初一期中数学试卷及答案
2023-2024学年北京西城区十三中初一(上)期中数学试题及答案
2023北京十三中初一(上)期中数 学考生须知1.本试卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷共2页,第Ⅱ卷共4页. 2.本试卷满分100分,考试时间100分钟.3.在试卷(包括第Ⅰ卷和第Ⅱ卷)密封线内准确填写学校、班级、姓名、学号. 4.考试结束,将试卷及答题纸一并交回监考老师.第Ⅰ卷一、选择题:(本大题共8小题,每小题2分,共16分)下面1-8题均有四个选项,其中符合题意的选项只有一个.1. 2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为( ) A. 80.1110⨯B. 71.110⨯C. 61110⨯D. 61.110⨯2. 下列说法中,正确的是( ) A. 2与2−互为倒数B. 2与12互为相反数C. 0的相反数是0D. 2的绝对值是2−3. 下列计算正确的是( ) A. 325a b ab += B. 22550ab a b −= C. 277a a a +=D. 32ab ba ab −+=4. 下列各组数中,相等的一组是( ) A. ()1−−与1−− B. 23−与()23−C. ()34−与34−D. 223与223⎛⎫ ⎪⎝⎭5. 某圆形零件的直径要求是500.2mm ±,下表是6个已生产出来的零件圆孔直径检测结果(以50mm 为标准则)则在这6个产品中合格的有( ).A. 2个B. 3个C. 4个D. 5个6. 下列说法中,不正确的是( ) A.3xy是整式 B. 2ab c −的系数是1−,次数是4 C. 2631x x −+的项是26x ,3x −,1D. 多项式22x y xy −是五次二项式7. 要使多项式()22222732x x x mx−+−+化简后不含x 的二次项,则m 等于( )A. 0B. 2−C. 6−D. 28. 如图,在一个大长方形中放入三个边长不等的小正方形①、②、③,若要求出两个阴影部分周长的差,只要知道下列哪个图形的面积( )A. 正方形①B. 正方形②C. 正方形③D. 大长方形第Ⅱ卷二、填空题(本大题共8个小题,每题2分,共16分)9. 写出一个比52−小的有理数________.10. 将多项式3x 2-1-6x 5-4x 3按字母x 的降幂排列为__________________. 11. 已知代数式6x ﹣12与4+2x 的值互为相反数,那么x 的值等于_____. 12. 如果3x =是关于x 的方程326m x −=的解,则m 的值是________. 13. 观察有理数a 、b 、c 在数轴上的位置并比较大小:()()c b a b −+______0.14. 若22350x x +−=,则代数式2469x x ++的值是________.15. 某服装店新上一款运动服,第一天销售了m 件,第二天的销售量是第一天的两倍少3件,第三天比第二天多销售5件,则第三天的销售量是______件.16. 如图①,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为4−,b ,5.某同学将刻度尺如图②放置,便刻度尺上的数字0对齐数轴上的点A ,发现点B 对齐刻度尺1.5cm 处,点C 对齐刻度尺4.5cm 处.(1)在图①的数轴上,AC =______个单位长; (2)求数轴上点B 所对应的数b 为______.三、计算题:(本大题共4小题,共39分,其中第17题18分,第18,20题各8分,第19题5分)17. 计算:(1)()()()()20357−++−−−+; (2) 2.4 3.7 4.6 5.7−−−+; (3)340.2575⎛⎫−+−⨯ ⎪⎝⎭; (4)()()21862⎛⎫−⨯−+− ⎪⎝⎭;(5)()1113612366⎛⎫−−+⨯− ⎪⎝⎭; (6)()411293⎛⎫−+−+−−− ⎪⎝⎭. 18. 化简:(1)2253482x x x x +++−−; (2)()()225214382a a a a+−−−+.19. 先化简,再求值2222233x y xy x y xy x y −−−+()(),其中25x =−,2y =. 20. 解方程:(1)()2237x x −=−; (2)12326x x −+−=1. 四、解答题(本大题共7个小题,共29分,其中第21题3分,第22,24,25,27题各4分,第23,26题各5分)21. 在数轴上表示出有理数: 3.5−,2,1.5,1−,并比较它们的大小,将它们按从小到大的顺序用“<”连接.22. 已知:212323A a ab a =+−−,21223B a ab =−++,当()2120a b +++=时,求()432A A B −−的值.23. a b ※是新规定的这样一种运算法则:22a b a ab =+※,例如()()22525255−=+⨯⨯−=※.(1)求23※的值;(2)若()22x x −=−+※,求x 的值.24. 已知A ,B ,C 三点在数轴上如图所示,它们表示的数分别是a ,b ,c ,且a b <.(1)填空:abc 0(填“>”、“<”或“=”);(2)化简:2a b a b b c −−++−25. 先阅读,再探究相关的问题:52−表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;52+可以看作()52−−,表示5与2−差的绝对值,也可理解为5与2−两数在数轴上所对应的两点之间的距离.(1)点A 的位置如图所示,点B 与点A 分别位于原点两侧且与原点距离相等,把点A 向左移动1.5个单位,得到点C ,则B ,C 两点间的距离是 ;(2)点D 和E 分别在数轴上表示数x 和1−,如果D ,E 两点之间的距离为3,那么x 为 ; (3)借助数轴思考,当x 为 时,4x +与2x −的值相等.26. 定义:若一个多项式的各项系数之和为7的整数倍,则称这个多项式为“7倍系数多项式”,称这个多项式的各项系数之和为“7倍系数和”.例如:多项式208x y +的系数和为2082874+==⨯,所以多项式208x y +是“7倍系数多项式”,它的“7倍系数和”为28. 请根据这个定义解答下列问题:(1)在下列多项式中,属于“7倍系数多项式”的是 ;(在横线上填写序号) ①229x x −;②35a b +;③219423x x y xy −+−.(2)若多项式4mx ny −是关于x 、y 的“7倍系数多项式”(其中m ,n 均为整数),则多项式23mx ny +也是关于x 、y 的“7倍系数多项式”吗?若是,请说明理由;若不是,请举出反例.27. 如图,设A 是由n ×n 个有理数组成的n 行n 列的数表,其中a ij (i ,j =1,2,3,…,n )表示位于第i 行第j 列的数,且a ij 取值为1或﹣1.对于数表A 给出如下定义:记x i 为数表A 的第i 行各数之积,y j 为数表A 的第j 列各数之积.令S =(x 1+x 2+…+x n )+(y 1+y 2+…+y n ),将S 称为数表A 的“积和”.(3)当n=10时,直接写出数表A的“积和”S的所有可能的取值.参考答案第Ⅰ卷一、选择题:(本大题共8小题,每小题2分,共16分)下面1-8题均有四个选项,其中符合题意的选项只有一个.1. 【答案】B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:数据11000000用科学记数法表示应为71.110⨯. 故选:B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,正确确定a 的值以及n 的值是解决问题的关键.2. 【答案】C【分析】根据相反数定义,倒数定义,绝对值定义对各选项进行一一判断即可. 【详解】解:A. 2与2−互为相反数,故选项A 不正确 B. 2与12互为倒数,故选项B 不正确;C. 0的相反数是0,故选项C 正确;D. 2的绝对值是2,故选项D 不正确. 故选C .【点睛】本题考查相反数定义,倒数定义,绝对值定义,掌握相关定义是解题关键. 3. 【答案】D【分析】根据合并同类项法则计算并判断.【详解】A 、3a 与2b 不是同类项,不能合并,故该项不符合题意; B 、5ab 2与5a 2b 不是同类项,不能合并,故该项不符合题意; C 、7a+a=8a ,故该项不符合题意; D 、32ab ba ab −+=,故该项符合题意; 故选:D .【点睛】此题考查合并同类项,掌握同类项的判断方法是解题的关键. 4. 【答案】C【分析】根据有理数的乘方的定义,绝对值的性质对各选项分别计算,然后利用排除法求解. 【详解】解:A 、-|-1|=-1,-(-1)=1,-(-1)≠-|-1|,故本选项错误; B 、(-3)2=9,-32=-9,9≠-9,故本选项错误; C 、(-4)3=-64,-43=-64,(-4)3=-43,故本选项正确;D 、22433=,22439⎛⎫= ⎪⎝⎭,4439≠,故本选项错误.故选:C .【点睛】本题考查了绝对值、有理数的乘方.解题的关键是掌握有理数的乘方运算法则,要注意-43与(-4)3的区别. 5. 【答案】C【分析】某圆形零件的直径要求是50±0.2mm ,即可得49.850.2mm mm ~都合格,一一进行判断即可.【详解】500.2mm ±,即49.850.2mm mm ~都合格,0.2mm ±内都可合格, ∴有4个.【点睛】本题主要考查有理数正负数在生活中的实际运用,正确理解正负数的性质是本题的解题关键. 6. 【答案】D【分析】本题考查了整式,根据根据整式的定义,A ;可判断单项式的系数、次数,可判断B ;根据多项式的项,可判断C ;根据多项式次数和项,可判断D . 【详解】解:A 、3xy是整式,故A 正确,不符合题意; B 、2ab c −的系数是1−,次数是4,故B 正确,不符合题意; C 、2631x x −+的项是26x ,3x −,1,故C 正确,不符合题意; D 、多项式22x y xy −是三次二项式, 故D 不正确,符合题意; 故选:D . 7. 【答案】C【分析】去括号合并同类项后,令x 的二次项的系数等于0求解即可. 【详解】解:()22222732x x x mx−+−+=22221464x x x mx −−++=()26+614m x x −−,∵化简后不含x 的二次项, ∴6+m =0, ∴m =-6, 故选C .【点睛】本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中代数式的取值与哪一项无关的意思,与哪一项无关,就是合并同类项后令其系数等于0,由此建立方程求解. 8. 【答案】B【分析】如图,设三个正方形①②③的边长依次为a ,b ,c ,重叠的小长方形的长和宽分别为x ,y ,表示出阴影部分的周长差即可求解.【详解】如图,设三个正方形①②③的边长依次为a,b,c,重叠的小长方形的长和宽分别为x,y,∴阴影部分的周长差为2(a+b-x-c)+2(b+c-y)-2(b-x)-2(a-y)=2a+2b-2x-2c+2b+2c-2y -2b+2x-2a+2y=2b故只要知道下列图形②的边长或面积即可求解,故选B.【点睛】此题主要考查整式的加减、列代数式、去括号,解题的关键是根据图形的特点列出代数式求解.第Ⅱ卷二、填空题(本大题共8个小题,每题2分,共16分)9. 【答案】3−(答案不唯一)【分析】本题考查了有理数的大小比较,根据“两个负数比较大小,绝对值大的数反而小”的法则,即可得到答案.【详解】解:532−>−,532∴−<−,故答案为:3−.10. 【答案】-6x5-4x3+3x2-1【分析】根据多项式的降幂排列的定义,可知多项式的5次项为-6x5,3次项为--4x3,2次项为3x2,常数项为-1.故其降幂排列为-6x5-4x3+3x2-1.【详解】多项式3x2-1-6x5-4x3按字母x的降幂排列为:-6x5-4x3+3x2-1.故答案为-6x5-4x3+3x2-1.【点睛】此题考查多项式,解题关键在于掌握多项式每项的幂.11. 【答案】1【详解】解:根据题意得:6x﹣12+4+2x=0,移项合并得:8x=8,解得:x=1,故答案为112. 【答案】4【分析】本题考查了方程的解以及解一元一次方程,根据方程的解的定义,将3x=代入关于x的方程326m x −=,得到关于m 的一元一次方程,求解即可得到答案.【详解】解:3x =是关于x 的方程326m x −=的解,3236m ∴−⨯=,解得:4m =, 故答案为:4. 13. 【答案】<【分析】根据数轴判断出()c b −和()a b +的正负,即可得出答案. 【详解】解:由题意可知:0a b c <<<,b a c <<, 所以0c b −>,0a b +<. 所以()()0c b a b −+<. 故答案为:<.【点睛】本题考查了数轴,掌握数轴上数的排列特点和有理数的运算法则是解题的关键. 14. 【答案】19【分析】此题主要考查了求代数式的值,首先由已知得2235x x +=,再将2469x x ++转化为22(23)9x x ++,然后整体代入即可.【详解】解:22350x x +−=, 2235x x ∴+=,222(23)925991946x x x x ∴=++=⨯+=++.故答案为:1915. 【答案】()22m +##()22m +【分析】第一天销售了m 件,再根据“第二天的销售量是第一天的两倍少3件”,“第三天比第二天多销售5件”列出代数式,即可求解.【详解】∵第一天销售了m 件,第二天的销售量是第一天的两倍少3件,第三天比第二天多销售5件 即第二题的销售量是()23m −件,第三天的销售量是()235m −+件, ∴第三天的销售量是()22m +件. 故答案为:()22m +.【点睛】本题考查了列代数式,理解题意是解题的关键. 16. 【答案】 ①. 9 ②. 1−【分析】(1)根据两点之间的距离即可得出答案;(2)先求出1个单位长度是多少厘米,再求1.5cm 是几个单位长度,根据有理数的加法即可得出答案. 【详解】解:()549−−=(个), ∴9AC =个单位长,故答案为:9;(2)()4.590.5cm ÷=, 1.50.53÷=(个), 431b =−+=−,∴数轴上点B 所对应的数b 为1−, 故答案为:1−.【点睛】本题考查数轴,数轴上两点间的距离,有理数的加减运算.掌握如果数轴上两点A ,B 表示的数为a ,b ,那么A ,B 之间的距离是a b −是解题的关键.三、计算题:(本大题共4小题,共39分,其中第17题18分,第18,20题各8分,第19题5分)17. 【答案】(1)19− (2)5− (3)83140−(4)40 (5)2− (6)1123− 【分析】本题考查了含乘方的有理数混合运算以及加法运算律和乘法运算律,熟练掌握相关运算法则是解题关键.(1)根据有理数加减混合运算法则计算即可;(2)根据有理数加减混合运算法则,结合加法运算律计算即可; (3)根据有理数混合运算法则,先计算乘法,再计算加减法即可; (4)根据有理数混合运算法则,先计算乘法和乘方,再计算加法即可; (5)根据有理数加减混合运算法则,结合乘法运算律计算即可; (6)先计算乘方和绝对值,再根据有理数加减混合运算法则计算即可. 【小问1详解】解:()()()()20357−++−−−+ 20357=−++−19=−;【小问2详解】解: 2.4 3.7 4.6 5.7−−−+()()2.4 4.6 5.7 3.7=−++− 72=−+=5−;【小问3详解】 解:340.2575⎛⎫−+−⨯ ⎪⎝⎭ 112435=−− 83140=−; 【小问4详解】 解:()()21862⎛⎫−⨯−+− ⎪⎝⎭436=+40=;【小问5详解】 解:()1113612366⎛⎫−−+⨯− ⎪⎝⎭ ()()()11136363612366⎛⎫=−⨯−−⨯−+⨯− ⎪⎝⎭316=+−2=−;【小问6详解】解:()411293⎛⎫−+−+−−− ⎪⎝⎭ 11293=−−−− 1123=−. 18. 【答案】(1)2351x x −++(2)233413a a −+−【分析】本题考查了整式的加减混合运算,掌握相关运算法则是解题关键(1)根据整式的加减运算法则化简即可;(2)先去括号,再整式的加减运算法则化简即可.【小问1详解】解:22253482351x x x x x x +++−−=−++;【小问2详解】解:()()225214382a a a a +−−−+2252112328a a a a =+−−+−233413a a =−+−.19. 【答案】5xy ,4−【分析】应用整式的加减化简求值的计算方法进行计算即可得出答案.【详解】∵2222233x y xy x y xy x y −−−+()()2222439x y xy x y xy x y =−−++5xy = ∴当25x =−,2y =时,255245xy ⎛⎫=⨯−⨯=− ⎪⎝⎭∴2222233x y xy x y xy x y −−−+()()化简后是5xy 当25x =−,2y =时,222223354x y xy x y xy x y xy −−−+==−()() 【点睛】本题主要考查了整式的加减和化简求值,熟练掌握整式的加减和化简求值的方法进行求解是解决本题的关键.20. 【答案】(1)3x =(2)12x =【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次方程;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可求解.【小问1详解】解:()2237x x −=−,去括号,得:2437x x −=−,移项,得:2374x x −=−+,合并同类项,得:3x −=−,系数化为1:3x =;【小问2详解】12326x x −+−=1, 去分母,得:()()31236x x −−+=,去括号,得:33236x x −−−=,移项,得:32633x x −=++,合并同类项,得:12x =.【点睛】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.四、解答题(本大题共7个小题,共29分,其中第21题3分,第22,24,25,27题各4分,第23,26题各5分)21. 【答案】见解析; 3.51 1.52−<−<<【分析】本题考查了用数轴上的点表示有理数以及利用数轴比较有理数的大小,先画出数轴,再将这4个数在数轴上表示出来,最后根据“数轴上的点所对应的数从左往右依次增大”将这4个数按从小到大的顺序排列即可.【详解】解:在数轴上表示各数如图所示:由数轴可知, 3.51 1.52−<−<<.22. 【答案】11【分析】本题考查了整式的加减运算、非负数的性质,代数式求值.先根据整式的加减运算法则化简,再利用偶次方和绝对值的非负性,求出a 、b 的值,最后代入计算即可.熟练掌握相关运算法则是解题关键. 【详解】解:212323A a ab a =+−−,21223B a ab =−++, ()4223A B A A B −=−+∴221122322323a ab a a ab ⎛⎫+−−+−++ ⎪⎝⎭= 2214232233a ab a a ab =+−−−++ 421ab a =−+,()2120a b +++=,10a ∴+=,20b +=,1a ∴=−,2b =−,∴原式()()()41221182111=⨯−⨯−−⨯−+=++=.23. 【答案】(1)16 (2)65x = 【分析】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解,(1)利用题中的新定义化简原式,计算即可得到结果;(2)利用题中的新定义化简已知等式,求出方程的解即可得到x 的值.【小问1详解】解:根据题中新定义得:2※23222341216=+⨯⨯=+=;【小问2详解】根据题意:2(2)2(2)2x x −+⨯−⨯=−+,整理得:442x x −=−+,解得:65x =. 24. 【答案】(1)<(2)32a b c −−+【分析】(1)根据数轴上的点所在位置判断a 、b 、c 的正负号,再确定abc 、a b +正负号;(2)先确定a b −,a b +以及b c −的正负号,再根据绝对值的性质去绝对值符号即可.【小问1详解】解:根据数轴上A 、B 、C 三点的位置,可知0a b c <<<,且||||||c b a >>,<0abc ∴,故答案为:<【小问2详解】由题意可知,0a b −<,0a b +>,0b c −<,||2||||a b a b b c ∴−−++−2()b a a b c b =−−++−22b a a b c b =−−−+−32a b c =−−+.【点睛】本题考查了数轴、绝对值、有理数的及其运算等知识与方法,解题的关键是确定a 、b 、c 的正负号及有关算式的正负号.25. 【答案】(1)3.5 (2)2或4−(3)1−【分析】(1)根据数先在数轴上描出点,再根据点得出两点间的距离;(2)根据数轴上两点间的距离公式,可得到x 的值两个;(3)根据到两点距离相等的点是这两个点的中点,可得答案;【小问1详解】解:如图,B 点表示的数 2.5−,C 点表示的数1,BC 的距离是1( 2.5) 3.5−−=;故答案为: 3.5【小问2详解】数轴上表示x 和1−的两点D 和E 之间的距离表示为:|(1)||1|x x −−=+,如果D ,E 两点之间的距离为3,即|1|3x +=,13x +=或13x +=−,那么x 为4−或2;故答案为: 2或4−【小问3详解】|4|x +与|2|x −的值相等,42x x 此种情况等式不成立,或4(2)x x +=−−,=1x −,如图:1−到4−距离和1−到2的距离相等1x ∴=−时,|4|x +与|2|x −的值相等;故答案为:1−【点睛】本题考查了数轴,绝对值,相反数,解题的关键是掌握数轴知识,绝对值的定义,相反数的定义. 26.【答案】(1)①③ (2)是,理由见详解【分析】本题考查了多项式的新定义,(1)分别算一下这三个多项式各系数之和是否为7的整数陪,即可求出答案;(2)根据题意可知,4m n −是7的整数倍,推出47n m z =−,根据要求推一下23m n +是否是7的整数倍即可.【小问1详解】解:(1)①因为[2(9)]71+−÷=−,1−是整式,所以这个多项式是“7倍系数多项式”; ②因为8(35)77+÷=,87不是整数,所以这个多项式不是“7倍系数多项式”; ③因为(19423)72−+−÷=,2是整数,所以这个多项式不是“7倍系数多项式;故答案选:①③;【小问2详解】是,理由如下:多项式4mx ny −是关于x ,y 的“7倍系数多项式”,4m n ∴−是7的整数倍,设47(m n z z −=为整数,且0)z ≠,则47n m z =−,多项式23mx ny +的系数之和为:23m n +,2323(47)1421m n m m z m z ∴+=+−=−,(1421)723m z m z −÷=−,1421z ∴−为7的倍数,即23m n +为7的倍数,∴当多项式4mx ny −是关于x ,y 的“7倍系数多项式”,多项式23mx ny +也是关于x ,y 的“7倍系数多项式”.27. 【答案】(1)0;(2)不存在,理由见解析;(3)﹣20,﹣16,﹣12,﹣8,﹣4,0,4,8,12,16,20【分析】(1)由题意分别求出x1=1,x2=-1,x3=1,x4=1,y1=-1,y2=-1,y3=1,y4=-1;(2)假设存在,一个3×3的数表A,使得该数表的“积和”S=0,由题意可知x1、x2、x3、y1、y2、y3中只能有3个1或3个-1,再由这些数的乘积t2=x1x2x3y1y2y3=-1,与t2≥0矛盾,即可说明不存在;(3)n=10时,每行10个1,9个1,8个1,…,1个1,0个1,这11中情况分别求出S即可.【详解】(1)由题意可知,x1=1,x2=﹣1,x3=1,x4=1,y1=﹣1,y2=﹣1,y3=1,y4=﹣1,∴S=2+(﹣2)=0;(2)假设存在,一个3×3的数表A,使得该数表的“积和”S=0,则S=(x1+x2+x3)+(y1+y2+y3)=0,∵x1、x2、x3、y1、y2、y3的值只能去1或﹣1,∴x1、x2、x3、y1、y2、y3中只能有3个1或3个﹣1,∴设3×3的数表A中9个数的乘积为t,则t=x1x2x3=y1y2y3,∴t2=x1x2x3y1y2y3=﹣1,这与t2≥0矛盾,故假设不成立,∴不存在一个3×3的数表A,使得该数表的“积和”S=0;(3)n=10时,S的可能取值﹣20,﹣16,﹣12,﹣8,﹣4,0,4,8,12,16,20.【点睛】本题考查数字的规律;理解题意,能够根据1和-1的个数是决定S的值的关键.。
七年级上册数学期中考试试卷附答案
七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。
湖南省长沙市湖南师大附中博才实验中学2023-2024学年上学期七年级期中考试数学试卷
23年秋初一湖南师大附中博才实验中学期中考试数学试卷 一、选择题 (在下列各题中的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)−1.(3分)中国古代数学著作《九章算术》就最早提到了负数.2023的相反数是()A .20231B .2023C .−20231−D .2023−2.(3分)下列各数:1,π,4.11213415,02,722,3.14,其中有理数有 () A .6个B .5个C .4个D .3个3.(3分)电影《长安三万里》是一部以我国盛唐历史为背景的高票房动漫电影,截止到2023年10月23日,其票房1824000000元,用科学记数法可表示为()1.82410⨯A .81.82410⨯B .918.2410⨯C .8 0.182410⨯D .104.(3分)下列不是同类项的是 ()5A .2 2和5−B .ab 与ba 0.2a b 2C .与−51a b 2−a b a b 23D .与32 5.(3分)下列不是具有相反意义的量是()A .前进5米和后退5米C .向东走10米和向北走10米B .收入30元和支出10元D .超过5克和不足2克6.(3分)πx5的系数是()A .πB 5.πC .51D .1 7.(3分) −−+a b c ()变形后的结果是()−++A .a b c−+−B .a b c −−+C .a b c −−−D .a b c 8.(3分)下列计算结果正确的是 ()A .−=− x y xy xy 2222B .+=a a a 358224C .−−=−+D 3(2)6a b a b .+−−=+m n n m m n 42()59.(3分)有理数a ,b ,c 在数轴上的位置如图所示,式子+−−a b b c ||||化简为()A .+−a b cB 2.−+a b c C 2.+a c D .−cb −2a 210.(3分)按一定规律排列的单项式:,−4a 63a 4,,−6a 105a 8,,⋯7a 12,,第n个单项式是()A . −n n −na (1)1B .−+n n −n a (1)(1)12−C .n nna (1)2−+D .n n n a (1)(1)2二、填空题 (共6小题,每小题3分,满分18分)−−11.(3分)比较大小:517. 12.(3分)某品牌电视机搞促销:在原价基础上先立减100元,再打九折销售.若该电视机原价每台为 a 元,则售价为元.(用含a 的代数式表示)13.(3分)3.8963精确到百分位约为.14.(3分)已知a 、b 互为相反数,m 、n 互为倒数,的绝对值为2x ,则 −++=+ a b2mn x 20232.15.(3分)若多项式−xy n x y +−+(2)1m n 22是关于 x ,y m n 的三次多项式,则+=2.16.(3分)如果有理数a ,b ab b −+−=满足|2|(1)02,则+++++++++⋅⋅⋅+ ab a b a b a b (1)(1)(2)(2)(2021)(2021)1111的值为.三、解答题 (共9小题,满分72分)17.(6分)画出数轴并在数轴上表示出下列各数,将这些数用“<”号连接.−4+、 1.25−−、|2|−+、(0.5)、−−2(3)1.18.(8分)计算:(1)−++−4545325(8)1312;(2)−−−++÷−⨯313(53)27(3)2.19.(6分)先化简,再求值:−−+x y xy xy x y 5(3)(3)2222x =,其中2y =3,.20.(8分)小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题: (1)用含m ,n 的代数式表示地面的总面积S ;(2)已知 1.5n =,且客厅面积是卫生间面积的8倍,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?21.(8分)已知||3x =,||2y =.(1)若x y <,求x y −的值;(2)若0xy >,求x y +的值.22.(8分)某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:)km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.3升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米加1.6元收费,在这过程中该驾驶员共收到车费多少元?23.(8分)已知:2468B a ab a=++.=−+,2A a ab b253−;(1)化简:2A B−的值;(2)若1b=,求2A Ba=−,2−的值与a无关,求此时b的值.(3)若代数式2A B24.(10分)阅读材料:整体思想是数学解题中一种重要思想方法,在多项式化简与求值应用广泛,如把()a b +看成一个整体,3()2()()(321)()2()a b a b a b a b a b +−+++=−++=+.根据以上方法解答下列问题:(1)用整体思想化简:2222()4()7()a b a b a b −−−+−; (2)若22230a b −−=,求22362032a b −++的值;(3)已知:2215a ab +=,226b ab +=,求代数式22244a b ab −−的值.25.(10分)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离||AB a b =−,线段AB 的中点表示的数为2a b+. 【问题情境】数轴上点A 表示的数为4−,点B 表示的数为6,点P 从点A 出发,以每秒1个单位长度的速度沿数轴向终点B 匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,Q 到达A 点后,再立即以同样的速度返回B 点,当点P 到达终点后,P .Q 两点都停止运动,设运动时间为t 秒(0)t >. 【综合运用】(1)填空:A ,B 两点间的距离AB = ,线段AB 的中点表示的数为 . (2)当t 为何值时,P ,Q 两点间距离为3.(3)若点M 为AQ 的中点,点N 为BP 的中点,在运动过程中,MNAP的值是否会发生变化?若变化,请说明理由,若不变,请求出相应的数值.23年秋初一湖南师大附中博才实验中学期中考试数学试卷参考答案与试题解析 一、选择题 (在下列各题中的四个选项中,只有一项是符合题意的。
七年级数学期中试卷附答案
一、选择题(每题3分,共30分)1. 下列数中,是有理数的是()A. √2B. πC. 0.1010010001...D. -32. 如果a > 0,b < 0,那么下列不等式中正确的是()A. a > bB. a < bC. a ≥ bD. a ≤ b3. 下列各数中,是负数的是()A. -1/3B. 0C. √4D. -√94. 下列各数中,是有理数的是()A. √2B. πC. 0.1010010001...D. -35. 下列各数中,是无理数的是()A. √4B. πC. 0.1010010001...D. -36. 如果a = -2,b = 3,那么a + b的值是()A. 1B. -1C. 0D. 57. 下列各数中,是偶数的是()A. 1B. 2C. 3D. 48. 下列各数中,是奇数的是()A. 1B. 2C. 3D. 49. 下列各数中,是质数的是()A. 2B. 3C. 4D. 510. 下列各数中,是合数的是()A. 2B. 3C. 4D. 5二、填空题(每题3分,共30分)11. 1/2 + 2/3 = __________12. (-3) × (-2) × (-1) = __________13. 2 × 3 × 5 × 7 = __________14. 3^2 × 3^3 = __________15. 4^2 ÷ 2^2 = __________16. 0.5 + 0.25 = __________17. 2 - 3/4 = __________18. 5 × 3/4 = __________19. 8 ÷ 2 + 2 = __________20. 3^2 × 2^3 = __________三、解答题(每题10分,共40分)21. 简化下列各式:(1) 3a - 2b + 4a - b(2) 2x + 3y - 5x - 2y22. 解下列方程:(1) 2x - 3 = 7(2) 3y + 5 = 2y + 1023. 判断下列各数是有理数还是无理数:(1) √9(2) 0.1010010001...24. 已知a = 2,b = -3,求a + b的值。
七年级数学期中试卷及答案【含答案】
七年级数学期中试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长为10cm,腰长为13cm,那么这个三角形的周长是?A. 32cmB. 36cmC. 42cmD. 46cm3. 一个数加上6后,再除以3,结果是5,这个数是?A. 11B. 13C. 15D. 174. 一个长方体的长、宽、高分别是10cm、6cm、4cm,那么这个长方体的体积是?A. 240cm³B. 480cm³C. 720cm³D. 960cm³5. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 圆二、判断题1. 任何两个奇数相加的和都是偶数。
()2. 一个数的平方和它的立方一定相等。
()3. 一个等边三角形的三个角都是60度。
()4. 两个负数相乘的结果是正数。
()5. 一个数的倒数乘以它自己等于1。
()三、填空题1. 2的平方根是______。
2. 一个等腰三角形的两个底角相等,如果一个底角是50度,那么另一个底角是______度。
3. 1千克等于______克。
4. 一个圆的半径是5cm,那么这个圆的面积是______cm²。
5. 一个数的因数是它自己,那么这个数是______。
四、简答题1. 请简述勾股定理的内容。
2. 请解释等差数列的定义。
3. 请解释比例的基本性质。
4. 请简述分数的基本性质。
5. 请解释正方形的性质。
五、应用题1. 一个长方体的长、宽、高分别是12cm、8cm、6cm,求它的体积。
2. 一个等腰三角形的底边长是10cm,腰长是13cm,求这个三角形的面积。
3. 一个数加上7后,再乘以3,结果是60,求这个数。
4. 一个数的2倍加上4等于18,求这个数。
5. 一个数的3/4等于15,求这个数。
六、分析题1. 小明有10个苹果,他吃了一半,然后又吃了一个,请问小明还剩下几个苹果?2. 一个长方体的长、宽、高分别是10cm、6cm、4cm,如果长、宽、高都增加2cm,那么新长方体的体积是多少?七、实践操作题1. 请画出一个正方形,并标出它的对角线。
人教版数学初一上学期期中试卷及答案指导(2024-2025学年)
2024-2025学年人教版数学初一上学期期中模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、计算下列算式的结果:(3×(4+5)−7)A. 17B. 18C. 19D. 202、已知线段AB的长度为6cm,点C在线段AB上,且AC的长度为AB长度的一半,则BC的长度是多少?A. 2cmB. 3cmC. 4cmD. 5cm3、小华买了一支铅笔和一支橡皮,一共花了5.6元。
已知铅笔的价格是橡皮的3倍,那么橡皮的价格是多少元?选项:A、1.2元B、1.8元D、3.6元4、一个长方形的长是宽的2倍,如果长方形的长和宽各增加5cm,那么长方形的面积将增加多少平方厘米?选项:A、25cm²B、30cm²C、40cm²D、50cm²5、已知一个正方形的边长为(3)厘米,如果将这个正方形的边长增加(2)厘米,那么新的正方形面积增加了多少平方厘米?A.(10)B.(12)C.(14)D.(16)6、如果一个等腰三角形的底边长度为(8)厘米,底角各为(70∘),那么这个等腰三角形的顶角是多少度?A.(20∘)B.(30∘)C.(40∘)D.(50∘)7、一个长方形的长是12cm,宽是5cm,那么它的周长是多少平方厘米?B、60cmC、30cm²D、50cm²8、一个正方形的对角线长度是10cm,那么这个正方形的面积是多少平方厘米?A、50cm²B、100cm²C、25cm²D、20cm²9、下列哪一个等式展示了分配律的应用?A、(3×(4+5)=3×4+3×5)B、(3+(4+5)=(3+4)+5)C、(3×4×5=5×4×3)D、(3+4+5=4+5+3) 10、如果一个正方形的边长增加3厘米,则它的面积增加了多少平方厘米?假设原正方形边长为x厘米。
初一数学上册期中考试试卷及答案
初一数学上册期中考试试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 5D. -1答案:C2. 以下哪个表达式的结果为负数?A. 2 + 3B. -2 - 3C. 2 × 3D. -2 × 3答案:B3. 哪个分数等于1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:A4. 如果a = 5,b = 3,那么a + b的值是多少?A. 2B. 8C. 10D. 15答案:B5. 哪个图形不是轴对称图形?A. 圆形B. 正方形C. 等边三角形D. 不规则四边形答案:D6. 下列哪个选项是质数?A. 4B. 6C. 7D. 8答案:C7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 哪个选项表示的是不等式?A. 3 + 4 = 7B. 2 × 5 = 10C. 9 > 3D. 6 = 6答案:C10. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。
答案:4或-412. 如果一个数除以3余1,这个数可能是______。
答案:413. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的倒数是1/3,这个数是______。
答案:315. 一个数的绝对值是它本身,这个数是非负数,包括______。
答案:0和正数16. 如果一个三角形的两边长分别是3和4,那么第三边的长度应该在______范围内。
答案:1和7之间17. 一个数的平方根是2,这个数是______。
答案:418. 如果一个数的相反数是它本身,这个数是______。
2023-2024学年河北省石家庄市栾城区初一第一学期期中数学试卷及参考答案
2023—2024学年度第一学期石家庄市栾城区期中教学质量检测七年级数学一.选择题(本大题共12个小题,每小题2分,共24分,把每小题的正确选项填涂在答题纸上)1.如果气温升高时气温变化记作2+℃,那么气温下降4℃时气温变化记作( ) A .4+℃B .4−℃C .6+℃D .6−℃2.计算(1)5−−的结果是( ) A .4−B .4C .6−D .53.2023的相反数为( ) A .2023−B .2023C .12023−D .120234.下列绘制的数轴正确的是( ) A . B . C .D .5.单项式223x y−的系数和次数分别是( )A .2−,3B .-2,2C .23−,3 D .23−,2 6.下列各式中,计算正确的是( ) A .( 5.8)( 5.8)11.6−−−=− B .2144164−÷⨯=− C .322(3)72−⨯−=D .22(5)4(5)(3)45⎡⎤−+⨯−⨯−=⎣⎦7.计算2( 1.8)−的结果是( ) A .32.4B .32.4−C .3.24D .32.48.下列说法错误的是( ) A .直线l 经过点AB .点C 在线段上C .射线与线段有公共点D .直线a ,b 相交于点A9.某服装店新开张,第一天销售服装m 件,第二天比第一天少销售8件,第三天的销售量是第二天的2倍多3件,则这三天的销售量一共为( ) A .(421)m +件B .(421)m −件C .(331)m +件D .(331)m −件10.如图,用量角器度量AOB ∠和AOC ∠的度数下列说法中,正确的是( )A .110AOB ∠=︒B .AOB AOC ∠=∠ C .90AOB AOC ︒∠+∠=D .180AOB AOC ︒∠+∠=11.当1x =时,代数式37ax bx ++的值为4,则当1x =−时,代数式37ax bx ++的值为( ) A .4B .4−C .10D .1112.观察下列一组数:23−,45,67−,89,1011−,…,它们是按一定规律排列的,那么这一组数的第n 个数是( )A .221n n + B .2(1)21n n n −− C .2(1)21nn n −+ D .12n n ++ 二、填空题(本大题共8个小题,每小题3分,共24分,将正确答案填写在答题纸上)13.中国古代的算筹计数法可追溯到公元前5世纪.摆法有纵式和横式两种(如图所示),以算筹计数的方法是摆个位为纵,十位为横,百位为纵,千位为横……这样纵横依次交纵式表示752−,表示2369,则表示________.14.单项式3ax y −与46b x y 是同类项,则a b +=________.15.已知a 、b 互为相反数,c 、d 互为倒数,则代数式2()3a b cd +−的值为________. 16.如图,点O 在直线AB 上,581728AOC '''∠=︒.则BOC ∠的度数是________.17.图中几何体的截面(图中阴影部分)依次是________、________、________、________.18.121536︒'"=________°.(将度分秒转化成度)19.如图,在75⨯方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是点________.20.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成的,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形,,按此规律摆下去,第n 个图案有________个三角形(用含n 的式子表示).三、解答题:(本大题共5个小题,共52分)21.计算(共10分)已知下列各有理数: 2.5−,3,4−,12−,32(1)在数轴上标出这些数表示的点:(2)用“<”号把这些数连接起来:________; (3)请将以上各数填到相应的横线上: 正有理数:________;负有理数:________. 22.计算(共10分)某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,如表是实际购书情况:(1)直接写出a =________,b =________; (2)根据记录的数据可知4个班实际购书共本;(3)书店给出一种优惠方案:一次购买达到15本,其中2本书免费.若每本书售价为30元,求这4个班团体购书的最低费用. 23.(共10分)读句子画图:如图A 、B 、C 、D 在同一平面内(1)过点A 、D 画直线; (2)画射线CD ; (3)连结AB ;(4)连接AC 和BD 相交于点E ;(5)连结BC 并延长BC 到F ,使CF BC =. 24.(本题满分10分). 已知如图所示.(1)写出表示阴影部分面积的代数式;(两个四边形均为正方形) (2)求4cm a =,6cm b =时,阴影部分的面积. 25.(本题满分12分)已知120AOB ∠=︒,40COD ∠=︒,OE 平分AOC ∠,OF 平分BOD ∠.(1)如图1,当OB ,OC 重合时,求AOE BOF ∠−∠的值;(2)如图2,当COD ∠从图1所示的位置开始绕点O 以每秒2°的速度顺时针旋转t 秒(010t <<).在旋转过程中,AOE BOF ∠−∠的值是否会因t 的变化而变化?若不变化,请求出该定值;若变化,请说明理由; (3)在(2)的条件下,求当COD ∠旋转多少秒时,12COF ∠=︒.2023—2024学年度第一学期石家庄市栾城区期中考试七年级数学答案一.选择题(本大题共12个小题,每小题2分,共24分,把每小题的正确选项填涂在答题纸上)1-5 BCABC6-10 DCBBD 11 C12 C二、填空题(本大题共8个小题,每小题3分,共24分,将正确答案填写在答题纸上)13.7416−14.715.3−16.1214232︒'''.17.圆形,三角形,六边形,圆形.18.12.2619.M20.31n+三、解答题:(本大题共5个小题,共52分)21.解(1)数轴上表示各点如下:………………………….5分(2)用“<”号把这些数连接起来:134 2.5322−<−<<<,…………………..8分(3)正有理数有:3,32;负有理数有:4−, 2.5−,12−……………….10分22.解(1)∵由于4班实际购入22本,且实际购买数量与计划购买数量的差值为8−,即可得计划购书量为30本,∴一班实际购入301545a=+=本,二班实际购入数量与计划购入数量的差值32302b=−=本,故答案依次为:45,2.……………….4分(2)4个班一共购入数量为:45322322122+++=本,故答案为:122………………..6分(3)∵1221582÷=,……………7分∴如果每次购买15本,则可以购买8次,且最后还剩2本书需单独购买,……………8分∴最低总花费为:30(152)83023180⨯−⨯+⨯=元.……………………10分23.解(1)如图,直线AD即为所求;…………………2分(2)如图,射线CD即为所求;…………………4分(3)如图,线段AB 即为所求;…………………6分 (4)如图,点E 即为所求;…………………8分 (5)如图,线段CF 即为所求.…………………10分 24.解:(1)CDB BGF ECGF S S S S =−+△△正阴.........................2分2211()22a b b a b =+−⨯+…………………4分 ()2212a b ab =+−; 答:阴影部分面积为()2212a b ab +−;…………………..6分(2)当4cm a =,6cm b =时,()2212S a b ab =+−阴()22146462=⨯+−⨯……………………8分 ()214cm =,答:阴影部分的面积为214cm .…………………..10分 25.(1)解:因为OE 平分AOC ∠,OF 平分BOD ∠,所以1602AOE AOC ∠=∠=︒,11402022BOF BOD ∠=∠=⨯︒=︒.…………..2分所以602040AOE BOF ∠−∠=︒−︒=︒;…………………4分(2)解:AOE BOF ∠−∠的值是定值.…………………..5分根据题意,得:2BOC t ∠=︒,则21202AOC AOB t t ∠=∠+︒=︒+︒,2402BOD COD t t ∠=∠+︒=︒+︒.………………………7分因为OE 平分AOC ∠,OF 平分BOD ∠,所以1602AOE AOC t ∠=∠=︒+︒,1202BOF BOD t ∠=∠=︒+︒,……………..8分所以40AOE BOF ∠−∠=︒;…………………9分(3)解:根据题意,得()212BOF t ∠=+︒,…………………10分 所以21220t t +=+,………………….11分 解得8t =,所以当COD ∠旋转8s 时,12COF ∠=︒.………………………….12分。
七年级期中考试数学试卷及答案
ACDB中考试 数学试卷一、选择题(3×10=30)1.在下图中, ∠1,∠2是对顶角的图形是( )2.下列图中,哪个可以通过左边图形平移得到( )3.如图, 不能推出a ∥b 的条件是.. )A.∠1=∠3 B 、∠2=∠4C.∠2=∠3 D 、∠2+∠3=1800 4.下列语句不是命题的是( )A. 明天有可能下雨B.同位角相等C.∠A 是锐角D. 中国是世界上人口最多的国家 5.下列长度的三条线段能组成三角形的是( )A、1, 2, 3 B、1, 7, 6 C、2, 3, 6 D.6, 8, 106.点C在轴的下方, 轴的右侧, 距离轴3个单位长度, 距离轴5个单位长度, 则点C的坐标为( ) A、(-3, 5) B、(3, -5) C、(5, -3) D、(-5, 3)7.一辆汽车在笔直的公路上行使, 两次拐弯后, 仍在原来的方向上平行前进, 那么两次拐弯的角度是( )A.第一次右拐50°, 第二次左拐130°B.第一次左拐50°, 第二次右拐50°C.第一次左拐50°, 第二次左拐130°D.第一次右拐50°, 第二次右拐50°8.如图,能表示点到直线(或线段)距离的线段有.. ) A. 2条 B.3条 C.4条 D.5条9.如图两条非平行的直线AB ,CD 被第三条直线EF.截,交点为PQ ,那么这条直线将所在平面分成..)A. 5个部分B.6个部分C.7个部分D. 8个部分 10.以下叙述正确的有. )①对顶角相等 ②同位角相等 ③两直角相等 ④邻补角相等⑤有且只有一条直线垂直于已知直线 ⑥三角形的中线把原三角形分 成面积相等的两个三角形A 2121B 21C 21D4 3 21 c b a 第3题A、2个 B、3个 C、4个 D、5个 二、填空题(3×10=30)11.如图直线AB、CD、EF相交于点O, ∠AOC的邻补角......________.若∠AOC=500,则∠COB.....0 12.剧院里5排2号可以用(5,2)表示,则7排4号..... 表示.13.两条平行线被第三条直线所截.如果同旁内角之比为1:3,则这两个角分别为________和________.14.两个角的两边互相平行, 其中一个角30°, 则是另一个角的度数....... 15.已知, xy ﹤0, 则点P在坐标平面的位置是第________象限 16.若直线a ⊥b,a ∥c,则c___b.17.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为___________cm 18.点A距离每个坐标轴都是4个单位长度, 则点A的坐标为__________.19.如图, 天地广告公司为某商品设计的商品图案, 图中阴影部分是彩色, 若每个小长方形的面积都是1, 则彩色的面积为 。
北京市大兴区2024~2025学年上学期七年级期中数学试卷(含答案)
大兴区2024~2025学年度第一学期期中检测初一数学2024.11考生须知本试卷共三道大题,28道小题,满分100分,考试时间120分钟.2.在答题纸上准确填写学校名称、准考证号,并将条形码贴在指定区域.3.题目答案一律填涂或书写在答题卡上,在练习卷上作答无效.4.在答题纸上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将答题纸交回.一、选择题(本题共16分,每小题2分)第1--8题均有四个选项,符合题意的选项只有一个.1.3的相反数是( )A.B .3C .3D .2.将223000000用科学记数法表示为( )A .2.23×106B .22.3×107C .2.23×108D .0.223×1093.的次数是( )A .1B .2C .3D .44.下列计算正确的是( )A . B .C .D .5.若,则的值是( )A .6B .2C .2D .66.在数轴上,点表示有理数,将点向左移动6个单位后得到点,若点表示的相反数,则的值为( )A .6B .6C .3D .37.下列说法正确的是( )A .比的2倍少3的数用代数式表示为B .与2的差的5倍用代数式表示为C .代数式表示的相反数与的和D .代数式表示比的倒数多2的数8.有理数在数轴上表示的点的位置如图所示,给出下面三个结论:①;②;③.-13-13-24a b 527ab ab ab +=33a a -=2323a a a +=33321a a -=()2240a b -+-=a b +--A a A B B a a --x 23x +m ()52m -a b --a b 2xx ,a b 0ab <b a a b ->+a a b >+上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③二、填空题(共16分,每题2分)9.图片旋转是人们处理图像的日常操作之一.如果将图片顺时针方向旋转30°记为30°,那么将图片逆时针方向旋转45°,记为_________°.10.若,则________.11.比较大小:________(填“”,“”或“”).12.若与是同类项,则的值是_________.13.对代数式“”可以赋予实际意义:如果一个乒乓球拍的价格是元,那么表示6个乒乓球拍的总价.请你再对代数式“”赋予一个实际意义:________.14.物理课上老师带领学生探究气体压强与气体体积的关系,他们在气缸内充入了一定量的气体,当保证温度不变时,记录气缸内的气体压强与气体体积(m 3),数据如下:气缸内的气体压强2402001601209680气缸内气体体积(m 3)0.40.480.60.811.2则用式子表示与之间的关系是_________.15.如图,用火柴棍拼图形,按照这种方法拼下去,拼第4个图形需要_________根火柴棍,拼第个这样的图形需要_________根火柴棍(用含的代数式表示).16.“24点”游戏是一种使用扑克牌进行的益智类游戏.规则是:从一副扑克牌中抽去大、小王剩下52张牌,从中任意抽取4张牌,运用你所学过的运算对牌面上的数进行运算,使运算结果为24.每张牌都必须使用一次,但不能重复使用.其中,假设黑色(梅花、黑桃)代表正数,红色(红桃、方块)代表负数,黑色分别代表11,12,13,红色分别代表11,12,13.某同学抽到红桃3、方块6、黑桃2、梅花4等4张牌.请你用这4张牌代表的数写出一个运算结果为24的算式:________.三、解答题(共68分,第17题6分,第18题4分,第19题10分,第20--25题每题5分,第26--28题,每题6分)解答应写出文字说明、演算步骤或证明的过程.17.在数轴上表示下列各数,并用“”连接..18.将下列各有理数填在相应的集合内:.+3a =a =37-23-><=23x y -22ax y a 6a a 6a 6a ()P kPa V ()P kPa V P V n n ,,J Q K ,,J Q K ---<50,1.5,3,,12-315,6,0.8,,0,2.7,3,0.372-+--正有理数集合:;整数集合:19.计算:(1);(2).20.计算:21.计算:.22.化简:.23.先化简,再求值:,其中.24.为了保证社区及周边安全稳定,某志愿者在不同的点位巡逻值守.志愿者从社区服务中心出发,沿着一条东西向的笔直公路巡逻,他先向东行驶1km 到达点位,继续向东行驶3km 到达点位,然后向西行驶7km 到达点位,最后回到社区服务中心.(1)点位与点位的距离是多少千米?(2)志愿者一共行驶了多少千米?25.如图,四边形是一个长方形.(1)根据图中数据,用含的代数式表示图中阴影部分的面积;(2)当时,求的值.26.某校七年级三个班级的学生在植树节这天义务植树.一班植树棵,二班植树的棵数比一班的2倍少40棵,三班植树的棵数比二班的一半多30棵.(1)求三个班共植树多少棵(用含的代数式表示);(2)当时,三个班中哪个班植树最多?27.2024年7月27日,北京中轴线申遗成功.如图,北京中轴线北端为钟鼓楼,向南经万宁桥、景山,过故宫、端门、天安门、外金水桥、天安门广场及建筑群、正阳门、中轴线南段道路遗存,至南端永定门,太庙和社稷坛、天坛和先农坛分列中轴线东西两侧.周末张老师沿中轴线骑行.(1)若张老师从钟鼓楼出发,骑行到达景山公园,他的骑行速度为每小时10km ,则用含的代数式表示他从钟鼓楼到景山公园的骑行路程是________km ,骑行路程与骑行时间成________比例关系(填“正”或“反”);{} {}()()()23157-+---296347⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭2111353015⎛⎫⎛⎫-+÷-⎪ ⎪⎝⎭⎝⎭()()41121956⎡⎤⎛⎫-÷-÷---⨯ ⎪⎢⎥⎝⎭⎣⎦()()24563ab a ab a b +--+-()()22323254x x x +--2x =-A B C A C ABCD ,,,a b c d S 3,7,1,2a b c d ====S x x 60x =t h t(2)若端门到永定门的骑行路程为6km ,他的骑行速度为每小时km (在10km 到30km 之间),则用含的代数式表示他从端门到永定门的骑行时间是_________h ,骑行速度与骑行时间成________比例关系(填“正”或“反”);(3)若钟鼓楼到中轴线上处的骑行路程为km ,处到永定门的骑行路程为km .若张老师从钟鼓楼到处的骑行速度为每小时10km ,处到永定门的骑行速度为每小时13km .①用含的代数式表示张老师从钟鼓楼到永定门的骑行时间为________h ;②当时,张老师从钟鼓楼到永定门的骑行时间为_________h .28.对于有理数,我们给出如下定义:若满足,则称为“和谐有理数对”,记为.例如:,数对是“和谐有理数对”.v v v A a A b A A ,a b 7, 5.2a b ==,a b ,a b 31a b ab -=+,a b [],a b 11232177-=⨯⨯+12,7⎡⎤⎢⎥⎣⎦(1)数对,其中是“和谐有理数对”的是_________;(2)若是“和谐有理数对”,求的值;(3)若是“和谐有理数对”,则________(填“是”或“不是”)“和谐有理数对”,说明你的理由.大兴区2024~2025学年度第一学期期中检测初一数学参考答案一、选择题(共16分,每题2分)题号12345678答案BCCADDBD二、填空题(共16分,每题2分)题号9101112答案3题号13141516答案答案不唯一,如:如果一支签字笔的价格是6元,那么6表示支签字笔的总价.21,答案不唯一,如:三、解答题(共68分,第17题6分,第18题4分,第19题10分,第20-25题每题5分,第26-28题,每题6分)解答应写出文字说明、演算步骤或证明的过程.17.解:画图正确(图略).18.正有理数集合:;整数集合:.19.解:(1)原式(2)原式20.解:原式21.解:原式=22.解:原式23.解:原式[]130,1,,5,2,25⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦[],a a -2645a a ++[],m n [],n m --45-3±>a a 96PV =()51n +()()642324--+⨯-=53 1.5012-<-<<<36,,2.7,0.37⎧⎫+⎨⎬⎩⎭{}5,6,0-+ ()()()2315738731=-+-++=-++=-29729773463464⎛⎫⎛⎫⎛⎫=⨯-⨯-=+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()211211115151515151033530353022⎛⎫=-+⨯-=⨯--⨯-+⨯-=-+-=-⎪⎝⎭()()()()()12685112851124015251-+-⨯---⨯=-+--⨯=-++=-+=⎡⎤⎡⎤⎣⎦⎣⎦245633103ab a ab a b ab a b =+-+-=-+-2226910868x x x x x =+-+=-++当时,原式=24.解:(1)(km )(2)(km )答:点位与点位的距离是4km ,志愿者一共行驶了14km .25.(1).(2)当时,26.(1).所以三个班共植树棵.(2)当时,(棵)(棵)所以二班植树最多.27.解(1)(2),反(3)①;②28.(1);(2)因为是“和谐有理数对”,所以,即.(3)是理由如下:左边,右边.因为是“和谐有理数对”,所以.所以.所以是“和谐有理数对”.2x =-()()2262841288=--+⨯-+=--+=-734-=1374114+++-=A C 21122ABCD ABE CFG S S S S ab a cd =--=--长方形直角三角形直角三角形3,7,1,2a b c d ====221111313731222222S ab a cd =--=⨯-⨯-⨯⨯=()()()12402403024010240104302x x x x x x x x x x ⎡⎤+-+-+=+-++=+-++=-⎢⎥⎣⎦()430x -60x =2402604080x -=⨯-=()124030106010702x x -+=+=+=10t6v1013a b ⎛⎫+⎪⎝⎭ 1.1[]30,1,2,5⎡⎤--⎢⎥⎣⎦[],a a -()()31a a a a --=⨯⨯-+2231a a =-+()222226456231566257a a a a a a ++=+-++=-++=()n m n m m n =---=-+=-()()3131n m mn =⨯-⨯-+=+[],m n 31m n mn -=+()()()31n m n m ---=⨯-⨯-+[],n m --。
2023至2024学年第一学期期中学业质量检测七年级数学试题参考答案及评分标准
[]61671761192611=+−=−×−−=−×−−=)(2023至2024学年第一学期期中学业质量检测七年级数学参考答案及评分标准 一、选择题:(本大题共12个小题,每小题4分,共48分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C C C D D C A C B CB二、填空题:(本大题共6个小题,每小题4分,共24分.)13.> 14.线动成面 15.9 16.-25 17.4 18. 380三、解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)解:原式 ············································2分 ························································4分20.(本题4分)解:原式 ····················································2分 ····································································4分21.(本题4分)解:原式 ······························1分·······························2分······························3分·······················································4分22.(本题5分)解:如图所示:·····················4分用“>”连接为:312>3>−(−2.5)>0. ·········································5分23.(本题5分) 解:(1)如图所示:························································4分(2)图中共有9个小正方体. ······· ································5分21942343-=−=−×−×)()(6=5-11=5-4=7)()(+++24.(本题6分)解:(1)分数集合:{5.2,227,−234,…};····································2分(2)非负整数集合:{0,−(−3)…};····································4分(3)有理数集合:{5.2,0,227,+(−4),−234,−(−3)…}.···························6分25.(本题6分)解:(1)最重的一箱比最轻的一箱多重2.5﹣(﹣3)=2.5+3=5.5(千克),答:20箱石榴中,最重的一箱比最轻的一箱多重5.5千克;···························2分(2)﹣3×1+(﹣2)×4+(﹣1.5)×2+0×3+1×2+2.5×8=8(千克),答:20箱石榴总计超过8千克; ·············································4分(3)(25×20+8)×8=508×8=4064(元),答:售出这20箱石榴可赚4064元.·····················································6分26.(本题6分)解:(1)草坪面积为xxxx−2×1=(xxxx−2)平方米;·············································3分(2)(8×5−2)×20=(40−2)×20=38×20=760(元).答:绿化整个庭院的费用为760元。
初一期中数学试卷及答案
初一期中数学试卷及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.下列哪个数是负数?A.-5B.0C.3D.7答案:A2.2的平方根是?A.2B.4C.-2D.无法确定答案:D3.若a=3,b=5,则a+b的值为?A.2B.8C.6D.10答案:D4.下列哪个数是偶数?A.11B.13C.15D.16答案:D5.下列哪个数是无理数?A.√9B.√16C.√25D.√2答案:D二、判断题(每题1分,共20分)1.1的倒数是1。
()答案:正确2.0乘以任何数都等于0。
()答案:正确3.2的平方根是2。
()答案:错误4.负数乘以负数等于正数。
()答案:正确5.两个奇数相加一定是偶数。
()答案:正确三、填空题(每空1分,共10分)1.5的平方是______。
答案:252.4的立方是______。
答案:643.9的平方根是______。
答案:34.1的倒数是______。
答案:15.两个奇数相加一定是______。
答案:偶数四、简答题(每题10分,共10分)1.请简述勾股定理。
答案:勾股定理是指在直角三角形中,直角边的平方和等于斜边的平方。
五、综合题(1和2两题7分,3和4两题8分,共30分)1.已知a=3,b=5,求a+b的值。
答案:a+b=3+5=82.已知一个正方形的边长为4,求其面积。
答案:面积=边长×边长=4×4=163.已知一个等差数列的前三项分别为2,5,8,求该数列的公差。
答案:公差=第二项-第一项=5-2=34.已知一个等差数列的前三项分别为2,5,8,求该数列的第四项。
答案:第四项=第三项+公差=8+3=11六、解答题(每题5分,共10分)1.解方程:2x+5=15。
答案:2x=155,2x=10,x=5。
2.解方程:3(x2)=12。
答案:3x6=12,3x=12+6,3x=18,x=6。
七、应用题(每题5分,共10分)1.小明有10个苹果,他吃掉了3个,还剩下多少个苹果?答案:103=7个苹果。
广东省深圳市深圳高级中学2024-2025学年上学期七年级期中考试数学试卷(含答案)
深圳高级中学2024—2025学年第一学期期中试卷初一数学注意事项:1、答题前,考生务必在答题卡写上姓名、班级,准考证号用2B 铅笔涂写在答题卡上.2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上.3、考试结束,监考人员将答题卡收回.第一部分 选择题一、单选题:(每小题3分,共24分)1.中国古代著作《九章算术》在世界数学史上首次正式引入负数.如果盈利90元记作90元,那么亏本70元记作( )A .60元B .70元C .60元D .70元2.为庆祝中华人民共和国成立75周年,10月1日、2日两天深圳举行舰艇开放日活动,市民可以在南山区蛇口邮轮母港参观“国庆回家”的深圳舰,深圳舰被称为“神州第一舰”,该舰经现代化改进后满载排水量达6600吨.数据6600用科学记数法可表示为( )A .66×102B .6.6×103C .6.6×104D .0.66×1053.下列比较大小正确的是( )A .B .C .D .4.如图,用一个平面从不同的位置,沿着不同的方向取截一个圆柱,圆柱的截面不可能是( )A .B .C .D . 5.如果,那么代数式的值是( )A .0B .5C .7D .96.若规定,则的结果为( )A .9B .C .81D .7.长方形窗户上的装饰物(遮光)如图中阴影部分所示,它是由两个半径均为的四分之一圆组成,则该窗户能射进阳光部分的面积是( )+--+±33(3)(2)->-32(2)(2)->-2332-<-(3)3-->--32a b -=-73a b -+1a b a b b -⊗=÷⨯1(9)3-⊗9-81-bA.B .C .D .8.下图是由同样大小的△按一定规律排列而成,其中第①个图形中有4个△,第②个图形中有9个△,第③个图形中有14个△,…,则第⑧个图形中△的个数为( )A .34B .39C .40D .44第二部分 非选择题二、填空题:(每小题3分,共15分)9.若互为倒数,则________.10.若与是同类项,则________.11.按照如图所示的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么________.12.数在数轴上对应的点的位置如图所示,则________.13.如果记,即当时,,那么2π2b 22πab b -2π22ab b -2π24ab b -,a b 2024()ab -=2mx y 34nx y m n +=a b +=,,a b c a c a b b +--+=22()1x f x x =+1x =2211(1)112f ==+________.(结果用含的代数式表示,为正整数)三、解答题:(本大题共7小题,其中第14题8分,第15题7分,第16题8分,第17题7分,第18题8分,第19题11分,第20题12分,共61分)14.计算:(1)(2)15.已知代数式.(1)化简;(2)当,时,求的值.16.某手工作坊计划一天生产50个布娃娃,但由于各种原因,实际每天生产布娃娃数量与计划每天生产布娃娃数量相比有出入.下表是某一周的生产情况(超过计划数量的部分记作正数,不足计划数量的部分记作负数,单位:个):星期一二三四五六日增减(1)根据记录可知前四天共生产布娃娃________个;(2)求该作坊本周实际生产布娃娃的个数;(3)该作坊实行每日计件工资制,每生产一个布娃娃可得20元,若超额完成任务,则超过部分每个另奖8元,若未能完成任务,则少生产一个扣5元,那么该作坊工人这一周的工资总额是多少元?17.劳动技术课程是基础教育的重要课程之一,其根本使命是全面提高未来国民的基本劳动技术素养,培养具有技术知识、创新思维、实践能力的一代新人.我校将利用天台劳动基地展开一系列的劳动实践操作活动.如图所示,天台上有块长为20米,宽为10米的长方形空地,现在将其余三面留出宽都是米的小路,中间余下的长方形部分做菜地.(1)用含的式子表示菜地的周长;(2)当米时,求菜地的周长.18.归纳是发现数学结论、解决数学问题的一种重要策略.“归纳”的过程,即从几种特殊情形出发,进而找到一般规律的过程.在数学的学习过程中,我们经常用这样的策略探究规律.【数学问题】平面图的顶点数、边数与区域数之间存在什么样的数量关系?【问题探究】为了解决这个问题,我们可以从类似于()、()、()、()、()五个图等具体的情形入手,借助表格探索平面图的顶点数、边数与区域数之间的一般规律.111(1)(2)()(3)(()()23f f f f f f n f n+++++++= n n 523()(24)634+-⨯-21423(1)8233---⨯-÷-22(24)2(21)M a ab ab a =+--++M 2a =3b =-M 4-5+3+6-7-12+2-x x 1.2x =a b c d e x y z图顶点数边数区域数331463694851015【问题解决】(1)将表格数据补充完整,________;________;(2)猜想:一个平面图的顶点数、边数、区域数之间的数量关系为:_________;(3)现已知某一平面图有999个顶点和999个区域,试根据(2)中猜想的关系,确定这个图有多少条边?19.规定:是数轴上的三个点,点将线段分成和两部分,若或,则称线段互为二倍伴侣线段.点表示的数为,点所表示的数为且满足.(1)________,________;(2)若点在线段上,且线段互为二倍伴侣线段,则点表示的数为________;(3)点从点出发,同时点从点出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为秒,当线段互为二倍伴侣线段时,求的值.20.(12分)七(1)班数学项目小组为解决小琴奶奶家储物问题,计划将闲置纸板箱制作成储物盒.素材1如图1,图中是小琴奶奶家需要设置储物盒的区域,该区域可以近似看成一个长方体,底面尺寸如图2所示.x y z()a ()b ()c ()d m()e nm =n =x y z ,,A B C C AB AC BC 2BC AC =2AC BC =,AC BC A a B b ,a b 2(3)a ++50b -=a =b =C AB ,AC BC C M A N B t ,MB NB t如图是利用闲置纸板箱侧面拆解出的①,②两种宽均为cm (cm )长方形纸板,纸板的厚度忽略不计.长方形纸板①长方形纸板②分别将长方形纸板①和②以不同的方式制作储物盒.长方形纸板①的制作方式长方形纸板②制作方式素材2裁去角上4个相同的小正方形,折成一个无盖长方体储物盒.将纸片四个角裁去4个相同的小长方形,折成一个有盖的长方体储物盒.目标1熟悉材料按照长方形纸板①的制作方式制成的储物盒能够无缝隙的放入储物区域,则长方形纸板宽为________cm .利用目标1计算所得的数据,进行进一步探究.初步应用(1)按照长方形纸板①的制作方式,为了更方便地放入或取出储物盒,盒子四周需要留出1cm 宽度,求储物盒的容积.目标2储物收纳(2)按照长方形纸板②的制作方式制作储物盒,若和两边恰好重合且无重叠部分,如图,是小琴奶奶家里一个玩具机械狗的实物图和尺寸大小,请设计一个各个面均不大于600cm 2的储物盒收纳这只玩具狗.a 50a a a EF HG深圳高级中学2024-2025学年初一数学期中考试参考答案一、选择题(24分)题号12345678答案BBDBDCBB二、填空题(15分)题号910111213答案154三、解答题(61分)14.(1)解:原式=(2)解:原式15.解:(1);(2)当时,.16.(1)198解析:个,故前四天共生产布娃娃198个;(2)解法一:个,答:该厂本周实际生产布娃娃的个数为351个;解法二:个,答:该厂本周实际生产布娃娃的个数为351个;(3)解:(元),该厂工人这一周的工资总额是7085元17.(1)解:依题可得:菜地的周长为: (米)答:菜地的周长是米.(2)解:当米时,菜地周长为:(米),答:当米时,菜地的周长是52.8米.c 12n -523(24)(24)(24)20161818634⨯-+⨯--⨯-=--+=-3439()8921219232=---⨯-⨯=-+-=-2222244222244236M a ab ab a a a ab ab ab =+----=-+---=--2,3a b ==32(3)618612M =-⨯⨯--=-=(4536)504198-++-+⨯=(7122)503198351-+-+⨯+=(45367122)507351-++--+-+⨯=35120(4672)5(5312)87020951607085⨯-+++⨯+++⨯=-+=2(202)2(10)x x -+-404202x x =-+-606x =-(606)x -1.2x =60 1.2652.8-⨯=1.2x =18.解:(1);;(2);(其他答案如:,也可)(3)解:设该平面图有条边,由(2)得,解得:,所以,这个图有1997条边19.解:(1),;(2)或(3)解:当运动时间为秒时,对应的数为,对应的数为,且点在线段之间∴,当时,则,解得:当时,则,∴ 解得:.综上所述或20.目标1: 40解析:储物区域的长为40,由于收纳盒可以完全放入储物区域,则图1中的四角裁去小正方形的边长为(cm ),则收纳盒的宽2小正方形的边长(cm ),目标2:(1)因为四周留出1cm 宽,所以储物盒的长为:(cm ),宽为:(cm ),高为:(cm )所以储物盒的容积为:(cm 3)(2)设裁出的小长方形的宽为cm ,长为cm ,则,所以所以储物盒的长为:(cm ),宽为: cm ,高为:cm当时,储物盒的长为:,宽为,不符合题意,舍去当时,储物盒的长为:,宽为,12m =6n =1x z y +-=1y x z =+-y 9999991y +-=1997y =3a =-5b =13-73t M 33t -+N 5t +B MN 5(33)83,BM t t BN t =--+=-=2BM BN =832t t -=85t =2BN BM =2(83)t t -=166t t -=167t =85t =167t =cm (5040)25-÷=a =+⨯302540=+⨯=40238-=30228-=(5038)26-÷=382866384⨯⨯=x y 2()1002y x y -=-252xy =+10021002(25502x y x -=-+=-(402)x -x 12x =1225312y =+=50123835-=>402121614-⨯=>3816608600S =⨯=>13x =132531.52y =+=50133735-=>4021314-⨯=3714518600S =⨯=<当时,储物盒的长为:,宽为答:可以利用纸板②裁去4个长为31.5cm ,宽为13cm 的小长方形,制作成长为37cm ,宽为14cm ,高为13cm 的储物盒:或裁去4个长为32cm ,宽为14cm 的小长方形,制作成长为36cm ,宽为12cm ,高为14cm 的储物盒,收纳这只玩具狗.14x =1425322y =+=50143635-=>4021412-⨯=3614504600S =⨯=<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:此卷不交,考试结束后自己保存,请将答案填写在答案卷上。
一、选择题:(把每题的答案填在下表中,每题3分,共30分) 1. -3的倒数是 ( ▲ )A .3B . -3C .D .-2. 下列式子,符合代数式书写格式的是 ( ▲ )A. B. C. D.3. 在12,-20,-1,0,-(-5),-3+中负数的个数有 ( ▲ )A .6个B .5个C .4个D .3个4.下列两个单项式中,是同类项的一组是 ( ▲ )A .与B .与C .与D .3与5. 已知:2a=﹣a ,则数a 等于 ( ▲ )A .不确定 B . 1C . ﹣1D .06. 在数轴上,与表示数-1的点的距离是2的点表示的数是 (▲ )A .1B .3C .1或-3D .±27. 用代数式表示“m 的3倍与n 的差的平方”,正确的是 ( ▲ )A. B. C. D. 8. 已知22a b -=,则424a b -+的值是 ( ▲ )A .0B .2C .4D .89. 附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子都按原价打八折出售,服饰共卖出20031313÷a x 3123⨯a ba12y x 23x y 23m 2n 222xy 2)2(xy 21-2)3(n m -2)(3n m -23n m -2)3(n m -⑴ 1+8=?1+8+16=?⑵ ⑶1+8+16+24=?……件,共得24000元.若外套卖出x 件,则依题意可列出下列哪一个一元一次方程式?(▲ )A .0.6×250x+0.8×125(200+x )=24000B .0.8×125x+0.6×250(200-x )=24000C .0.8×125x+0.6×250(200+x )=24000D .0.6×250x+0.8×125(200-x )=24000 10. 如下表,从左到右在每个小格子中都填入一个整数..,使得其中任意三个相邻..格子中所填整数之和都相等,则第个格子中的数为 (▲ )A .3B .2C .0D .-1 二、细心填一填(每题3分,共计24分)11.火星和地球的距离约为34000000千米,这个数用科学记数法可表示为▲ . 12. 若(m -2)x 1m -=5是一元一次方程,则m 的值为 ▲ .13. 若,则▲ .14. 当x = ▲ 时,代数式2x -7的值为3. 15绝对值不大于5的所有整数的积等于 ▲16一只蚂蚁从数轴上一点A 出发,爬了7个单位到了原点,则点A 所表示的数是 ▲17. 若方程和的解相同,则的值是 ▲18. 观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+136= ▲三、解答题:(本大题共9小题,共76分,解答时应写出必要的计算过程或文字说明)()0212=++-y x =-y x 312-x =+032=--xa a 3 abc -1 2 …19. (16分)计算:(1)-3-5+12 (2)7-(-3)0+(-5)-|-8|(3) (4)20.(8分)解下列方程:(1) (2) 21. (4分).把下列各数-22,-|-3| ,+(-12), -(-2),在数轴上表示出来,并用..“.<”.把它们连接起来........ 22.(本题满分6分)已知:A =3a 2-4ab ,B =a 2+2ab .(1)求A -2B ; (2)若1a ++(2-b )2=0,求A -2B 的值;24. (本题满分5分) 某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):(1)接送完第5批客人后,该驾驶员在公司 边,距离公司 km 的位置?(2)若该出租车的计价标准为:行驶路程按每千米1.8元收费,在这过程中该驾驶员共收到车费多少元?25.(本题满分5分) 规定新运算符号“*”的运算过程为a*b=a -b (1) 2*(-x )+1 (2)解方程 2*x= x *2 +526.(本题满分6分) 已知x = 3是关于x 的方程4x -a(a +x )= 2(x -a)的解,求代数式[3+2(a -24a )]-2(1+54a )的值.2252253⎪⎭⎫⎝⎛-⨯--⎪⎭⎫ ⎝⎛-+-⨯-314321241534-=+x x 6121312--=-x x 213127.(本题满分6分)目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到舟山.两座跨海大桥的长度及过桥费见下表:(1)求舟山到嘉兴的总路程(2)我省交通部门规定:轿车的高速公路通行费的计算方法为:(5)ax b++(元),其中a(元/千米)为高速公路里程费,x(千米)为高速公路里程(不包括跨海大桥长),b(元)为跨海大桥过桥费.若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a.28. (本题满分5分) “囧”(ji ong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示右图中“囧”的面积;(2)当时,求此时“囧”的面积.29.(本题满分9分) 如图,A、B两地相距28个单位长度.AO=8个单位长度,PO=4个单位长度,∠POB=60°,现在点P开始绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q自点B沿BA向点A运动,设点P、Q运动的时间为t(秒).①当t=时,∠AOP=90°;②假若点P、Q两点能相遇,求点Q运动的速度.③如果点P绕着点O以a度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自点B以bcm/秒的速度向点A运动,当点Q到达点A时,∠POQ恰好等于90°,求a:b 的值421==xy大桥名称杭州湾跨海大桥大桥长度48千米36千米过桥费100元80元嘉兴舟山东海备用图一、选择题答案栏(每题3分,共30分)二、填空题答案栏(每空3分,共24分)将填空题的答案填写在相应位置.11. ; 12. ; 13. ; 14. ; 15. ; 16. ; 17. ; 18. ; 三、解答题:(本大题共9小题,共76分,解答时应写出必要的计算过程或文字说明) 19. (16分)计算:(1)-3-5+12 (2)7-(-3)0+(-5)-|-8|(3) (4)20.(8分)解下列方程:(1) (2)21. (4分).把下列各数-22,-|-3| ,+(-12), -(-2),在数轴上表示出来,并用..“.<”.把它们连接起来........2252253⎪⎭⎫⎝⎛-⨯--⎪⎭⎫ ⎝⎛-+-⨯-314321241534-=+x x 6121312--=-x x22.(本题满分6分)已知:A=3a2-4ab,B=a2+2ab.a++(2-b)2=0,求A-2B的值;(1)求A-2B;(2)若123.(本题满分6分)有理数a、b、c在数轴上的位置如图, Array(1)判断正负,用“>”或“<”填空:c-b▲0,a+b▲0,a-c▲0.(2)化简:3|c-b|+|a+b|-2|a-c|.24.(本题满分5分) 某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):(1)边,km的位置?(2)若该出租车的计价标准为:行驶路程按每千米1.8元收费,在这过程中该驾驶员共收到车费多少元?25.(本题满分5分) 规定新运算符号“*”的运算过程为a*b=a -b (1) 2*(-x )+1 (2)解方程 2*x= x *2 +526.(本题满分6分) 已知x = 3是关于x 的方程4x -a(a +x )= 2(x -a)的解,求代数式[3+2(a -24a )]-2(1+54a )的值.27.(本题满分6分)目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到舟山.两座跨海大桥的长度及过桥费见下表:(1)求舟山到嘉兴的总路程(2)我省交通部门规定:轿车的高速公路通行费的计算方法为:(5)ax b ++(元),其中a (元/千米)为高速公路里程费,x (千米)为高速公路里程(不包括跨海大桥长),b (元)为跨海大桥过桥费.若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a .2131大桥名称 舟山跨海大桥 杭州湾跨海大桥大桥长度 48千米 36千米 过桥费 100元80元嘉兴舟山东海28. (本题满分5分) “囧”(ji ong )是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x 、y ,剪去的两个小直角三角形的两直角边长也分别为x 、y .(1)用含有x 、y 的代数式表示右图中“囧”的面积; (2)当时,求此时“囧”的面积.29. (本题满分9分) 如图, A 、B 两地相距28个单位长度.AO =8个单位长度,PO =4个单位长度,∠POB =60°,现在点P 开始绕着点O 以60度/秒的速度逆时针旋转一周停止,同时点Q 自点B 沿BA 向点A 运动,设点P 、Q 运动的时间为t (秒). ①当t= 时,∠AOP =90°;②假若点P 、Q 两点能相遇,求点Q 运动的速度.③如果点P 绕着点O 以a 度/秒的速度逆时针旋转一周停止,同时点Q 沿直线BA 自点B 以bcm /秒的速度向点A 运动,当点Q 到达点A 时,∠POQ 恰好等于90°,求a :b 的值421==x y 备用图一、选择题:(把每题的答案填在下表中,每题3分,共30分)1、D2、D3、D4、D5、D6、C7、A8、A9、D 10、A二、细心填一填(每题3分,共计24分)11、千米7104.3⨯ 12、-2 13、3 14、5 15、0 16、±7 17、12 18、1225三、解答题:(本大题共9小题,共76分,解答时应写出必要的计算过程或文字说明)19、略 20、略 21、略 22、略 23、略 24、略 25、略27、解:(1)“囧”的面积:20×20-21xy×2-xy ,=400-xy-xy ,=400-2xy ;(2)当时,“囧”的面积=400-2×21×4=400-4=396.28、①2721或=t②点Q 运动的速度为12516或个单位长度/秒;③略421==x y。