切球模型归纳

合集下载

▲立体几何中的外接球与内切球---模型知识点

▲立体几何中的外接球与内切球---模型知识点

立体几何中的外接球与内切球---模型类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径)类型二、垂面模型1(顶点的射影在底面顶点上)1.题设:如图5,⊥PA 平面ABC 解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C cB b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=类型二、垂面模型2(顶点的射影为底面三角形的外心)题设:如图6,7,8,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点图2图3图7-1图7-2图5解题步骤: 第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线; 第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆。

类型三、切瓜模型(两个平面互相垂直,一个面为直角三角形)1.题设:如图9-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径) 解题步骤:第1步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=; 第2步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R 2.如图9-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径) 21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=3.如图9-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点解题步骤: 第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线; 第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R图8-1图8-2图8-3图9-1图9-2图9-3图9-44.如图9-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=类型四、汉堡模型(直棱柱的外接球、圆柱的外接球)题设:如图10-1,图10-2,图10-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)解题步骤: 第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ; 第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA=1也是圆柱的高); 第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒R =题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图解题步骤:第一步:先画出如图所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ; 第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,; 第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+类型六、对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,图11⎪⎩⎪⎨⎧=+=+=+222222222z a c y c b x b a ⇒2)2(2222222z y x c b a R ++=++=,补充:abc abc abc V BCD A 31461=⨯-=- 第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R ,例如,正四面体的外接球半径可用此法。

立体几何中球的内切和外接问题完美版

立体几何中球的内切和外接问题完美版

性质
内切球的球心位于旋转体 的轴线上,且球的半径等 于旋转体半径。
应用
在几何和工程领域中,内 切球常用于研究旋转体的 体积和表面积。
旋转体的外接球
定义
旋转体的外接球是指与旋 转体外侧相切的球。
性质
外接球的球心位于旋转体 外侧,且球的半径等于旋 转体轴线到旋转体外侧的 垂直距离。
应用
在几何ቤተ መጻሕፍቲ ባይዱ工程领域中,外 接球常用于研究旋转体的 空间位置和关系。
立体几何中球的内 切和外接问题完美 版
目 录
• 球与多面体的内切和外接问题 • 球与旋转体的内切和外接问题 • 球与几何体的内切和外接问题实例 • 总结与展望
01
CATALOGUE
球与多面体的内切和外接问题
多面体的内切球
01
02
03
04
多面体的内切球是指与多面 体的所有顶点和面都相切的
球。
内切球半径的求法:设多面体的 每个面为$S_i$,内切球的半径
03
CATALOGUE
球与几何体的内切和外接问题实例
多面体内切球实例
总结词
多面体内切球是指一个球完全内切于一个多面体,且与多面体的每个面都相切 。
详细描述
多面体内切球的问题可以通过几何定理和公式来解决,例如欧拉公式和球内切 定理。例如,一个正方体的内切球就是其中心,半径等于正方体边长的一半。
旋转体外接球实例
外接球的性质:外接球与 多面体的每个顶点都相切 ,且外接球的直径等于多 面体的对角线长度。
外接球的应用:在几何、 物理和工程领域中,外接 球的概念被广泛应用于研 究多面体的性质和计算。
02
CATALOGUE
球与旋转体的内切和外接问题

八个有趣模型——搞定空间几何体的外接球以及内切球

八个有趣模型——搞定空间几何体的外接球以及内切球

八个风趣模型——搞定空间几何体的外接球与内切球外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论 8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论 9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有同样的外接球 .3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各极点的距离均相等. (类比:与多边形的内切圆) .3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合 .5.基本方法:(1)结构三角形利用相像比和勾股定理;(2)体积切割是求内切球半径的通用做法(等体积法).四、与台体有关的,此略.五、八大模型第一讲柱体背景的模型种类一、墙角模型(三条棱两两垂直,不找球心的地点即可求出球半径)P P Pcc cA b C C Cab bAAaB a B B图1-1图1-2图1-3PcB baAC图 1-4方法:找三条两两垂直的线段,直接用公式 (2R)2a2b2c2,即 2Ra2b2c2,求出 R例 1 (1)已知各极点都在同一球面上的正四棱柱的高为 4,体积为16,则这个球的表面积是()A.B.C.D.16202432(2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是(3)在正三棱锥S ABC中,且AM MN,若侧棱SA 2 3锥S ABC外接球的M 、N 分别是棱 SC、 BC 的中点,, 则正三棱S 表面积是.A C 解:引理:正三棱锥的对棱相互垂直 .H6取 AB,BC 的中点 D, E ,连结 AE,CD , AE,CD 交于H,连结SH,则 H 是底面正三角形ABC 的中心,平面 ABC , SH AB ,SH, AD BD, CD AB, AB平面 SCD ,AC BCAB SC ,同理: BC SA, AC SB,即正三S棱锥的对棱互垂直,M此题图如图(3)-2 ,AM MN ,SB// MN ,SB, AC SB ,A C AM SB平面 SAC ,N ,,,,BSASB SC SA BCSB SB SA(3)题-2(解答图)平面 SBC , SA SC,SA故三棱锥 S ABC 的三棱条侧棱两两相互垂直,,即 4R236 ,正三棱锥S ABC外接(2R) 2(2 3)2(2 3)2(2 3)236球的表面积是36.(4)在四周体S ABC 中,SA平面 ABC , BAC120 , SA AC 2, AB 1,则该四周体的外接球的表面积为()1040C . D.33(5)假如三棱锥的三个侧面两两垂直,它们的面积分别为 6 、 4 、 3,那么它的外接球的表面积是(6)已知某几何体的三视图以下图,三视图是腰长为 1 的等腰直角三角形和边长为 1的正方形,则该几何体外接球的体积为种类二、对棱相等模型(补形为长方体)题设:三棱锥(即四周体)中,已知三组对棱分别相等,求外接球半径(AB CD , AD BC , AC BD )第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为a,b, c ,AD BC x ,AxDy y cz zxCa bB图 2-1AB CD y,AC BD z,列方程组,a 2b 2x2x2y 2z2b2c2y2(2R)2a2b2c2,c2a2z22增补:图 2-1中,V A BCD abc1 abc 41 abc .63第三步:根据墙角模型, 2R a 2b2c2x2y2z2,222222x y z,R x y z,求出R.R288例 2(1)以下列图所示三棱锥ABCD,此中AB CD 5,AC BD 6,AD BC 7,则该三棱锥外接球的表面积为.AB DC(1) 题图(2)在三棱锥A BCD中,AB CD 2, AD BC 3, AC BD 4,则三棱锥 A BCD外接球的表面积为.(3)正四周体的各条棱长都为2,则该正面体外接球的体积为(4)棱长为2的正四周体的四个极点都在同一个球面上,若过该球球心的一个截面以下列图,则图中三角形 ( 正四周体的截面 ) 的面积是.(4)题种类三、汉堡模型(直棱柱的外接球、圆柱的外接球)C1C1A1O2F A1O2B1B1OOC CA O 1E A O 1BB图 3-1图3-2C1A1FO2B1OCA O1EB图 3-3题设:如图 3-1 ,图 3-2 ,图 3-3, 直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面能够是随意三角形)第一步:确立球心O 的地点,O1是ABC的外心,则OO1平面 ABC;第二步:算出小圆 O1的半径 AO1r ,OO11AA11h( AA1h 也是22圆柱的高);第三步:勾股定理:2222h222h2,OA O1 A O1O R( 2)r Rr(2)解出 R.例 3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的极点都在同一个球面上,且该六棱柱的体积为9 ,底面周长为3,则8这个球的体积为( 2)直三棱柱ABC A1 B1C1的各极点都在同一球面上,若AB AC AA12,BAC 120,则此球的表面积等于.(3)已知EAB所在的平面与矩形ABCD 所在的平面相互垂直, EA EB 3, AD 2, AEB 60 ,则多面体E ABCD 的外接球的表面积为.( 4)在直三棱柱ABC A1 B1C1中, AB 4, AC 6, A, AA1 4 ,则直3三棱柱 ABC A1 B1C1的外接球的表面积为.第二讲锥体背景的模型种类四、切瓜模型(两个大小圆面相互垂直且交于小圆直径——正弦定理求大圆直径是通法)PPPPO O OA O1A O11A AC O C C CB B B B图 4-1图4-2图 4-3图 4-41.如图 4-1 ,平面PAC平面 ABC ,且 AB BC (即 AC 为小圆的直径),且 P 的射影是 ABC 的外心三棱锥 P ABC 的三条侧棱相等三棱 P ABC 的底面 ABC 在圆锥的底上,极点 P 点解题步骤:第一步:确立球心 O 的地点,取 ABC 的外心O1,则P,O, O1三点共线;第二步:先算出小圆 O1的半径 AO1r,再算出棱锥的高 PO1h (也是圆锥的高);第三步:勾股定理: OA2O1 A2O1O 2R2(h R)2r2,解出R;事实上, ACP 的外接圆就是大圆,直接用正弦定理也可求解出 R.2.如图 4-2 ,平面PAC平面 ABC ,且 AB BC (即 AC 为小圆的直径),且 PA AC ,则利用勾股定理求三棱锥的外接球半径:①(2R)2PA2(2r ) 22R PA2(2r ) 2;② R2r 2OO12R r 2OO123.如图 4-3 ,平面PAC平面 ABC ,且 AB BC (即 AC 为小圆的直径)OC 2O1C 2O1O 2R 2r 2O1O 2AC 2 R2O1O 24.题设:如图 4-4 ,平面PAC平面ABC,且AB BC(即AC为小圆的直径)第一步:易知球心 O 必是 PAC 的外心,即 PAC 的外接圆是大圆,先求出小圆的直径 AC 2r ;第二步:在PAC 中,可依据正弦定理ab csin A sin B 2R ,求sin C 出 R .例 4 (1)正四棱锥的极点都在同一球面上,若该棱锥的高为 1,底面边长为 2 3 ,则该球的表面积为.(2)正四棱锥S ABCD的底面边长和各侧棱长都为2,各极点都在同一球面上,则此球体积为(3)一个正三棱锥的四个极点都在半径为1的球面上,此中底面的三个极点在该球的一个大圆上,则该正三棱锥的体积是()A.3 3B.3C. 3D. 3 43412(4)在三棱锥P ABC 中,PA PB PC 3 ,侧棱PA与底面ABC所成的角为 60,则该三棱锥外接球的体积为()A. B. C.43D. 43(5)已知三棱锥S ABC的全部极点都在球O的求面上, ABC是边长为1的正三角形 , SC为球O的直径 , 且SC 2 ,则此棱锥的体积为()A.2B.3C.2 663D.22种类五、垂面模型(一条直线垂直于一个平面)1.题设:如图 5,PA平面ABC,求外接球半径 .POCA O1DB图 5解题步骤:第一步:将ABC 画在小圆面上, A 为小圆直径的一个端点,作小圆的直径 AD ,连结 PD ,则 PD 必过球心 O ;第二步: O1为ABC的外心,因此 OO1平面ABC,算出小圆 O1的半径 O1D r(三角形的外接圆直径算法:利用正弦定理,得a b c2r ), OO11 PA;sin A sin B sin C2第三步:利用勾股定理求三棱锥的外接球半径:①(2R)2PA2(2r ) 22R PA2(2r ) 2;② R2r 2OO12Rr 2OO12.2.题设:如图 5-1至 5-8 这七个图形,P的射影是 ABC 的外心三棱锥 P ABC 的三条侧棱相等三棱锥 P ABC 的底面 ABC 在圆锥的底上,极点 P 点也是圆锥的极点 .PPPO O OC C CO1O1AO1A ABB B图 5-1图5-2图 5-3 POCA O1DB图 5-4PP PAAAO 2BCO 2O 2DBCDBO OO图 5-6图5-8解题步骤:第一步:确立球心点共线;第二步:先算出小圆(也是圆锥的高);第三步:勾股定理:O1的半径OA2O 1 A2ABC的外心 O 1,则 P,O, O 1 三r,再算出棱锥的高 PO 1hR 2 (h R)2 r 2,解出 R方法二:小圆直径参加结构大圆,用正弦定理求大圆直径得球的直径 .例 5 一个几何体的三视图以下图,则该几何体外接球的表面积为 ( )A . 3B . 222 22C .162 23正视图侧视图D .以上都不对俯视图AO 1O 1O 2O 的地点,取 图5-7第三讲二面角背景的模型种类六、折叠模型题设:两个全等三角形或等腰三角形拼在一同,或菱形折叠(如图 6)A'OH 2DH 1A E CB图6第一步:先画出如图 6 所示的图形,将找出 BCD和 ABD的外心H1和H2;第二步:过 H 1和 H 2分别作平面BCD和平面垂线的交点即为球心 O ,连结OE , OC;第三步:解OEH 1,算出OH 1,在BCD 画在小圆上,A BD 的垂线,两222Rt OCH1 中,勾股定理:注:易知 O, H 1 , E, H 2四点共面且四点共圆,证略.17例 6(1)三棱锥P ABC中,平面PAC平面ABC,△PAC和△ABC 均为边长为 2 的正三角形,则三棱锥 P ABC 外接球的半径为.(2)在直角梯形ABCD中,AB // CD,A 90,C 45,AB AD 1,沿对角线 BD 折成四周体 A BCD ,使平面 A BD 平面 BCD ,若四周体 A BCD 的极点在同一个球面上,则该项球的表面积为(3)在四周体S ABC中,AB BC,AB BC 2 ,二面角S AC B 的余弦值为33,则四周体 S ABC 的外接球表面积为(4)在边长为2 3的菱形ABCD中,BAD 60,沿对角线BD折成二面角 A BD C 为120的四周体 ABCD ,则此四周体的外接球表面积为(5)在四棱锥ABCD中,BDA 120,BDC 150,AD BD 2,CD 3 ,二面角 A BD C 的平面角的大小为120,则此四周体的外接球的体积为种类七、两直角三角形拼接在一同 ( 斜边同样 , 也可看作矩形沿对角线折起所得三棱锥 ) 模型PBCOA图 7题设:如图 7,APB ACB 90,求三棱锥P ABC外接球半径(剖析:取公共的斜边的中点O,连结OP,OC,则OA OB OC OP 1AB ,O为三棱锥P ABC外接球球心,而后在2OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小没关,只需不是平角球半径都为定值 .例 7(1)在矩形ABCD中,AB 4,BC 3,沿AC将矩形ABCD折成一个直二面角 B AC D ,则四周体 ABCD 的外接球的体积为()A. 125B. 125C. 125 1296 D. 1253(2)在矩形连结 AC为ABCD 中, AB 2 ,BC 3 ,沿 BD 将矩形 ABCD 折叠,,所得三棱锥 A BCD的外接球的表面积.第四讲多面体的内切球问题模型种类八、锥体的内切球问题1.题设:如图 8-1 ,三棱锥P ABC上正三棱锥,求其内切球的半径 .第一步:先现出内切球的截面图, E, H 分别是两个三角形的外心;PEOA CDHB图 8-1第二步:求DH 1 BD ,PO PH r,PD是侧面ABP的高;3第三步:由POE 相像于PDH ,成立等式:OE PO,解出rDH PDP2.题设:如图 8-2 ,四棱锥P ABC是正GO四棱锥,求其内切球的半径ADBHFC 图8-2第一步:先现出内切球的截面图,P,O, H 三点共线;第二步:求 FH1BC,PO PH r , PF 是侧面 PCD 的高;2第三步:由POG 相像于PFH,成立等式:OG PO,解出HF PF3.题设:三棱锥P ABC是随意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面组成的四个三棱锥的体积之和相等第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r,建立等式:V P ABC V O ABC V O PAB V O PAC V O PBCV P ABC 11111r S ABC r S PAB r S PAC r S PBC r( S ABC S PAB S PAC S PBC ) 33333第三步:解出 r3V P ABCSO ABC SO PABSO PACSO PBC例 8 (1)棱长为a的正四周体的内切球表面积是(2)正四棱锥S ABCD 的底面边长为 2 ,侧棱长为 3 ,则其内切球的半径为( 3)三棱锥 P ABC 中,底面 ABC 是边长为 2 的正三角形, PA 底面 ABC , PA 2 ,则该三棱锥的内切球半径为习题:1.若三棱锥S ABC的三条侧棱两两垂直,且SA 2,SB SC 4,则该三棱锥的外接球半径为()A.3B.6C.36D. 92.三棱锥S ABC中,侧棱SA平面ABC,底面ABC是边长为3的正三角形, SA 2 3 ,则该三棱锥的外接球体积等于.3.正三棱锥S ABC中,底面ABC是边长为 3 的正三角形,侧棱长为 2 ,则该三棱锥的外接球体积等于.4.三棱锥P ABC中,平面PAC平面ABC,△PAC边长为2的正三角形, AB BC,则三棱锥 P ABC外接球的半径为.5.三棱锥P ABC中,平面PAC平面ABC,AC 2,PA PC 3,AB BC,则三棱锥P ABC外接球的半径为.6.三棱锥P ABC中,平面PAC平面ABC,AC 2,PA PC,AB BC,则三棱锥P ABC外接球的半径为.。

八个超强模型——彻底解决立体几何的外接球和内切球问题

八个超强模型——彻底解决立体几何的外接球和内切球问题

八个超强模型——彻底解决立体几何的外接球和内切球问题摘要本文介绍了八个超强模型,这些模型可以用来彻底解决立体几何中的外接球和内切球问题。

每个模型都具有独特的特点和优势,能够有效地求解球的外接和内切问题,为立体几何的研究提供了有力的工具和方法。

引言在立体几何中,外接球和内切球问题是非常常见的问题。

求解这些问题通常需要借助一些数学模型和方法。

本文介绍了八个超强模型,这些模型在解决外接球和内切球问题方面表现出色。

模型一:球心法线模型该模型基于球的法线方程,通过求解法线方程的交点来得到球心坐标。

利用该模型可以快速准确地求解外接球和内切球的球心坐标。

模型二:点坐标向量模型该模型利用点的坐标向量来表示球心坐标,通过计算坐标向量的运算得到球心坐标。

该模型适用于各种类型的球体,求解效果良好。

模型三:坐标平移模型该模型基于坐标平移的概念,通过平移球心坐标来求解外接球和内切球的球心坐标。

该模型简单易懂,适用于多种立体几何结构。

模型四:线段接触模型该模型利用线段的接触点来求解外接球和内切球的球心坐标。

通过求解线段接触点的几何关系,可以得到球心坐标。

该模型适用于特定的立体几何结构。

模型五:平面交线模型该模型基于平面交线的概念,通过求解平面交线的方程来得到球心坐标。

该模型对于立体几何结构较复杂的情况下求解效果较好。

模型六:圆心半径模型该模型通过求解球的圆心和半径来得到球心坐标。

该模型适用于已知球的圆心和半径的情况下求解。

模型七:曲线拟合模型该模型通过对曲线进行拟合来得到球心坐标。

该模型适用于曲线较为复杂的情况下求解。

模型八:图像处理模型该模型利用图像处理的方法来得到球心坐标。

通过处理球体的图像,可以得到球心坐标。

该模型适用于图像处理技术较为成熟的情况下求解。

结论本文介绍了八个超强模型,这些模型可以用来彻底解决立体几何中的外接球和内切球问题。

每个模型都有其独特的特点和优势,能够有效地求解球的外接和内切问题。

这些模型为立体几何的研究提供了有力的工具和方法,有助于推动该领域的发展。

外接球与内切球模型总结

外接球与内切球模型总结

外接球与内切球(理)1.掌握球体的表面积与体积的计算公式,会利用相应公式求解球体的表面积与体积的计算;2.掌握圆柱体与圆锥的外接球,并学会在圆柱和圆锥体的外接球延伸到柱体以及锥体的外接球,理解与掌握多面体外接球的计算原理;3.掌握多面体的内切球的计算原理,学会利用相应公式求解多面体内切球的相关问题.1.外接球(1)侧棱垂直于底面的几何体的外接球.①圆柱的外接球:如下图所示,在圆柱1OO 中,设圆柱的底面半径为r ,圆柱的高为h ,AB 为圆柱底面圆的一条直径,AC 是一条母线,则外接球的球心就是线段AB 的中点,设球的半径为R ,则()()22222r h R +=;②直棱柱的外接球:可以将棱柱的外接圆柱1OO 作出来,则直棱柱的外接球可转化为外接圆柱的外接球,设r 为底面外接圆的半径,直棱柱的高为h ,外接球的半径为R ,则()222r h +()22R =,若直棱柱为直三棱柱,其底面外接圆的直径可以通过正弦定理进行求解;③直棱锥的外接球:如下图所示,可将直棱锥的外接直棱柱作出来,再可将其外接圆柱作出来,设r 为底面外接圆的半径,直棱柱的高为h ,外接球的半径为R ,则()()22222r h R +=;④有一个侧面垂直于底面的棱锥的外接球:如下图所示,三棱锥P ABC-中,侧面PAC⊥底面ABC,可在平面PAC内作AS垂直于AC交PAC∆的外接圆于点S,则三棱锥P ABC-的外接球与三棱锥S ABC-的外接球为同一个球,设PAC∆的外接球的半径为r',则SA=,设ABC∆的外接圆半径为r,外接球的半径为R,则()()()22222r SA R+=;⑤长方体的外接球:设长方体的长、宽、高分别为x、y、z,则长方体的体对角线为长方体外接球的一条直径,设外接球的半径为()22222R x y z=++;⑥对棱相等的三棱锥:如下图所示,在三棱锥A BCD-中,AB CD=,AC BD=,AD= BC,可作三棱锥A BCD-的外接长方体,设长方体的长宽高分别为x、y、z,外接球的半径为R,则222=+AB x z,222AC x y=+,222AD y z=+,则()22222R x y z=++SCBAPzyxDCBAzyx2222AB AC AD ++=,也就是说,对棱相等的三棱锥的外接球的直径的平方等于该三棱锥任意一个点出发的三条棱的平方和的一半;⑦特殊三棱锥的外接球:三棱锥A BCD -中,90BAC BDC ∠=∠=,则棱BC 即为其外接球的直径,棱BC 的中点为外接球的球心.(2)侧棱相等的锥体的外接球①圆锥的外接球:半圆O 中,AD 为半圆O 的直径,B 为半圆O 上异于点A 、D 的一点,将半圆O 绕着直径AD 旋转一周,得到两个圆锥拼接的几何体内接于球O ,设球O 的半径为R ,在直角ABD ∆中,由射影定理可得2AB AD AE=,在圆锥AE 中,对应的有:2R2=母线高,若圆锥的高未知,圆锥底面圆的半径为r,则圆锥的高=求得; ②侧棱相等的棱锥的外接球:对于侧棱相等的棱锥,可作其外接圆锥,则此棱锥的外接球和其外接圆锥的外接球是同一个球,设外接球的半径为R ,棱锥的侧棱长为l ,高为h ,底面的外接圆的半径为r ,则h =,222l R h ==. ODCBA(3)一般多面体的外接球:对于一般多面体的外接球,可以建立空间直角坐标系,设球心坐标为(),,x y z ,利用球心到各顶点的距离相等建立方程组,解出球心坐标,从而得到球的半径长.2.多面体的内切球:对于多面体的外接球,设其内切球的球心为O ,连接多面体各顶点与球心的连线,将多面体分割为若干个棱锥,多面体各个面的面积分别为1S 、2S 、3S 、、n S ,内切球的半径为r ,球心O 到各个面的距离均为r ,设多面体的体积为V ,多面体的表面积为S ,则()123123111111333333n n V rS rS rS rS r S S S S rS =++++=++++=,于是可得3Vr S=,对于柱体(圆柱或直棱柱)的内切球,还应该分析出柱体的高等于内切球的直径.附注:设球的半径为R ,其表面积为24S R π=,体积为343V R π=.O。

外接球与内切八大模型—老师专用

外接球与内切八大模型—老师专用

外接球与内切八大模型—老师专用1. 外接球模型外接球模型是指一个球体将几何体外切。

这种模型适用于球体的外切问题,如球体半径、球体体积等问题。

例如,一个正方体的外接球就是一个半径等于正方体对角线长度一半的球。

2. 内切球模型内切球模型是指一个球体可以刚好放入一个几何体中。

这种模型适用于球体的内含问题,如球体半径、球体体积等问题。

例如,一个正方体的内切球就是一个半径等于正方体边长一半的球。

3. 外接圆柱模型外接圆柱模型是指一个圆柱体将几何体外切。

这种模型适用于圆柱体的外切问题,如圆柱体表面积、圆柱体体积等问题。

例如,一个正方体的外接圆柱体就是一个底面积等于正方体面积的圆柱体,高等于正方体边长的圆柱体。

4. 内切圆柱模型内切圆柱模型是指一个圆柱体可以刚好围绕一个几何体。

这种模型适用于圆柱体的内含问题,如圆柱体表面积、圆柱体体积等问题。

例如,一个正方体的内切圆柱体就是一个底面积等于正方体面积的圆柱体,高等于正方体边长的一半的圆柱体。

5. 外接球筒模型外接球筒模型是指一个球筒将几何体外切。

这种模型适用于球筒的外切问题,如球筒的表面积、球筒的体积等问题。

例如,一个正方体的外接球筒就是一个底面积等于正方体面积的球筒,高等于正方体对角线长度一半的球筒。

6. 内切球筒模型内切球筒模型是指一个球筒可以刚好围绕一个几何体。

这种模型适用于球筒的内含问题,如球筒的表面积、球筒的体积等问题。

例如,一个正方体的内切球筒就是一个底面积等于正方体面积的球筒,高等于正方体边长的一半的球筒。

7. 外接圆锥模型外接圆锥模型是指一个圆锥体将几何体外切。

这种模型适用于圆锥体的外切问题,如圆锥体的表面积、圆锥体的体积等问题。

例如,一个正方体的外接圆锥体就是一个底面积等于正方体面积的圆锥体,高等于正方体对角线长度一半的圆锥体。

8. 内切圆锥模型内切圆锥模型是指一个圆锥体可以刚好围绕一个几何体。

这种模型适用于圆锥体的内含问题,如圆锥体的表面积、圆锥体的体积等问题。

高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题

高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题

高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题八个有趣模型——搞定空间几何体的外接球与内切球类型一、墙角模型墙角模型是指三条线段两两垂直的几何体,通过公式(2R) = a + b + c,即2R = a^2 + b^2 + c^2,可以求出其外接球半径R。

例1:1)已知顶点都在同一球面上的正四棱柱的高为4,体积为16,求该球的表面积。

解:由V = ah = 16,得a = 2,4R = a + a + h = 4 + 4 + 16 = 24,S = 24π,答案为C。

2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,求其外接球的表面积。

解:由2R = a + b + c = 3 + 3 + 3 = 9,得R = 9/4,S =4πR^2 = 9π。

3)在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA = 23,求正三棱锥S-ABC外接球的表面积。

解:由墙角模型的特点可知,正三棱锥的对棱互垂直。

连接AB、BC的中点D、E,连接AE、CD,交于H,则H是底面正三角形ABC的中心。

由AM⊥MN,SB//MN,可得AM⊥SB,AC⊥SB,故SB⊥平面SAC,SB⊥SA,SB⊥SC,即SB⊥SA,BC⊥SA,故SA⊥平面SBC,SA⊥SC。

因此,三棱锥S-ABC的三棱条侧棱两两互相垂直,由2R^2 = 23^2 + 23^2 + 23^2 = 36,得R^2 = 9,S = 36π。

类型二、棱台模型棱台模型是指上底面和下底面都是正多边形,且两底面中心连线与侧棱垂直的几何体。

通过勾股定理和相似三角形,可以求出其外接球半径R和内切球半径r。

例2:1)已知棱台的上底面和下底面都是正三角形,上底边长为3,下底边长为6,侧棱长为5,求其外接球半径R和内切球半径r。

解:由勾股定理可得棱台的高为4√3.设外接球半径为R,内切球半径为r,则有R/r = (a + b + c)/(a + b - c) = (3 + 6 +5)/(3 + 6 - 5) = 7,解得R = 7r。

十种求外接球与内切球模型(解析版)

十种求外接球与内切球模型(解析版)

十种求外接球与内切球模型【必备知识点】模型一:墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长.使用范围:3组或3条棱两两垂直;或可在长方体中画出该图且各顶点与长方体的顶点重合推导过程:长方体的体对角线就是外接球的直径公式:找三条两两垂直的线段,直接用公式(2R)2=a2+b2+c2,即2R=a2+b2+c2,求出R.例1.四面体ABCD的每个顶点都在球O的球面上,AB,AC,AD两两垂直,且AB=3,AC=2,AD= 3,则球O的表面积为( )A.64πB.16πC.4πD.π【答案】B【详解】四面体ABCD的外接球O即为以AB,AC,AD为长、宽、高的长方体的外接球,∴球O的外接球半径R=12AB2+AC2+AD2=2,∴球O的表面积S=4πR2=16π.故选:B.例2.在边长为2的正方形ABCD中,E,F分别为线段AB,BC的中点,连接DE,DF,EF,将△ADE,△CDF,△BEF分别沿DE,DF,EF折起,使A,B,C三点重合,得到三棱锥O-DEF,则该三棱锥外接球的表面积为( )A.3πB.6πC.6πD.24π【答案】C【详解】解:在正方形ABCD中,AD⊥AE,CD⊥CF,BE⊥BF,折起后OD,OE,OF两两垂直,故该三棱锥外接球即以OD,OE,OF为棱的长方体外接球.因为OD=2,OE=1,OF=1,所以2R=OD2+OE2+OF2=6,所以R=62,所以该三棱锥外接球的表面积为S表=4πR2=6π,故选:C.例3.已知P,A,B,C为球O的球面上的四个点,若PA⊥平面ABC,AC⊥BC,PA=1,AC=BC= 2,则球O的表面积为( )A.2πB.3πC.4πD.5π【答案】D【详解】解:在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,故可将三棱锥P-ABC补形成如图所示的长方体.若P,A,B,C为球O的球面上的四个点,则该长方体的各顶点亦在球O的球面上.设球O的半经为R,则该长方体的体对角线长为2R,即2R=PA2+AC2+BC2=5,从而有S球O=4πR2=π(2R)2=5π,故选:D.例4.如图,在矩形ABCD中,AB=2,BC=2,E为BC中点,把△ABE和△CDE分别沿AE,DE折起,使点B与点C重合于点P,若三棱锥P-ADE的四个顶点都在球O的球面上,则球O的表面积为( )A.3πB.4πC.5πD.9π【答案】C【详解】依题意,PE⊥PA,PE⊥PD,PA∩PD=P,PA,PD⊂平面PAD,则PE⊥平面PAD,又PA=PD=2,AD=2,即有PA2+PD2=AD2,则PA⊥PD,因此可将三棱锥P-ADE补形成以PE,PA,PD为相邻三条棱的长方体,若三棱锥P-ADE的四个顶点都在球O的球面上,则该长方体的各顶点亦在球O的球面上,设球O的半径为R,则该长方体的体对角线长为2R,即2R=PE2+PA2+PD2=5,所以球O的表面积为S=4πR2=π(2R)2=5π.故选:C例5.在正三棱锥S -ABC 中, 点M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的外接球的表面积为()A.6πB.12πC.32πD.36π【答案】B【详解】因为三棱锥S -ABC 为正三棱锥, 所以SB ⊥AC ,又AM ⊥SB ,AC ∩AM =A ,AC ,AM ⊂平面SAC , 所以SB ⊥平面SAC,所以SB ⊥SA ,SB ⊥SC ,同理SA ⊥SC ,即SA ,SB ,SC 三线两两垂直,且AB =22,所以SA =SB =SC =2,所以(2R )2=3×22=12,所以球的表面积S =4πR 2=12π,故选 B .例6.将一个边长为4的正三角形ABC 沿其中线BD 折成一个直二面角,则所得三棱锥A -BCD 的外接球的体积为_________.【答案】2053π【详解】由题意得:AB =BC =4,AD =CD =2,BD ⊥AD ,CD ⊥BD ,即BD ⊥平面ADC ;∵二面角A -BD -C 为直二面角,∴AD ⊥CD ,则三棱锥A -BCD 的外接球即为以BD ,CD ,AD 为长宽高的长方体的外接球,又BD =16-4=23,∴三棱锥A -BCD 的外接球半径R =12AD 2+CD 2+BD 2=124+4+12=5,∴三棱锥A -BCD 的外接球体积V =43πR 3=2053π.故答案为:2053π.例7.在正三棱锥S -ABC 中,M ,N 分别是棱SC ,BC 的中点,且AM ⊥MN , 若侧棱SA =23,则正三棱锥S -ABC 外接球的表面积是_________.【答案】36π【详解】∵AM ⊥MN ,SB ⎳MN ,∴AM ⊥SB ,∵AC ⊥SB ,∴SB ⊥平面SAC,∴SB ⊥SA ,SB ⊥SC ,∵SB ⊥SA ,BC ⊥SA ,∴SA ⊥平面SBC ,∴SA ⊥SC ,故三棱锥S -ABC 的三棱条侧棱两两互相垂直,∴(2R )2=(23)2+(23)2+(23)2=36,即4R 2=36,∴正三棱锥S -ABC 外接球的表面积是36π.例8.在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为32的正方形,AA 1=3,E 是线段A 1B 1上一点, 若二面角A -BD -E 的正切值为3,则三棱锥A -A 1D 1E 外接球的表面积为_________.【答案】35π【详解】过点E 作EF ⎳AA 1交AB 于F ,过F 作FG ⊥BD 于G ,连接EG ,则∠EGF 为二面角A -BD -E 的平面角,∵tan ∠EGF =3,∴EF FG=3,∵EF =AA 1=3,∴FG =1,则BF =2=B 1E , ∴A 1E =22,则三棱锥A -A 1D 1E 外接球的直径为8+9+18=35,因此三棱锥A -A 1D 1E 外接球的表面积S =35π.模型二:对棱相等模型使用范围:对棱相等的三棱锥推导过程:通过对棱相等,可以将其补全为长方体,补全的长方体体对角线为外接球直径,设长方体的长宽高为别为a ,b ,cAD =BC AB =CD AC =BD ⇒a 2+b 2=BC 2=λ2b 2+c 2=AC 2=μ2c 2+a 2=AB 2=k 2⇒a 2+b 2+c 2=λ2+μ2+k 22⇒R =λ2+μ2+k 28V A -BCD =abc -16abc ×4=13abc 例1.如图,在△ABC 中,AB =25,BC =210,AC=213,D ,E ,F 分别为三边中点,将△BDE,△ADF ,△CEF 分别沿DE ,EF ,DF 向上折起,使A ,B ,C 重合为点P ,则三棱锥P -DEF 的外接球表面积为( )A.72πB.7143πC.14πD.56π【答案】C【详解】由题意可知,PE =DF =10,PF =DE =13,PD =EF =5,即三棱锥P-DEF 的对棱相等,先将该三棱锥补充成长方体,如图所示:设FH =x ,HD =y ,HP =z ,则x 2+y 2=10,y 2+z 2=5,x 2+z 2=13,所以x 2+y 2+z 2=14,于是三棱锥P -DEF 的外接球直径为14,半径为142,所以该三棱锥外接球的表面积为:4π⋅1422=14π.故选:C .例2.在△ABC 中,AB =AC =2,cos A =34,将△ABC 绕BC 旋转至△BCD 的位置,使得AD =2,如图所示,则三棱锥D -ABC 外接球的体积为_____________.【答案】556π【详解】在△ABC 中,由余弦定理得BC 2=22+22-2×2×2×34=2,所以BC =2.在三棱锥D -ABC 中,AB =AC =DB =DC =2,AD =BC =2.将三棱锥D -ABC 放入长方体,设长方体的长、宽、高分别为a ,b ,c ,棱锥D -ABC 外接球的半径为R ,则a 2+b 2=4,b 2+c 2=4,a 2+c 2=2,所以a 2+b 2+c 2=5,所以R =12a 2+b 2+c 2=52,从而三棱锥D -ABC 外接球的体积V =43πR 3=556π.故答案为:556π例3.已知三棱锥P -ABC 的每条侧棱与它所对的底面边长相等,且PA =32,PB =PC =5,则该三棱锥的外接球的表面积为______.【答案】34π【详解】解:根据题意,三棱锥P -ABC 可以嵌入一个长方体内,且三棱锥的每条棱均是长方体的面对角线,设长方体交于一个顶点的三条棱长为a ,b ,c ,如图所示,则a 2+b 2=PA 2=18,a 2+c 2=PB 2=25,b 2+c 2=PC 2=25,解得a =3,b =3,c =4.所以该三棱锥的外接球的半径为R =a 2+b 2+c 22=32+32+422=342,所以该三棱锥的外接球的表面积为S =4πR 2=4π×342 2=34π.故答案为:34π例4.已知四面体ABCD 的棱长满足AB =AC =BD =CD =2,BC =AD =1,现将四面体ABCD 放入一个轴截面为等边三角形的圆锥中,使得四面体ABCD 可以在圆锥中任意转动,则圆锥侧面积的最小值为________.【答案】274π【详解】根据题意,只需四面体ABCD 在圆锥的内切球内,下面求四面体ABCD 的外接球半径.如图所示,将四面体放入长方体中,设长方体的长宽高分别为a ,b ,c ,则a 2+b 2=4,a 2+c 2=4,b 2+c 2=1,故4R 2=a 2+b 2+c 2=92,可得四面体ABCD 的外接球半径为324.当圆锥的侧面积最小时,该圆锥的内切球即四面体ABCD 的外接球,则此时圆锥的内切球的半径为R =324,底面圆的半径为r =324×3=364,母线长为324×2=322,所以侧面积为S =π×364×362=27π4.故答案为:27π4.例5.在三棱锥P -ABC 中,PA =BC =25,PB =AC =13,AB =PC =5,则三棱锥P -ABC 的外接球的表面积是______.【答案】29π【详解】由题意,PA =BC =25,PB =AC =13,PC =AB =5,将三棱锥P -ABC 放到长方体中,可得长方体的三条面对角线分别为25,13,5,设长方体的长宽高分别为a,b ,c ,即a 2+b 2=25,c 2+b 2=13,a 2+c 2=5,解得:a =4,b =2,c =3.长方体的体对角线即为三棱锥和长方体公共外接球的直径2R ,∴(2R )2=a 2+b 2+c 2⇒4R 2=29⇒S 球=4πR 2=29π﹒故答案为:29π.例6.已知三棱锥A -BCD ,三组对棱两两相等,且AB =CD =1,AD =BC =3,若三棱雉A -BCD的外接球表面积为9π2.则AC =______.【答案】5【详解】将四面体A-BCD放置于长方体中, ∵四面体A-BCD的顶点为长方体八个顶点中的四个,∴长方体的外接球就是四面体A-BCD的外接球,∵AB=CD=1,AD=BC=3,且三组对棱两两相等,∴设AC=BD=x,得长方体的对角线长为1212+(3)2+x2=124+x2,可得外接球的直径2R=124+x2,所以 R=24+x24,∵三棱锥A-BCD的外接球表面积为9π2,∴4πR2=9π2,解得 R=32 4, 即24+x24=324,解之得x=5, 因即AC=BD=5.模型三:汉堡模型适用范围:有一条侧棱垂直于底面的柱体推导过程:如图,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形).第一步:确定球心O的位置,O1是ABC的外心,则OO1⊥平面ABC.第二步:算出小圆O1的半径AO1=r,OO1=12AA1=12h AA1=h也是圆柱的高).第三步:勾股定理:OA2=O1A2+O1O2⇒R2=h22+r2⇒R=r2+h2 2,求出R.公式:R=r2+h 22例1.已知某圆柱的高为42,体积为42π,则该圆柱外接球的表面积为( )A.32πB.36πC.40πD.44π【答案】B【详解】设圆柱底面圆的半径为r,则πr2×42=42π,解得r=1.设该圆柱的两底面中心分别为O1、O2,则该圆柱外接球的球心O为线段O1O2的中点,球O 的半径为R =12+422 2=3,故球O 的表面积S =4πR 2=36π.故选:B .例2.已知三棱柱的各个侧面均垂直于底面,底面为正三角形,侧棱长与底面边长之比为3:2,顶点都在一个球面上,若三棱柱的侧面积为162,则该球的表面积为( )A.120πB.129πC.129πD.180π【答案】C【详解】由题意,设球的半径为r ,底面三角形边长为2x ,因为侧棱长与底面边长之比为3:2,所以侧棱长为3x ,因为三棱柱的侧面积为162,即满足3⋅3x ⋅2x =18x 2=162,解得x =3,可知侧棱长为9,底面边长为6,如图所示,设N ,M 分别是上、下底面的中心,MN 的中点O 是三棱柱ABC -A 1B 1C 1外接球的球心,则AM =33×6=23,OM =12MN =12AA 1=92,r =OA =OM 2+AM 2=92 2+23 2=1292,所以S =4πr 2=4π×12922=129π.故选:C .例3.已知三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,AB =AC =AA 1=2,∠BAC =120∘,则球O 的表面积是( )A.4πB.163πC.16πD.20π【答案】D【详解】由余弦定理得BC 2=AB 2+AC 2-2AB ⋅AC ⋅cos ∠BAC =22+22-2×2×2×-12 =12,∴BC =23,设△ABC 外接圆的圆心为O 1,半径为CO 1,由正弦定理得BC sin ∠BAC =2CO 1 ,即2332=2CO 1,解得CO 1=2,设外接球的半径为R =CO ,∵O 1O =12AA 1=1,∴R =CO =CO 1 2+OO 1 2=22+12=5,球O 的表面积为S =4πR 2=20π,故选:D .例4.直三棱柱ABC -A 1B 1C 1所有顶点都在球O 的表面上,且∠BAC =π6,AA 1=22,AC =3AB =3,则球O 的表面积为________.【答案】20π【详解】解:直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,且∠BAC =π6,AA 1=22,,AC =3AB =3,∴BC =AB 2+AC 2-2AB ⋅AC cos π6=3+9-2×3×3×32=3,设ΔABC 为外接圆的圆心为E ,2r =3sin π6=23,所以r =3,设外接球的球心为O ,设球的半径为R ,所以R =r 2+12AA 1 2=5,故S 球=4π⋅(5)2=20π.故答案为:20π.例5.在四面体ABCD 中,AB =CD =1,BC =2,且AB ⊥BC ,CD ⊥BC ,异面直线AB ,CD 所成角为π3,则该四面体外接球的表面积为______.【答案】16π3或8π【详解】由题意可以将四面体ABCD 补成一个如图所示的直三棱柱,因为异面直线AB ,CD 所成角为π3,所以∠ABE =π3或2π3,设△ABE 的外接圆半径为r ,当∠ABE =π3时,1sin60∘=2r ,r =33 ,当∠ABE =2π3时,AE =3 ,则3sin120∘=2r ,r =1,设四面体的外接球半径为R ,则R =r 2+BC 2 2=r 2+1 ,所以该四面体外接球的半径R =233或2,则外接球的表面积为.4πR 2=16π3或8π,故答案为:16π3或8π模型四:垂面模型适用范围:有一条棱垂直于底面的椎体推导过程:第一步:将ABC 画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O .第二步:O 1为ABC 的外心,所以OO 1⊥平面ABC ,算出小圆O 1的半径O 1D =r (三角形的外接圆直径算法:利用正弦定理a sin A =b sin B=c sin C =2r ,OO 1=12PA .第三步:利用勾股定理求三棱锥的外接球半径:(1)(2R )2=PA 2+(2r )2⇔2R =PA 2+(2r )2;(2)R 2=r 2+OO 21⇔R =r 2+OO 21.公式:R 2=r 2+h 24例1.已知三棱锥P -ABC ,其中PA ⊥平面ABC ,∠BAC =120°,PA =AB =AC =2,则该三棱锥外接球的表面积为( )A.12πB.16πC.20πD.24π【答案】C【详解】根据题意设底面△ABC 的外心为G ,O 为球心,所以OG ⊥平面ABC ,因为PA ⊥平面ABC ,所以OG ⎳PA ,设D 是PA 中点,因为OP =OA ,所以DO ⊥PA ,因为PA ⊥平面ABC ,AG ⊂平面ABC ,所以AG ⊥PA ,因此OD ⎳AG ,因此四边形ODAG 是平行四边形,故OG =AD =12PA =1,由余弦定理,得BC =AB 2+AC 2-2AB ⋅AC ⋅cos120°=4+4-2×2×2×-12=23,由正弦定理,得2AG =2332⇒AG =2,所以该外接球的半径R 满足R 2=OG 2+AG 2=5⇒S =4πR 2=20π,故选:C .例2.已知四面体ABCD 的每个顶点都在球O 的球面上,CD ⊥平面ABC ,AC =23,△ABC 是正三角形,△ACD 是等腰三角形,则球O 的体积为( )A.2053πB.86πC.2873πD.36π【答案】C【详解】∵CD ⊥平面ABC ,AC ⊂平面ABC ,∴CD ⊥AC ,又△ACD 是等腰三角形,∴CD =AC .∵△ABC 是正三角形,∴AB =BC =AC =CD =23.设E 为△ABC 外接圆的圆心,则CE =23×32×23=2,OE =12CD =3,∴OC =OE 2+CE 2=7,∴球O 的体积V =43π×7 3=2873π.故选:C .例3.在三棱锥S -ABC 中, 侧棱SA ⊥底面ABC ,AB =5,BC =8,∠ABC =60°,SA =25, 则该三棱锥的外接球的表面积为()A.643π B.2563π C.4363π D.2048327π【答案】B【详解】 由题意知,AB =5,BC =8,∠ABC =60°,则在△ABC 中, 由余弦定理得 AC 2=AB 2+BC 2-2×AB ×BC ×cos ∠ABC ,解得AC =7,设△ABC 的外接圆半径为 r ,则△ABC 的外接圆直径2r =AC sin ∠ABC =772,∴r =73, 又∵侧棱SA ⊥底面ABC ,∴三棱锥的外接球的球心到平面ABC 的距离 h =12SA =5,则外接球的半径R =732+(5)2=643,则该三棱锥的外接球的表面积为S =4πR 2=2563π.例4.已知四棱锥P -ABCD 的五个顶点在球O 的球面上,PA ⊥底面ABCD ,PA =4,AB =AD ,BC=CD ,∠BAD =120°,且四边形ABCD 的面积为934,则球O 的表面积为___________.【答案】25π【详解】如图所示,在四边形中ABCD ,连结BD ,AC ,由AB =AD ,BC =CD ,所以△ABC ≌△ADC ,所以∠ABC =∠ADC ,∠BAC =∠DAC ,因为A ,B ,C ,D 在同一圆上,所以∠ABC =∠ADC =90°,又因为∠BAD =120°,所以∠BCD =60°,则∠BAC =∠DAC =60°,在Rt △ABC 中,可得BC =3AB ,因为底面ABCD 的面积为934,所以2×12AB ⋅3AB =934,解得AB =32,则BC =332,AC =3322+322=3,所以Rt △ABC 外接圆的半径r =32,将四棱锥P -ABCD 补成直四棱柱PEFG -ABCD ,该直棱柱的所有顶点都在球O 的球面上,设底面四边形ABCD 所在圆的圆心为O 1,连接OO 1,则OO 1⊥平面ABCD ,过OM ⊥PA ,垂足为M ,由球的对称性可知,球心O 到底面ABCD 的距离为d =OO 1=AM =12PA =2,所以球O 的半径R 满足R 2=d 2+r 2=254,所以球O 的表面积S 球O =4πR 2=25π.故答案为:25π.例5.在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =120°,AC =2,AB =1,设D 为BC 中点, 且直线PD 与平面ABC 所成角的余弦值为55, 则该三棱雉外接球的表面积为___________.【答案】 373π【详解】在△ABC 中,∠BAC =120°,AC =2,AB =1,由余弦定理得:BC 2=AC 2+AB 2-2AC ⋅BC ⋅cos ∠BAC ,即BC 2=22+12-2×2×1×cos120°=7,解得:BC =7. 设△ABC 的外接圆半径为r ,由正弦定理得2r =BC sin ∠BAC =7sin120°=273解得:r =73=213;且cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC =12+(7)2-222×1×7=277,又D 为BC 中点, 在△ABD 中,BD =12BC =72,AB =1,cos ∠ABD =277. 由余弦定理得:AD 2=AB 2+BD 2-2AB ⋅BD cos ∠ABD ,即:AD 2=12+722-2×1×72×277=34,解得AD =32.又因为PA ⊥平面ABC , 所以 ∠PDA 为直线PD 与平面ABC 所成角, 由cos ∠PDA =55,得 sin ∠PDA =255,tan ∠PDA =2所以在Rt △PAD 中, PA =AD ⋅tan ∠PDA =32⋅2=3. 设三棱锥P -ABC 的外接球半径为R , 所以R =PA 22+r 2=322+2132=3712,三棱锥P -ABC 外接球表面积为S =4πR 2=373π.模型五:斗笠模型使用范围:正棱雉或顶点的投影在底面的外心上推导过程:取底面的外心01, 连接顶点与外心,该线为空间几何体的高h ,在h 上取一点作为球心0,根据勾股定理R 2=(h -R )2+r 2⇔R =r 2+h 22h公式:R =r 2+h 22h例1.已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1, 则球O 的表面积为()A.64πB.48πC.36πD.32π【答案】A 【详解】设⊙O 1的半径为r ,球的半径为R ,依题意,得πr 2=4π,∴r =2.由正弦定理可得ABsin60°=2r ,∴AB =2r sin60°=2 3.∴OO 1=AB =2 3.根据球的截面性质,得OO 1⊥平面ABC ,∴OO 1⊥O 1A ,R =OA =OO 21+O 1A 2=OO 21+r 2=4,∴球O 的表面积S =4πR 2=64π.故选A .例2.正四棱锥的顶点都在同一球面上, 若该棱锥的高为4 , 底面边长为2 , 则该球的表面积为()A.81π4B.16πC.9πD.27π4【答案】A 【详解】如图所示,设球半径为R ,底面中心为O 且球心为O ,∵正四棱锥P -ABCD 中 AB =2,∴AO =2,∵PO =4,∴在Rt △AOO 中, AO 2=AO ′2+OO ′2,∴R 2=(2)2+(4-R )2,解得R =94,∴该球的表面积为4πR 2=4π×942=81π4.例3.已知一个圆锥的母线长为26,侧面展开图是圆心角为23π3的扇形,则该圆锥的外接球的体积为( )A.36πB.48πC.36D.242【答案】A 【详解】设圆锥的底面半径为r ,由侧面展开图是圆心角为23π3的扇形得:2πr =23π3×26,解得:r =22.作出圆锥的轴截面如图所示:设圆锥的高为h ,则h =26 2-22 2=4.设该圆锥的外接球的球心为O ,半径为R ,则有R =h -R2+r 2,即R =4-R2+22 2,解得:R =3,所以该圆锥的外接球的体积为4πR 33=4π333=36π.故选:A .例4.在三棱锥P -ABC 中,侧棱PA =PB =PC =10,∠BAC =π4,BC =22,则此三棱锥外接球的表面积为_______.【答案】50π3【详解】因为PA =PB =PC =10,所以点P 在底面ABC 的射影为△ABC 的外心O 1,所以球心O 在直线PO 1上,设三棱锥外接球的半径为R ,因为2AO 1=22sin π4,所以AO 1=2,PO 1=6,由AO 2=OO 21+AO 21可得,R 2=6-R 2+4,解得R =56,故此三棱锥外接球的表面积为4πR 2=4π×256=503π.故答案为:50π3.例5.已知正四面体的棱长为4,则此四面体的外接球的表面积是为________.【答案】24π【详解】如图正四面体ABCD 棱长为4,AH ⊥平面BCD 于H ,则H 是△BCD 中心,BH =33×4=433,AH ⊥平面BCD ,BH ⊂平面BCD ,则AH ⊥BH ,AH =42-4332=463,设外接球球心为O ,则O 在AH ,则OA =OB =R 为外接半径,由BH 2+OH 2=BO 2得4332+463-R2=R 2,解得R =6,∴S =4πR 2=24π.故答案为:24π.例6.在三棱雉P -ABC 中,PA =PB =PC =26,AC =AB =4,且AC ⊥AB ,则该三棱锥外接球的表面积为________.【答案】36π【详解】设顶点P 在底面中的射影为O 1,由于PA =PB =PC ,所以O 1A =O 1B =O 1C ,即点O 1 是底面△ABC 的外心,又AC ⊥AB ,所以O 1为BC 的中点,因为PA =PB =PC =26,AC =AB =4,所以BC =42,AO 1=22,PO 1=4,设外接球的球心为O ,半径为R ,则O 必在PO 1上, O 1O =4-R ,在Rt △O 1OA 中, (4-R )2+(22)2=R 2, 解得R =3,所以S 2=4πR 2=36π.例7..一个圆锥恰有三条母线两两夹角为60°, 若该圆雉的侧面积为33π,则该圆雉外接球的表面积为________.【答案】27π2【详解】设∠ASB =∠BSC =∠CSA =60°,则SA =SB =SC =AB =AC =BC .设AB =x ,则底面圆的直径为2r =x sin60°=2x 3,该圆锥的侧面积为12π⋅2x3⋅x =33π,解得x =3,高OS =32-(3)2= 6.∴r =33= 3.设圆锥外接球的半径为R ,所以(6-R )2+r 2=R 2,解得R =364, 则外接球的表面积为4πR 2=27π2.类型六:切瓜模型使用范围:有两个平面互相垂直的棱雉推导过程:分别在两个互相垂直的平面上取外心O 1、O 2过两个外心做两个垂面的垂线, 两条垂线的交点即为球心0,取B C 的中点为E , 连接OO 1、OO 2、O 2E 、O 1E 为矩形由勾股可得|OC |2=|O 2C |2+|OO 2|2=|O 2C |2+|O 1C |2-|CE |2∴R 2=r 21+r 22-l 24公式:R 2=r 21+r 22-l 24例1.已知四棱锥P -ABCD 中,底面ABCD 为边长为4的正方形,侧面PAB ⊥底面ABCD ,且△PAB为等边三角形,则该四棱锥P -ABCD 外接球的表面积为( )A.112π3B.64π3C.64πD.16π【答案】A【详解】如图所示,在四棱锥P -ABCD 中,取侧面△PAB 和底面正方形ABCD 的外接圆的圆心分别为O 1,O 2,分别过O 1,O 2作两个平面的垂线交于点O ,则由外接球的性质知,点O 即为该球的球心,取线段AB 的中点E ,连O 1E ,O 2E ,O 2D ,OD ,则四边形O 1EO 2O 为矩形,在等边△PAB 中,可得PE =23,则O 1E =233,即OO 2=233,在正方形ABCD 中,因为AB =4,可得O 2D =22,在直角△OO 2D 中,可得OD 2=OO 22+O 2D 2,即R 2=OO 22+O 2D 2=283,所以四棱锥P -ABCD 外接球的表面积为S =4πR 2=112π3.故选:A .例2.已知三棱锥A -BCD 中, △ABD 与△BCD 是边长为2的等边三角形且二面角A -BD -C 为直二面角, 则三棱雉A -BCD 的外接球的表面积为()A.10π3B.5πC.6πD.20π3【答案】D 【详解】取BD 的中点M ,连接AM ,CM ,∠AMC =90°,AF :FM =2:1,CE :EM =2:1,OF ⊥AM ,OE ⊥MC ,OE ∩OF =O 连接OC ,点 O 是三棱锥A -BCD 的外接球的球心,因为棱长都是2 ,所以OE =FM =33,EC =233,所以在△OEC 中,R =OC =OE 2+EC 2=153,那么外接球的表面积是S =4πR 2=203π ,故选D .例3.已知四棱锥P -ABCD 的体积是363,底面ABCD 是正方形,△PAB 是等边三角形,平面PAB ⊥平面ABCD ,则四棱锥P -ABCD 的外接球的体积为________.【答案】2821π【详解】设正方形ABCD 的边长为2x ,在等边三角形PAB 中,过P 点作PE ⊥AB 于E ,由于平面PAB ⊥平面ABCD ,∴PE ⊥平面ABCD .由于△PAB 是等边三角形,则PE =3x ,∴V P -ABCD =13⋅S ABCD ⋅PE =13×2x 2×3x =363,解得x =3.设四棱锥外接球的半径为R ,O 1为正方形ABCD 中心,O 2为等边三角形PAB 中心,O 为四棱锥P -ABCD 外接球球心,则易知OO 2EO 1为矩形,则OO 2=EO 1=12AD =x =3,PO 2=23PE =23⋅33=23,R =OP =OO 22+PO 22=9+12=21,∴外接球体积V =43π×(21)3=2821π.故答案为:2821π.例4.已知四面体ABCD 中,△ABD 和△BDC 是等边三角形,二面角A -BD -C 为直二面角.若AB =43,则四面体ABCD 外接球的表面积为__________________.【答案】80π【详解】如图所示:设O 1为△BCD 的中心,O 为四面体ABCD 的外接球的球心,则OO 1⊥平面BDC .设M 为线段BD 的中点,外接球的半径为R ,连接AM ,CM ,OA ,过O 作OG ⊥AM 于点G ,易知G 为△ABD 的中心,则OO 1=OG =MO 1=MG ,因为MA =32×43=6,故MG =OG =13×6=2,GA =4,在Rt △AGO 中,GA 2+GO 2=OA 2,故22+42=R 2,则R =25.所以外接球的表面积为S =4πR 2=80π,故答案为:80π.例5.已知在三棱锥A -BCD 中,平面ABD ⊥平面BCD ,△BCD 和△ABD 均是边长为23的正三角形,则该三棱锥的外接球体积为___________.【答案】2053π【详解】依题意,平面ABD ⊥平面BCD ,△BCD 和△ABD 均是边长为23的正三角形,设G 是BD 的中点,则AG ⊥BD ,CG ⊥BD ,由于平面ABD ⊥平面BCD 且交线为BD ,所以AG ⊥平面BCD ,CG ⊥平面ABD .设E ,F 分别是等边三角形ABD 和等边三角形BCD 的中心,则AE =CF =2GE =2GF =23CG =23×3=2,设O 是三棱锥A -BCD 外接球的球心,则OE ⊥平面ABD ,OF ⊥平面BCD .所以外接球的半径R =OF 2+CF 2=12+22=5,所以外接球的体积为4π3×5 3=2053π.故选:2053π模型七:折叠模型使用范围:两个全等三角形或等腰三角形拼在一起,或菱形折叠.推导过程:两个全等的三角形或者等腰拼在一起,或者菱形折叠,设折叠的二面角∠A EC =α,CE =A E =h .如图,作左图的二面角剖面图如右图:H 1和H 2分别为△BCD ,△A BD 外心,CH 1=r =BD2sin∠BCD,EH1=h-r,OH1=(h-r)tan α2故R2=OC2=OH21+CH21=r2+(h-r)2tan2α2.公式:R2=r2+(h-r)2tan2α2例1.已知菱形ABCD中,∠DAB=60°,AB=3,对角线AC与BD的交点为O,把菱形ABCD沿对角线BD折起, 使得∠AOC=90°,则折得的几何体的外接球的表面积为()A.15πB.15π2C.7π2D.7π【答案】A【解析】菱形ABCD中,∠DAB=60°,AB=3,三角形ABD的外接圆的半径为r=32sin60°=3,高h=332,对角线AC与BD的交点为O,使得α=∠AOC=90°,则折得的几何体的外接球的半径为:R=(3)2+332-32tan245°=152,外接球的表面积为S=4π152 2=15π, 故选 A.例2.在三棱雉P-ABC中,PA=PB=AC=BC=2,AB=23,PC=1,则三棱雉P-ABC的外接球的表面积为()A.4π3B.4πC.12πD.52π3【答案】D【解析】取AB中点D,因为PA=PB=AC=BC=2,所以PD=CD=1,又 PD⊥AB,CD⊥AB,则面PDC⊥面ABC,设△ABC的外心为O1,外接圆半径为r,三棱锥P-ABC的外接球的球心为O,则OO1⊥面ABC,∠ACB=120°,由r=AB2sin120°=2,h=1,设∠PDC=α=60°(二面角平面角),外接球的半径为 R,R=r2+(h-r)2tan2α2=(2)2+(1-2)2tan230°=133,所以三棱雉P-ABC的外接球的表面积为4πR2=52π3,故选 D.例3.在边长为23的菱形ABCD中,∠BAD=60°,沿对角线AC折成二面角B-AC-D为120°的四面体ABCD,则此四面体的外接球表面积为________.【答案】84π【解析】如图所示, 典型的全等等腰三角形共底边:ED=h=3,O2D=r=23,∠BED=α=120°,可根据几何性质知道 ∠O 2EO =60°,OO 2=EO 2tan60°=3,R =OO 22+DO 22=(3)2+(23)2=21,或者可以通过公式R =r 2+(h -r )2tan 2α2=(23)2+(3-23)2tan 260°=21,S =4πR 2=84π.模型八:已知球心或球半径模型例1.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.【答案】36π【解析】如图, 连接AO ,OB ,∵SC 为球O 的直径,∴点O 为SC 的中点, ∵SA =AC ,SB =BC ,∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB , 平面SCA ∩平面SCB =SC ,∴AO ⊥平面SCB , 设球O 的半径为R ,则OA =OB =R ,SC =2R .∴V S ⋅ABC =V A -SBC =13×S △SBC ×AO =13×12×SC ×OB ×AO , 即9=13×12×2R ×R ×R , 解得R =3,∴球O 的表面积为S =4πR 2=4π×32=36π.例2.已知三棱锥A -BCD 的所有顶点都在球O 的球面上,AB 为球O 的直径,若该三棱雉的体积为3,BC =3,BD =3,∠CBD =90°, 则球O 的体积为________.【答案】32π3【解析】设A 到平面BCD 的距离为h∵三棱锥的体积为3,BC =3,BD =3,∠CBD =90°∴13×12×3×3×h =3,∴h =2,∴球心O 到平面BCD 的距离为1.设CD 的中点为E ,连接OE ,则由球的截面性质可得OE ⊥平面CBD ,∵△BCD 外接圆的直径CD =23,∴球O 的半径OD =2,∴球O 的体积为32π3.例3.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形, SC 为球O的直径, 且SC =2,则此棱锥的体积为()A.26B.36C.23D.22【答案】A【解析】由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点, 因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍.在三棱锥O -ABC 中,其棱长都是1,S △ABC =34×AB 2=34, 高OD =12-332=63,∴V S -ABC =2V O -ABC =2×13×34×63=26. 故选 A .例4.三棱锥S -ABC 的底面各棱长均为3 , 其外接球半径为2 , 则三棱锥S -ABC 的体积最大时,点S 到平面ABC 的距离为()A.2+3B.2-3C.3D.2【答案】C【解析】如图, 设三棱锥S -ABC 底面三角形ABC 的外心为G , 三棱锥外接球的球心为O , 要使三棱锥 S -ABC 的体积最大, 则O 在SG 上,由底面三角形的边长为3,可得AG =32sin60°=3.连接OA ,在 Rt △OGA 中,由勾股定理求得OG =OA 2-GA 2=22-(3)2=1.∴点S 到平面ABC 的距离为 OS +OG =2+1=3. 故选 C .模型九:最值模型最值问题的解法有两种方法:一种是几何法,即在运动变化过䅣中得到最值,从而转化为定值问题求解.另一种是代数方法,即建立目标函数,从而求目标函数的最值.例1.在边长为6的菱形ABCD 中,∠A =π3,现将△ABD 沿BD 折起,当三棱锥A -BCD 的体积最大时,三棱锥A -BCD 的外接球的表面积为( )A.60πB.30πC.70πD.50π【答案】A 【分析】当三棱锥A -BCD 的体积最大值时,平面ABD ⊥平面BCD ,即可求出外接圆的半径,从而求出面积.【详解】当三棱锥A -BCD 的体积最大值时,平面ABD ⊥平面BCD ,如图,取BD 的中点为H ,连接AH ,CH ,则AH ⊥BD .设O 1,O 2分别为△ABD ,△BCD 外接圆的圆心,O 为三棱锥A -BCD 的外接球的球心,则O 1在AH 上,O 2在CH 上,且AO 1=2O 1H =23AH =23,且O 2H ⊥BD ,OO 1⊥平面ABD ,OO 2⊥平面BCD .∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AH ⊂平面ABDAH ⊥平面ABD ,AH ⎳O 2O ,同理CH ⎳O 1O ∴四边形O 1OO 2H 为平行四边形∵AH ⊥平面BCD ,O 2H ⊂平面BCD ∴AH ⊥O 2H ,即四边形O 1OO 2H 为矩形.∴OO 2=O 1H =3CO 2=23×32×6=23∴外接球半径R =OO 22+CO 22=3+12=15∴外接球的表面积为4πR 2=60π故选:A .例2.在四棱锥S -ABCD 中,侧面SAD ⊥底面ABCD ,且SA =SD ,∠ASD =90°,底面ABCD 是边长为2的正方形,设P 为该四棱锥外接球表面上的动点,则三棱锥P -SAD 的最大体积为( )A.1+2B.2+223C.2+23D.1+23【答案】D 【详解】连接AC ,BD 交于点O ,取AD 中点为M ,连接SM ,OS ,作图如下:因为AS =DS ,∠ASD =90°,又M 为AD 的中点,故M 为Rt △SAD 的外心,又平面SAD ⊥平面ABCD ,且面SAD ∩面ABCD =AD ,又OM ⊥AD ,OM ⊂面ABCD ,故可得OM ⊥面SAD ,故OA =OS =OD ;又四边形ABCD 为正方形,且O 为对角线交点,故可得OA =OB =OC =OD ,综上所述,OA =OB =OC =OD =OS ,故O 为四棱锥S -ABCD 的外接球的球心.则其外接球半径R =OD =12BD =2.又P 为该四棱锥外接球表面上的动点,若使得三棱锥P -SAD 的体积最大,则此时点P 到平面SAD 的距离h =OM +R =1+2,故其体积的最大值V =13S △SAD ×h =13×12×AD ×SM ×1+2 =13×12×2×1×1+2 =1+23.故选:D .例3.已知P ,A ,B ,C ,D 都在同一个球面上,平面PAB ⊥平面ABCD ,ABCD 是边长为2的正方形,∠APB =60°,当四棱锥P -ABCD 的体积最大时,该球的半径为______.【答案】213【分析】先求出四棱锥P -ABCD 的体积最大时,△PAB 为等边三角形,再找出外接球的球心,通过勾股定理即可求得半径.【详解】如图,过点P 作PQ ⊥AB 于Q ,平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,∴PQ ⊥平面ABCD ,V P -ABCD =13⋅PQ ⋅S ABCD ,故四棱锥P -ABCD 的体积最大,即PQ 最大,∵AB =2,PQ 最大,即△PAB 面积最大,由∠APB =60°,S △PAB =12⋅PA ⋅PB ⋅sin ∠APB =34⋅PA ⋅PB ,得cos ∠APB =AP 2+BP 2-42AP ⋅BP=12,AP 2+BP 2=AP ⋅BP +4≥2AP ⋅BP ,得AP ⋅BP ≤4,当且仅当AP =BP =2时取等号,此时△PAB 面积最大,△PAB 为等边三角形.取△PAB 的外心为O 1,正方形ABCD 的外心为O 2,过O 1,O 2分别作所在平面的垂线,交点为O ,O 即为四棱锥P -ABCD 外接球的球心,四边形OO 2QO 1为矩形,OO 1=O 2Q =1 ,PO 1=23PQ =233,设外接球半径为R ,则R =12+2332=213.故答案为:213.例4.A ,B ,C ,D 四点均在同一球面上,∠BAC =120∘,△BCD 是边长为2的等边三角形,则△ABC 面积的最大值为__________,四面体ABCD 体积最大时球的表面积为___________.【答案】 33 20π3【分析】①由于S △ABC =12AB ⋅AC sin ∠BAC =34AB ⋅AC ,求△ABC 面积的最大值即是求AB ⋅AC 的最大值,利用余弦定理结合重要不等式即可求解②当面ABC⊥面BCD时四面体的体积最大,确定出球心后计算出球的半径即可求解【详解】①因为∠BAC=120∘所以S△ABC=12AB⋅AC sin∠BAC=34AB⋅AC又BC2=AB2+AC2-2AB⋅AC⋅cos120∘即4=AB2+AC2+AB⋅AC≥2AB⋅AC+AB⋅AC=3AB⋅AC所以AB⋅AC≤4 3所以S△ABC=34AB⋅AC≤34×43=33即△ABC面积的最大值为3 3②过A作AH⊥BC,垂足为H, S△ABC=12AH⋅BC=AH则△ABC面积的最大时,AH最大,AH的最大值为3 3,此时△ABC为等腰三角形,H为BC中点S△BCD=12×2×2×32=3,V A-BCD=13S△BCD⋅h=33h则当AH⊥平面BCD时, h最大,此时面ABC⊥面BCD如图,设O为四面体ABCD 外接球的球心, O1,O2分别为△ABC,△BCD的外接圆的圆心. OO1⊥平面ABC,OO2⊥平面BCD,在△ABC中BCsin∠BAC=433=2O2A⇒O2A=33DO1=23DH=23×32×2=233OO1=O2H=O2A-AH=33∴四面体ABCD外接球的半径R=OO21+O1D2=53外接球的表面积为4πR2=20π3模型十:内切球模型以三棱雉P-ABC为例, 求其内切球OE的半径推导过程:等体积法,三棱雉P-ABC体积等于内切球球心与四个面构成的四个三棱雉的体积之和.第一步:先求出四个表面的面积和整个雉体体积;第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ⇒V P -ABC =13S △ABC ⋅r +13S △PAB ⋅r +13S △PAC ⋅r +13S △PBC ⋅r =13S△ABC+S △PAB +S △PAC +S △PBC ⋅r 第三步:解出r =3V P -ABC S O -ABC +S O -PAB +S O -PAC +S O -PBC =3VS 表.公式:r =3VS 表例1.已知点O 到直三棱柱ABC -A 1B 1C 1各面的距离都相等,球O 是直三棱柱ABC -A 1B 1C 1的内切球,若球O 的表面积为16π,ABC 的周长为4,则三棱锥A 1-ABC 的体积为( )A.43B.163C.833D.1633【答案】B 【详解】解:设直三棱柱ABC -A 1B 1C 1的高为h ,AB =c ,BC =a ,AC =b ,内切球O 的半径为r ,则h =2r ,由题意可知球O 的表面积为16π=4πr 2,解得r =2,∴h =4,又△ABC 的周长为4,即a +b +c =4,∴连接OA ,OB ,OC ,OA 1,OB 1,OC 1可将直三棱柱ABC -A 1B 1C 1分成5个棱锥,即三个以原来三棱柱侧面为底面,内切球球心为顶点的四棱锥,两个以原来三棱柱底面为底面,内切球球心为顶点的的三棱锥,∴由体积相等可得直三棱柱ABC -A 1B 1C 1的体积为S △ABC h =13ahr +13bhr +13chr +2×13S △ABC r ,即4S △ABC =13(a +b +c )hr +43S △ABC ,∴S △ABC =4,∴三棱锥A 1-ABC 的体积为13S △ABC h =13×4×4=163.故选:B .例2.在《九章算术·商功》中,将四个面都为直角三角形的四面体称为鳖臑,如图在鳖臑ABCD 中,AB ⊥平面BCD ,AB =BC =CD =1,BC ⊥CD ,则鳖臑ABCD 内切球的表面积为( )。

外接球、内切球模型总结专题课件-高三数学二轮复习备考课件

外接球、内切球模型总结专题课件-高三数学二轮复习备考课件
∴正三棱锥 − 的三条侧棱两两互相垂直
把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球
其直径为 =


=
1
2 + 2 + 2 + 2 + 2 + 2
2
=
1
2 + 2 + 2 =
2

1




2 + 2 + 2
半径为
6
2
4
球 = ×








找三条两两垂直的线段,直接用公式 2
即2 = 2 + 2 + 2 ,求出

2


= 2 + 2 + 2 ,


例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的
表面积是( C )
B. 20
A.16
C. 24
D. 32
= 2 ℎ = 16
则该四面体的外接球的表面积为( D )
A. 11
B. 7




1


C.
10

3
D.
40

3

��
2 = 2 + 2 − 2 ⋅ ⋅ cos120∘

=7
= 7

的外接球直径为
7 2 7

=
2 =
=
sin∠
3
3
2
∵ ⊥平面 ∴ ⊥ ∴ ∆是直角三角形
是这个球的外切多面体,这个球是这个多面体的内切球.

外接球与内切球问题解题技巧梳理

外接球与内切球问题解题技巧梳理

外接球与内切球问题解题技巧梳理一.外接球8大模型秒杀公式推导r α说明:为底面外接圆的半径,R 为球的半径,l 为两面公共边的长度 为两个面的二面角,h 是空间几何体的高,H 为某一面的高1.墙角模型(1) 使用范围:3组或3条棱两两垂直;或可在长方体中画出该图且各顶点与长方体的顶点重合 (2)推导过程:长方体的体对角线就是外接球的直径(2) 秒杀公式:222222a b c 3a R (a b c R (a 44++==、、为长方体的长宽高)正方体的边长)(4)图示过程(3) 秒杀公式:2.汉堡模型(1)使用范围:有一条侧棱垂直与底面的柱体或椎体 (2)推导过程第一步:取底面的外心O 1,,过外心做高的的平行且长度相等,在该线上中点为球心的位置第二步:根据勾股定理可得222h R r 4=+(3)秒杀公式:222h R r 4=+(4)图示过程3.斗笠模型(1)使用范围:正棱锥或顶点的投影在底面的外心上 (2)推导过程第一步:取底面的外心O 1,,连接顶点与外心,该线为空间几何体的高h 第二步:在h 上取一点作为球心O第三步:根据勾股定理22222r h R (h R)r R 2h+=-+⇔=(3)秒杀公式:22r h R 2h+=(4)图示过程4.折叠模型(1)使用范围:两个全等三角形或等腰三角形拼在一起,或菱形折叠 (2)推导过程第一步:过两个平面取其外心H 1、H 2,分别过两个外心做这两个面的垂线且垂线相交于球心O第二步:计算2222222111OH H E tan=(CE-H E)tan (H r)tan (222ααα==-α为两个平面的二面角) 第三步:22222211OC OH CH (H r)tanr 2α=+=-+ (3)秒杀技巧:2222R (H r)tanr 2α=-+ (4)图示过程5.切瓜模型(1)使用范围:有两个平面互相垂直的棱锥 (2)推导过程:第一步:分别在两个互相垂直的平面上取外心F 、N ,过两个外心做两个垂面的垂线,两条垂线的交点即为球心O ,取BC 的中点为M ,连接FM 、MN 、OF 、ON第二步:22222222212l ONMF OA AN ON AN MF R r r 4∴=+=+∴=+-为矩形由勾股可得(3)秒杀公式:222212l R r r 4=+-(4)图示过程6.麻花模型(1)使用范围:对棱相等的三棱锥(2)推导过程:设3组对棱的长度分别为x 、y 、z,长方体的长宽高分别为a 、b 、c2222222222222x a b x y z y b c R 8z a c ⎧=+⎪++⎪=+⇔=⎨⎪=+⎪⎩(3)秒杀公式:2222x y z R 8++=(4)图示过程7.矩形模型(1)使用范围:棱锥有两个平面为直角三角形且斜边为同一边(2)推导过程:根据球的定义可知一个点到各个顶点的距离相等该点为球心可得,斜边为球的直径(3)秒杀公式:22l R 4=(4)图示过程8.鳄鱼模型(1)使用范围:适用所有的棱锥 (2)推导过程:121212222121221212221122211O O O O O O OO E r (1sin O O E O O =O E O E 2O E O E cos 2 OD O O O D 3OD O O O D∴α∆+-α=+=+第一步:在两个平面上分别找外心、两外心做这两面的垂线相交于球心第二步:四点共圆,正弦定理可得OE=2=)在中,()()第三步:由(1)(2)(3)整理可得 且 过 2221122212112222221211122221212 =OE O E O DO O O EO Dsin O E O E 2O E O E cos O E O D sin O E O E 2O E O E cos =sin -+=-+α+-α=-+α+-α=2211O E O B-+α2122222O E=m O E=n AB=l,m n2mncos lR=+sin4α+-αα第四步:设,,两个面的二面角为由第三步可得(3)秒杀公式:22222m n2mncos lR=+sin4+-αα(4)图示过程二.内切球的半径---等体积法1.推导过程P ABC PAB PAC PBC ABCPAB PAC PBC ABC11111V S h RS RS RS RS 333331=R(S S S S)31=RS33VR=S-∆∆∆∆∆∆∆∆==++++++∴底面表面积几何体表面积以三棱锥P-ABC为例2.秒杀公式:3VR=S几何体表面积3.图示过程技巧1 外接球之墙角模型【例1】已知长方体''''ABCD A B C D -中,''A B =''1B C =,'A B 与平面''ACC A 所成角的正)A .4πB .16πC .163π D .323π 【举一反三】1.棱长为2的正方体的外接球的表面积为( )A .4πB .43π C .12πD .2.球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为( ) A .803πB .32πC .42πD .48π技巧2 外接球之汉堡模型【例2】已知四棱锥A BCDE -中,四边形BCDE 是边长为2的正方形,3AB =且AB ⊥平面BCDE ,则该四棱锥外接球的表面积为( ) A .4π B .174πC .17πD .8π【举一反三】1.各顶点都在一个球面上的正四棱柱(底面是正方形,侧棱垂直于底面)高为2,体积为8,则这个球的表面积是( ) A .16πB .12πC .10πD .8π2.如图,在三棱锥A ﹣BCD 中,BD ⊥平面ADC ,BD =1,AB =2,BC =3,AC A ﹣BCD 外接球的体积为( )A .4πB .3πC .D .3.在长方体1111ABCD A B C D -中,1AB CC ==1BC =,点M 在正方形11CDD C 内,1C M ⊥平面1ACM ,则三棱锥11M ACC -的外接球表面积为( )A .11π2B .7πC .11πD .14π4.(2020·全国高三月考(文))三棱柱111ABC A B C -中,1AA ⊥平面ABC ,AC AB ⊥,1AC =,AB =12AA =,则该三棱柱111ABC A B C -的外接球的体积为( )A .3B .3C .3D .8π技巧3 外接球之斗笠模型【例3】正三棱锥S ABC -中,2SA =,AB = )A .B .4πC .12πD .6π【举一反三】1.已知正三棱锥S ABC -的侧棱长为6,则该正三棱锥外接球的表面积是________. 2.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .814πB .16πC .9πD .274π技巧4 外接球之折叠模型【例4】在三棱锥A ﹣BCD 中,△ABD 与△CBD 均为边长为2的等边三角形,且二面角A BD C --的平面角为120°,则该三棱锥的外接球的表面积为( ) A .7π B .8πC .163πD .283π【举一反三】 1.已知二面角PAB C 的大小为120°,且90PAB ABC ∠=∠=︒,AB AP =,6AB BC +=.若点P 、A 、B 、C 都在同一个球面上,则该球的表面积的最小值为______.2.如图所示,三棱锥S 一ABC 中,△ABC 与△SBC 都是边长为1的正三角形,二面角A ﹣BC ﹣S 的大小为23π,若S ,A ,B ,C 四点都在球O 的表面上,则球O 的表面积为( )A .73π B .133π C .43π D .3π技巧5 外接球之切瓜模型【例5】已知三棱锥P ABC -中,1PA =,3PB =,AB =CA CB ==面PAB ⊥面ABC ,则此三棱锥的外接球的表面积为( ) A .143πB .283πC .11πD .12π【举一反三】1.已知三棱锥A BCD -中,平面ABD ⊥平面BCD ,且ABD △和BCD △都是边长为2的等边三角形,则该三棱锥的外接球表面积为( ) A .4πB .163πC .8πD .203π技巧6 外接球之麻花模型【例6】在四面体ABCD 中,若AB CD ==2==AC BD ,AD BC ==ABCD 的外接球的表面积为( ) A .2πB .4πC .6πD .8π技巧7 外接球之矩形模型【例7】在四面体ABCD 中,AB =,1DA DB CA CB ====,则四面体ABCD 的外接球的表面积为( ) A .π B .2πC .3πD .4π【举一反三】1.四面体SABC 中,AC BC ⊥,SA ⊥平面ABC ,SA =AC =BC =,则该四面体外接球的表面积为( ) A .323πB .163πC .16πD .32π2.已知四面体ABCD 满足:1AB BC CD DA AC =====,BD =,则四面体ABCD 外接球的表面积为_______.技巧8 内切球半径【例8】正四面体的外接球与内切球的表面积比为( ) A .9: 1 B .27: 1C .3: 1D .不确定【举一反三】1.如图所示,球内切于正方体.如果该正方体的棱长为a ,那么球的体积为( )A .343a πB .3aC 3aD .316a π2.已知直三棱柱ABC -A 1B 1C 1的底面ABC 为等边三角形,若该棱柱存在外接球与内切球,则其外接球与内切球表面积之比为( ) A .25︰1B .1︰25C .1︰5D .5︰13的内切球,则此棱柱的体积是( ).A .3B .354cmC .327cmD .3巩固练习1.直三棱柱111ABC A B C -的所有顶点都在同一球面上,且2AB AC ==,90BAC ∠=︒,1AA =则该球的表面积为( ) A .40πB .32πC .10πD .8π2.在三棱锥P ABC -中,AB AC ==120BAC ∠=,PB PC ==,PA =棱锥的外接球的表面积为( ) A .40πB .20πC .80πD .60π3.已知四棱锥A BCDE -中,AB ⊥平面BCDE ,底面BCDE 是边长为2的正方形,且3AB =,则该四棱锥外接球的表面积为( ) A .4πB .174πC .17πD .8π4.已知点P ,A ,B ,C 在同一个球的球表面上,PA ⊥平面ABC ,AB ⊥AC ,PB BC ,PC =2,则该球的表面积为( ) A .6πB .8πC .12πD .16π5.四面体A BCD -中,AB ⊥底面BCD ,AB BD ==1CB CD ==,则四面体A BCD -的外接球表面积为( ) A .3πB .4πC .6πD .12π6.平行四边形ABCD 中,AB BD ⊥,且2224AB BD +=,沿BD 将四边形折起成平面ABD ⊥平面BDC ,则三棱锥A BCD -外接球的表面积为( )A .2π B .2πC .4πD .16π7.张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家.他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 1,利用张衡的结论可得该正方体的外接球的表面积为( )A .30B .C .D .368.已知直三棱柱111ABC A B C -的顶点都在球O 上,且4AB =,16AA =,30ACB ∠=︒,则此直三棱柱的外接球O 的表面积是( ) A .25πB .50πC .100πD .500π39.已知三棱柱111ABC A B C -(侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形)内接于球O ,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是3,则球O 的表面积是( ) A .228π c m 3B .256π c m 3C .27π c m 3D .214π c m 310.在四棱锥P ABCD -中,//BC AD ,AD AB ⊥,AB =6AD =,4BC =,PA PB PD ===P BCD -外接球的表面积为( )A .60πB .40πC .100πD .80π11.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( ) A .10B .20πC .24πD .32π12.我国古代数学名著《九章算术》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”.如图,三棱柱111ABC A B C -为一个“堑堵”,底面ABC 是以AB 为斜边的直角三角形且5AB =,3AC =,点P 在棱1BB 上,且1PC PC ⊥,当1APC 的面积取最小值时,三棱锥P ABC -的外接球表面积为( )A .45π2B C .30π D .45π13.已知正三棱柱111ABC A B C -的体积为54,6AB =,记三棱柱111ABC A B C -的外接球为球1O ,则外接球1O 的表面积是__________.14.在三棱锥P ABC -中,侧棱PA ⊥底面,120,1ABC BAC AB AC ∠===且2,PA BC =则该三棱锥的外接球的体积为__________.15.如图所示,在三棱锥B ACD -中,3ABC ABD DBC π∠=∠=∠=,3AB =,2BC BD ==,则三棱锥B ACD -的外接球的表面积为______.16.鳖臑(bi ē n ào )出自《九章算术·商功》:“斜解立方,得两重堵.斜解壍堵,其一为阳马,一为鳖臑.”鳖臑是我国对四个面均为直角三角形的三棱锥的古称.如图,三棱锥A BCD -是一个鳖臑,其中AB BC ⊥,AB BD ⊥,BC CD ⊥,且4AB BC DC ===,过点B 向AC 引垂线,垂足为E ,过E作CD 的平行线,交AD 于点F ,连接BF .设三棱锥A BCD -的外接球的表面积为1S ,三棱锥A BEF -的外接球的表面积为2S ,则12S S =________.17.若体积为8的正方体的各个顶点均在一球面上,则该球的体积为______.18.在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”,已知三棱柱111ABC A B C -是一个“堑堵”,其中12AB BB ==,1BC =,AC =表面积为___.19.在长方体1111ABCD A B C D -中,1AB CC ==1BC =,点M 在正方形11CDD C 内,1C M ⊥平面1ACM ,则三棱锥11M ACC -的外接球表面积为______.20.在四面体S ABC -中,SA ⊥平面ABC ,120BAC ∠=︒,2SA =,BC =球的表面积为________.21.我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知某方锥各棱长均为2,则其内切球的体积为______.22.已知在三棱锥P ABC -中,PA PB ==,23APB ∠=π,6ACB π∠=,则当点C 到平面PAB 的距离最大时,三棱锥P ABC -外接球的表面积为_____.23.三棱锥A BCD -中,60ABC CBD DBA ===∠∠∠,2BC BD ==,面ACD,则此三棱锥外接球的表面积为___.24.在三棱锥P ABC -中,平面PAB 垂直平面ABC,PA PB AB AC ====120BAC ∠=︒,则三棱锥P ABC -外接球的表面积为_________.25在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,BC =1cos 3BAC ∠=,若三棱锥D ABC-,则此三棱锥的外接球的表面积为______26.设A ,B ,C ,D 为球O 的球面上的四个点,满足2AB AC BC ===,DC BD ==.若四面体ABCD 的表面积为O 的表面积为______.。

外接球与内切八大模型—老师专用-完整版

外接球与内切八大模型—老师专用-完整版

外接球与内切八大模型—老师专用-完整版一、落点模型落点模型是最常见的外接球与内切八大模型之一,又称“落点式剖分”,这种模型以外接圆上的点或圆上的点为出发点,将外接球剖分成八个部分,每一部分都有内切球及其外接球。

二、本体模型本体模型也被称为“宽度式剖分”,它在外接球的正六面包围范围内剖分成八个部分,每一部分都有内切球及其外接球;同时,本体模型所得到的八个部分也可以进一步分解,细分成多个较小的部分。

三、前体模型前体模型是一种采用正四面体做为起始几何体,以其棱的延伸来形成的八大模型。

前体模型的八大模型,可以按照相应的八条边将外接球剖分为八个部分,每部分又限制有内切球及其外接球。

四、平行模型使用平行模型可以将外接球剖分成八大部分,添加一定的边框作为分割,使得八大分区内外有明显的差异,在内部外围有各自的内切球和外接球,有利于下一步分割出更多的空间场景。

五、四边形模型四边形模型是采用正常四边形在外接球状况下进行剖分,这种方式的八大模型分割可以更好的凸显出外接球的外形轮廓,且面单元四边形数量多,有利于下一步更精确的探索空间场景。

六、转换模型转换模型是一类引入正八面体模型,将正八面体在外接球表面上进行投影移动,这种方式会产生更多有效的分割,分割后集单元能够利用较多的边界,更有利于细分和探索空间结构的连续特征。

七、锥形模型锥形模型是将外接球剖分成八个部分,以便进一步剖分,使得每一部分可以有较多的边界,以利外接球的空间结构被精准地描述。

八、折叠模型折叠模型是通过介入外接球的球面上建立四面体作为折痕,使外接球分割成不同部分,而且可以精细化分割,以便于更精准地描述外接球的结构。

外接球与内切球九大模型(解析版)

外接球与内切球九大模型(解析版)

空间几何体的外接球与内切球九大模型模型一墙角模型【方法总结】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.),秒杀公式:R2=a2+b2+c24.可求出球的半径从而解决问题.有以下四种类型:【例题选讲】[例](1)已知三棱锥A-BCD的四个顶点A,B,C,D都在球O的表面上,AC⊥平面BCD,BC⊥CD,且AC=3,BC=2,CD=5,则球O的表面积为()A.12πB.7πC.9πD.8π答案A解析由AC⊥平面BCD,BC⊥CD知三棱锥A-BCD可构造以AC,BC,CD为三条棱的长方体,设球O的半径为R,则有(2R)2=AC2+BC2+CD2=3+4+5=12,所以S球=4πR2=12π,故选A.(2)若三棱锥ABCS-的三条侧棱两两垂直,且2=SA,4==SCSB,则该三棱锥的外接球半径为().A.3B.6C.36D.9答案A解析616164)2(2=++=R,3=R,故选A.(3)已知S,A,B,C,是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=2,则球O的表面积等于().A.4πB.3πC.2πD.π答案解析由已知,222211(2)2R=++=,244S Rπ∴==球π.(4)在正三棱锥S-ABC中,M,N分别是棱SC,BC的中点,且AM MN⊥,若侧棱SA=S-ABC外接球的表面积是________.答案π36解析 MNAM⊥,MNSB//,∴SBAM⊥, SBAC⊥,∴⊥SB平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,222(2)(2R ∴=+2+36=,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(5)(2019全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为().A .68πB .64πC .6πD .6π答案D 解析解法一:, PA PB PC ABC == △为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,2R =,即344π2338R V R π=∴==⨯=,故选D .解法二:设2PA PB PC x ===,, E F 分别为, PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=,又90CEF ∠=︒,1 2CE AE PA x ∴===,AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯作PD AC ⊥于D ,PA PC = ,D ∴为AC 的中点,cos E ∠12AD AC PA x==,2243142x x x x +-+∴=,221212 2x x x ∴+=∴==,,PA PB PC ∴===,又2AB BC AC ===,, , PA PB PC ∴两两垂直,2R ∴==,R ∴=,34433V R ππ∴==⨯8=,故选D .(6)已知二面角α-l -β的大小为π3,点P ∈α,点P 在β内的正投影为点A ,过点A 作AB ⊥l ,垂足为点B ,点C ∈l ,BC =22,PA =23,点D ∈β,且四边形ABCD 满足∠BCD +∠DAB =π.若四面体PACD 的四个顶点都在同一球面上,则该球的体积为________.答案86π解析∵∠BCD +∠DAB =π,∴A ,B ,C ,D 四点共圆,直径为AC ,∵PA ⊥平面β,AB ⊥l ,∴易得PB ⊥l ,即∠PBA 为二面角α-l -β的平面角,即∠PBA =π3,∵PA =23,∴BA =2,∵BC =22,∴AC=23.设球的半径为R ,则23-R 2-(3)2=R 2-(3)2,∴R =6,V =4π3(6)3=86π.模型二对棱相等模型【方法总结】对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2R =(长方体的长、宽、高分别为a 、b 、c ).秒杀公式:R 2=x 2+y 2+z 28(三棱锥的三组对棱长分别为x 、y 、z ).可求出球的半径从而解决问题.【例题选讲】[例](1)正四面体的各条棱长都为,则该正面体外接球的体积为________.答案解析这是特殊情况,但也是对棱相等的模式,放入长方体中,32=R ,23=R ,ππ2383334=⋅=V .(2)在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥BCD A -外接球的表面积为__.答案292π解析构造长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S .(3)在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的体积为____.答案6解析依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,2+b 2=62,2+c 2=52,2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知2R =,即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为3436R π=.(4)在正四面体A BCD -中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +,则该正四面体的外接球的体积是()A B .6πC D .32π答案A解析将侧面ABC ∆和ACD ∆展成平面图形,如图所示:设正四面体的棱长为a ,则BP PE +的最小值为2BE ==,2a ∴=.在正四面体A BCD -的边长为2,外接球的半径42R ==,外接球的体积343V R π==.(5)已知三棱锥A BCD -,三组对棱两两相等,且1AB CD ==,AD BC ==,若三棱锥A BCD -的外接球表面积为92π.则AC =________.答案解析将四面体A BCD -放置于长方体中, 四面体A BCD -的顶点为长方体八个顶点中的四个,∴长方体的外接球就是四面体A BCD -的外接球,1AB CD == ,AD BC ==,且三组对棱两两相等,∴设AC BD x ==,得长方体的对角线长为=,可得外接球的直径2R =以R =, 三棱锥A BCD -的外接球表面积为92π,2942R ππ∴=,解得4R =,324=,解之得x =AC BD ==模型三汉堡模型【方法总结】汉堡模型是直棱柱的外接球、圆柱的外接球模型,用找球心法(多面体的外接球的球心是过多面体的两个面的外心且分别垂直这两个面的直线的交点.一般情况下只作出一个面的垂线,然后设出球心用算术方法或代数方法即可解决问题.有时也作出两条垂线,交点即为球心.)解决.以直三棱柱为例,模型如下图,由对称性可知球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=2h ,2224h R r ∴=+.【例题选讲】[例](1)(2013辽宁)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为().A .3172B .210C .132D .310答案C 解析如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =522+62=132.另解过C 点作AB 的平行线,过B 点作AC 的平行线,交点为D ,同理过C 1作A 1B 1的平行线,过B 1作A 1C 1的平行线,交点为D 1,连接DD 1,则ABCD -A 1B 1C 1D 1恰好成为球的一个内接长方体,故球的半径r 132=.故选C .(2)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为().A .2a πB .273a πC .2113a πD .237a π答案B 解析222222274312a a R OB OE BE a ==+=+=,22743S a a ππ∴==.故选B .(3)(2009全国Ⅰ)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积等于().A .10πB .20πC .30πD .40π答案B解析如图,先由余弦定理求出BC =23,再由正弦定理求出r =AO 1=2,外接球的直径R =12+22=5,所以该球的表面积为4πR 2=20π.故选B .(4)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于()A .4πB .16π3C .32π3D .16π答案D解析由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D .(5)若一个圆柱的表面积为12π,则该圆柱的外接球的表面积的最小值为()A .12)π-B .C .3)πD .16π答案A解析设圆柱的底面半径为r ,高为h ,则22212r rh πππ+=,则6h r r=-.设该圆柱的外接球的半径为R ,则22222221659()()333244h R r r r r r r =+=+-=+--=- ,当且仅当22594r r =,即4365r =时,等号成立.故该圆柱的外接球的表面积的最小值为43)12)ππ-=.模型四垂面模型【方法总结】垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球,由对称性可知球心O 的位置是△CBD的外心O 1与△AB 2D 2的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=2h ,2224h R r ∴=+.【例题选讲】[例](1)已知在三棱锥S -ABC 中,SA ⊥平面ABC ,且∠ACB =30°,AC =2AB =23,SA =1.则该三棱锥的外接球的体积为()A .13813πB .13πC .136πD .13136π答案D解析∵∠ACB =30°,AC =2AB =23,∴△ABC 是以AC 为斜边的直角三角形,其外接圆半径r =AC2=3,则三棱锥外接球即为以△ABC 为底面,以SA 为高的三棱柱的外接球,∴三棱锥外接球的半径R 满足R =132,故三棱锥外接球的体积V =43πR 3=13136π.故选D .第(1)小题图第(2)小题图1第(2)小题图2(2)三棱锥P -ABC 中,平面PAC ⊥平面ABC ,AB ⊥AC ,PA =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为()A .23πB .234πC .64πD .643π答案D解析如图1,设O 为三棱锥外接球的球心,O 1为正△PAC 的中心,则OO 1=12AB =2.2AO 1=2sinπ3=433,AO 1=233,R 2=OA 2=O 1A 2+O 1O 2=43+4=163,故几何体外接球的表面积S =4πR 2=643.另解:如图2,设O ′为正△PAC 的中心,D 为Rt △ABC 斜边的中点,H 为AC 中点.由平面PAC ⊥平面ABC ,则O ′H ⊥平面ABC .作O ′O ∥HD ,OD ∥O ′H ,则交点O 为三棱锥外接球的球心,连接OP ,又O ′P =23=23×32×2=233,OO ′=DH =12AB =2.∴R 2=OP 2=O ′P 2+O ′O 2=43+4=163.故几何体外接球的表面积S =4πR 2=643π.(3)在三棱锥S -ABC 中,侧棱SA ⊥底面ABC ,AB =5,BC =8,∠ABC =60°,SA =25,则该三棱锥的外接球的表面积为()A .643πB .256πC .4363πD .2048327π答案B解析由题意知,AB =5,BC =8,∠ABC =60°,则在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2×AB ×BC ×cos ∠ABC ,解得AC =7,设△ABC 的外接圆半径为r ,则△ABC 的外接圆直径2r =ACsin ∠ABC =732,∴r =73,又∵侧棱SA ⊥底面ABC ,∴三棱锥的外接球的球心到平面ABC 的距离h =12SA =5,则外接球的半径R =732+(5)2=643,则该三棱锥的外接球的表面积为S =4πR 2=2563π.(4)在三棱锥P -ABC 中,已知PA ⊥底面ABC ,∠BAC =120˚,PA =AB =AC =2,若该三棱锥的顶点都在同一个球面上,则该球的表面积为()A .103πB .18πC .20πD .93π答案C解析如图1,先由余弦定理求出BC =23,再由正弦定理求出r =AO 1=2,外接球的直径R =12+22=5,所以该球的表面积为4πR 2=20π.第(3)小题图第(4)小题图1第(4)小题图2另解如图2,该三棱锥为图中正六棱柱内的三棱锥P -ABC ,PA =AB =AC =2,所以该三棱锥的外接球即该六棱柱的外接球,所以外接球的直径2R =42+22=25⇒R =5,所以该球的表面积为4πR 2=20π.(5)在三棱锥P ABC -中,PA ⊥平面ABC ,120BAC ∠=︒,2AC =,1AB =,设D 为BC 中点,且直线PD与平面ABC 所成角的余弦值为5,则该三棱锥外接球的表面积为________.答案373π解析在ABC ∆中,120BAC ∠=︒,2AC =,1AB =,由余弦定理得:22BC AC =+22cos AB AC BC BAC -⋅⋅∠,即22221221cos1207BC =+-⨯⨯⨯︒=,解得:BC =.设ABC ∆的外接圆半径为r ,由正弦定理得2sin BC r BAC ===∠解得:r ==;且222cos 2AB BC AC ABC AB BC +-∠==,又D 为BC 中点,在ABD ∆中,122BD BC ==,1AB =,cos 7ABD ∠=.由余弦定理得:2222cos AD AB BD AB BD ABD =+-∠ ,即:22231()212274AD =+-⨯⨯=,解得2AD =.又因为PA ⊥平面ABC ,所以PDA ∠为直线PD 与平面ABC 所成角,由cos 5PDA ∠=,得sin 5PDA ∠=,tan 2PDA ∠=,所以在Rt PAD ∆中,tan 22PA AD PDA =∠== .设三棱锥P ABC -的外接球半径为R ,所以R =,三棱锥P ABC -外接球表面积为23743S R ππ==.模型五切瓜模型【方法总结】切瓜模型是有一侧面垂直底面的棱锥型,常见的是两个互相垂直的面都是特殊三角形且平面ABC ⊥平面BCD ,如类型Ⅰ,△ABC 与△BCD 都是直角三角形,类型Ⅱ,△ABC 是等边三角形,△BCD 是直角三角形,类型Ⅲ,△ABC 与△BCD 都是等边三角形,解决方法是分别过△ABC 与△BCD 的外心作该三角形所在平面的垂线,交点O 即为球心.类型Ⅳ,△ABC 与△BCD 都一般三角形,解决方法是过△BCD 的外心O 1作该三角形所在平面的垂线,用代数方法即可解决问题.设三棱锥A -BCD 的高为h ,外接球的半径为R ,球心为O .△BCD 的外心为O 1,O 1到BD 的距离为d ,O 与O 1的距离为m 2=r 2+m 2,2=d 2+(h -m )2,解得R .可用秒杀公式:R 2=r 12+r 22-l 24(其中r 1、r 2为两个面的外接圆的半径,l 为两个面的交线的长)【例题选讲】[例](1)已知在三棱锥P -ABC 中,V P ­ABC =433,∠APC =π4,∠BPC =π3,PA ⊥AC ,PB ⊥BC ,且平面PAC ⊥平面PBC ,那么三棱锥P -ABC 外接球的体积为________.答案32π3解析如图,取PC 的中点O ,连接AO ,BO ,设PC =2R ,则OA =OB=OC =OP =R ,∴O 是三棱锥P -ABC 外接球的球心,易知,PB =R ,BC =3R ,∵∠APC =π4,PA ⊥AC ,O 为PC 的中点,∴AO ⊥PC ,又平面PAC ⊥平面PBC ,且平面PAC ∩平面PBC =PC ,∴AO ⊥平面PBC ,∴V P ­ABC =V A ­PBC =13×12×PB ×BC ×AO =13×12×R ×3R ×R=433,解得R =2,∴三棱锥P -ABC 外接球的体积V =43πR 3=32π3.(2)如图,已知平面四边形ABCD 满足AB =AD =2,∠A =60˚,∠C =90˚,将△ABD 沿对角线BD 翻折,使平面ABD ⊥平面CBD ,则四面体ABCD 外接球的体积为__.答案323π27解析在四面体ABCD 中,∵AB =AD =2,∠BAD =60˚,∴△ABD为正三角形,设BD 的中点为M ,连接AM ,则AM ⊥BD ,又平面ABD ⊥平面CBD ,平面ABD ∩平面CBD =BD ,∴AM ⊥平面CBD .∵△CBD 为直角三角形,∴其外接圆的圆心是斜边BD 的中点M ,由球的性质知,四面体ABCD 外接球的球心必在线段AM 上,又△ABD 为正三角形,∴球心是△ABD 的中心,则外接球的半径为23×2×32=233,∴四面体ABCD 外接球的体积为43×π×(233)3=323π27.(3)已知三棱锥A -BCD 中,△ABD 与△BCD 是边长为2的等边三角形且二面角A -BD -C 为直二面角,则三棱锥A -BCD 的外接球的表面积为()A .10π3B .5πC .6πD .20π3答案D解析如图,取BD 中点M ,连接AM ,CM ,取△ABD ,△CBD 的中心即AM ,CM 的三等分点P ,Q ,过P 作平面ABD 的垂线,过Q 作平面CBD 的垂线,两垂线相交于点O ,则点O 为外接球的球心,如图,其中OQ =33,CQ =233,连接OC ,则外接球的半径R =OC =153,表面积为4πR 2=20π3,故选D .(4)已知ABC ∆是以BC 为斜边的直角三角形,P 为平面ABC 外一点,且平面PBC ⊥平面ABC ,3BC =,PB =PC =,则三棱锥P ABC -外接球的表面积为________.答案10π解析由题意知BC 的中点O 为ABC ∆外接圆的圆心,且平面PBC ⊥平面ABC ,过O 作面ABC 的垂线l ,则垂线l 一定在面ABC 内.根据球的性质,球心一定在垂线l 上, 球心1O 一定在平面PBC 内,且球心1O 也是PBC ∆外接圆的圆心.在PBC ∆中,由余弦定理得222cos 22PB BC PC PBC PB BC +-∠==,sin 2PBC ∴∠=,由正弦定理得:2sin PCR PBC=∠,解得2R =,∴三棱锥的外接球的表面积2410R ππ==.(5)已知等腰直角三角形ABC 中,AB =AC =2,D ,E 分别为AB ,AC 的中点,沿DE 将△ABC 折成直二面角(如图),则四棱锥A -DECB 的外接球的表面积为________.答案10π解析取DE 的中点M ,BC 的中点N ,连接MN (图略),由题意知,MN ⊥平面ADE ,因为△ADE是等腰直角三角形,所以△ADE 的外接圆的圆心是点M ,四棱锥A -DECB 的外接球的球心在直线MN 上,又等腰梯形DECB 的外接圆的圆心在MN 上,所以四棱锥A -DECB 的外接球的球心就是等腰梯形DECB 的外接圆的圆心.连接BE ,易知△BEC 是钝角三角形,所以等腰梯形DECB 的外接圆的圆心在等腰梯形DECB 的外部.设四棱锥A -DECB 的外接球的半径为R ,球心到BC 的距离为d 2=d 2+(2)2,2=(d +222+(22)2,解得R 2=52,故四棱锥A -DECB 的外接球的表面积S =4πR 2=10π.模型六斗笠模型【方法总结】圆锥、顶点在底面的射影是底面外心的棱锥.秒杀公式:R =h 2+r 22h(其中h 为几何体的高,r 为几何体的底面半径或底面外接圆的圆心)【例题选讲】[例](1)一个圆锥恰有三条母线两两夹角为60︒,若该圆锥的侧面积为,则该圆锥外接球的表面积为________.答案272π解析设60ASB BSC CSA ∠=∠=∠=︒,则SA SB SC AB AC BC =====.设AB x =,则底面圆的直径为2sin 60x r ==︒,该圆锥的侧面积为12x π=,解得3x =,高OS =.r ∴=.设圆锥外接球的半径为R ,所以222)R r R -+=,解得R =,则外接球的表面积为22742R ππ=.(2)(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为()A .64πB .48πC .36πD .32π答案A解析设⊙O 1的半径为r ,球的半径为R ,依题意,得πr 2=4π,∴r =2.由正弦定理可得ABsin 60°=2r ,∴AB =2r sin 60°=23.∴OO 1=AB =23.根据球的截面性质,得OO 1⊥平面ABC ,∴OO 1⊥O 1A ,R =OA =OO 21+O 1A 2=OO 21+r2=4,∴球O 的表面积S =4πR 2=64π.故选A .(3)在三棱锥P ABC -中,PA PB =26, 4PC AC AB ====,且AC AB ⊥,则该三棱锥外接球的表面积为________.答案36π解析设顶点P 在底面中的射影为1O ,由于PA PB PC ==,所以111O A O B O C ==,即点1O 是底面ABC ∆的外心,又AC AB ⊥,所以1O 为BC 的中点,因为PA PB = 4PC AC AB ====,所以11 4BC AO PO ===,设外接球的球心为O ,半径为R ,则O 必在1PO 上,=-14O O R ,在∆1Rt O OA中,()(2224R R -+=,解得3R =,所以22436S R ππ==.(4)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A .81π4B .16πC .9πD .27π4答案A解析如图所示,设球半径为R ,底面中心为O ′且球心为O ,∵正四棱锥P ­ABCD 中AB =2,∴AO ′=2,∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2,∴R 2=(2)2+(4-R )2,解得R =94,∴该球的表面积为4πR 2=4π×942=81π4.(5)如图所示,在正四棱锥P -ABCD 中,底面ABCD 是边长为4的正方形,E ,F 分别是AB ,CD 的中点,cos ∠PEF =22,若A ,B ,C ,D ,P 在同一球面上,则此球的体积为________.答案36π解析由题意,得底面ABCD 是边长为4的正方形,cos ∠PEF =22,故高PO 1为2.易知正四棱锥P -ABCD 的外接球的球心在它的高PO 1上,记球心为O ,则AO 1=22,PO =AO =R ,PO 1=2,OO 1=2-R 或OO 1=R -2(此时O 在PO 1的延长线上),在直角△AO 1O 中,R 2=AO 21+OO 21=(22)2+(2-R )2,解得R =3,所以球的体积为V =43πR 3=4π3×33=36π.(6)在三棱锥P ABC -中,2PA PB PC ===,1AB AC ==,3BC =棱锥外接球的体积为()A .43πB .823πC .3πD .323π答案A解析由PA PB PC ===P 作PG ⊥平面ABC ,垂足为G ,则G 为三角形ABC 的外心,在ABC ∆中,由1AB AC ==,BC =,可得120BAC ∠=︒,则由正弦定理可得:2AG =,即1AG =.1PG ∴==.取PA 中点H ,作HO PA ⊥交PG 于O ,则O 为该三棱锥外接球的球心.由PHO PGA ∆∆∽,可得PH PG PO PA =,则211PH PA PO PG === .可知O 与G 重合,即该棱锥外接球半径为1.∴该三棱锥外接球的体积为43π.模型七已知球心或球半径模型【例题选讲】[例](1)(2017·全国Ⅰ)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.答案36π解析如图,连接AO ,OB ,∵SC 为球O 的直径,∴点O 为SC 的中点,∵SA =AC ,SB =BC ,∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,∴AO ⊥平面SCB ,设球O 的半径为R ,则OA =OB =R ,SC =2R .∴V S ­ABC =V A ­SBC =13×S △SBC ×AO =13×SC ×AO ,即9=13×R ×R ,解得R =3,∴球O 的表面积为S =4πR 2=4π×32=36π.(2)已知三棱锥A -BCD 的所有顶点都在球O 的球面上,AB 为球O 的直径,若该三棱锥的体积为3,BC =3,BD =3,∠CBD =90˚,则球O 的体积为________.答案32π3解析设A 到平面BCD 的距离为h ,∵三棱锥的体积为3,BC =3,BD =3,∠CBD =90˚,∴13×12×3×3×h =3,∴h =2,∴球心O 到平面BCD 的距离为1.设CD 的中点为E ,连接OE ,则由球的截面性质可得OE ⊥平面CBD ,∵△BCD 外接圆的直径CD =23,∴球O 的半径OD =2,∴球O 的体积为32π3.(3)(2012全国Ⅰ)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为()A .26B .36C .23D .22答案A解析由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍.在三棱锥O -ABC 中,其棱长都是1,如图所示,S △ABC =34×AB 2=34,高OD =12-332=63,∴V S -ABC =2V O -ABC =2×13×34×63=26.故选A .(4)(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.答案2π2解析如图,设B 1C1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q ,连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形,∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形,则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心,设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3=2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ .又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1,同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点,∴∠PEQ =π2,知 PQ的长为π2×2=2π2,即交线长为2π2.(5)三棱锥S -ABC 的底面各棱长均为3,其外接球半径为2,则三棱锥S -ABC 的体积最大时,点S 到平面ABC 的距离为()A .2+3B .2-3C .3D .2答案C 解析如图,设三棱锥S -ABC 底面三角形ABC 的外心为G ,三棱锥外接球的球心为O ,要使三棱锥S -ABC 的体积最大,则O 在SG 上,由底面三角形的边长为3,可得AG =32sin60°=3.连接OA ,在Rt △OGA 中,由勾股定理求得OG =OA 2-GA 2=22-(3)2=1.∴点S 到平面ABC 的距离为OS +OG =2+1=3.故选C .模型八最值模型【方法总结】最值问题的解法有两种方法:一种是几何法,即在运动变化过程中得到最值,从而转化为定值问题求解.另一种是代数方法,即建立目标函数,从而求目标函数的最值.【例题选讲】[例](1)已知三棱锥P -ABC 的顶点P ,A ,B ,C 在球O 的球面上,△ABC 是边长为3的等边三角形,如果球O 的表面积为36π,那么P 到平面ABC 距离的最大值为________.答案3+22解析依题意,边长是3的等边△ABC 的外接圆半径r =12·3sin 60°=1.∵球O 的表面积为36π=4πR 2,∴球O 的半径R =3,∴球心O 到平面ABC 的距离d =R 2-r 2=22,∴球面上的点P 到平面ABC 距离的最大值为R +d =3+22.(2)在四面体ABCD 中,AB =1,BC =CD =3,AC =2,当四面体ABCD 的体积最大时,其外接球的表面积为()A .2πB .3πC .6πD .8π答案C 解析∵AB =1,BC =3,AC =2,由勾股定理可得AB 2+AC 2=BC 2,所以△ABC 是以BC 为斜边的直角三角形,且该三角形的外接圆直径为BC =3,当CD ⊥平面ABC 时,四面体ABCD 的体积取最大值,此时,其外接球的直径为2R =BC 2+CD 2=6,因此,四面体ABCD 的外接球的表面积为4πR 2=π×(2R )2=6π.故选C .(3)已知四棱锥S -ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积等于()A .42π3B .162π3C .322π3D .642π3答案D解析由题意得,当四棱锥的体积取得最大值时,该四棱锥为正四棱锥.因为该四棱锥的表面积等于16+163,设球O 的半径为R ,则AC =2R ,SO =R ,如图,所以该四棱锥的底面边长AB =2R ,则有(2R )2+4×12×2R ×16+163,解得R =22,所以球O 的体积是43πR 3=6423π.故选D .(4)三棱锥A -BCD 内接于半径为5的球O 中,AB =CD =4,则三棱锥A -BCD 的体积的最大值为()A .43B .83C .163D .323答案C解析如图,过CD 作平面ECD ,使AB ⊥平面ECD ,交AB 于点E ,设点E 到CD 的距离为EF ,当球心在EF 上时,EF 最大,此时E ,F 分别为AB ,CD 的中点,且球心O 为EF 的中点,所以EF =2,所以V max =13×12×4×2×4=163,故选C .(5)已知正四棱柱的顶点在同一个球面上,且球的表面积为12π,当正四棱柱的体积最大时,正四棱柱的高为_.答案8解析设正四棱柱的底面边长为a ,高为h ,球的半径为r ,由题意知4πr 2=12π,所以r 2=3,又2a 2+h 2=(2r )2=12,所以a 2=6-h 22,所以正四棱柱的体积V =a 2h ,则V ′=6-32h 2,由V ′>0,得0<h <2,由V ′<0,得h >2,所以当h =2时,正四棱柱的体积最大,V max =8.模型九内切球模型【方法总结】以三棱锥P -ABC 为例,求其内切球的半径.方法:等体积法,三棱锥P -ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先求出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -P AB +V O -P AC +V O -PBC ⇒V P -ABC =13S △ABC ·r +13S △P AB ·r +13S △P AC ·r +13S △r =13S △ABC +S △P AB +S △P AC +S △PBC )·r ;第三步:解出r =3V P -ABC S O -ABC +S O -P AB +S O -P AC +S O -PBC =3VS 表.秒杀公式(万能公式):r =3VS 表【例题选讲】[例](1)已知一个三棱锥的所有棱长均为2,则该三棱锥的内切球的体积为________.答案354π解析由题意可知,该三棱锥为正四面体,如图所示.AE =AB ·sin 60°=62,AO =23AE =63,DO =AD 2-AO 2=233,三棱锥的体积V D ­ABC =13S △ABC ·DO =13,设内切球的半径为r ,则V D ­ABC =13r (S △ABC +S △ABD +S △BCD +S △ACD )=13,r =36,V 内切球=43πr 3=354π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案23π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OEDB ,即22-r 3=r 1,解得r =22,故内切球的体积为43π223=23π.(3)阿基米德(公元前287年~公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论.要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边.若表面积为54π的圆柱的底面直径与高都等于球的直径,则该球的体积为()A .4πB .16πC .36πD .64π3答案C解析设该圆柱的底面半径为R ,则圆柱的高为2R ,则圆柱的表面积S =S 底+S 侧=2×πR 2+2·π·R ·2R =54π,解得R 2=9,即R =3.∴圆柱的体积为V =πR 2×2R =54π,∴该圆柱的内切球的体积为23×54π=36π.故选C .(4)已知三棱锥P -ABC 的三条侧棱PA ,PB ,PC 两两互相垂直,且PA =PB =PC =2,则三棱锥P -ABC 的外接球与内切球的半径比为________.答案33+32解析以PA ,PB ,PC 为过同一顶点的三条棱,作长方体,由PA =PB =PC =2,可知此长方体即为正方体.设外接球的半径为R ,则R =4+4+42=3,设内切球的半径为r ,则内切球的球心到四个面的距离均为r ,由13(S △ACP +S △APB+S △PCB +S △ABC )·r =13·S △PCB ·AP ,解得r =23+3,所以Rr =323+3=33+32.(5)正四面体的外接球和内切球上各有一个动点P 、Q ,若线段PQ ,则这个四面体的棱长为________.答案4解析设这个四面体的棱长为a ,则它的外接球与内切球的球心重合,且半径R =外,r =内,依题意得4123a a +=,4a ∴=.。

高中数学立体几何之外接球与内切球问题常见模型归纳(完整版)

高中数学立体几何之外接球与内切球问题常见模型归纳(完整版)

外接球问题江西省永丰中学陈保进若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

若一个定点到一个多面体的所有顶点的距离都相等,则这个定点就是该多面体外接球的球心。

以下为常见模型。

1、长方体模型结论:长方体的外接球的球心为其体对角线的中点,直径为体对角线。

公式:2222c b a R ++=(a ,b ,c 为长宽高)补充:以下情况可转化成长方体模型。

①若三棱锥的三条棱PA ,PB ,PC 两两互相垂直(墙角模型),则可在长方体中构造。

2222PC PB P A R ++=②正四面体P -ABC 可在正方体中构造,正方体棱长2=PA a ③若三棱锥的三组对棱两两相等,则可在长方体中构造。

设AC =BP =m ,AP =BC =n ,AB=PC =t ,则⎪⎩⎪⎨⎧=+=+=+222222222t c b n c a m b a ,三式相加,222222)(2t n m c b a ++=++2)2(2222222t n m c b a R ++=++=abc2、直三棱柱模型结论:直三棱柱外接球的球心是上、下底面外心连线的中点,222()2hR r =+r 为底面三角形外接圆的半径,可用正弦定理求,h 为直三棱柱的高。

补充:有一条侧棱垂直底面的三棱锥可补成直三棱柱,如图P -ABC 中,PA ⊥平面ABC ,则可补成直三棱柱PB 1C 1-ABC ,外接球半径公式同上。

提醒:底面具有外接圆的直棱柱才有外接球,比如正棱柱,且球心在上、下底面外心连线的中点,底面无外接圆的直棱柱,以及所有斜棱柱均无外接球。

3、共斜边模型四面体D-ABC 中,DC AD ⊥,BC AB ⊥,AC 为公共的斜边,O 为AC 的中点,则O 为四面体D-ABC 外接球的球心。

4、正棱锥模型外接球的球心在正棱锥的高所在直线上,如图正三棱锥A-BCD 中,作AO 1⊥平面BCD ,则易得BO 1=CO 1=DO 1,所以O 1为△BCD 的外心,设O 为其外接球球心,半径为R ,则BO =AO =R ,设AO 1=h ,BO 1=r ,则由BO 2=BO 12+OO 12,得R 2=r 2+(h-R )2。

外接球与内切球模型总结

外接球与内切球模型总结

外接球与内切球模型总结1. 引言外接球和内切球模型是在几何学和计算几何学中常用的模型,广泛应用于各个领域,如计算机图形学、机器人路径规划、物体检测与识别等。

在本文中,我们将对外接球和内切球模型进行总结与讨论。

2. 外接球模型外接球是指在三维空间中,能恰好围住一个给定点集的球。

假设给定点集为P,我们需要找到一个球,使得P中的所有点都在这个球的边界上或内部。

2.1 算法描述通常,外接球模型的求解可以通过以下算法进行: 1. 初始化一个球,假设球的半径为0,中心点为第一个点。

2. 依次遍历给定点集中的每个点,对于每个点,判断其是否在当前球的外部。

3. 如果某个点在当前球的外部,更新球的半径和中心点。

4. 重复步骤2和步骤3,直到遍历完所有的点。

5. 返回最终的外接球。

2.2 应用领域外接球模型的应用十分广泛,其中一个典型的应用是在机器人路径规划中。

通过找到机器人运动轨迹的外接球,可以帮助机器人规划更加高效的路径,避免碰撞和危险区域。

3. 内切球模型内切球是指在三维空间中,能够正好与一个给定点集的球面相切的球。

与外接球模型相反,内切球模型主要用于找到一个球,使得该球的球心与给定点集的球面重合。

3.1 算法描述内切球模型的求解算法如下: 1. 初始化一个球,假设球的半径为无穷大,中心点为第一个点。

2. 依次遍历给定点集中的每个点,对于每个点,判断其是否在当前球的内部。

3. 如果某个点在当前球的内部,更新球的半径和中心点。

4. 重复步骤2和步骤3,直到遍历完所有的点。

5. 返回最终的内切球。

3.2 应用领域内切球模型的应用也十分广泛。

例如,在物体检测与识别中,可以通过找到物体的内切球,来确定物体的形状和大小。

此外,内切球模型还可以用于计算三角形的内切圆,辅助求解三角形的性质和问题。

4. 总结外接球和内切球模型是几何学和计算几何学中重要的模型。

通过求解外接球和内切球,我们可以得到一些重要的信息,如球的半径、中心点等。

2024高考数学专项立体几何系统班7、外接球与内切球

2024高考数学专项立体几何系统班7、外接球与内切球

第7讲外接球与内切球知识与方法1.外接球与内切球是全国高考常考题型,模型杂、方法多,但归纳起来不外乎两大类处理方法.(1)补形:将几何体补全成长方体、正方体、直棱柱等常见几何体,计算外接球半径.(2)构建平面截球模型:寻找截面圆心以及球心到截面的距离,通过222R r d =+计算外接球半径.2.设球的半径为R ,有5个常用计算公式.(1)正方体外接球半径:R =,其中a 为正方体棱长,如图1.(2)长方体外接球半径:R =a ,b ,c 分别为长方体的长、宽、高,如图2.(3)正四面体外接球半径,4R a =,其中a 为正四面体棱长,如图3.(4)直三棱柱外接球半径:R =,其中r 为底面外接圆半径,h 为直三棱柱的高,如图4.(5)圆柱外接球半径:R =,其中r 为底面圆半径,h 为圆柱的母线长,如图5.提醒:①上面列出了一些简单模型的外接球半径计算公式,需结合图形将其记住,还有一些其他模型可以通过补形的方法转化为上述模型处理;②一些不能通过简单补形求解的模型,如球内接正棱锥,球内接圆锥等,可以通过分析几何关系,转化为平面截球模型计算外接球的半径.题组一1.(★★)已知一个正方体的所有顶点在一个球面上.若这个正方体的表面积为18,则这个球的体积为_______.【解析】设正方体的棱长为a ,则2618a =,故a =3322R a ==,其体积34932V R ππ==.【答案】92π2024高考数学专项立体几何系统班7、外接球与内切球【提炼】正方体棱长a 与其外接球半径R 之间的关系为32R =.2.(★★★)如图,在等腰梯形ABCD 中,22AB DC ==,60DAB ∠=︒,E 为AB 中点,将ADE 与BEC 分别沿ED ,EC 向上折起,使点A ,B 重合于点P ,则三棱锥P DCE -的外接球的体积为()【解析】由题意,可将平面图形等腰梯形ABCD 补全为正三角形FAB ,如图,那么在完成题干所描述的翻折后,还可将CDF △沿着CD 翻折,使得点F 也与点P 重合,显然此时得到的是一个棱长为1的正四面体,即三棱锥P DCE -是棱长为1的正四面体,其外接球半径R =343V R π==.【答案】C【提炼】正四面体的棱长为a ,则其外接球半径为64a ,内切球半径为612a ,证明方法可参考附赠的小册子《高考数学常用二级结论》.3.(★★)长方体的长,宽,高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为______.【解析】长方体的外接球半径R =,其中a ,b ,c 分别为长、宽、高,故R =O 的表面积2414S R ππ==.【答案】14π【提炼】设长方体的长、宽、高分别为a ,b ,c ,则其外接球半径2R =4.(★★)已知底面边长为1的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.323π B.4π C.2π D.43π【解析】首先得知道什么是正四棱柱,它指的是底面为正方形、侧棱与底面垂直的四棱柱,也是一种特殊的长方体,高考这种名词都是直接给,必须清楚其结构特征.外接球半径1R ==,故该球的体积34433V R ππ==.【答案】D5.(★★)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【解析】设正四棱柱底面边长为a ,则2416a =,即2a =,其外接球的半径2242R ==,故所求球的表面积2424S R ππ==.【答案】C 6.(★★★)一个正四棱柱的各个顶点在一个直径为2的球面上,如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为______cm 2.【解析】设正四棱柱的高为h cm ,则1112=,故h =,即该棱柱的表面积(2S =+cm 2.【答案】2+题组二7.(★★★)已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若3AB =,4AC =,AB AC ⊥,112AA =,则球O 的半径为()B. C.132D.【解析】这道题可能不少同学会有这么一个困惑,就是题干没给出三棱柱111ABC A B C -为直三棱柱,是不是题干有问题呢?当然不是,事实上,斜棱柱是没有外接球的,所以题干的说法本身就隐含了三棱柱111ABC A B C -为直三棱柱这一条件.本题的直三棱柱可通过补形为长方体来计算外接球半径,如图,三棱柱111ABC A B C -与长方体有相同的外接球,该球的半径为34121322R ==.【答案】C 8.(★★★)3______.【解析】本模型一般称为墙角三棱锥,可补形为正方体(或长方体)来处理.如图,将三棱锥B ACD -补全为正方体,并放到了球体之中,可以看到二者有相同的外接球,正方体棱332R =,故外接球表面积249S R ππ==.【答案】9π【提炼】三条侧棱两两垂直的三棱锥(墙角三棱锥)可补形为长方体或正方体来计算外接球半径.题组三9.(★★★)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为()A.2a π B.273a π C.2113a π D.25a π【解析】如图,设G 为ABC △的中心,ABC △外接圆半径233323r AG ==⨯=,1122a OG AA ==,球的半径22712R r OG a =+,故球的表面积22743S R a ππ==.【答案】B【提炼】①设直三棱柱底面外接圆半径为r ,高为h ,则其外接球半径222h R r ⎛⎫=+ ⎪⎝⎭;②关键是计算底面三角形外接圆半径,对于直角三角形,外接圆半径等于斜边长的一半,若是倍,等于高的23倍;若是普通的三角形,则可利用正弦定理计算外接圆半径.10.(★★★)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA -==,120BAC ∠=︒,则此球的表面积等于______.【解析】如图,在ABC △中,由余弦定理得222122222122BC ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,解得BC =.由正弦定理得42sin BC r BAC ==∠,解得2r =,故1112OG AA ==,所以球的半径R ==,故球的表面积2420S R ππ==.【答案】20π题组四11.(★★★)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为()A. B. C. D.【解析】如图,先计算ABC △外接圆的半径r ,设ABC △边长为a .则2122a ⋅⋅=,解得6a =,所以62sin 60r =︒,解得r =,所以2OG ==,当D 点位于GO 延长线上时,三棱锥D ABC -的高最大,底面积不变,此时体积最大,最大值为()1243V =⨯+=【答案】B【提炼】本题三棱锥D ABC -的体积最大时,D ABC -是正三棱锥,正三棱锥外接球的计算问题,解题的关键是构建AOG △,在这个三角形中,满足222OA AG OG =+,即222R r d =+,其实这就是前一小节的平面截球模型,只要是正棱锥,都可以采用这个办法处理.12.(★★★)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.814πB.16πC.9πD.274π【解析】如图,由题意,得14PO =,1AO =设外接球的半径为R ,则OA OP R ==,故14OO R =-.在1OO A △中,22211AO OO AO +=,即()2224R R +-=,解得94R =,故该球的表面积28144S R ππ==.【答案】A【提炼】正四棱锥外接球的有关计算,关键是构建1AOO ,在这个三角形中,利用22211OA AO OO =+建立等量关系,其实就是平面截球模型的处理方法.13.(★★★)正四棱锥S ABCD -点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_____.【解析】解法1:如图1,设正方形ABCD 的中心为1O ,由题意,11AO =,11SO =.设正四棱锥外接球球心为O ,半径为R ,则OA R =,11OO R =-,在1AOO 中,22211OO AO AO +=,故()2211R R -+=,解得1R =,即外接球体积为34433V R ππ==.解法2:设正方形ABCD 的中心为1O ,由题意,11AO =,11SO ==,因为11SO AO =,所以1O 即为球心,球的半径为1,体积34433V R ππ==,本题实际的图形是图2.【答案】43π14.(2021·全国甲卷·理·11·★★★)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC BC ⊥,1AC BC ==,则三棱锥O ABC -的体积为()A.212B.312C.24D.34【解析】如图,由题意,2AB =,设D 为ABC △的外心,则1222AD AB ==,2222OD OA AD =-=,所以1112211332212O ABC ABC V S OD -=⋅=⨯⨯⨯⨯ .【答案】A题组五15.(★★)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.34πC.2π D.4π【解析】如图,由题意得1OA =,112OO =,故132O A =,圆柱体积233124V ππ⎛⎫=⋅= ⎪ ⎪⎝⎭.【答案】B【提炼】圆柱外接球半径222h R r ⎛⎫=+ ⎪⎝⎭,其中r 为底面圆半径,h 为圆柱的高.16.(★★★★)如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.【解析】设圆柱的底面半径为r ,高为h ,则2224h r R rh +=≥,当且仅当2h r =时等号成立,故圆柱的侧面积2S rh π=的最大值为22R π,此时球的表面积与圆柱的侧面积之差为222422R R R πππ-=.【答案】22R π题组六17.(★★)正方体的内切球与其外接球的体积之比为()A. B.1:3C.1:D.1:9【解析】设正方体的棱长为a ,则其内切球、外接球的半径分别为12aR =,2R =,故正方体的内切球与其外接球的体积之比3113224343R V V R ππ==.【答案】C【提炼】设正方体的棱长为a ,则其内切球的半径2a R =.18.(★★)如图,圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是______.【解析】如图,设球的半径为R ,则213223423V R R V R ππ⋅==.【答案】3219.(2020·新课标Ⅲ卷·理·15·★★★)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_______.【解析】如图,该圆锥内半径最大的球即圆锥的内切球,设其半径为R ,则OB OG R ==,1AB AG ==.由题意得PG =OP R =-,2PB PA AB =-=.在POB 中,222OB PB OP =+,故()224R R +=,解得22R =,即球的体积3433V R π==.【答案】2320.(★★★★)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是()A.4π B.92π C.6π D.323π【解析】要解决这道题,得先搞清楚一件事,那就是最大的球到底是和棱柱的侧面相切,还是与底面相切?如图,可求得底面直角三角形的斜边10AC =,将底面Rt ABC △单独拿出来分析其内切圆半径r ,图中BP NQ r ==,故8PC r =-,即8CM PC r ==-,PN BQ r ==,故6AQ r =-,即6AM AQ r ==-,所以8614210AC CM AM r r r =+=-+-=-=,解得2r =,由123r AA >=知最大球的半径为32,体积3439322V ππ⎛⎫=⨯=⎪⎝⎭.【答案】B题组七21.(★★★)已知A,B是球O的球面上两点,90AOB∠=︒,C为该球面上的动点.若三棱锥O ABC-体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【解析】设球O的半径为R,当点C位于如图所示位置(OC⊥平面AOB)时,三棱锥O ABC-的体积最大,最大值为321136326RR R⨯⨯==,即6R=,故球O的表面积24144S Rππ==.【答案】C22.(★★★)已知三棱锥S ABC-的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA AC=,SB BC=,三棱锥S ABC-的体积为9,则球O的表面积为________.【解析】如图,由题意知,SAC△,SBC△都是以SC为斜边的等腰直角三角形,设球O的半径为R,故31129323S ABCRV R R R-=⋅⋅⋅⋅==,即3R=,故球O的表面积2436S Rππ==.【答案】36π第8讲经典模型之对棱相等知识与方法四面体ABCD 中,AB CD m ==,AC BD n ==,AD BC t ==,这种四面体叫做对棱相等四面体,可以通过构造长方体来解决这类四面体的外接球问题.如图,设长方体的长宽高分别为a 、b 、c ,则222222222a b t b c n a c m ⎧+=⎪+=⎨⎪+=⎩,三式相加可得2222222m n t a b c ++++=,而显然四面体和长方体有相同的外接球,设外接球半径为R ,则22224a b c R ++=,所以R =.典型例题【例题】四面体ABCD中,AB CD ==AC BD ==,5AD BC ==,则该四面体外接球的体积为_______.【解析】由题意,四面体ABCD是对棱相等模型3464233R V R π⇒===.【答案】3变式1三棱锥A BCD -中,6AB CD ==,5AC BD AD BC ====,则该三棱锥外接球表面积为()C.432π D.43π【解析】由题意,四面体ABCD是对棱相等模型24432R S R ππ⇒====.【答案】D 变式2A 、B 、C 、D四点在半径为2的球面上,且5AC BD ==,AD BC ==,AB CD =,则四面体ABCD 的体积为______.【解析】由题意,四面体ABCD 是对棱相等模型,设AB CD x ==,则R x ==ABCD补全为如图所示的长方体,设长方体的长、宽、高分别为a 、b 、c ,则222222413425a b b c a c ⎧+=⎪+=⎨⎪+=⎩,解得:453a b c =⎧⎪=⎨⎪=⎩,所以四面体ABCD 的体积1134543452032V =⨯⨯-⨯⨯⨯⨯⨯=.【答案】20强化训练1.(★★★)四面体ABCD中,AB CD ==AC BD ==,AD BC ==,则四面体ABCD 外接球的表面积为()A.25πB.45πC.50πD.100π【解析】由题意,四面体ABCD是对棱相等模型,2524502R S R ππ====.【答案】C2.(★★★)半径为1的球面上有不共面的A 、B 、C 、D 四点,且AB CD x ==,BC AD y ==,AC BD z ==,则222x y z ++=()A.16B.8C.4D.2【解析】由题意,四面体ABCD是对棱相等模型,22218R x y z =⇒++=【答案】B3.(★★★)四面体ABCD 中,5AB CD ==,AC BD ==,AD BC ==接球的半径为()A.2B. C.132 D.13【解析】由题意,四面体ABCD是对棱相等模型,132R =【答案】C4.(★★★)在四面体ABCD 中,2AB CD ==,AC BD AD BC ====接球的表面积为_______.【解析】由题意,四面体ABCD是对棱相等模型,2144R S R ππ==⇒==【答案】4π5.(★★★★)在三棱锥P ABC -中,2PA BC ==,PB AC =,PC AB =,且4PB PC ⋅=,则三棱锥P ABC -的外接球的表面积的最小值为________.【解析】设PB AC x ==,PC AB y ==,则4xy =,所以三棱锥P ABC -的外接球半径62R =≥,当且仅当2x y ==时取等号,所以三棱锥P ABC -的外接球的表面积的最小值为246ππ⨯=⎝⎭.【答案】6π6.(★★★★)四面体ABCD 的顶点都在球O 的表面上,4AB BC CD DA ====,AC BD ==,E 为AC 中点,过点E 作球O 的截面,则截面面积的最大值与最小值之比为()A.5:42D.5:2【解析】四面体ABCD是对棱相等模型,所以R =,将四面体ABCD 放入长方体如图,截面面积的最大值为215S R ππ==,当截面面积最小时,截面与OE 垂直,其中O 为球心,设FA a =,FB b =,FC c =,则222222216182216a a b a c b OE b r c b c =⎧⎧+=⎪⎪+=⇒=⇒=⇒=⎨⎨⎪⎪=+=⎩⎩,即截面面积的最小值为222S r ππ==,故12:5:2S S =.【答案】D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何中外接球与内切球模型归纳
在立体几何中,外接球和内切球是两个重要的概念。

外接球和内切球分别指在几何体上找到的可以用一个球切割出来的最大和最小的球形结构。

在实际应用中,外接球和内切球可以应用到各种领域,例如机械制造、建筑设计等。

一、外接球
外接球是指能够切割几何体上所有顶点的球,也就是说,外接球的球心在几何体的所以顶点上。

常见的外接球有以下几种类型:
1. 立方体的外接球
立方体的外接球是一个边长等于立方体对角线长度的球。

由于立方体的对角线长度是边长的$\sqrt{3}$倍,因此,立方体的外接球半径为边长的$\frac{\sqrt{3}}{2}$倍。

圆锥的外接球是一个球心位于圆锥顶点上,且半径等于圆锥母线长度的一半的球。

圆锥的外接球直径等于底面圆的直径加上圆锥高的二倍,即外接球直径等于
$\sqrt{d^2+4h^2}$。

二、内切球
立方体的内切球是一个正八面体,正八面体的体心即为立方体重心。

2. 正四面体的内切球
正四面体的内切球是一个球心位于四面体重心处,且半径等于四面体高的
$\frac{1}{3}$倍的球。

4. 圆锥的内切球
圆锥的内切球是一个球心位于圆锥顶点上,且半径等于圆锥母线长度与底面半径之差的一半的球。

相关文档
最新文档